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ABSTRACT 19	
  

Humic lakes and ponds receive large amounts of terrestrial carbon and are important 20	
  

components of the global carbon cycle, yet how their redox cycling influences the carbon 21	
  

budget is not fully understood. Here we compared metagenomes obtained from a humic 22	
  

bog and a clearwater eutrophic lake, and found a much larger number of genes that might 23	
  

be involved in extracellular electron transfer (EET) for iron redox reactions and humic 24	
  

substance (HS) reduction in the bog than in the clearwater lake, consistent with the much 25	
  

higher iron and HS levels in the bog. These genes were particularly rich in the bog’s 26	
  

anoxic hypolimnion, and were found in diverse bacterial lineages, some of which are 27	
  

relatives of known iron oxidizers or iron/HS reducers. We hypothesize that HS may be a 28	
  

previously overlooked electron acceptor and EET-enabled redox cycling may be 29	
  

important in pelagic respiration and greenhouse gas budget in humic-rich freshwater 30	
  

lakes. 31	
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INTRODUCTION 41	
  

Inland lakes receive allochthonous carbon (C) fixed in their catchment areas, and 42	
  

play an important role in the cycling of terrestrial C and affect global C budgets. Many 43	
  

northern freshwater lakes are experiencing a “browning” process, and this trend may 44	
  

continue with changes in precipitation patterns and atmospheric deposition chemistry (1-45	
  

3). A leading factor contributing to the brownification is the increasing inputs of 46	
  

allochthonous dissolved organic C (DOC) (4). A major component of terrestrially derived 47	
  

allochthonous DOC in freshwater is humic substances (HS), which are heterogeneous 48	
  

mixtures of naturally occurring recalcitrant organic carbon derived from plant and animal 49	
  

decay (5). Another factor contributing to surface water brownification is increasing iron 50	
  

(Fe) inputs (6), which were positively correlated to the increasing organic C inputs (7, 8). 51	
  

This correlation may be partly due to the complexation of Fe by organic matter, in 52	
  

particular HS, as the complexation may increase Fe leaching from catchment soil and 53	
  

maintain Fe in the water column instead of sedimentation within the receiving water body 54	
  

(8, 9).  55	
  

Understanding the roles of HS and Fe in freshwater lakes is critical to predict how 56	
  

such ecosystems will respond to the browning process, and to more accurately dissect 57	
  

overall lake "metabolism" (10, 11). Humic lakes feature intensively brown-colored 58	
  

waters originating from high concentration in HS and Fe.  As a redox-active element, Fe 59	
  

plays a role in defining redox conditions and C cycling; yet the complex roles of HS have 60	
  

not been fully recognized, despite its high concentrations in humic lakes. On one hand, 61	
  

HS and the more labile low-molecular weight C derived from the photodegradation of HS 62	
  

is an important C source and electron donor for heterotrophic respiration in humic lakes 63	
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(12, 13). On the other hand, HS has also been recognized as an electron acceptor through 64	
  

the reduction of their quinone moieties (14, 15), and its electron accepting capacity 65	
  

(EAC) is fully regenerable under recurrent anoxic conditions (16). However, most prior 66	
  

research on the EAC of HS considered the impact on C-cycling in wetlands, sediments 67	
  

and soils, rather than truly pelagic ecosystems (16-19). Recently, a study on a humic lake 68	
  

showed that native organic matter with more oxidized quinone moieties and therefore 69	
  

higher EAC favored freshwater bacterial growth and production under anoxic conditions, 70	
  

and further suggested organic matter as an important electron acceptor in stratified lakes 71	
  

with oxycline fluctuations (20). Despite this, the role of HS as an electron acceptor in 72	
  

freshwater lakes has not been widely appreciated.  73	
  

Theoretically, if HS is used to respire organic C, it has the potential to lower 74	
  

methane emissions from lakes. The reduction potential distribution in HS suggests HS 75	
  

reduction to be thermodynamically more favorable than methanogenesis in anoxic waters 76	
  

(16). As the resulting competitive mitigation of methanogenesis was observed in peat 77	
  

bogs and peat soils (21-23), a similar process is expected for pelagic respiration in lakes. 78	
  

Therefore, we judge it timely to further explore the contribution of HS and Fe reduction 79	
  

to pelagic respiration in freshwater lakes. 80	
  

In humic lakes, light does not penetrate deep into the water column due to the 81	
  

absorbance by HS and Fe. Therefore, humic lakes generally have a shallower 82	
  

phototrophic (and therefore oxygenated) zone than clearwater lakes during stratification 83	
  

(13), leaving a larger proportion of water column under anoxic conditions. Due to this 84	
  

redox distribution and their high concentrations, HS and Fe may become important 85	
  

terminal electron acceptors in humic lakes. Thus, here we present the hypothesis that HS 86	
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and Fe redox cycling is more significant in humic lakes than in clearwater lakes, and that 87	
  

these redox processes may influence ecosystem-level C budgets (i.e. overall lake 88	
  

metabolism). As a preliminary examination of this hypothesis, we studied two contrasting 89	
  

temperate lakes, including a small humic lake, Trout Bog, in which the DOC is primarily 90	
  

of terrestrial origin; and a large eutrophic clearwater lake, Lake Mendota, which has 91	
  

much lower concentrations of HS and Fe than Trout Bog, with most of its DOC being 92	
  

produced in-lake via photosynthesis. Detailed lake characteristics are listed in Table S1. 93	
  

Three combined assemblies of time-series metagenome libraries previously obtained 94	
  

from Lake Mendota epilimnion (ME), Trout Bog epilimnion (TE), and Trout Bog 95	
  

hypolimnion (TH), respectively, and over 200 metagenome-assembled genomes (MAGs) 96	
  

were recovered from these combined assemblies (21). We examined these metagenomes 97	
  

and MAGs to identify genes involved in HS and Fe redox processes to compare their 98	
  

distributions in the two contrasting lakes. 99	
  

Due to the high molecular weight of HS and the poor solubility of Fe(III), these 100	
  

electron acceptors are reduced extracellularly via a process called extracellular electron 101	
  

transfer (EET). The reduced HS and Fe can be abiotically re-oxidized by oxygen under 102	
  

oxic conditions. In addition, biological Fe(II) oxidation may also occur, which employs 103	
  

EET due to the poor solubility of the reaction product, Fe(III). One form of 104	
  

oxidoreductase in Fe redox EET processes involves outer-surface proteins, such as Cyc2, 105	
  

a monoheme cytochrome c typically found in Fe(II) oxidizers (22-24), and multiheme c-106	
  

type cytochromes (MHCs) in Fe(III) reducers (25, 26). Another form of EET 107	
  

oxidoreductase forms a “porin-cytochrome c protein complex” (PCC) (27), in which the 108	
  

oxidoreductase, usually a MHC, is secreted to the periplasm and embedded into a porin 109	
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on the outer membrane to form the EET conduit. Most Fe(III) reducers can also reduce 110	
  

HS (28, 29), and probably use the same EET systems to transfer electrons to HS. For 111	
  

example, in Geobacter sulfurreducens, a number of outer membrane MHCs that are 112	
  

important in the reduction of Fe(III) are able to reduce extracellular AQDS and HS (30), 113	
  

and in Shewanella oneidensis, the porin and periplasmic MHC components of its Fe(III)-114	
  

reducing PCC are essential for AQDS and HS reduction (31, 32). These findings suggest 115	
  

that reduction of the quinone moieties in HS is a non-specific redox process by EET 116	
  

systems.  117	
  

In this study, we searched for putative EET genes (including PCC, outer surface 118	
  

MHCs not associated with PCC, and Cyc2) in MAGs and metagenomes to examine if 119	
  

these genes are indeed more abundant in the humic bog than in the clearwater lake. 120	
  

Method details on the identification and quantification of putative EET genes were 121	
  

described in Supplemental Methods. All (meta)genome data are publicly available at the 122	
  

Integrated Microbial Genomes & Microbiomes (IMG/M, https://img.jgi.doe.gov/m). The 123	
  

IMG IDs for the ME, TE, and TH metagenomes are 3300002835, 3300000439, and 124	
  

3300000553, respectively, and the IMG IDs for putative EET gene-containing MAGs 125	
  

(together with details on these MAGs and putative EET genes in the three metagenomes) 126	
  

are listed in Tables S2 and S3.  127	
  

 128	
  

 129	
  

RESULTS 130	
  

MHCs are important components of EET systems involved in Fe redox reactions 131	
  

and HS reduction. In particular, MHC with large numbers of hemes may be able to form 132	
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 15, 2018. ; https://doi.org/10.1101/392027doi: bioRxiv preprint 

https://doi.org/10.1101/392027


molecular “wires” for conducting electrons from the periplasmic space across the outer 133	
  

membrane (33, 34). We therefore estimated the normalized abundance of MHCs with at 134	
  

least five heme-binding sites in the metagenomes. In general, TH had the highest 135	
  

abundance of MHCs, followed by TE and ME, and such differences were even more 136	
  

pronounced for MHCs with at least eight heme-binding sites (Fig. 1A). Some of these 137	
  

MHCs are components of other redox enzyme complexes, such as the pentaheme and 138	
  

hexaheme MHCs in alternative complex III (ACIII), and octaheme MHCs in tetrathionate 139	
  

reductases and hydroxylamine oxidoreductases. Putative EET MHC components (i.e. 140	
  

MHCs in PCC and outer surface MHCs not associated with PCC, as listed in Table S2) 141	
  

were much more frequently found in MHCs with large heme binding sites (e.g. >9), and 142	
  

these putative EET genes were more abundant in TH than TE, and nearly absent in the 143	
  

ME metagenome (Fig. 1B). This may indicate that MHC-based EET potential was more 144	
  

significant in the anoxic layer than in the oxic layer of the humic bog, and was minimal in 145	
  

the oxic layer of the clearwater lake with low Fe and HS concentrations. Notably, the 146	
  

largest number of heme-binding sites (i.e. 51) was found in an MHC component of a 147	
  

putative PCC, encoded in an un-binned contig in the TE metagenome (Table S2).  148	
  

 149	
  

Porin-cytochrome c protein complex (PCC) genes 150	
  

The best studied PCC system, MtrABC (consisting of a porin, a periplasmic 151	
  

decaheme Cyt c, and an extracellular decaheme Cyt c), was first identified in S. 152	
  

oneidensis as being essential for Fe(III) reduction (35). Their homologous PCCs, PioAB 153	
  

and MtoAB, which lack the extracellular MHC component, were suggested to be 154	
  

involved in Fe(II) oxidation in the phototrophic Rhodopseudomonas palustris TIE-1 (36) 155	
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and the microaerophilic Fe(II) oxidizers in the family of Gallionellaceae (37-39), 156	
  

respectively. The more recently discovered PCC proteins in G. sulfurreducens are not 157	
  

homologous to MtrABC, but are also encoded in operons with genes encoding a porin 158	
  

(OmbB), a periplasmic octaheme Cyt c (OmaB), and an outer-membrane dodecaheme 159	
  

Cyt c (OmcB) (40). This suggests that multiple PCC systems evolved independently, and 160	
  

may provide a clue to search for new types of PCC by examining genome-level 161	
  

organization. For example, putative novel PCC genes not homologous to previously 162	
  

identified PCCs were found in some Fe(II) oxidizer genomes by searching for the unique 163	
  

genetic organization of porin- and periplasmic MHC-coding genes (41).  164	
  

Nearly all MtrAB/MtoAB/PioAB homologs were recovered in Trout Bog, and 165	
  

mostly from TH (Table S2). They are present in MAGs affiliated with the Proteobacteria, 166	
  

including the Fe(II)-oxidizing Gallionella and Ferrovum, Fe(III)-reducing Albidiferax, 167	
  

Fe(III)- and AQDS-reducing Desulfobulbus and genera not known for EET, such as 168	
  

Polynucleobacter, Desulfocapsa, and Methylobacter (Fig. 2). Interestingly, among the 46 169	
  

Polynucleobacter genomes available at IMG/M (https://img.jgi.doe.gov/m), 170	
  

MtrAB/MtoAB/PioAB homologs were only found in Polynucleobacter recovered from a 171	
  

wetland and two humic lakes (including Trout Bog and Lake Grosse Fuchskuhle located 172	
  

in Brandenburg, Germany), suggesting that this PCC might be an acquired trait of some 173	
  

Polynucleobacter spp. adapting to humic-rich environments.  174	
  

Homologs of another studied PCC (represented by OmbB-OmaB-OmcB in 175	
  

Geobacter spp.) were present in MAGs affiliated with relatives of known Fe(III) (and 176	
  

HS) reducers, including Geothrix, Ignavibacteriaceae and Geobacteraceae, as well as in 177	
  

Methylobacter (Fig. 2).  178	
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Based on the unique genetic organization of PCC-encoding genes, we found a 179	
  

number of putative PCC that do not share a significant sequence homology with known 180	
  

PCCs, probably representing novel PCC types. These putative PCC genes were present in 181	
  

Fe(III) (and HS) reducers (Geothrix, Albidiferax, and Geobacteraceae) and bacteria not 182	
  

known for EET, including Methylotenera, Methylobacter, Methyloversatilis, and a 183	
  

number of Bacteroidetes and Verrucomicrobia (Fig. 2). Among them, Verrucomicrobia 184	
  

with putative PCC genes were previously found in humic-rich environments, such as 185	
  

soils and lake sediment, in addition to the Verrucomicrobia MAGs from Trout Bog (42).  186	
  

 187	
  

Outer surface MHCs not associated with PCC 188	
  

Outer surface MHCs that are not PCC components may also be involved in EET. 189	
  

Examples include the OmcE, OmcS, and OmcZ in G. sulfurreducens (25, 26), outer 190	
  

surface MHCs in Gram-positive Fe(III)- and AQDS-reducing Firmicutes (43), and MHCs 191	
  

in deltaproteobacterial sulfate-reducing bacteria that may be responsible for EET with its 192	
  

anaerobic CH4-oxidizing archaeal syntrophic partner (44).  193	
  

Here, we found a number of non-PCC-associated outer surface MHCs in the 194	
  

metagenomes (Table S2) and MAGs, including Fe(III)- (and HS-) reducing taxa 195	
  

(Albidiferax, Geothrix, Desulfobulbus, Ignavibacteriaceae and Geobacteraceae), and 196	
  

several members in the Bacteroidetes and Verrucomicrobia phyla (Fig. 2). In particular, 197	
  

seven genes predicted to encode MHCs located on the cell wall were found in a Gram-198	
  

positive actinobacterial MAG classified to Solirubrobacterales from TH, and four of 199	
  

these genes are located in the same gene cluster with up to 15 heme-binding sites in a 200	
  

single MHC (Table S2), probably involved in electron transfer on the cell wall. 201	
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 202	
  

Cytochrome Cyc2 203	
  

Cyc2 is an outer membrane c-type cytochrome with one heme-binding motif in 204	
  

the N-terminus and a predicted porin structure at the C-terminus, and was therefore 205	
  

proposed as a fused PCC (45). Cyc2 was originally identified as the Fe(II) oxidase in 206	
  

acidiphilic Acidithiobacillus ferrooxidans (23) with distant homologs later found in 207	
  

neutrophilic microaerobic Mariprofundus spp. (22) and some other neutrophilic Fe(II) 208	
  

oxidizers (24, 41).  209	
  

Similar to EET MHC genes, the normalized abundance of total Cyc2-like genes 210	
  

was much higher in the TH than in the TE metagenome, and Cyc2-like genes were 211	
  

largely absent in the ME metagenome (Fig. 1C). Cyc2 homologs were present in 29 212	
  

MAGs exclusively from Trout Bog (Table S3), including relatives of Fe(II)-oxidizing 213	
  

genera (Ferrovum and Gallionella) and Fe(III)- reducing taxa (Ignavibacteriaceae and 214	
  

Albidiferax), as well as bacteria not known for EET, including Methylotenera, 215	
  

Methylobacter, Pelodictyon, and members in Bacteroidetes and Verrucomicrobia (Fig. 216	
  

2).  217	
  

 218	
  

 219	
  

DISCUSSION 220	
  

With the ongoing brownification of surface water due to increasing inputs of 221	
  

terrestrial C and Fe on a large scale, elucidating the roles and contribution of HS and Fe 222	
  

in redox and C cycling becomes even more relevant to C budgets at an ecosystem level. 223	
  

Here we inspected EET genes/organisms involved in HS and Fe redox processes in two 224	
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freshwater lakes with contrasting HS and Fe levels to examine if these genes/organisms 225	
  

were more abundant in the humic lake, particularly in its anoxic layer. All together, a 226	
  

total of 103, 36, and 66 MAGs were recovered from the ME, TE, and TH metagenomes, 227	
  

respectively. Among them, putative EET genes were found in 7, 12 and 31 MAGs from 228	
  

ME, TE and TH, respectively (Fig. 2). Therefore, a larger fraction of MAGs might 229	
  

encode EET function in Trout Bog, especially in its hypolimnion, than in Mendota. This, 230	
  

together with the normalized abundance of putative EET genes in the three metagenomes 231	
  

(Fig. 1), suggests that the genetic potential of EET was more significant in the anoxic 232	
  

layer than in the oxic layer of the humic bog, and was the lowest in the oxic layer of the 233	
  

clearwater lake. This distribution pattern is consistent with the availability of the 234	
  

thermodynamically more favorable electron acceptor, i.e. oxygen, between the two layers 235	
  

and the much higher concentrations of HS and Fe in the bog than in the clearwater lake.  236	
  

It was not surprising to find putative EET genes in relatives of bacteria that are 237	
  

known to be capable of Fe redox reactions and HS reduction in anoxic lake waters. 238	
  

However, finding putative EET genes in taxa not known for EET functions is intriguing. 239	
  

Like many known EET organisms, some of these bacteria (e.g. Bacteroidetes and 240	
  

Verrucomicrobia) contain multiple sets of putative EET genes. In particular, some 241	
  

Methylotenera and Methylobacter contain both Cyc2 and putative PCC genes. If these 242	
  

methylotrophs are indeed capable of EET, this may enable insoluble or high-molecular 243	
  

weight substrates, such as Fe(III) and HS, to be used as an electron acceptor to oxidize 244	
  

the methyl-group in methanol and methylamine. Such EET processes, if they occur, 245	
  

could allow methylotrophs to survive in the anoxic layer, and this agrees with the 246	
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recovery of Methylotenera and Methylobacter MAGs in the largely anoxic hypolimnion 247	
  

of Trout Bog.  248	
  

HS have until now usually been more regarded as an electron donor and C source 249	
  

in freshwater lakes, and not as an electron acceptor. However, evidence for the role as an 250	
  

electron acceptor was recently documented in another peat bog lake (20). In the current 251	
  

study, we measured the electron accepting capacity (EAC) of HS in the epilimnion and 252	
  

hypolimnion water of Trout Bog according to Kappler et al. (17), and their EAC was 253	
  

0.115 and 0.128 mM, respectively (See Supplemental Methods for the determination of 254	
  

lake water EAC). Notably, these values are an order of magnitude higher than the EAC of 255	
  

Fe (~0.01 mM) in Trout Bog. Therefore, HS may be a significant, but previously 256	
  

overlooked source of electron acceptors in this bog system.  257	
  

Due to its high EAC and concentration, HS may play an important role in the 258	
  

redox cycling in Trout Bog. On one hand, HS facilitates Fe redox reactions by shuttling 259	
  

electrons from Fe(III)-reducers to Fe(III) in heterotrophic respiration (46). On the other 260	
  

hand, HS may be directly used as an electron acceptor to respire the more labile organic 261	
  

C (Fig. 3). The anaerobic respiration of organic C with Fe(III) and HS are both 262	
  

thermodynamically more favorable than methanogenesis, therefore promoting the 263	
  

transformation of organic C towards CO2, not CH4. This may lower the overall global 264	
  

warming potential of greenhouse gas emissions from humic lakes, as CH4 is a much more 265	
  

potent greenhouse gas than CO2. Because of lake seasonal mixing and more frequent 266	
  

micro-mixing, such as wind-driven turbulence and convectively derived diurnal oxycline 267	
  

fluctuations (20, 47), reduced HS and Fe can be re-oxidized through mixing-introduced 268	
  

oxygenation to regenerate their EAC, which makes these anaerobic respiration processes 269	
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sustainable in the anoxic layer (Fig. 3). In these redox processes, oxygen is the ultimate 270	
  

electron acceptor, and Fe and HS “recharge” the EAC with oxygen for subsequent use 271	
  

when oxygen becomes unavailable in stratified hypolimnia. Hypothetically, such 272	
  

recharging process would increase the effective EAC of humic water and shunt more 273	
  

organic C to anaerobic respiration. Therefore, we hypothesize that HS may be a 274	
  

previously overlooked electron acceptor and EET may be an important contribution to 275	
  

pelagic respiration in humic-rich freshwater lakes. Coupled with C metabolism, EET-276	
  

enabled HS and Fe redox dynamics can significantly influence C cycling and greenhouse 277	
  

gas emission in humic lakes that experience recurrent oxic-anoxic conditions. The 278	
  

overrepresentation of EET genes/organisms potentially involved in HS and Fe redox 279	
  

processes in the humic lake strongly support this hypothesis, given that the energetic 280	
  

advantage such organisms can obtain stays marginal when powerful recharge 281	
  

mechanisms at the oxic/anoxic interface are lacking. Yet further combined 282	
  

biogeochemical, hydrodynamic, genomic and transcriptomic studies are required to test 283	
  

our hypothesis and reveal organisms and genes actually involved in-situ. 284	
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FIGURES 497	
  

 498	
  

 499	
  

 500	
  

Fig. 1. Normalized abundance of multiheme c-type cytochromes (MHCs) (a), MHCs with 501	
  

putative EET functions (i.e. MHCs in PCC and outer surface MHCs not associated with 502	
  

PCC) (b), and Cytochrome Cyc2 homologs (c) found in metagenomes obtained from 503	
  

Lake Mendota’s epilimnion (ME), and Trout Bog’s epilimnion (TE) and hypolimnion 504	
  

(TH), respectively. In (a) and (b), normalized abundance was reported for MHCs with 5 505	
  

to 10, and > 10 heme binding sites respectively. The normalized abundance was obtained 506	
  

by mapping metagenome reads to assembled contigs and the read coverage was then 507	
  

normalized by the average read coverage of single-copy conserved bacterial 508	
  

housekeeping genes in the same metagenome. See Supplemental Methods for details on 509	
  

the calculation of normalized abundance.  510	
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 511	
  

Fig. 2. Occurrence of putative EET genes in MAGs and their normalized abundance in 512	
  

the metagenome as measured by mapping reads to assembled contigs for read coverage 513	
  

and normalizing by the average coverage of single-copy conserved bacterial 514	
  

housekeeping genes (see Supplemental Methods for details). * indicates MAGs with 515	
  

Fe(III) reducing relatives, and ** indicates MAGs with Fe(II) oxidizing relatives. The 516	
  

presence of putative EET genes was indicated with “+”.  517	
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 518	
  

Fig. 3. Proposed roles of EET genes in facilitating redox cycling of Fe and HS in the bog. 519	
  

Oxygenation in the hypolimnion through seasonal mixing and more frequent micro-520	
  

mixing (such as wind-driven turbulence and convectively derived diurnal oxycline 521	
  

fluctuations) regenerates the electron accepting capacity of reduced HS and Fe to enable 522	
  

these anaerobic respiration processes sustainable in the hypolimnion. 523	
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