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ABSTRACT 
Animal studies have shown that the striatal cholinergic system plays a role in behavioural flexibility 

but, until recently, this system could not be studied in humans due to a lack of appropriate non-

invasive techniques. Using proton magnetic resonance spectroscopy (1H-MRS) we recently showed 

that the concentration of dorsal striatal choline (an acetylcholine precursor) changes during reversal 

learning (a measure of behavioural flexibility) in humans. The aim of the present study was to 

examine whether regional average striatal choline was associated with reversal learning. We 

measured choline at rest in both the dorsal and ventral striatum using 1H-MRS and examined its 

relationship with performance on a probabilistic learning task with a reversal component. Task 

performance was described using a simple reinforcement learning model that dissociates the 

contributions of positive and negative prediction errors to learning. Average levels of choline in the 

dorsal striatum were associated with performance during reversal, but not during initial learning. 

Specifically, lower levels of choline in the dorsal striatum were associated with a lower number of 

perseverative trials. Moreover, choline levels explained inter-individual variance in perseveration 

over and above that explained by learning from negative prediction errors. These findings suggest 

that the dorsal striatal cholinergic system plays an important role in behavioural flexibility, in line with 

evidence from the animal literature and our previous work in humans. Additionally, this work provides 

further support for the idea of measuring choline with 1H-MRS as a non-invasive way of studying 

human cholinergic neurochemistry. 
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INTRODUCTION 
Acetylcholine (ACh) plays an important role in adaptive behaviour, and has been implicated in 

disorders of cognitive flexibility, such as Parkinson’s disease (Tanimura et al., 2018; Zucca, Zucca, 

& Wickens, 2018). Studies in rodents have repeatedly demonstrated that ACh transmission, 

determined by the activity and regulation of cholinergic interneurons in the dorsal striatum (DS), is 

involved in reversal learning and similar forms of behavioural flexibility (Aoki et al., 2018; Bradfield, 

Bertran-Gonzalez, Chieng, & Balleine, 2013; H. D. Brown, Baker, & Ragozzino, 2010; McCool, Patel, 

Talati, & Ragozzino, 2008; Okada, Nishizawa, Setogawa, Hashimoto, & Kobayashi, 2018; 

Ragozzino, Jih, & Tzavos, 2002; Ragozzino, Mohler, Prior, Palencia, & Rozman, 2009; Tzavos, Jih, 

& Ragozzino, 2004). Further, ACh efflux has been shown to increase specifically during reversal 

learning (but not during initial learning), and this effect is specific to the dorsomedial striatum (with 

no changes in ACh levels in either the dorsolateral striatum or the ventral striatum) (Ragozzino et 

al., 2009). It is clear then that cholinergic activity in the DS plays an important role in reversal learning 

but, despite the importance of understanding this system, there remain important challenges in 

probing ACh function in humans due to a lack of appropriate non-invasive techniques. 

Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive method for measuring brain 

metabolites in vivo (Puts & Edden, 2012). Although it cannot be used to study ACh directly due to its 

low concentration (Hoover, Muth, & Jacobowitz, 1978), 1H-MRS can be used to measure levels of 

certain choline containing compounds (CCCs) involved in the ACh cycle, including choline (CHO). 

CHO is the product of ACh hydrolysis, and its uptake in cholinergic terminals is the rate-limiting step 

in ACh biosynthesis (Lockman & Allen, 2002). Using functional 1H-MRS we previously demonstrated 

task-driven changes in the concentration of CHO in the human DS during reversal learning (Bell, 

Lindner, Mullins, & Christakou, 2018). Although 1H-MRS studies typically model CCCs as a single 

peak due to their proximity on the spectrum, we showed that using this method may mask CHO-

specific effects. Therefore, in the context of studying ACh function, it is necessary to separate the 

metabolites when measuring individual differences in CHO levels (Bell et al., 2018; Lindner, Bell, 

Iqbal, Mullins, & Christakou, 2017). 

Among the many open questions around this approach is the nature of the relationship between 

baseline levels of CHO availability and function-relevant ACh activity. Animal studies have shown 

that ACh synthesis is tightly coupled to CHO availability. For example, depletion of CHO has been 

shown to reduce ACh synthesis (Jope, 1979) and administration of CHO has been shown to increase 

it (Koshimura et al., 1990). Further, overexpression (Holmstrand et al., 2013) and under-expression 

(Parikh, St. Peters, Blakely, & Sarter, 2013) of presynaptic CHO up-take transporters has been 

shown to increase and decrease ACh levels respectively. It is possible, therefore, that baseline CHO 

availability may modulate ACh activity, leading to effects on behavioural flexibility. In this study, we 

used 1H-MRS to test whether baseline levels of regional striatal CHO are related to individual 

differences in performance during a probabilistic reversal learning task. To do this, we obtained 
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average measures of CHO from the dorsal and ventral regions of the striatum (DS and VS, 

respectively). Additionally, CHO levels from the cerebellum were used as a control to demonstrate 

specificity. In line with the animal literature and our previous findings in humans (Bell et al., 2018), 

we predicted that average levels of CHO in the dorsal, but not the ventral, striatum would be 

associated with performance during reversal, but not initial, learning. 
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METHODS 

Participants 
The study was approved by the University of Reading Research Ethics Committee. 36 volunteers 

(20 female) between the ages of 18.3 and 32.8 (mean = 24.8, SD = 3.5) were recruited by opportunity 

sampling. All participants were healthy, right handed non-smokers and written informed consent was 

taken prior to participation. Two participants were excluded from analyses due to a high proportion 

of missed responses (participant 14: 35% during initial learning and 39% during reversal learning; 

participant 31: 27% during initial learning, 54% during reversal learning).  

Behavioural Data 

Learning Task 
The task used was a probabilistic multi-alternative learning task previously described (Bell et al., 

2018), and was programmed using MATLAB (2014a, The Mathworks, Inc., Natick, MA, United 

States) and Psychtoolbox (Brainard, 1997). 

First, participants were presented with a fixation cross displayed in the centre of the visual display. 

Participants were then presented with four decks of cards. Each deck contained a mixture of winning 

and losing cards, corresponding respectively to a gain or loss of 50 points. The probability of getting 

a winning card differed for each deck (75%, 60%, 40%, and 25%) and the probabilities were 

randomly assigned across the four decks for each participant. Participants indicated their choice of 

deck using a computer keyboard. Outcomes were pseudo-randomised so that the assigned 

probability was true over every 20 times that deck was selected. Additionally, no more than 4 cards 

of the same result (win/loose) were presented consecutively in the 75% and 25% decks and no more 

than 3 cards of the same result in the 60% and 40% decks. A cumulative points total was displayed 

in the bottom right-hand corner throughout the session and in the centre of the visual display at the 

end of each trial (Figure 1). Participants were instructed that some decks may be better than others, 

they are free to switch between decks as often as they wish, and they should aim to win as many 

points as possible. 

The learning criterion was set at selection of either of the two highest decks (60% or 75%) on at least 

80% of the time over ten consecutive trials. Though the optimal strategy is to repeatedly choose the 

75% deck, pilot testing revealed the participants were not always able to distinguish between the 

75% and 60% decks. Therefore, as both decks generate an overall gain in points and choice of either 

deck could be considered a good strategy, both decks are included in the learning criterion.  
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The initial learning phase (round 1) was completed when either the learning criterion was reached, 

or the participant completed 100 trials.  The deck probabilities were then reversed so that the high 

probability decks became low probability and vice versa. Participants were not informed of the 

reversal. The task ended either after the learning criterion was reached following the reversal (round 

2), or after another 100 trials (Figure 2).  

Figure 1: General outline of learning task trials 

 

Participants were instructed to choose between four decks of cards. Each deck had a different probability of 

generating wins:losses (75:25, 60:40, 40:60, 25:75). Once the learning criterion had been reached, the deck 

probabilities were reversed so that high probability decks became low probability decks and vice versa. 

Participants were not informed of this in advance and were simply instructed to gain as many points as 

possible. Each screen was shown for 2.5s, RT = reaction time. 

Impulsivity 
Previous research has shown that trait levels of impulsivity can influence decision making (Bayard, 

Raffard, & Gely-Nargeot, 2011). Individuals with higher levels of impulsivity have been shown to 

demonstrate sub-optimal performance on decision making tasks, displaying a decreased ability to 

learn reward and punishment associations and implement these to make appropriate decisions. For 

instance, individuals with high levels of impulsivity were relatively impaired in adapting their 

behaviour during a reversal learning task (Franken, van Strien, Nijs, & Muris, 2008). Other tasks of 

cognitive flexibility have also been shown to be influenced by trait impulsivity levels (e.g. Müller, 

Langner, Cieslik, Rottschy, & Eickhoff, 2014). Therefore all participants completed the Barratt 

Impulsiveness Scale (BIS-11; Patton, Stanford, & Barratt, 1995) and their total score was used as a 

trait measure of impulsivity. This was included in the analysis to account for effects driven by 

individual differences in impulsivity.  

RT

2.5s

2.5s

2.5s
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Data Analysis 
Participants were split into two groups based on performance. Those who learnt both rounds (i.e. 

reached criterion both during initial learning and after reversal) were classified as learners and those 

who did not learn both rounds were classified as non-learners.  

Behaviour was analysed for learners only. Those who did not reach criterion during round 1 will not 

have realised there was a change in contingencies and will not have experienced a reversal, 

therefore their behaviour during the reversal stage is likely to be different to those who did experience 

the reversal. Additionally, because the task stops at 100 trials per round if the criterion is not met, 

there is a ceiling effect for those who did not reach criterion. Consequently, there will be a ceiling 

effect for those who did not reach criterion in both rounds, and for those who did not reach criterion 

in either round 1 or round 2 only. Therefore, participants who did not reach criteria in either one 

round or both rounds were excluded from behaviour analysis.  

Performance was measured using the number of trials taken to reach criterion in round 1 (initial 

learning) and in round 2 (reversal learning). Round 2 was subdivided into perseverative trials and 

post-reversal learning (Figure 2). The number of perseverative trials was defined as the number of 

trials after reversal until the probability of selecting the previously favoured deck reached chance 

level (0.25), i.e. the number of trials taken to identify the reversal and switch behaviour. Post-reversal 

learning was defined as the number of trials taken to reach criterion in round 2, minus the number of 

perseverative trials, i.e. the number of trials to reach criterion after the reversal had been detected. 

In other words, post-reversal leaning is measured by the number of trials the participant took to learn 

the contingencies once they had realised the deck probabilities had reversed. Additionally, the post-

reversal learning period included a measure of regressive errors. The number of regressive errors 

was defined as the number of times the previously favoured deck was selected during the post-

reversal learning period (i.e. after the perseverative period had ended).  

Figure 2: General overview of learning task structure 

  

Participants completed the initial learning phase (round 1) by reaching the predefined accuracy criterion or 

after 100 trials. Upon completion of the initial learning phase, the deck probabilities were reversed. 

Participants then completed a reversal learning phase (round 2). For behavioural analysis, this was 

subdivided into perseverative trials (PER) and a post-reversal learning period. The number of perseverative 
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trials was defined as the number of trials after reversal until the probability of selecting the previously 

favoured card reached chance level (0.25). The post-reversal learning period was the number of trials to 

reach criterion in round 2, minus the number of perseverative trials. The number of regressive errors was 

defined as the number of times the previously favoured deck was selected during the post-reversal learning 

period. The task ended once participants either reached the same accuracy criterion in round 2 or after 100 

round 2 trials.  

Temporal Difference Reinforcement Learning Model 
We modelled participants’ choice behaviour as a function of their previous choices and rewards using 

a temporal difference reinforcement learning algorithm (Sutton & Barto, 1998). This allows us to track 

trial-and-error learning for each participant, during each task stage, in terms of a subjective expected 

value for each deck. On each trial t, the probability that deck c was chosen was given by a soft-max 

probability distribution,  

𝑃(𝑐$ = 𝑐) = 	 𝑒
)*(+)

∑ 𝑒)*(-)-
.   (1) 

where mt(c) is the preference for the chosen deck and j indexes the four possible decks. The 

preference for the chosen deck was comprised of the participant’s expected value of that deck on 

that trial, Vt(c), multiplied by the participant’s individual value impact parameter β (equivalent to the 

inverse temperature): 

𝑚$(𝑐) = 	𝛽𝑉$(𝑐). (2) 

The parameter β describes the extent to which trial-by-trial choices follow the distribution of the 

expected values of the decks: a low β indicates choices are not strongly modulated by expected 

value, being effectively random with respect to this quantity (i.e. participants are not choosing based 

exclusively on value, and are effectively exploring all options); conversely, a high β indicates choices 

largely follow expected value (i.e. participants choose the deck with the highest expected value; 

exploitation). 

To update the subjective value of each deck, a prediction error was generated on each trial, 𝑝𝑒$ 
based on whether participants experienced a reward or a loss (rewardt, = +1 or -1 respectively). The 

expected value of the chosen deck was subtracted from the actual trial reward to give the prediction 

error: 

𝑝𝑒$ = 𝑟𝑒𝑤𝑎𝑟𝑑$ −	𝑉$(𝑐) (3) 

Studies have shown that individuals differ in the degree to which they learn from better than expected 

outcomes (positive prediction errors) and worse than expected outcomes (negative prediction errors) 

(Bull, Tippett, & Addis, 2015; Christakou et al., 2013; Gray, 1970; Niv, Edlund, Dayan, & O’Doherty, 

2012). To account for this, two learning rate parameters were used to model sensitivity to prediction 

errors in updating the expected values: the weight of learning from better than expected outcomes 
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(learning rate from positive prediction errors: η+) and the weight of learning from worse than expected 

outcomes (learning rate from negative prediction errors: η-). For example, individuals who are reward 

seeking will place a high weight on the former, whereas those who are loss-aversive will place a high 

weight on the latter. The prediction error on each trial was multiplied by either the positive (η+) or 

negative (η-) learning rate and used to update the value of the chosen deck. 

𝛿$ = 𝜂;	 × 𝑝𝑒$						𝑖𝑓	𝑝𝑒$ > 0 (4) 

𝛿$ = 𝜂A	 × 𝑝𝑒$					𝑖𝑓	𝑝𝑒$ < 0 (5) 

𝑉(𝑐ℎ𝑜𝑠𝑒𝑛$) = 𝑉(𝑐ℎ𝑜𝑠𝑒𝑛$AG) +	𝛿$ (6) 

Thus, the model has three parameters of interest (β, η+ and η-). In psychological terms, β captures 

the degree to which the subjective value of the chosen deck influenced decisions, while the learning 

rates capture the individual’s preference for learning from positive (η+) or negative (η-) prediction 

errors to guide choice behaviour during this task. 

Model Fitting 
The model was fit per participant to provide parameters that maximised the likelihood of the observed 

choices given the model (individual maximum likelihood fit; Daw, 2011). The reward value was 

updated as 1 (win) or -1 (loss). Subjective value was initialised at zero for all decks and the initial 

parameter values were randomised. To ensure the model produced consistent, interpretable 

parameter estimates, 𝜂 was limited to between 0 and 1 and β was assumed positive. The parameters 

were constrained by the following distributions based on Christakou et al (2013): 

𝛽	~	𝐺𝑎𝑚𝑚𝑎	(2,1) 

𝜂	~	𝐵𝑒𝑡𝑎	(1.2, 1.2) 

The model was fit separately over the trials encompassing round 1 (R1, initial learning) and round 2 

(R2, perseverative trials and post-reversal learning, denoted as reversal learning). This was done to 

capture the change in influence of the model parameters from initial learning to reversal learning. 

The model was not fit over the perseverative trials separately as the average number of 

perseverative trials was too small to generate a stable model fit.  

Traditionally, to investigate the fit of a temporal difference reinforcement learning model the Bayesian 

information criterion (BIC) is used. The BIC is a post hoc fit criterion which looks at the adequacy of 

a model whilst penalising the number of parameters used. A lower number indicates a better fit 

(Steingroever, Wetzels, & Wagenmakers, 2016). However, the BIC is generally used to compare 

different models, rather than model fits over different sets of data, and will penalise different sized 

data sets. Alternatively, the corrected likelihood per trial (CLPT) can be used. The CLPT is a more 

intuitive measure of fit that takes into account the number of trials completed without penalising 
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different sized data sets. The CLPT varies between 0 and 1, with higher values indicating a better fit 

(Leong & Niv, 2013; Niv et al., 2015). 

Wilcoxon signed-rank tests showed there was no significant difference between the CLPT values for 

the model fit over round 1 (Mdn = 0.23) and round 2 (Mdn = 0.23; Z= -1.308, p = 0.191). Additionally, 

there was no significant difference between the BIC values for the model fit over round 1 (M = 75.7, 

SD = 45.5) and round 2 (M = 90.9, SD = 43.6; t(33) = -1.533, p = 0.135, r = 0.26). 

To summarise, the model fit equally well across rounds. Therefore, differences in parameter 

estimates across the task can be examined. 

Magnetic Resonance Spectroscopy  

Data Acquisition 
Data was collected at the University of Reading on a Siemens Trio 3T MRI scanner using a transmit-

receive head coil. A high-resolution whole-brain T1 structural image was acquired for voxel 

placement using an MPRAGE sequence parallel to the anterior-posterior commissure line (176 x 

1mm slices; TR = 2020ms; TE = 2.9ms; FOV = 250mm).  

Voxels were placed in either the left or right dorsal striatum (DS), ventral striatum (VS) and the 

cerebellum, with hemisphere placement and order of measurements counterbalanced across 

participants. Anatomy was used to guide voxel positioning. The top of the DS was identified by slice-

by-slice examination of the structural scan. The slice below the slice where the top of the striatum 

was no longer visible was selected and the top of the voxel was aligned with this slice. The same 

technique was applied for the VS voxel. The slice above the slice where the bottom of the striatum 

could no longer be seen was selected and used for alignment of the VS voxel.  The cerebellum voxel 

was placed as high in the superior cerebellar vermis as possible whilst ensuring only cerebellar 

tissue was contained in the voxel. The superior cerebellar vermis was chosen as it has been shown 

to have the lowest variability in both inter and intra subject metabolite ratios as measured with 1H-

MRS at rest (Currie, Hadjivassiliou, Wilkinson, Griffiths, & Hoggard, 2013). All voxels were visually 

inspected to ensure minimal cerebrospinal fluid was included in the voxels. 

A PRESS sequence was used to acquire data from the three separate voxel positions (voxel size = 

10mm x 15mm x 15mm; TR = 2000ms; TE = 30ms). 128 spectra were collected and averaged for 

each area.  A water-unsuppressed spectrum was also obtained from each area for data processing, 

which consisted of an average of 15 spectra. Spectra were obtained for all participants from the 

cerebellum and the DS. The spectrum obtained from the VS was only usable from 34 participants 

due to noise levels. The SIEMENS Auto Align Scout was used in between each scan to adjust the 

voxel position based on the actual head position of the participant. This was used to correct for 

participant motion and minimize the variability of the voxel position.  
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Figure 3: Location of voxels and example spectra 

 

Heat maps showing the sum of the 1H-MRS voxels over all subjects in MNI space, along with a 

representative spectrum from a single subject (A = Dorsal Striatum, MNI coordinates: -3.41, 2.37, 11.16; B 

= Ventral Striatum, MNI coordinates: -2.99, 5.92, -3.93; C = Cerebellum, MNI coordinates: -2.10, -61.03, 

19.20). 

Structural Segmentation 
Structural scans were processed using FSL version 5.0.8 (Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012; Smith et al., 2004). First, the skull was removed using the brain extraction 

tool (BET) (Smith, 2002). Images were segmented into three separate tissue types: grey matter 

(GM), white matter (WM) and cerebrospinal fluid (CSF) using the FAST tool (Zhang, Brady, & Smith, 

2001). The coordinates and dimensions of the voxel were then superimposed on these images and 

the proportion of each of the three tissue types contained within the voxel was calculated. 
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Quantitation 
Data was processed in the time domain using Java-Based Magnetic Resonance User Interface 

(jMRUI software version 5.0 (http://www.mrui.uab.es/mrui); Naressi et al., 2001). Phase correction 

was performed using the corresponding water spectrum from each area. Each spectrum was then 

apodized using a Gaussian filter of 3Hz to improve signal quality, reduce noise and reduce effects 

of signal truncation (Jiru, 2008). The residual water peak was removed using the Hankel-Lanczos 

Singular Value Decomposition (HLSVD) filter tool. 

Metabolite models were generated using the software Versatile Simulation, Pulses and Analysis 

(VEsPA (https://scion.duhs.duke.edu/vespa/project); Soher, Semanchuk, Todd, Steinberg, & 

Young., 2010). 14 typical brain metabolites (Acetate, Aspartate, CHO, Creatine, Gamma-

Aminobutyric Acid (GABA), Glucose, Glutamate, Glutamine, Lactate, Myo-inositol, N-acetyl 

Aspartate (NAA), Phosphocreatine, PC & GPC, Scyllo-inositol, Succinate, Taurine) were simulated 

at a field strength of 3T using a PRESS pulse sequence (TE1 = 20ms, TE2 = 10ms, main field = 

123.25MHz). For initial analyses, CHO was modelled separately from PC+GPC based on the method 

described in Bell et al., 2018.  Additionally, the sum of the three peaks (total choline, tCHO) was 

included in the analyses for comparison. If tCHO produced similar results to CHO, it would potentially 

suggest that there may not be a need to separate the three peaks, or that the quantitation method is 

not separating CHO effectively.  

The jMRUI tool Accurate Quantification of Short Echo time domain Signals (AQSES) was used for 

automatic quantification of spectra signals. AQSES was applied using the method described in 

Minati, Aquino, Bruzzone, & Erbetta, 2010. To correct for any chemical shift displacement, the 

spectrum was shifted so that the peak for n-acetyl-aspartate (NAA) was at 2.02ppm. The frequency 

range selected for processing was limited to 0-8.6ppm (equal phase for all metabolites, begin time 

fixed, delta damping (-10 to 25Hz), delta frequency (-5 to 5Hz), no background handling, 0 truncated 

points, 2048 points in AQSES and normalisation on). Based on common practice in the field, values 

with a CRB higher than 30% were excluded on a case by case basis. 

Metabolite concentrations were calculated for CHO, PC+GPC, tCHO, NAA and total creatine (tCR, 

creatine + phosphocreatine), correcting for partial-volume and relaxation effects, using the formula 

described in (Gasparovic et al., 2006). 

Statistical Analysis  
Statistical analysis was performed using SPSS (IBM Corp. Released 2013. IBM SPSS Statistics for 

Windows, Version 22.0. Armonk, NY: IBM Corp). 

The distribution of the data was analysed using measures of skewness and kurtosis, along with the 

Shapiro-Wilk test. When the assumptions of normality and homogeneity were met, an independent 
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t-test was used to compare group means and Pearson’s correlation (r) was used to assess 

correlations. When assumptions of normality were not met, the Mann-Whitney U test was used to 

compare groups and Kendall’s Tau (rƮ) was used to assess correlations, as it provides a better 

estimation of the correlation in a small sample size compared to other non-parametric methods 

(Field, 2009). 

Confounding Variables 
There were no significant differences in metabolite levels between hemispheres, therefore the results 

were combined across hemisphere of acquisition. 

To examine if variations in the metabolite values might be caused by differing proportions of tissue 

composition, correlations were performed between CCC levels and proportion of grey and white 

matter present in the voxel. Additionally, metabolite values were checked against the water signal 

for the same reason. No significant correlations were found between CCCs and grey/white matter 

content, indicating any variance seen is generated by differing metabolite levels. The water signal 

significantly correlated with DS tCHO (rƮ (35) = -0.348, p = 0.003) and VS PC+GPC (rƮ (32) = -0.270, 

p = 0.001). Therefore, analyses involving DS tCHO or VS PC+GPC were corrected for this source 

of variance using partial correlations. No other significant correlations were seen between the water 

signal and metabolite levels of interest.  

There is evidence that metabolite levels in the brain can vary based on time of day (Soreni et al., 

2006) and age (Pfefferbaum, Adalsteinsson, Spielman, Sullivan, & Lim, 1999; Reyngoudt et al., 

2012). Therefore, all metabolites were checked against these two variables to ensure this was not a 

source of variance. Time of day significantly correlated with DS tCHO (rƮ (35) = 0.249, p = 0.038) 

and cerebellum tCHO (rƮ (31) = 0.285, p = 0.026). Therefore, analyses involving DS tCHO or 

cerebellum tCHO were corrected for this source of variance using partial correlations. No other 

significant correlations were seen between metabolite levels and time of day or age of participant. 

Controls 
The cerebellum was used as a control to demonstrate the regional specificity of results. None of the 

effects were present in the cerebellum and therefore these results are not reported further. NAA and 

tCR were used as controls to demonstrate the neurochemical specificity of the results (i.e. that the 

relevant individual differences were specific to choline and not to spectrum-wide inter-individual 

differences). None of the effects were present in either NAA or tCR and therefore these results are 

not reported further. Furthermore, none of the reported effects were found when using tCHO as a 

measure of cholinergic availability and therefore these results are not reported further. 
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RESULTS 

Behavioural Results 
Twenty-two (22) participants reached criterion during both rounds (i.e. they reached criterion both 

during initial learning and after the reversal) and were included in the analysis.  

Model parameters and performance 
A reinforcement-learning model was used to disentangle components of learning that contribute to 

overall behaviour. We looked at three parameters of interest, the learning rates from positive (η+) 

and negative (η-) prediction errors, and the overall impact of subjective value of the deck on the 

participants choice (value impact parameter, β). To test the contribution of the model parameters to 

behaviour, we looked at correlations between behaviour (as measured by trials to criterion, number 

of perseverative trials and number of regressive errors) and the corresponding model parameters, 

i.e. behaviour during initial learning was correlated with model parameters fit over the initial learning 

period, and likewise for the reversal learning period.  

Table 1: Performance variables  

 Average Number of Trials SD 
Initial Learning 44 28 
Reversal Learning   

Perseveration Period 12 8 
Post Reversal Learning 35 22 
Regressive Errors 7 6 
Total 47  

 

Table 2: Estimates of model parameters  

 η+ η- β 

Initial Learning 

 

Reversal Learning 

0.37 

(SD = 0.30) 

0.24 

(SD = 0.35) 

0.42 

(SD = 0.31) 

0.31 

(SD = 0.27) 

1.44 

(SD = 0.56) 

1.37 

(SD = 0.97) 

Note: η+ = learning rate from positive prediction errors; η- = learning rate from negative prediction errors; 

β = impact of subjective value on choice.  
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Table 3 shows the correlation coefficients for the relationships between model parameters and 

behaviour. Faster initial learning (low number of trials to criterion) was associated with a higher 

learning rate from positive prediction errors (r(22) = -0.439, p = 0.041) and a higher value impact 

parameter (r(21) = -0.536, p = 0.012). A lower number of perseverative trials was associated with a 

higher learning rate from negative prediction errors (r(22) = -0.527, p = 0.012). As was the case 

during initial learning, during post-reversal learning (after the reversal has been identified) a lower 

number of trials taken to reach criterion was associated with a higher learning rate from positive 

prediction errors (rƮ (22) = -0.335, p = 0.03), and a higher value impact parameter (rƮ (22) = -0.352, 

p = 0.022). Additionally, during post-reversal learning, a lower number of regressive errors was 

associated with a higher learning rate from positive prediction errors (rƮ (22) = -0.355, p = 0.023) and 

a higher value impact parameter (rƮ (22) = -0.337, p = 0.031). 

Table 3: Correlation coefficients for relationships between model parameters and behaviour 

   η+ η- β 
Initial Learning (TTC)  -0.439* -0.218 -0.536* 
Reversal Learning     
 Perseverative Errors -0.176 -0.527* 0.132 
 Post Reversal Learning (TTC) -0.335* 0.322 -0.352* 
 Regressive Errors -0.355* 0.292 -0.337* 

Note: η+ = learning rate from positive prediction errors; η- = learning rate from negative prediction errors; 

β = value impact parameter; * p<0.05.  

Effects of trait impulsivity on performance 
To investigate the influence of impulsivity on decision making, we looked at correlations between 

impulsivity (total BIS-11 score) and measures of behaviour (including model parameters) in learners. 

Higher impulsivity levels were associated with a lower number of perseverative errors (r(22) = -0.470, 

p = 0.027). No other measures of behaviour correlated with impulsivity.  

Summary 
Faster initial learning was indexed by both higher learning rates from positive prediction errors (R1η+) 

and higher value impact parameters (R1β). Reduced numbers of perseverative trials were 

associated with higher learning rates from negative prediction errors (R2η-) and higher impulsivity 

levels. Similar to initial learning, faster post-reversal learning was associated with higher learning 

rates from positive prediction errors (R2η+) and higher value impact parameters (R2β). Additionally, 

during post-reversal learning, lower numbers of regressive errors were associated with higher 

learning rates from positive prediction errors (R2η+) and higher value impact parameters (R2β). 
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Spectroscopy Results 
One participant was excluded from spectroscopy analysis due to issues with segmentation of the 

structural scan.  

Table 4: Average metabolite levels in the DS 

 CHO PC+GPC tCHO NAA tCR 

Learners 0.15 0.27 0.42 8.73 11.58 

 (SD = 0.20) (SD = 0.10) (SD = 0.12) (SD = 0.77) (SD = 1.74) 

Non-Learners 0.11 0.36 0.46 8.83 11.80 

 (SD = 0.16) (SD = 0.14) (SD = 0.10) (SD = 2.37) (SD = 2.31) 

Note: CHO = choline, PC+GPC = phosphocholine and glycerophosphocholine, tCHO = total choline, NAA 

= n-acetyl aspartate, tCR = total creatine. 

Table 5: Average metabolite levels in the VS 

 CHO PC+GPC tCHO NAA tCR 

Learners 0.24 0.27 0.5 5.39 12.02 

 (SD = 0.17) (SD = 0.12) (SD = 0.17) (SD = 1.97) (SD = 2.26) 

Non-Learners 0.23 0.25 0.48 5.45 11.13 

 (SD = 0.17) (SD = 0.14) (SD = 0.16) (SD = 1.54) (SD = 3.95) 

Note: CHO = choline, PC+GPC = phosphocholine and glycerophosphocholine, tCHO = total choline, NAA 

= n-acetyl aspartate, tCR = total creatine. 

Group Comparisons 
To investigate whether average levels of CHO in the striatum relate to task performance, the average 

levels were compared between learners and non-learners. There was no significant difference in 

CHO levels between learners and non-learners in either the DS or the VS.  

Correlations with Behaviour 
To further investigate the relationship between average metabolite levels and task performance, 

correlations were performed between metabolite levels and measures of performance in learners 

(numbers of trials to criterion and model parameters).  
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Initial Learning 

No significant correlations were seen with measures of performance in round 1 (trials to criterion, 

R1η+ or R1β) and average levels of CHO in the DS. 

VS CHO did not correlate with trials to criterion in round 1. However, low levels of CHO in the VS 

were associated with higher learning rates from positive prediction errors (r(20) = -0.625, p = 0.003; 

Figure 4A) and lower value impact parameters (r(19) = 0.555, p = 0.014; Figure 4B).  

Figure 4: Correlations between VS CHO levels and performance during initial learning 

 

A: Negative correlation between learning rate based on positive prediction errors derived from round 1 

(R1η+) and levels of CHO in the VS (r(20) = -0.625, p = 0.003). B: Negative correlation between impact of 

participant’s subjective value on their future choice derived from round 1 (R1β) and levels of CHO) in the 

VS (r(19) = 0.555, p = 0.014). VS: Ventral Striatum; CHO: Choline. 

Perseverative Trials 

A lower number of perseverative trials was associated with lower levels of DS CHO (rƮ (21) = 0.367, 

p = 0.021; Figure 5A). The opposite effect was seen with DS PC+GPC (r(21) = -0.447, p = 0.042. 

Additionally, higher learning rates from negative prediction errors were associated with lower DS 

CHO levels (rƮ (21) = -0.371, p = 0.019; Figure 5B). This result is specific to DS CHO, with no other 

DS metabolites found to correlate with learning rates from negative prediction errors. Additionally, 

VS CHO was not found to correlate with either the number of perseverative trials or learning rates 

from negative prediction errors. 
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Figure 5: Correlations between DS CHO levels and performance during reversal 

 

A: Positive correlation between the number of perseverative trials and levels of CHO in the DS (rƮ (21) = 

0.367, p = 0.021). B: Negative correlation between the learning rate based on negative prediction errors 

derived from round 2 (R2η-) and levels of CHO in the DS (rƮ (21) = -0.371, p = 0.019). DS: Dorsal 

Striatum; CHO: Choline. 

After establishing an association between CHO levels and reversal performance, we wanted to 

examine whether CHO contributed to reversal efficiency over and above behavioural and personality 

variables. Using a hierarchical multiple regression, we first modelled the contribution of variance 

from learning rates from negative prediction errors and total BIS scores to the variance in the number 

of perseverative trials (Model 1; F(2,18) = 9.460 p = 0.002, R2 = 0.512; Table 6). The second model 

looked at whether the addition of DS CHO would explain significantly more variance, over and above 

that explained by learning rates from negative prediction errors and total BIS score (Model 2; F(3,17) 

= 9.574 p = 0.001, R2 = 0.628; Table 6).  

The amount of variance in the number of perseverative trials explained by learning rates from 

negative prediction errors was significant in both Model 1 (b = -0.493, t(18) = -2.980, p =  0.008; 

Table 6) and Model 2 (b = -0.430, t(17) = -2.843, p = 0.011; Table 6). Additionally, total BIS score 

also explained a significant amount of variance in both Model 1 (b = -0.472, t(18) = -2.855, p = 0.011; 

Table 6) and Model 2 (b = -0.419, t(17) = -2.787, p = 0.013; Table 6). 

In Model 2, DS CHO also explained a significant amount of variance in the number of perseverative 

trials (b = 0.351, t(17) = 2.300, p = 0.034; Table 6). The addition of DS CHO to the model increased 

R2 by 0.116 and this increase was statistically significant (F(1,23) = 5.291, p = 0.034; Table 6).  

To assess the specificity of this result, DS PC+GPC was also included in the model. However, 

analysis of multicollinearity diagnostics showed a tolerance of 0.175, which is below the acceptable 

value of 0.2. This is due to the strong significant correlation between DS CHO and DS PC+GPC (rƮ 

(21) = -0.667 p < 0.001). As a result, including the two variables in the same regression model would 

violate the assumption of multicollinearity and the regression model would not be able to provide 

unique estimates of the regression coefficients, as each will account for overlapping variance (Field, 
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2009). Therefore, we instead repeated the hierarchical regression with DS PC+GPC in place of DS 

CHO. The amount of variance explained by DS PC+GPC was not significant (b = -0.301, t(17) = -

1.900, p = 0.075). The addition of DS PC+GPC to the model increased R2 by 0.085 and this increase 

was not statistically significant (F(1,23) = 3.611, p = 0.075). This indicates that DS CHO levels can 

explain part of the variance in the number of perseverative trials, however DS PC+GPC levels 

cannot. 

Table 6: Summary of hierarchical regression analyses for variables predicting perseveration 

    B SE B b R2 ΔR2 p 
Model 1 
Model 1 

    
0.512 

0.401 

 
0.002 

0.010 
 

R2η- -14.476 4.858 -0.493 
  

0.008 
 

BIS Total -0.504 0.176 -0.472 
  

0.011 
        

Model 2 
    

0.628 0.116 0.034  
R2η- -12.619 4.439 -0.430 

  
0.011 

 
BIS Total -0.447 0.160 -0.419 

  
0.013 

 
DS CHO 5.306 2.307 0.351     0.034 

Note, for ΔR2=0.139, p = 0.037  

B = unstandardized coefficient, SE = standard error, b = standardised coefficient 

Post Reversal Learning 

No significant correlations were seen with either DS or VS CHO levels and measures of performance 

during post reversal learning (trials to criterion, R2η+ or R2β). Additionally, there were no significant 

correlations between DS or VS CHO levels and the number of regressive errors.  

Summary 
In the DS, average CHO levels were associated with performance during reversal, but not during 

initial learning. There was a significant positive correlation between DS CHO levels and the number 

of perseverative trials, and a significant negative correlation between DS CHO levels and learning 

rates from negative prediction errors (R2η-). Additionally, DS CHO levels explained variance in the 

number of perseverative trials over and above that explained by learning rates from negative 

prediction errors. 

In the VS, average CHO levels were not associated with performance during reversal learning. 

Although VS CHO levels were not associated with the speed of initial learning, there was a significant 

positive correlation between VS CHO levels and learning rates from positive prediction errors, and 

a significant negative correlation between VS CHO levels and the value impact parameter during 

initial learning.  
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DISCUSSION 
We used 1H-MRS to investigate the relationship between average CHO levels in the human striatum 

at rest and performance during probabilistic reversal learning. We demonstrate that: (1) average 

CHO levels in the DS are associated specifically with performance of multi-alternative probabilistic 

reversal, but not with initial learning; and (2) average CHO levels in the VS are associated with 

modelled parameters of initial learning. 

In the rodent DS, the cholinergic system plays a specific role in reversal learning (Bradfield et al., 

2013; H. D. Brown et al., 2010; McCool et al., 2008; Ragozzino et al., 2002, 2009; Tzavos et al., 

2004). In humans, using functional MRS, we recently showed evidence of a functional role for the 

dorsal striatal cholinergic system in the same multi-alternative reversal learning task that we used in 

this study (Bell et al., 2018). Expanding this line of evidence, here we show that baseline levels of 

CHO in the human DS are associated specifically with individual differences in reversal learning 

efficiency, but not in initial learning, and that this effect is specific to the dorsal, but not the ventral 

striatum. 

Behaviourally, we show that faster initial learning is indexed by a higher learning rate from positive 

prediction errors (η+) and a higher value impact parameter (b). Therefore, during this period, 

participants are using wins and expected value to guide their choices. This is also seen during the 

post-reversal learning period, in which faster post-reversal learning is indexed by higher learning 

rates from positive prediction errors (η+) and higher value impact parameters (b). Faster reversal 

(less perseveration), however, was indexed by higher learning rates from negative prediction errors 

(η-) only. During this period, participants must now pay increased attention to worse than expected 

outcomes in order to identify the change in contingencies. Therefore, to adapt to changes in task 

structure, participants adapt their strategy by altering the weight of learning from prediction errors 

based on reward history. 

The learning rate for negative prediction errors, accounting for trait impulsivity, explained a significant 

amount of variance during perseveration, providing a simple mechanism to explain reversal 

efficiency. However, average DS CHO levels explained variance in the number of perseverative trials 

over and above that explained by learning rates from negative prediction errors and trait impulsivity. 

This suggests a more complex mechanism in which perseveration is influenced, in part, by the 

learning rate from negative prediction errors (which can change due to task demand) and by resting 

levels of DS CHO. Indeed, Franklin et al. (2015) showed that a model which takes into account 

cholinergic activity performs better on a reversal learning task than a model based solely on 

dopamine prediction error signalling (Franklin & Frank, 2015). 

Our results indicate that participants who were quicker to reverse had lower average levels of DS 

CHO, suggesting that low trait levels of DS CHO are beneficial for reversal learning. Based on 

evidence that ACh efflux increases during reversal learning (H. D. Brown et al., 2010; Ragozzino et 
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al., 2009), this suggests two potential mechanisms. Firstly, lower levels of DS CHO at rest could 

reflect lower levels of ACh at rest. This is also supported by evidence from the animal literature, 

which has shown a positive correlation between ACh levels at rest as measured by microdialysis 

and average CCCs as measured by 1H-MRS (Wang, Du, Tian, & Wang, 2008). Additionally, higher 

levels of CHO availability have been shown to lead to higher levels of ACh release, implying a 

positive correlation between the two metabolites (Koshimura et al., 1990). Based on this notion, the 

findings here suggest that lower levels of ACh at rest may be beneficial for reversal learning because 

they enable a higher contrast between ACh levels at rest and ACh levels during reversal learning. 

However, it is important to note that Wang et al. (2008) did not divide their CCC peak into CHO and 

PC+GPC, instead modelling all three metabolites as a single peak. It is likely that the relationship 

between CHO levels as measured by spectroscopy and ACh levels in the brain is not straightforward, 

and this interpretation should be considered with caution. Indeed, animal studies have shown the 

relationship between CHO and ACh can change based on neuronal firing and ACh requirement 

(Klein, Weichel, Ruhr, Dvorak, & Loffelholz, 2002; Löffelholz, 1998). Furthermore, we have 

previously demonstrated a drop in CHO levels in the human DS during reversal learning, thought to 

reflect the sustained increase in ACh release seen in animal studies (e.g. (H. D. Brown et al., 2010; 

Ragozzino et al., 2009). This drop is thought to be due to an increase in translocation of CHO uptake 

receptors in response to sustained neural firing (Bell et al., 2018). Though we have described the 

measurements in this study as “at rest”, cholinergic interneurons are tonically active, and therefore 

the relationship between CHO and ACh levels in the striatum will likely reflect a more complex 

dynamical relationship between the two. 

The second potential mechanism supported by our findings is that lower levels of DS CHO at rest 

may result from a more efficient CHO uptake system. Mice carrying mutations in the gene coding for 

CHO uptake transporters have reduced neuronal capacity to both clear CHO and release ACh. 

Moreover, performance on an attention task was impaired in these mice (Parikh et al., 2013). 

Additionally, in a study of frontal cortex cholinergic modulation during attention, humans with a gene 

polymorphism which reduces CHO transport capacity showed reduced activation in the prefrontal 

cortex during an attentional task. Furthermore, the pattern of activation predicted CHO genotype 

(Berry, Blakely, Sarter, & Lustig, 2015). Further work is needed to determine the relationship 

between CHO uptake, ACh release and reversal learning.  

Disruption of cholinergic signalling in animals typically results in an increase in regressive errors 

(Bradfield et al., 2013; H. D. Brown et al., 2010). However, here we found no association between 

DS CHO levels and the number of regressive errors. This could be due to several reasons. Typically 

a two-choice T-maze reversal learning task is used to study the rodent cholinergic system, here we 

used a four-choice response task. In 2-choice tasks, once a stimulus has been identified as 

disadvantageous, participants will automatically switch to the other stimulus. Therefore participants’ 

subjective model of the task structure will guide learning, over and above the experienced feedback. 

In multi-alternative tasks, once a stimulus has been identified as disadvantageous, participants must 
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then explore the stimuli again before discovering the new optimal stimulus. Importantly, this allows 

us to distinguish between processes relating to identifying the reversal (perseveration) and 

processes relating to new learning after reversal (post-reversal learning).  

Also, the effects of disrupting the striatal cholinergic system may be task dependent. Okada et al. 

(2018) showed that disruption of the striatal cholinergic system impaired reversal learning during a 

response reversal learning task (where the rats had to choose to go left or right) but not during a 

place reversal learning task (where the rats had to choose to go north or south) (Okada et al., 2018). 

Additionally, Aoki et al. (2015) showed that lesions of the DMS cholinergic interneurons result in 

impaired strategy shifting only when attending to a previously irrelevant cue, and not when 

introducing a novel cue or previously relevant cue. Interestingly, this produced an increase in 

perseverative behaviour, with no change in the number of regressive errors (Aoki, Liu, Zucca, Zucca, 

& Wickens, 2015). It could be that a four-choice task better represents a strategy shift (attending to 

a previously irrelevant/bad stimulus) compared to a two-choice response task. 

Additionally, the metric of perseveration both here and in the study by Aoki et al. was based on a 

probability, rather than an immediate change in behaviour. Participants could reach the learning 

criteria by alternating selection of the 75% and 60% decks, and occasionally sampling from the 

40%/25% decks. As a result, we were unable to identify a specific trial where behaviour changed, 

therefore perseveration was defined as the number of trials after reversal until the probability of 

selecting the previously favoured card reached chance level (0.25). However, if participants made 

several regressive errors soon after the perseverative period ended (i.e. they changed behaviour for 

one or two trials, then switched back again for several trials) the probability of choosing the previously 

favoured deck remains above chance and therefore the continuation of regressive errors will 

increase the number of perseverative trials based on this definition. Therefore, although we have 

described this period as perseveration, it likely reflects a combination of perseverate and regressive 

errors, potentially confounding the two. 

Furthermore, in humans, measures of individual differences in perseverative and regressive errors 

are likely to be confounded by individual differences in representation of the task structure. Rather 

than making perseverative and regressive errors based solely on feedback, the ability to flexibly alter 

response depends in part on a higher level representation of the task, which is thought to be 

maintained in frontal areas of the cortex (Armbruster, Ueltzhöffer, Basten, & Fiebach, 2012). 

Therefore, individual differences in perseverative and regressive errors may be confounded by 

individual differences in task representation. It should be noted that the basal ganglia-thalamo-

cortical system has been shown to be modulated by the maintenance of task rules, with those with 

stronger representation of the task structure showing higher activation in the caudate and thalamus 

during a behaviour switch (Ueltzhöffer, Armbruster-Genç, & Fiebach, 2015), indicating that 

representation of task structure likely modulates DS activity in response to the need for behavioural 

flexibility. Inevitably, caution is needed when translating evidence from rodent studies of learning to 
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human studies of learning. This emphasises the need to further develop non-invasive techniques for 

studying human neurochemistry in vivo. 

As predicted, and in line with evidence from the animal literature (Ragozzino et al., 2009), levels of 

CHO in the VS were not associated with reversal learning. However, VS CHO levels were associated 

with model parameters which contributed to initial learning. Though Ragozzino et al. demonstrated 

that ACh levels in the VS did not change during reversal learning, they did not test if ACh levels in 

the VS changed during initial learning. Successful learning requires the ability to learn from feedback, 

which is signalled by dopaminergic prediction error signalling in the VS (Schultz, Dayan, & Montague, 

1997). The rodent VS has a higher density of cholinergic interneurons than the DS (Matamales, 

Götz, & Bertran-Gonzalez, 2016) and changes in cholinergic activity are time locked to changes in 

dopaminergic activity, which is thought to enhance the contrast of prediction error signalling (Aosaki, 

Miura, Suzuki, Nishimura, & Masuda, 2010). Indeed, cholinergic activity in the VS has been linked 

with effective learning of a stimulus-outcome association (M. T. C. Brown et al., 2012), therefore, it 

is likely that cholinergic activity in the VS is involved in some aspect with goal-directed learning, and 

further studies should explore this contribution. 

We used several controls to demonstrate that these effects are specific to CHO levels in the striatum, 

not least because our MRS application method is novel. We acquired data from a voxel in the 

cerebellum, geometrically identical to the striatal voxels. No learning effects were present in the 

cerebellum, demonstrating that our findings are specific to the striatum. Additionally, we also 

quantified two control metabolites (NAA and tCR) to ensure that the results were specific to the 

metabolite of interest, rather than a general measurement or region effect. None of the effects were 

seen in levels of NAA and tCR in the DS or VS. Importantly, none of the effects were seen when 

modelling all three peaks together (tCHO), highlighting once more the importance of separating CHO 

when using 1H-MRS to investigate individual differences in CCC levels. 

In conclusion, 1H-MRS was used to demonstrate that average levels of CHO in the human DS are 

associated with performance during probabilistic reversal, but not during initial learning. This is in 

line with evidence from the animal literature and out own prior work with humans which suggests a 

specific role for cholinergic activity in the DS during reversal learning. These results provide evidence 

for the role of the human cholinergic striatum in reversal learning and behavioural flexibility more 

generally. Additionally, these findings further support the idea of using CHO levels as measured by 
1H-MRS as a tool for non-invasive in vivo monitoring of cholinergic neurochemistry in humans. 

of interest. 
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