bioRxiv preprint doi: https://doi.org/10.1101/392142; this version posted August 14, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 Epigenetic inactivation of miR-203 as a key step in

2 neural crest epithelial-to-mesenchymal transition

3 Estefania Sanchez-Vasquez', Marianne E. Bronner?, Pablo H. Strobl-Mazzulla®

5 !Laboratory of Developmental Biology, Instituto Tecnoldgico de Chascomus
6 (CONICET-UNSAM), Chascomus 7130, Argentina

7  “Division of Biology 139-74, California Institute of Technology, Pasadena, CA
8 91125

9 email: strobl@intech.gov.ar

10  Correspondence should be addressed to PHS-M

11

12 Key words: EMT, neural crest, miR-203, Snail2, DNA methylation, Phfl2,
13 migration

14

15


https://doi.org/10.1101/392142

bioRxiv preprint doi: https://doi.org/10.1101/392142; this version posted August 14, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

16 Summary statement

17 The EMT is a highly conserved process, involving similar levels of regulation in
18  both neural crest and cancer cells. Our work shows an epigenetic-miRNA-gene
19 regulatory circuit, conserved in cancer, which controls the timing of neural crest
20 EMT as well.

21

22  Abstract

23 miR-203 is a tumor-suppressor microRNA with known functions in cancer
24  metastasis. Here, we explore its normal developmental role in the context of
25 neural crest development. As neural crest cells undergo an epithelial-to-
26 mesenchymal transition to emigrate from the neural tube, miR-203 displays a
27  reciprocal expression pattern with key regulators of neural crest delamination,
28 Phfl2 and Snail2, and interacts with their 3'UTRs. Ectopic maintenance of miR-
29 203 inhibits neural crest migration, whereas its functional inhibition using a
30 “sponge” vector promotes premature neural crest delamination. Bisulfite
31 sequencing further shows that epigenetic repression of miR-203 is mediated by
32 the de novo DNA methyltransferase DNMT3B, whose recruitment to regulatory
33  regions on the miR-203 locus is directed by SNAIL2 in a negative feedback
34 loop. These findings reveal an important role for miR-203 in an epigenetic-
35 microRNA regulatory network that influences the timing of neural crest
36  delamination.
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41 Introduction

42 Neural crest cells (NCC) are a transient embryonic cell population that arise in
43 the neuroectoderm, then migrate to the periphery where they contribute to
44  diverse derivatives including craniofacial bone and cartilage, neurons and glia of
45 the peripheral nervous system, pigment cells, and portions of the cardiovascular
46 system (Crane and Trainor, 2006). NCC emigrate from the forming central
47  nervous system by undergoing an epithelial-mesenchymal transition (EMT),
48 similar to that observed during initiation of tumor metastasis (Kerosuo and
49  Bronner-Fraser, 2012). An evolutionarily conserved gene regulatory network
50 (GRN) regulates NCC EMT and depends upon the coordinated action of
51 transcription factors including Snaill/2, Zeb2 (Sipl), and FoxD3 (Simoes-Costa
52 and Bronner, 2015). In addition to transcriptional regulators mediating neural
53 crest EMT, epigenetic mechanisms including DNA methylation (Hu et al., 2012,
54 Hu et al., 2014) and histone modifications (Strobl-Mazzulla and Bronner, 2012,
55  Strobl-Mazzulla et al., 2010) are also at play. In particular, a repressor complex,
56 comprised of SNAIL2 and the epigenetic reader PHF12 represses cadherin 6b
57 (Cad6éb) (Strobl-Mazzulla and Bronner, 2012), whose down-regulation is
58 required for initiation of neural crest delamination from the neural tube. These
59 results demonstrate an additional level of fine tuning and important role for
60 epigenetic regulators during neural crest EMT, raising the intriguing possibility
61 that other yet to be identified factors may be involved.

62 Inrecent years, microRNAs (miRNAs) have been shown to be key regulators of
63 EMT in several tumor cells (Diaz-Lopez et al., 2014, Ding, 2014, Xia and Hui,
64 2012). MicroRNAs are ~22-nucleotides single-stranded RNAs that negatively

65 regulate gene expression post-transcriptionally (Kloosterman and Plasterk,
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66 2006) by inhibiting translation and/or causing degradation by binding to
67 complementary sequences located at the 3'-untranslated region (3-UTR) of
68 target mRNAs. Approximately 50% of miRNAs genes are embedded or
69 associated with CpGs islands, and their expression is most often regulated by
70  methylation of cytosines therein (Weber et al., 2007). In several tumor cells, it
71 has been shown that hypermethylation of anti-tumoral miRNAs leads to
72  initiation of EMT (Ahmad et al., 2014, Kiesslich et al., 2013, Lujambio et al.,
73 2008, Wang et al., 2012, Bonnomet et al., 2010, Diaz-Lopez et al., 2014, Ding,
74 2014, Nelson and Weiss, 2008, Xia and Hui, 2012). The commonalities
75  between the migration of cancer cells and embryonic neural crest cells (Mayor
76 and Theveneau, 2013, Scarpa and Mayor, 2016, Friedl and Gilmour, 2009)
77  suggest the intriguing possibility that similar epigenetic-microRNA to those
78  functioning in metastasis may be involved in NCC development. As case in
79  point, we describe in avian embryos that the epigenetic repression of miR-203,
80 directed by SNAIL2 enables upregulation of two of its direct targets, Phf12 and
81 Snail2, necessary for the delamination of the neural crest from the neural tube.
82  These findings support the idea that a single microRNA, regulating key genes of
83 the EMT process, may “throw” a precise switch mediating an epithelial to a
84 mesenchymal state of neural crest cells.

85 Results

86 mIiR-203 expression is reduced at the time of NCC delamination

87 Given that Phfl2 and Snail2 are involved in regulation of NCC EMT (Strobl-
88 Mazzulla and Bronner, 2012), we performed an in silico and literature analysis
89 to investigate mMiRNAs that might regulate these transcription factors.

90 Interestingly, we found 9 and 7 families, respectively, of miRNAs in the 3'UTRs
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91 of Phfl2 and Snail2 with sites conserved across vertebrates (Table S1). Based
92 on its their reported functionality, demonstrated target genes and expression
93 pattern during chick development (Darnell et al., 2006), we further focused on
94 miR-203 for in depth analysis. Importantly, miR-203 has been described to act
95 as tumor suppressor (Benaich et al., 2014, Miao et al., 2014, Zhu et al., 2013b),
96 that directly regulates Snail2 expression (Gao et al., 2017, Shi et al., 2015,
97 Zhang et al., 2015, Xiao et al., 2017), whose epigenetic repression causes
98 metastasis in several tumor cells including NCC-derived melanoma (Boldrup et
99 al, 2012, Boll et al., 2013, Chen et al., 2012, Chiang et al., 2011, Ding et al.,
100 2013, Furuta et al., 2010, Huang et al., 2014, Ju et al., 2014, Moes et al., 2012,
101  Zhang et al., 2014, Zhao et al., 2013, Bu and Yang, 2014, Lohcharoenkal et al.,
102  2018). Moreover, the mature miR-203 sequence is highly conserved throughout
103  vertebrates including the basal lamprey (Fig. 1B), suggesting an ancient and
104 conserved function.
105 As a first step in analyzing its possible function during NCC development, we
106 examined the expression pattern of miR-203 transcripts by in situ hybridization
107  (ISH) in early chick embryos. By using LNA-DIG labelled probes, we found that
108 mature miR-203 expression begins during gastrulation by stage 4 (Fig. S1A).
109 During neurulation at the 1-4 somite stage (ss), miR-203 is consistently
110 expressed in the forming neural tube (Fig. 1A). Interestingly, we observed a
111  clear reduction by the 5 to 8ss in the miR-203 expression in the cranial neural
112  tube, corresponding to the initiation of neural crest emigration. Analyses by
113  stem-loop RT-qPCR confirmed that mature miR-203 expression is reduced from

114 5 to 6ss, coincident with the increase of Snail2 and Phf12 expression at the time


https://doi.org/10.1101/392142

bioRxiv preprint doi: https://doi.org/10.1101/392142; this version posted August 14, 2018. The copyright holder for this preprint (which was not

115

116

117
118
119
120
121
122
123
124
125
126
127

128
129
130

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

of NCC delamination (Fig. 1C). These results are consistent with the intriguing

possibility that miR-203 has an important role in neural crest EMT.
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Figure 1. miR-203 expression is reduced at the time of NCC delamination. (A) Whole-
mount in situ hybridization (ISH) using LNA-DIG labelled probes reveals a specific expression of
the mature miR-203 on the neural tube which is reduced from 5 somite stage (ss) to 9ss. (B)
Conservation analysis of miR-203 in vertebrates. Gga (Gallus gallus), xtr (Xenopus tropicalis),
dre (Danio rerio), ola (Oryzias latipes), hsa (Homo sapiens), ptr (Pan troflodytes), mmu (Mus
musculus), pma (Petromyzon marinus). (C) RT-gPCR analyses show reducing miR-203
expression from 5 to 6ss in an opposite manner than the observed increase on Snail2 and

Phf12 expression at the beginning of NCC delamination.

miR-203 locus is highly methylated on pre-migratory NCC


https://doi.org/10.1101/392142

bioRxiv preprint doi: https://doi.org/10.1101/392142; this version posted August 14, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

131 In several metastatic tumor cells, the miR-203 locus is epigenetically silenced
132 by DNA methylation (Chim et al., 2011a, Chim et al., 2011b, Diao et al., 2014,
133  Furuta et al., 2010, Huang et al., 2014, Taube et al., 2013, Zhang et al., 2013,
134 Zhang et al., 2011). Interestingly, we found by in silico analysis that the miR-203
135 locus is embedded in a CpG island (Fig. 2A). On this basis, we selected two
136 genomic regions, one at the putative proximal promoter (region 1) and the other
137  at the beginning of the pri-miR-203 (region 2), to analyze the DNA methylation
138 abundance on pre-migratory (PM-NCC) or migratory (M-NCC) neural crest cells
139 and the ventral neural tube (NT). By using bisulfite conversion, we observed
140 high enrichment on methylated CpGs in region 2, but not on region 1, in the
141 PM-NCC compared with the low abundance detected on the M-NCC and NT
142  (Fig. 2B-C). These significant differences are clearly evident when comparing
143  the total percentage of methylated CpGs (Fig. 2D-E) from the different samples.
144  We identified that 18.4% and 28.9% of the CpGs are methylated on region 1
145 and 2 on PM-NCC, compared with 9.5% and 6.1% on the NT, and 5.3% and 7%
146  detected on the M-NCC, respectively. These results suggest that the decreased
147  expression of miR-203 in pre-migratory NC may be the consequence of

148 hypermethylation of its locus.

149
150 DNMT3B and SNAIL2 are required for miR-203 methylation

151 De novo DNA methyltransferases DNMT3A and 3B are both involved in neural
152 crest development (Hu et al.,, 2012). To examine the possibility that DNA
153  methylation may be involved in regulating miR-203 expression, we examined
154  the effects of loss of DNMT3A and 3B on miR-203 expression. To this end, we
155 performed bisulfite sequencing after loss of function experiments with previously

156  characterized fluorescein-tagged morpholino oligonucleotides, DNMT3A-MO
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157 and DNMT3B-MO (Hu et al., 2012, Hu et al., 2014). After unilateral injection and
158 electroporation, dorsal neural tubes from 6ss embryos were dissected and
159  bisulfite converted to analyze the methylation abundance on region 2 of miR-
160 203 locus (Fig. 2A). The results show that loss of function of either of the two
161 DNMTs consistently decreases the abundance of methylated CpGs in the
162  region 2 (Fig. 2F). However, depletion of DNMT3B, but not DNMT3A, resulted
163 in significant differences in methylation of miR-203.

164  Transcription factors specifically bind to target DNAs to recruit and guide DNA
165 methyltransferases to specific genomic sites (Siegfried and Simon, 2010).
166  During tumor metastasis, SNAIL2 binds to the miR-203 promoter to inhibit its
167 transcription (Ding et al.,, 2013), though the mechanism underlying this
168 repression is unknown. Our bioinformatic analysis reveal several SNAIL2-
169 binding sites ~1kb upstream of the pre-miR-203 (Fig. 2A, Table S2), two of
170 which have a high binding score (>9) accordingly to JASPAR 2018
171  (http://jaspar.genereg.net/). To test the effects of SNAIL2 loss of function, we
172  electroporated a previously characterized Snail2 morpholino (Snail2-MO)
173  (Taneyhill et al., 2007) unilaterally and dissected half dorsal neural tubes from
174 6ss embryos for analysis of miR-203 expression and DNA methylation.
175 Interestingly, the results show that Snail2 knockdown causes a significant
176  upregulation of miR-203 expression (Fig. 2G). Consistent with this finding, we
177  found a significant reduction in the abundance of methylated CpGs in region 2
178  of the miR-203 locus (Fig. 2H). These results suggest that SNAIL2 is involved in

179  the epigenetic repression of miR-203 in the premigratory neural crest.
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181  Figure 2: SNAIL2 and DNMT3B are required for DNA methylation on miR-203 locus on
182 premigratory NCC. (A) miR-203 genomic context. The CpG island content (green bar) for miR-
183 203 gene was identified using the UCSC genome browser (https://genome.ucsc.edu/) and
184 Ensembl (http://www.ensembl.org/). The putative transcriptional start sites (TSS) were obtained
185 using Eponine (https://www.sanger.ac.uk/science/tools/eponine). The putative binding sites for
186  SNAIL2 were mapped using JASPAR 2018 (http://jaspar.genereg.net/). We also show the two
187 regions used in our bisulfite sequencing and the pre-miR-203 accordingly to the miRbase
188  (http://www.mirbase.org/). Bisulfite sequencing profiles of CpGs methylation on the region 1 (B)
189  and region 2 (C) were analyzed on pre-migratory NCC (PM-NCC), migratory NCC (M-NC), and
190  ventral neural tube (NT). Percentage of each methylated CpG sites are shown with filled (100%
191 methylated) and open (0% methylated) circles. Bar graph represent the total percentages of
192  methylated CpGs on the different regions for the three analyzed samples on the region 1 (D)
193  and the region 2 (E). We evidenced in PM-NCC a higher percentage of methylated CpGs
194 compared with the other samples. Number in brackets indicated the analyzed sequences.
195  Asterisk (*) indicate significant differences by ANOVA. (F) Morpholino-mediated loss of

196 DNMT3A (DNMT3A-MO) and DNMT3B (DNMT3B-MO) function results in a reduction of

9
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197 methylated CpGs on the injected side (IS) compared with the uninjected side (UIS) of the same
198 group of embryos. Morpholino-mediated loss of SNAIL2 (SNAIL2-MO) function maintains an
199 elevated level of miR-203 expression (G) and reduced CpGs methylation on the region 2 (H) on
200 the IS compared with the UIS of the same group of embryos. Asterisk (*) indicate significant

201 differences by Student's t-test.

202

203  Overexpression of miR-203 causes loss of migrating NCC

204  Since miR-203 expression is epigenetically repressed at the initiation of their
205 migration, we asked whether maintenance of miR-203 expression would
206 prevent neural crest delamination. To this end, we designed an overexpression
207  vector in which we cloned the pre-miR-203 sequence, plus a few hundred base
208 pair arms for correct processing, under the control of CAG promoter (pCAG-
209 203) (Fig. 3A). Overexpression of miR-203 in pCAG-miR-203 electroporated
210 embryos was confirmed by LNA-ISH (Fig. S2B). To demonstrate that the pCAG-
211 miR-203 expresses a functional miR-203, we first used a two-colored sensor
212 vector (Cao et al., 2007) comprised of a nuclear-localized destabilized EGFP
213  with a half-life of 4 hours (d4EGFPy), driven by a CAG promoter, followed by a
214  3'UTR containing two copies of a bulged complementary sequence for miR-203.
215 In addition, the vector contains a nuclear-localized monomeric red fluorescent
216 protein (mRFPy) driven by another CAG promoter that serves as an
217  electroporation control (see scheme of pSdmiR-203 in figure S2C). Together
218 with the dual sensor pSdmiR-203, we co-electroporated either control empty
219 vector (left) or the vector expressing miR-203 (right) onto each side of the
220 embryo (Fig. S2D). The results show that on the control side, most of the
221  electroporated cells appeared yellow, due to expression of d4EGFPy and

222  mRFPy. However, on the experimental side, overexpression of miR-203 causes

10


https://doi.org/10.1101/392142

bioRxiv preprint doi: https://doi.org/10.1101/392142; this version posted August 14, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

223  a strong reduction of d4EGFPy and the cells only express mRFPy (Fig. S2E).
224  These results confirm the functionality of our miR-203 expression construct.

225  Gain-of-function experiments were conducted by electroporating the miR-203
226  vector on one side of the embryo (Fig. S2A). The results show that miR-203
227  overexpression causes a drastic reduction in the numbers of migratory neural
228  crest cells identified by Sox10 expression (Fig. 3B). By categorizing embryos
229 according to their phenotype (normal or reduced migratory NCC), we observed
230 a significant increase in the number of embryos with a reduced number of
231 migratory NCC on pCAG-203 electroporated side compared with control
232 embryos electroporated with an empty vector (pCAG) (Fig. 3C). To rule out the
233  possibility that this may be secondary to a specification defect, we analyzed the
234  expression of early neural crest specifier genes by immunohistochemistry at
235 pre-migratory stages. Interestingly, our results demonstrate that overexpression
236 of miR-203 does not affect expression of FOXD3, one of earliest neural crest
237  specification markers (Fig. 3D), suggesting that specification occurs normally. In
238 contrast, there was a clear reduction in SNAIL2, demonstrating reciprocal
239 repression. Taken together, our results highlight the role of miR-203 in NCC

240 delamination, likely by affecting EMT inducers like SNAIL2.

11
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242 Figure 3: miR-203 overexpression prevents NCC delamination without affecting
243 specification. (A) Scheme of pCAG-203 vector to overexpress miR-203. (B) In situ
244 hybridization for Sox10 showed inhibition of NCC migration in the pCAG-203 injected side, in
245 comparison with the uninjected side of the same embryos and with embryos injected with an
246 empty pCAG vector. (C) Quantitation of the embryos according to their phenotypes (normal
247 migration versus inhibition of migration) was analyzed. Numbers in the graphs represent the
248 numbers of analyzed embryos. ***P < 0,0001 by contingency table followed by X? test. (D)
249 Immunohistochemistry analyzes on miR-203 overexpressing embryos evidenced a reduced

250 expression of SNAIL2 but does not affect the expression of the early NCC specifier FOXD3.

251

252  Loss of miR-203 function causes premature NCC delamination

253 Given that miR-203 is epigenetically repressed in pre-migratory NCC and
254  overexpression of miR-203 causes defect in their delamination, we next asked if

255 early loss of miR-203 function would result in premature neural crest

12
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256  delamination. To test this possibility we adapted a protocol (Kluiver et al., 2012)
257 to generate a “sponge” vector containing repeated miR-203 antisense
258 sequences (pSmiR-203) to sequester endogenous miR-203 (Fig. 4A). A sponge
259  vector containing a scrambled sequence (pSmiR-scramble) was designed as a
260 control. As predicted, electroporation of pSmiR-203 resulted in premature NCC
261 migration, when compared with the contralateral uninjected side, analyzed by
262  immunohistochemistry for SNAIL2 and FOXD3, or by ISH for Sox10 (Fig. 4B).
263 Importantly, no difference in timing of delamination was observed after
264  electroporation of the pSmiR-scramble. By categorizing embryos according to
265 their phenotype, premature versus normal migration, we observed a significant
266 difference in percentage of embryos exhibiting premature NCC migration in
267 pSmMIiR-203 electroporated embryos (Fig. 4C). Notably, reduction of miR-203
268 function altered not only initiation of NCC delamination, but also shortened the
269 overall length of time during which delamination occurred (Fig. 4D-D’). This is
270 based on the observation that on the side injected with pSmiR-203, all the
271 Sox10+ NCCs have completed their delamination, compared with the
272  contralateral side where many premigratory neural crest cells still persist on the
273 dorsal neural tube. These results clearly confirm that miR-203 controls the

274  temporal regulation of NCC delamination.

13
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276 Figure 4: miR-203 sponge vector causes premature NCC delamination. (A) Scheme of
277 pSmiR-203 sponge vector having a bulged miR-203 antisense sequences downstream of the
278 EGFP reporter. (B) Electroporated embryos with pSmiR-203 causes premature migration of
279 NCC evidenced by in situ hybridization for Sox10 and immunohistochemistry for SNAIL2 and
280 FOXD3, and compared with the uninjected side of the same embryos or injected with pSmiR-
281 scramble vector. Arrowhead indicated premature migratory neural crest cells. (C) Quantitation of
282 pSmiR-203 or pSmiR-scramble treated embryos according to the observation of premature
283  NCC migration. Numbers in the graph represent the analyzed embryos. ****P<0,0001 by
284 contingency table followed by X? test. (D-D’) Neural crest cells from the sponge injected site
285 complete their delamination in advance compare with the uninjected site where many Sox10
286 expressing cells are still on the neural tube (see black arrowhead).

287
288 miR-203 targets the 3'UTRs of Snail2 and Phf12

289 To test whether Snail2 and Phfl2 genes are direct targets of miR-203, we

290 designed two-colored sensor vectors in which we cloned, downstream of the

14
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291 pCAG and d4EGFPy, the 3'UTRs containing the wild (pUTR-Snail2/Phf12) or
292 mutated (pUTR-mutSnail2/Phf12) miR-203 binding sites (Fig. 5A). Co-
293  electroporation of these vectors (Fig. 5B) demonstrated that overexpression of
294 miR-203 specifically inhibited d4EGFPy expression when it was fused to the
295 3UTRs of Snail2 and Phfl12 but was uniformly distributed when miR-203
296 binding sites were mutated (Fig. 5C-D). These results confirm that Snail2 and

297  Phf12 are endogenous targets of the same microRNA, miR-203.
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298
299  Figure 5: Snail2 and Phf12 3'UTRs are direct targets of miR-203. (A) Scheme of dual
300  colored sensor vector containing wild or mutated (mt) 3'UTRs from Snail2 (pUTR-Snail2) and
301 Phf12 (pUTR-Phf12). pCAG, Chick B-actin promoter; d4EGFPy nuclear-localized destabilized
302 EGFP with a half-life of 4 h; mRFPy, nuclear-localized monomeric red fluorescent protein. (B)

303 Diagram of electroporation assays for 3'UTR-sensor experiments.  Electroporation of sensor
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304  vector containing the 3'UTRs for (C) Snail2 (pUTR-Snail2) or (D) Phf12 (pUTR-Phf12) together
305 with miR-203 overexpressing vector (pCAG-203) causes a consistent reduction on the
306 d4EGFPy expression (right side) compared with the control side (left side). Mutation of miR-
307  203-binding sites in the 3'UTRs of Snail2 (pUTR-mtSnail2) or Phf12 (pUTR-mtPhf12) caused
308 that most of the electroporated cells were yellow, expressing both d4EGFPy and mRFPy, even

309  when miR-203 is overexpressed (right side).

310

311 Discussion

312 There is accumulating evidence for the importance of microRNAs in normal
313 development as well as in several diseases, including tumor metastasis. Our
314  study highlights the key role of a single microRNA, miR-203, in regulating the
315 timing to initiation of the EMT program in neural crest cells. The results show
316 that repression of miR-203 occurs via high levels of DNA methylation of the
317 miR-203 locus by the DNMT3B, whose specific activity is directed by SNAIL2.
318 In this scenario, repression of miR-203 is directed by SNAIL2 in a feedback-
319 loop that enables expression of two direct targets of miR-203, Phfl2 and Snail2,
320 whichin turn are necessary for neural crest delamination. Finally, miR-203 gain-
321 and loss-of-function cause reduction or premature NCC delamination,
322 respectively. Taken together, the results reveal for the first time an epigenetic-
323 miRNA-gene regulatory circuit that controls the timing of neural crest
324 delamination (Fig. 6A). These findings support the idea that a single microRNA
325 may “throw the switch” from an epithelial to a mesenchymal state in the neural
326  crest and thus stabilize the core gene regulatory networks in these two states.
327 There is increasing evidence to suggest that miRNAs often act as fine-tuning
328 regulators rather than as primary gene regulators (Hornstein and Shomron,

329 2006). Accordingly, we postulate that miR-203 may act by shifting the levels of
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330 SNAIL2 and PHF12 to prevent premature NCC delamination. A similar
331 epigenetic-miRNA control of the core transcription factors necessary for EMT
332 (EMT-TFs) has been also described in cancer cells (Wright et al., 2010, Guittilla
333 etal., 2012, Xia and Hui, 2012, Kiesslich et al., 2013, Ding, 2014). Interestingly,
334 some miRNAs and EMT-TFs form a tightly interconnected feedback loop that
335 controls epithelial cell plasticity (Moes et al., 2012, Ding, 2014, Wellner et al.,
336 2009), similar to our observation that SNAIL2 directs the epigenetic repression
337 of miR-203. These feedback-loops provide self-reinforcing signals and
338 robustness to maintain the epithelial or mesenchymal cell state in response to
339 different environmental cues. miR-203 is highly conserved from lamprey to
340 human and appears to be an evolutionary novelty in vertebrates (Heimberg et
341 al., 2010). Our data demonstrate that miR-203 is a key regulator of NCC
342 delamination by a reversible epigenetic-miRNAs. Given that the EMT program
343 is a highly conserved process, involving similar transcription factors in both
344  embryonic and cancer cells, these finding open new avenues for understanding

345 normal and pathological development, as well as tumor metastasis.
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347 Figure 6: Hypothetical model. Our results show that during NCC specification, miR-203 is
348 highly expressed and preventing the initial accumulation of SNAIL2 and PHF12. Previous to
349 NCC delamination, the accumulation of SNAIL2 causes the epigenetic silencing, mediated by
350 DNMT3B, of miR-203. Then, the lack of miR-203 allows a rapid upregulation of both Snail2 and
351 phdl2 at the same time, which are necessaries for Cad6b repression at the beginning of the

352  NCC epithelial-to-mesenchymal transition.

353

354 Materials and methods

355 RNA preparation and RT-gPCR

356 RNA was prepared from individual embryos (n=6) using the isolation Kit
357 RNAgueous-Micro (Ambion) following the manufacturer’s instruction. The RNA
358 was treated with amplification grade DNasel (Invitrogen) and then reversed
359 transcribed to cDNA with a reverse transcription kit (SuperScript Il; Invitrogen)
360 using stem-loop-miRNA-specifics (Chen et al., 2005) primers and random
361 hexamers. QPCRs were performed using a 96-well plate gPCR machine

362 (Stratagen) with SYBR green with ROX (Roche). Normalization controls genes
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363 for gPCR were: for miR-203, miR-16 (Lardizabal et al., 2012) and for Snail2 and
364 Phfl2, Hprtl (Simoes-Costa and Bronner, 2016). For a complete list of primer
365 see table S3.

366

367  Bisulfite sequencing

368 Samples were obtained by dissecting of 9 embryos at stage 6ss, for
369 premigratory NCC (PM-NCC), dorsal neural tube, and ventral neural tube (NT).
370 In addition, we dissected 13 embryos at stage 11-13ss to obtain the migratory
371 NCC (M-NCC). For the morpholino-mediated loss of DNMT3A, DNMT3B and
372  SNAIL2 experiment, eight dorsal neural tubes from the injected and uninjected
373 sides were dissected. For a complete list of morpholinos see table S3. All the
374 tissues were lysed and bisulfite-converted with the EpiTect Plus Bisulfite
375 Conversion Kit (Qiagen) following the manufacturer's instructions. The
376 regulatory regions of miR-203 were amplified by using two sets of nested
377  primers (see table S3) from the bisulfite-converted DNA. The obtained products
378 were gel-purified and cloned into the pGEM-T Easy Vector (Promega).
379 Individual clones were sequenced and analyzed.

380

381 Electroporation

382  Chicken embryos were electroporated at stage 4-5 using previously described
383 techniques (Sauka-Spengler and Barembaum, 2008). The vectors and
384 morpholinos were injected by air pressure using a glass micropipette and
385 platinum electrodes were placed vertically across the chick embryos and
386 electroporated with five pulses of 5.5 V for 50 ms at 100 ms intervals. Embryos

387 were cultured in 0.5 ml albumen in tissue-culture dishes until the desired
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388 stages. Embryos were then removed and fixed in 4% PFA and used for
389 immunohistochemistry or in situ hybridization.

390

391  In situ hybridization

392  Whole-mount chick in situ hybridization for mRNAs and for microRNA was
393 performed as described previously (Acloque et al., 2008, Darnell et al., 2006).
394 LNA probe for miR-203 used in the assay were obtained from Exigon and DIG-
395 labelled by using the DIG oligonucleotide 3’ end labeling kit (Roche). After ISH,
396 some embryos were fixed in 4% PFA in PBS, washed, embedded in gelatin,
397 and cryostat sectioned at a thickness of 14-16 um. They were photographed
398 using the NIS-Elements Advanced Research software (Nikon) with an Eclipse
399 E600 microscope (Nikon) and processed using Photoshop CS3 (Adobe).

400

401 Immunohistochemistry

402  Whole-mount chick immunohistochemistry was performed as described
403  previously (Taneyhill et al., 2007). Briefly, embryos were fixed for 15 min in 4%
404 PFA and then permeabilized and blocked in TBS (500 mM Tris-HCI, pH 7.4, 1.5
405 M NacCl, and 10 mM CacCl,) containing 0.1% Triton X-100 (TBS-T) and 5% FBS
406 for 60 min at room temperature. Primary antibodies were diluted in TBS-T/FBS
407 and incubated overnight at 4°C. Primary antibodies used were mouse anti-
408 Snail2 (1:100), (1:100; supplied by the Developmental Studies Hybridoma
409 Bank), and rabbit anti-FoxD3 (1:300; gift of P. Labosky, Vanderbilt University
410 Medical Center, Nashville, TN). Secondary antibodies used were goat anti-
411 mouse and anti-rabbit Alexa Fluor 594 (1:500; all obtained from Molecular

412  Probes) diluted in TBS-T/FBS and incubated for 45 min at room temperature.
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413  All washes were performed in TBS-T at room temperature. Some embryos were
414 subsequently embedded in gelatin, cryostat sectioned at 12-16pm,
415 photographed using the NIS-Elements Advanced Research software (Nikon)
416  with an Eclipse E600 microscope (Nikon) and processed using Photoshop CS3
417  (Adobe).

418

419  MicroRNA sponge generation

420 Oligos designed to generate miR-203 sponge were ordered phosphorylated and
421 PAGE purified at a 100 nmol scale (see table S2) and dissolved to 50 mM in
422  STE buffer (100 mM NaCl, 10 mM Tris/HCL, 1 mM EDTA, pH 8.0). Sense and
423  antisense oligos were mixed at a 1:1 ratio and annealed by incubation at 100°C
424  for 10 minutes followed by slow cooling. The “sponge” vector was generated
425  following previously described protocols (Kluiver et al., 2012).

426
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662 Supplemental materials

663

664 Figure S1. (A) Whole-mount in situ hybridization using DIG-labeled LNA probes
665 (Exigon) against miR-203 at early chick developmental stages.
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668 Figure S2: (A) Diagram of electroporation assay for gain-of-function
669 experiments. pCAG-miR-203 does not have a fluorescent marker, for this
670 reason, was co-electroporated with a fluorescent vector that express GFP
671 downstream the CAG promoter. We injected the vectors in the right side of the
672 embryos at stage 4. Following injection, embryos were electroporated and
673 cultured until stage 9. (B) Electroporation of pCAG-203 vector (right side)
674  successfully overexpress a mature miR-203 evidenced by in situ hybridization
675 using LNA probes. (C) Schematic drawing of the miRNA dual-sensor vector
676 (pSdmiR-203) containing two copies of complementary sequences to the
677 mature miR-203. (D) lllustration of bilateral electroporation assay to evaluate if
678 pCAG-203 express a functional miR-203. (E) Co-electroporation pSdmiR-203
679 and the empty pCAG vector (left side) caused that most of the cells are yellow
680 because of the expression of both green and red reporters. Whereas, co-
681 electroporation pSdmiR-203 and pCAG-203 vector (right side) caused that most
682  of the cells are only red, because of the strong repression of the green reporter.
683 pCAG, Chick B-actin promoter; ddEGFPy nuclear-localized destabilized EGFP
684 with a half-life of 4 h; mRFPy, nuclear-localized monomeric red fluorescent
685  protein.
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Supplementary table 1: In silico analyzes of conserved and poorly conserved
microRNA-binding sites on Snail2 and Phf12 3'UTRs (TargetScan), their known
functions, demonstrated targets, and chick expression (GEISHA).

GEISHA microRNAs expression in chick development
http://geisha.arizona.edu/geisha/quick_search.jsp?table=mir

miR-1 (Wei et al., 2014, Wystub et al., 2013, Heidersbach et al., 2013)
miR-19 (Olive et al., 2009, Mavrakis et al., 2010, Liu et al., 2011)
mMiR32-5p/92-3p/367 (Zhu et al., 2013a, Zhu et al., 2015, Sharifi and Salehi,
2016)

miR-33-5p (Mi et al., 2016, Wang et al., 2016)

miR130-3p/301-3p/454-3p (Leone et al., 2015, Xia et al., 2015, Lv et al., 2016,
Egawa et al., 2016)

miR-142 (Lu et al., 2013, Borges et al., 2016, Sonda et al., 2013, Dickman et
al., 2017)

miR-155 (Robertson et al., 2014, Gracias et al., 2013, Forzati et al., 2017)
miR-181-5p (Ma et al., 2015, Li et al., 2015, Korhan et al., 2014)
mMiR-200b-3p/429-3p (Gui et al., 2017, Ye et al., 2014, Wu et al., 2016)
miR-203(Wei et al., 2010, Yi et al., 2008, Zhang et al., 2011, Shi et al., 2015,
Benaich et al., 2014)

miR-221-3p/222-3p (Yan et al., 2016, Takigawa et al., 2016, Wu et al., 2017)
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miR-455-5p (Liu et al., 2016, Li et al., 2016, Chai et al., 2015)
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1074  Supplementary table 2: Results obtained with the Jaspar 2018 (http://jaspar.genereg.net/)
1075 for SNAIL2 binding site in the tentative promoter of miR-203. High binding sites (>9) are

1076  mapped in figure 2A. We also show the sequence analyzed in Jaspar 2018.

1077

1078
Matrix ID Name Score Relative score Sequence ID Start End Strand Predicted sequence
MAD745.1 SNAIZ 12,6931 0.999707221414 miR_203_tentative_promoter -1162 -1153 + AACAGGTGC
MAD745.1 SNAIZ 9,71729 0.94034684341 miR_203_tentative_promoter -1552 -1543 + GGCAGGTAC
MAD745.1 SNAI2 8,48966 0.915858769456 miR_203 tentative_promoter -1089 -1080 CACAGGTTG
MAD745.1 SNAI2 7,98092 0.905710714071 miR_203_tentative_promoter -1273 -1264 ATCAGGTTG
MAD745.1 SNAI2 4,63965 0.839061031445 miR_203_tentative_promoter -1599 -1550 - TGCATGTTT
MAOD745.1 SNAIZ 3,94346 0.825173896668 miR_203_tentative_promoter -1527 -1518 + TCAAGGTGT
MAD745.1 SNAI2 3,5435 0.817195747557 miR_203_tentative_promoter -1199 -1150 - TGGAGGTTG
MAD745.1 SNAI2 3,51455 0.816618237138 miR_203_tentative_promoter -1293 -1284 + AGAAAGTGA
MAD745.1 SNAI2 3,24005 0.811142584031 miR 203 tentative promoter -1082 -1071 TGCCAGTGC

>miR_203_tentative_promoter Chr 5:50767590-50768212
AGGACTGGCTTGAGTTGCCTATATATTTATAAAGAGCCAAAGATCATAGGATCTGGAGTGCCAGAATTCATACACAGCACATATACAGCTCTTTAAACATGCAAAACACTCTATTAACATGA
GTGAAGCCTCATAAGATGAGGCAGGTACGCATTATCTCTCCTCCTCAAGGTGTGGCGAAGTGACTTGGTGAAGGCCTGAGGCTGAGTCGCTGGCAGAGCAGGGCCGACTATCCACAACTT
TCCTACACCACACAGGCTGCCCCGTCCCAGCATGGCAAAGCGTGAAGGCCTTCCCGTCCACCCCAGCAGCAGGGCTCCGAAAGCCCAGTGGGTTGTGTTTCATTCTTCTCCTATAGACAAAG
AGGGTGAAATATTAATGGAAGAAAGTCAAAATT CAGAGAAAGTGACTCCCGGCAAGCAACCTGATTTCTGGAAGTTCATGAAATCATACAATTGTTTGAGTTGGAAGGGACCCCTAAAGG
CCATCCAGTCCAACCTCCATGCAATAAGTAGGGACTCCCACGGCTCCAACAGGTGLTCAGAGCCCCGTCCAGCCTGACCTTGGCTGTCTCTAAGGACAGGGCACCCACCACATCTCTGGGCA
ACCTGTGCCAGTGCCTC

1079
1080
1081

Supplementary table 3: Complete list of utilized primers, LNA probe, and morpholinos

Gene/Direction

LNA Probe
dre-miR-203a(gga-miR-
203)

stem-loop-gga-miR-203

Sequence

CAAGTGGTCCTAAACATTTCAC

RT-gqPCR Primer Sequences

GTCTCCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGGAGACCAAGTG

stem-loop-gga-miR-16

GTCTCCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGGAGACCAAGTG

gPCR-gga-miR-203 Fwd CCGGCGTGAAATGTTTAGG
gPCR-gga-miR-16 Fwd CGCCGCTAGCAGCACGTAAA
gPCR-gga-miR-universal

Rev GAGGTATTCGCACCAGAGGA
gPCR-Snail2 Fwd GCCAAACTACAGCGAACTGG
gPCR-Snail2 Rev CGGAGAGAGGTCATTGGGTA
gPCR-Phf12-Fwd CTGAGGAACCCTTGCAGAAG
gPCR-Phf12-Rev AGAGTCCCAAAGCGAAGTCA
gPCR-HPRT1-Fwd TGGTGAAAGTGGCCAGTTTG

qPCR-HPRT1-Rev

TCATTGTAGTCGAGGGCGTATC

Proximal region

Bisulfite Primer Sequences

P-miR-203 Fwd

AGGTAGTTTGGAAAAATTGGTTT

P-miR_203 Rev

CTCCTTTAAAAACATTACAACCC

PN-miR-203 Fwd

AAGTTTTGTTGTTGTTGTTATTTT

PN-miR-203 Rev

TAAACTATTAAAAACCACTACACCA

Distal region
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D-miR-203 Fwd TTTATATTTGTTGAGGGGAAGG
D-miR-203 Rev TTTCCAAACTACCTTCTCCCTA
DN-miR-203 Fwd TTGTGTGAGGTTGGTAGTTAGG
DN-miR-203 Rev ATCATCATCATCTAAAACAACCC
Xhol-gga-miR-203 Fwd AAACTCGAGCTCCGAGCTGAGAAGAATGG
EcoRV-gga-miR-203 Rev AAAGATATCCGCGCACTACAAGCCTATTT
gtcccCAAGTGGTCCGCTCATTTCACgaatatCAAGTGGTCCGCTCATTTCACE
miR-203 sponge Fwd g
gacccGTGAAATGAGCGGACCACTTGatattcGTGAAATGAGCGGACCACTT
miR-203 sponge Rev Ggg
Scramble sponge Fwd gtcccATCTAGCTGATCTAATCGAACaatatATCTAGCTGATCTAATCGAACEE
Scramble sponge Rev gacccGTTCGATTAGATCAGCTAGATatattGTTCGATTAGATCAGCTAGATgg
Snail2-3'UTR Fwd ACGCGTGTCATGCAGTCAATGTTTAC
Snail2-3'UTR Rev GCTAGCTTTCACTTCACGCTTTCTTC
mutSnail2-3'UTR SITIO A
Fwd ATGCATGAGACCCGCAGTAGATCTAAACG
mutSnail2-3'UTR SITIO A
Rev GCGGGTCTCATGCATGGCATCTTTCCCC
mutSnail2-3'UTR SITIO B
Fwd CAAGCGACCCGCACCAAAGAAACAGTATTTTAATGG
mutSnail2-3'UTR SITIO B
Rev GGTGCGGGTCGCTTGGCAGGAATGTATTAGTAAC
Phf12-3'UTR SanDI Fwd AAAGGGTCCCGAATTTGGAGGAAGGGAGCT
Phf12-3'UTR Rev GCTAGCTACAGTGGAGCTAGCTGGCC
mutPhf12-3'UTR Rev AAAACGCGTGCTGCTCTCGCTGCAGTTTTCCTTTTAAAAGCGGGTCTATAG
DNMT3A MO TGGGTGTGTCACTGCTTTCCACCAT
DNMT3B MO CGAGGCTCGTTACCATGCTCATCGC
SNAIL2 MO TCTTGACCAG GAAGGAGC
1082
1083
1084

39


https://doi.org/10.1101/392142

