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Abstract

Studies in rodents have demonstrated that transecting the white matter pathway
linking the hippocampus and anterior thalamic nuclei - the fornix - impairs flexible
navigational learning in the Morris Water Maze (MWM), as well as similar spatial
learning tasks. While diffusion MRI studies in humans have linked fornix
microstructure to scene discrimination and memory, its role in human navigation is
currently unknown. We used high-angular resolution diffusion MRI to ask whether
inter-individual differences in fornix microstructure would be associated with spatial
learning in a virtual MWM task. To increase sensitivity to individual learning across
trials, we adopted a novel curve fitting approach to estimate a single index of
learning rate. We found a significant correlation between learning rate and the
microstructure (mean diffusivity) of the fornix, but not that of a control tract linking
occipital and anterior temporal cortices (the inferior longitudinal fasciculus, ILF).
Further, this correlation remained significant when controlling for hippocampal
volume. These findings extend previous animal studies by demonstrating the
functional relevance of the fornix for human navigational learning, and highlight the
importance of a distributed neuroanatomical network, underpinned by key white

matter pathways, such as the fornix, in complex spatial behaviour.
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Introduction

The ability to navigate, and learn the location of rewards and goals in the
environment, is a fundamental and highly adaptive cognitive function across species
(Landau and Lakusta, 2009; Wolbers and Hegarty, 2010; Murray et al., 2016).
Lesion studies in animals suggest that this ability depends, in part, on several key
brain regions, including the hippocampus, mammillary bodies, and the anterior
thalamic nuclei (Sutherland and Rodriguez, 1989; Warburton and Aggleton, 1998;
Jankowski et al., 2013), which in turn connect with a broader network including
entorhinal, parahippocampal, retrosplenial, and posterior parietal cortex, all thought
to be important for navigation (Ekstrom et al., 2017). In particular, the hippocampus,
mammillary bodies, and anterior thalamic nuclei are connected anatomically by an
arch-shaped white matter pathway called the fornix (Saunders and Aggleton, 2007).
Given the role of these interconnected structures in spatial learning and navigation
(Jankowski et al., 2013), the ability for these distributed regions to communicate via

the fornix may also be critical for successful spatial learning and navigation.

Indeed, transecting the fornix in rodents and monkeys impairs learning for objects-in-
place, but not the objects themselves (Gaffan, 1992, 1994; Simpson et al., 1998).
These findings also extend to performance on spatial navigation tasks, most notably
the Morris Water Maze (MWM). The MWM is one of the most widely used laboratory
tasks in studies of navigational behaviour across non-human species and has been
recognized as an excellent candidate for a universal test of spatial navigation ability
(Morris, 1984; Possin et al., 2016). In this task, animals are placed in a circular pool

and required to swim to a hidden platform beneath the surface using allocentric cues
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outside the pool. Several studies have shown that fornix-transected rodents are
impaired on the MWM, particularly when required to navigate flexibly from multiple
positions within the maze (Eichenbaum et al., 1990; Packard and McGaugh, 1992;
Warburton et al., 1998; Warburton and Aggleton, 1998; De Bruin et al., 2001; Cain et
al., 2006). Fornix transection also impairs allocentric place learning in other maze
tasks (O’Keefe et al., 1975; Olton et al., 1978; Packard et al., 1989; Dumont et al.,

2015).

Critically, while these animal studies highlight a key role for the fornix in spatial
learning - across both visuo-spatial discrimination and navigation tasks - the role of
this white matter pathway in human wayfinding is currently unknown. Studies using
diffusion magnetic resonance imaging (dMRI), which allows white matter
microstructure to be quantified in vivo, have reported associations in healthy human
subjects between fornix microstructure and inter-individual differences in scene and
spatial context processing across both memory (Rudebeck et al., 2009; Hodgetts et
al., 2017) and perceptual tasks (Postans et al., 2014; Hodgetts et al., 2015). Given
differences in the visuospatial representations underpinning navigation across
rodents and humans (Ekstrom, 2015), it begs the question whether this same
extended functional system, structurally linked by the fornix, is similarly important for

navigational learning in humans.

To test this, we acquired dMRI data in healthy human subjects who performed a
human analogue of the MWM (Figure 1). In this task, individuals were required to

learn, over trials, the location of a hidden sensor within a virtual art gallery. Similar to
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the rodent paradigm, subjects were required to navigate from multiple starting
positions, thus placing greater demand on flexible allocentric processing (Figure 1).
To create a single index of navigational learning rate, we used a curve fitting
approach to model the time taken to reach the sensor across trials (for similar
approaches, see Stepanov and Abramson, 2008; Pereira and Burwell, 2015; Kahn et
al., 2017). We predicted, based on previous work (Packard and McGaugh, 1992;
Warburton and Aggleton, 1998; Cain et al., 2006; Hodgetts et al., 2015), that
microstructure of the fornix, but not a control tract connecting occipital and anterior
temporal cortices (the “inferior longitudinal fasciculus”, ILF) (Latini, 2015), would be

significantly related to spatial learning rate in a virtual MWM task.

Methods

Participants

Thirty-three healthy volunteers (15 males, 18 females; mean age = 24 years; SD =
3.5 years) were scanned at the Cardiff University Brain Research Imaging Centre
(CUBRIC). These same participants completed a virtual Morris Water Maze task in a
separate behavioural session. All subjects were fluent English speakers with normal
or corrected-to-normal vision. Participation in both sessions was undertaken with the
understanding and written consent of each subject. The research was completed in
accordance with, and approved by, the Cardiff University School of Psychology

Research Ethics Committee.


https://doi.org/10.1101/391888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/391888; this version posted August 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A “Allocentric”

/ landmarks
s

1

Participant perspective

Hidden ‘
2 ® sensor 3 ' U

A

Figure 1. The virtual reality Morris Water Maze. (A) Birds-eye schematic of the
virtual art gallery that the participants explore during the task. The artwork on the
outer walls of the gallery are the “landmarks” in the virtual arena. An example first
person perspective from within the maze is shown. (B) Movement trajectories and

(C) location heatmap across all 20 trials for an example participant.

Virtual Morris Water Maze Task

We used the virtual MWM task developed by Kolarik et al. (2016). This task was
created using Unity 3D (Unity Technologies, San Francisco) and required
participants to explore, from a first-person perspective, a virtual art gallery using the

arrow keys on the computer keyboard (Figure 1A). The room was 8 x 8 virtual m? in
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size, and contained four distinct paintings, one on each wall of the environment. On
a given trial, the participants’ task was to locate a hidden sensor on the floor as
quickly as possible. This sensor occupied 0.25% of the total floor space (i.e., an 0.8
x 0.8 m? square). When the participant walked over the hidden platform it became
visible and the caption “You found the hidden sensor’ was displayed in the centre of
the screen. At this point, the exploration time was recorded automatically and a 10
second countdown appeared in the centre of the display during which the
participants could freely navigate the room. After this countdown, an inter-trial
window appeared and the participants could click on a button to start the next
learning trial. The maximum duration of each learning trial was 60 seconds. If the
participant did not find the target location within this period, the sensor became
visible. The task involved 20 learning trials, which comprised five blocks of four trials.
Within each block, participants started from each of the four starting positions
(arbitrary North, South, East, West). The movement trajectories and location

heatmap for an example participant is shown in Figure 1B-C.

MRI acquisition

Whole brain dMRI data were acquired at the Cardiff University Brain Research
Imaging Centre (CUBRIC) using a 3T GE HDx Signa scanner with an eight-channel
head coil. Single-shell high-angular resolution dMRI (HARDI) (Tuch et al., 2002) data
were collected with a single-shot spin-echo echo-planar imaging pulse sequence
with the following parameters: 30 directions; TE= 87 ms; 60 continuous slices
acquired along an oblique-axial plane with 2.4 mm thickness and no gap. The scans
were cardiac-gated using a peripheral pulse oximeter placed on the participants’

fingertips. A T1-weighted 3D FSPGR sequence was also acquired with the following
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parameters: TR= 7.8 ms; TE= 3 ms, TI= 450 ms, flip angle= 20°; FOV= 256 mm*192

mm*172 mm; 1 mm isotropic resolution.

Diffusion MRI preprocessing

Diffusion MRI data were corrected for subject head motion and eddy currents using
ExploreDTI (Version 4.8.3; Leemans and Jones, 2009). The bi-tensor 'Free Water
Elimination' (FWE) procedure was applied post hoc to correct for voxel-wise partial
volume artifacts arising from free water contamination (Pasternak et al., 2009). Free
water contamination (from cerebrospinal fluid) is a particular issue for white matter
pathways located near the ventricles (such as the fornix), and has been shown to
significantly affect tract delineation (Concha et al., 2005). Following FWE, corrected
diffusion-tensor indices FA and MD were computed. FA reflects the extent to which
diffusion within biological tissue is anisotropic, or constrained along a single axis,
and can range from 0 (fully isotropic) to 1 (fully anisotropic). MD (10-3mm?s) reflects
a combined average of axial diffusion (diffusion along the principal axis) and radial

diffusion (diffusion along the orthogonal direction).

Tractography

Deterministic whole brain white matter tractography was performed using the
ExploreDTI graphical toolbox. Tractography was based on constrained spherical
deconvolution (CSD) (Jeurissen et al., 2011), which can extract multiple peaks in the
fiber orientation density function (fODF) at each voxel. This approach permits the
representation of crossing/kissing fibers in individual voxels. Each streamline was
reconstructed using an fODF amplitude threshold of 0.1 and a step size of Tmm, and

followed the peak in the fODF that subtended the smallest step-wise change in


https://doi.org/10.1101/391888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/391888; this version posted August 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

orientation. An angle threshold of 30° was used and any streamlines exceeding this

threshold were terminated.

Three-dimensional reconstructions of each tract were obtained from individual
subjects by using a waypoint region of interest (ROI) approach, based on an
anatomical prescription. Here, “AND” and “NOT” gates were applied, and combined,
to extract tracts from each subject’s whole brain tractography data. These ROIs were
drawn manually on the direction-encoded FA maps in native space by one

experimenter (MS) and quality assessed by other experimenters (CJH, ANW).

Fornix

A multiple region-of-interest (ROI) approach was adopted to reconstruct the fornix
(Metzler-Baddeley et al., 2011). This approach involved placing a seed point ROl on
the coronal plane at the point where the anterior pillars enter the fornix body. Using a
mid-sagittal plane as a guide, a single AND ROI was positioned on the axial plane,
encompassing both crus fornici at the lower part of the splenium of the corpus
callosum. Three NOT ROls were then placed: (1) anterior to the fornix pillars; (2)
posterior to the crus fornici; and (3) on the axial plane, intersecting the corpus
callosum. Once these ROls were placed, and the tracts reconstructed, anatomically
implausible fibers were removed using additional NOT ROls (see Hodgetts et al.,

2017).

Inferior longitudinal fasciculus (ILF)
Fiber-tracking of the ILF (control tract) was performed using a two-ROI approach in

each hemisphere (Wakana et al., 2007). First, the posterior edge of the cingulum
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bundle was identified on the sagittal plane. Reverting to a coronal plane at this
position, a SEED ROI was placed that encompassed the whole hemisphere. To
isolate streamlines extending towards the anterior temporal lobe (ATL), a second
ROI was drawn at the most posterior coronal slice in which the temporal lobe was
not connected to the frontal lobe. Here, an additional AND ROI was drawn around
the entire temporal lobe. Similar to the fornix protocol above, any anatomically
implausible streamlines were removed using additional NOT ROIs. This approach
was carried out in both hemispheres; diffusion properties of the left and right ILF (for
both FA and MD) were averaged across hemispheres to provide a bilateral measure

of ILF FA and MD in each participant.

Grey matter volumetry

Bilateral hippocampal volume was derived using FMRIB's Integrated Registration &
Segmentation Tool (FIRST; Patenaude et al., 2012). As temporal lobe substructures
have been shown to correlate with intracranial volume (Moran et al., 2001),
individual-level hippocampal volumes were divided by total intracranial volume

(eTIV) to create proportional scores (Westman et al., 2013).

Statistical analysis of maze learning

To increase sensitivity to individual-level performance across learning trials, and to
derive a single index of learning rate, we analysed the relationship between spatial
learning and fornix tissue microstructure using a curve fitting approach (see e.g.,
Pereira and Burwell, 2015; Kahn et al., 2017). Performance on each learning trial
was defined by the time (in seconds) to reach the hidden sensor. As can be seen in

Figure 2A, there was high inter-individual variability in spatial learning, with subjects

10
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varying in both learning speed and the shape of their learning pattern. Here,
individual learning data was fit using a power function: Time to sensor = a * x°,

where b specifies the slope of the fitted power model.

One aspect of this data is that some subjects learned quickly (and plateaued) before
displaying variable, or slow, performance in the later trials (e.g., subjects 9, 13, and
20; Figure 2B). This presents a challenge for a curve fitting approach across all trials
(and potentially produces counterintuitive results), as some of the fastest learners
will show the poorest model fits. For instance, both subjects 9 and 16 display an
initial steep learning curve and an early plateau (Figure 2B), but a power model fit to
all trials provides a poor fit of the subject who does not sustain performance until the
end of the task. In order to account for this complexity in learning patterns, we
adopted a data-driven approach to determine a cut-off in individual subjects.
Specifically, a second-order polynomial model was fit to all trials in each subject
using the curve fitting toolbox in Matlab (Mathworks, Inc.). The cut-off was defined as
the trough of this curve, which is where the first derivative of the second-degree
polynomial crosses zero (Figure 2C). Trials up to and including this cut-off were then

modelled using a power function (mean trials included = 14.3; range = 7 — 20).

11
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Figure 2. Modelling navigational learning in individual participants. MWM task
learning at the (A) group-level and (B) individual-level. Y-axes represent the time to
reach the hidden sensor in seconds. The number of trials (total = 20) is shown on the
x-axis. (C) Method for determining the number of learning trials to-be-modelled.
Some participants appeared to learn rapidly and plateau before displaying variable
performance in later trials. For instance, a power model fits the example participant’s
latency data poorly when all trials are considered. In order to capture initial learning,
therefore, we fitted the latency data (across all trials) with a second-order polynomial
in each subject. The point at which the first derivative of this polynomial crossed zero
was used to define the number of trials to-be-modelled. The trials up to this point
were then fit with a power function and the b parameter derived to index learning
rate. Power fits are shown by linearly fitting the log-transformed data. (D) Learning
rate measures were correlated with diffusion metrics (FA, MD) from the fornix (blue)
and the ILF (yellow). Tract reconstructions are shown against an inflated brain for

visualisation purposes.
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Using this approach, we derived a single measure of learning rate, denoted by the b
parameter (or slope) of the fitted power model (b; mean =-0.32, SD = 0.08, range = -
0.49 to -0.19). The b parameter reflects slope curvilinearity in each subject, where
lower, negative values reflect more convex downward curves and thus faster
learning rates. As such, we predict a positive association between fornix MD and

learning rate, and negative associations between fornix FA and learning rate.

Directional Pearson correlations were conducted between the learning rate and free
water corrected MD and FA values for the fornix and ILF (Figure 2D). The resulting
coefficients were compared statistically using directional Steiger Z-tests (Steiger,
1980) within the ‘cocor’ package in R (Diedenhofen and Musch, 2015).

Pearson correlations were Bonferroni-corrected by dividing a = 0.05 by the number
of statistical comparisons for each DTI metric (i.e., 0.05/2 = 0.025) (Lakens, 2016).
Prior to correlational analyses, outliers for each tract and metric were identified and
removed using the Tukey method in R. This excluded an extreme value for fornix
MD, fornix FA, and ILF FA. To exclude poor performers who were not engaging with
the task, we used a resampling approach where individual-level data was shuffled
over 500 permutations and confidence intervals (Cls) derived. Participants with a
model R? that fell outside the Cl of their individually-defined random distribution were

excluded (Subjects 10, 15, 17, 18 and 21).

We also conducted Bayesian correlation analyses using JASP (https://jasp-
stats.org). From this, we report default Bayes factors and 95% Bayesian credibility
intervals (BCl). The Bayes factor, expressed as BF 1o grades the intensity of the

evidence that the data provide for the alternative hypothesis (H1) versus the null
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(HO) on a continuous scale. A BF 1o of 1 indicates that the observed finding is equally
likely under the null and the alternative hypothesis. A BF1o much greater than 1
allows us to conclude that there is substantial evidence for the alternative over the
null. Conversely BF 1o values substantially less than 1 provide strong evidence in

favour of the null over the alternative hypothesis (Wetzels and Wagenmakers, 2012).

Complementary Spearman’s rho tests were also conducted for our key correlations.
The strength of Spearman’s correlations were compared directly using a robust
bootstrapping approach (Wilcox, 2016), as implemented using ‘comp2dcorr’ in

Matlab (https://github.com/GRousselet/blog/tree/master/comp2dcorr).

Results

Correlating navigational learning with tract microstructure

There was a significant positive correlation between the derived learning rate and
fornix MD, as shown in Figure 3. This suggests that those subjects with lower fornix
MD had faster learning rates (r = 0.44, p = 0.01, 95% BCI [0.09, 0.68], B+o = 5.5;
Figure 3). There was no significant relationship between individual learning rate and
MD in a control tract - the inferior longitudinal fasciculus (ILF; r =-0.06; p = 0.62,
95% BCI[0.37, 0.01], Bo+ = 5.38). A directional Steiger Z-test (Steiger, 1980)
revealed that the correlation between derived learning rate and fornix MD was

significantly greater than with ILF MD (z = 2.26, p = 0.01).

A moderate trend was observed between fornix FA and learning rate but this did not
reach our experiment-wise significance level (r = -0.34, p = 0.04, 95% BCI [-0.62, -

0.04], Bo = 1.99; Figure 3). There was no significant correlation between ILF FA and

14
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learning rate (r =-0.17; p = 0.2, 95% BCI [-0.51, -0.01], B.o = 1.68). These two

correlations did not differ significantly (z = 0.22, p = 0.21).
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Figure 3. The correlation between tract microstructure and learning rate (b

parameter) for the fornix (top row) and the inferior longitudinal fasciculus (ILF).

Controlling for hippocampal volume

To examine whether hippocampal volume contributes to the microstructural-
behavioural correlations reported above, partial correlations (both frequentist and
Bayesian) were conducted. The significant positive correlation between the learning
rate parameter and fornix MD remained when controlling for bilateral hippocampal

volume (r = 0.4, p = 0.02, BF+o = 3.59), as seen in prior studies (Hodgetts et al.,

15
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2017). For fornix FA, a slightly stronger negative trend was observed (r =-0.35, p =
0.04, BF.o = 0.09) when hippocampal volume was controlled for, though this did not
reach our experiment-wise significance level (i.e., p = 0.025). When examining
hippocampal volume, independent of fornix microstructural measures, there was no
significant association found between hippocampal volume and learning rate (r =

0.03, p = 0.94, 95% BCI [-0.25, -0.002], B.o = 10.2).

Non-parametric correlations between tract microstructure and learning
Finally, we also conducted complementary directional Spearman’s rho tests for our

key correlations, with such tests robust to univariate outliers (Croux and Dehon,

2010). As above, Spearman’s correlations were Bonferroni-corrected by dividing a
0.05 by the number of statistical comparisons for each DT| metric (i.e., 0.05/2 =
0.025). A significant positive association was observed between learning rate and
fornix MD (p = 0.4, p = 0.02). No significant association was found with ILF MD (p = -
0.18, p = 0.82). A strong trend was found between the b parameter and fornix FA (p

=-0.32, p = 0.05) but not ILF FA (p = -0.21, p = 0.14).

A direct comparison between these correlations revealed a significant difference

between fornix MD and ILD MD and their association with navigation learning rate,
as indicated by the bootstrap distribution not overlapping with zero (95% Cl = 0.2 —
0.88, p = 0). There was no significant difference between the FA correlations (95%

Cl =-0.7191 - 0.2962, p = 0.4).
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General discussion

Using a virtual-reality analogue of a classic navigational paradigm, the Morris Water
Maze (Morris, 1984), we asked whether inter-individual variation in the
microstructure of the fornix (linking hippocampus with medial diencephalon and
prefrontal cortex) is related to individual differences in navigational learning. To
increase sensitivity to individual learning across trials we adopted a curve fitting
approach (Kahn et al., 2017), which generated a single index of learning rate (‘b’) in
each individual. We found that fornix microstructure (particularly MD) was
significantly associated with navigational learning rate in a virtual MWM task, as
defined by the slope of the fitted power model, and this association remained when
controlling for bilateral hippocampal volume. Furthermore, this effect was
significantly stronger than that seen for the ILF, a control tract linking occipital and
anterior temporal cortices, which has previously been implicated in semantic learning

(Qi et al., 2015; Ripollés et al., 2017).

These results build upon previous animal studies that highlight a potential key role
for the fornix in mediating place learning and navigational behaviour. Critically, we
provide novel evidence, using a MWM task analogous to that used in animals
(Kolarik et al., 2016; Possin et al., 2016), that the fornix supports navigational
learning in humans. In rodents, fornix transection has been shown to impair MWM
learning, as characterised by more gradual learning slopes and slower latencies in
finding the hidden platform (Eichenbaum et al., 1990; Packard and McGaugh, 1992;
Warburton and Aggleton, 1998; Cain et al., 2006). By applying a curve fitting

approach, we were able to characterise the steepness of learning slopes at the

17


https://doi.org/10.1101/391888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/391888; this version posted August 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

individual participant level, and relate this directly with fornix microstructure.
Strikingly consistent with the animal studies described above, reduced structural
connectivity in the fornix (indexed by higher MD) was related to more gradual
learning rates. Further, by identifying individual learning plateaus in a data-driven
way, this approach also accounts for potential fatigue, mind-wandering or other

factors that may affect performance later in the learning session.

Similar to lesioning hippocampus and anterior thalamic nuclei, learning deficits
following fornix transection in rodents are also more severe when the animal is
required to navigate from multiple start positions (Eichenbaum et al., 1990). Such
findings suggest, therefore, that this broader neuroanatomical system, structurally
underpinned by the fornix (Aggleton et al., 2010), supports spatial learning in a
flexible manner (i.e., from novel start positions, or from different perspectives), rather
than response-based learning, that appears to recruit regions outside this extended
hippocampal system, specifically the caudate nucleus (Packard and McGaugh,
1992; Devan et al., 1996; Chersi and Burgess, 2015). Consistent with this, we
observed an association between navigational learning and fornix properties in a
task which required participants to navigate to the goal from multiple starting

positions.

Overall, this study provides support for the idea that an individual’s spatial navigation
ability (Wolbers and Hegarty, 2010) is underpinned, at least in part, by the integrated
functioning of a distributed neuroanatomical network, comprising not only individual

regions (such as the hippocampus and anterior thalamic nuclei), but also the white
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matter connections linking these brain areas (Jankowski et al., 2013; Murray et al.,
2016). While MWM performance is considered to depend, at least partly, on the
ability to form and utilise detailed allocentric mental representations, or “cognitive
maps” (Tolman, 1948; O’Keefe and Nadel, 1976), human and animal studies
suggest that the role of the fornix in spatial processing may be linked to mechanisms

beyond spatial mapping per se.

For instance, while fornix transection impairs, or at least slows, navigational learning
in the MWM (Warburton and Aggleton, 1998), as discussed above, these
impairments are not as severe as that seen following lesions to the anterior thalamic
nuclei or the hippocampus proper (Eichenbaum et al., 1990; Warburton and
Aggleton, 1998; Cain et al., 2006). This is not to suggest that fornix connectivity is
not important for place representations (Miller and Best, 1980; Shapiro et al., 1989),
but rather that the fornix may support processes which help build and support
detailed cognitive maps (e.g., scene-based processing, path integration) in
conjunction with other brain areas involved in a broader navigation network
(Whishaw and Maaswinkel, 1998; Gaffan et al., 2001). For instance, evidence from
non-human primates suggests a potential key role in forming conjunctive scene
representations (Gaffan, 1991; Hodgetts et al., 2015; Murray et al., 2017). The ability
to learn and remember object-in-scene associations, as well as naturalistic scenes,
is impaired significantly following fornicectomy (Gaffan, 1992; Gaffan et al., 2001;

Buckley et al., 2008).
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Convergent with scene learning deficits reported in monkeys, diffusion MRI studies
in humans have reported associations between fornix microstructure and scene
recollection (Rudebeck et al., 2009), complex scene discrimination (Postans et al.,
2014; Hodgetts et al., 2015) and the ability to retrieve spatiotemporal detail in real-
world memories (Hodgetts et al., 2017). Rather than suggesting a selective role in
allocentric spatial navigation per se, these studies support the view that the
connections established by the fornix may be critical for integrating scenes into
coherent spatial representations, which then may contribute to the generation of
detailed map-like representations useful for navigation (Ryan et al., 2010; Fidalgo
and Martin, 2016). An alternative account (Relational Memory Theory), by contrast,
posits that while the extended hippocampal system is essential to spatial navigation
via a cognitive map, its role derives from the relational organization and flexibility of
cognitive maps and not from a selective role in the spatial domain (Eichenbaum,
2017; see also Ekstrom and Ranganath, 2017). The initial formation of such flexible
spatial relations has been argued to critically rely on cholinergic system modulation
of the hippocampus (Ikonen et al., 2002), which is dependent on the fornix (Alonso et

al., 1996), consistent with our findings.

Note, it is possible that some individual differences in navigational performance may
actually reflect differences in types of spatial strategies employed. For instance,
while some individuals may use a strategy akin to cognitive mapping, i.e., based on
allocentric vectors from the “landmarks” to the hidden sensor, some individuals may
use a strategy based on matching and integrating disparate viewpoints from the

sensor location; a strategy more akin to building a model of the broader scene and
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layout (Wolbers and Wiener, 2014). While participants were not asked about their
use of spatial strategies in the current study, this would be an interesting avenue for

disentangling scene-based and cognitive mapping approaches in future studies.

While our findings support the notion that an extended hippocampal-based system,
mediated by the fornix, may be important for navigational learning in humans, it was
notable that the fornix association was present when controlling for HC volume.
Further, there was no independent association between place learning and HC
volume in this task. Though some studies have found associations between
hippocampal grey matter volume and navigational ability in humans (Maguire et al.,
1997; Bohbot et al., 1998; Schinazi et al., 2013; Chrastil et al., 2017), others have
shown that fornix microstructure (but not hippocampal volume) predicts individual
differences in remembering spatiotemporal aspects of autobiographical memories
(e.g., Hodgetts et al., 2017). In addition, studies of individuals with profound
orientation deficits (termed development topographical disorientation, or DTD)
similarly show impairments in connectivity patterns to the hippocampus (in this case,
between hippocampus and prefrontal cortex). Interestingly, like in our study,
hippocampal grey matter does not appear to explain these differences (laria et al.,
2009; laria and Barton, 2010). This highlights that variation in broader
neuroanatomical systems, rather than regional volumetric variation, may be

particularly sensitive to individual differences in navigational learning.

Similar to our previous work, we observed stronger effects for fornix MD versus FA

(Postans et al., 2014; Hodgetts et al., 2015). The biological interpretation of this
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difference is not straightforward, as variation in either measure could arise from
multiple aspect(s) of the underlying white matter, including axon density, axon
diameter, myelination, and the manner in which fibres are arranged in a voxel
(Beaulieu, 2002). A recent study reported strong correspondence between DTI
microstructural indices and underlying myelin microstructure, where high FA was
linked to high myelin density and a sharply tuned histological orientation profile,
whereas high MD was related to diffuse histological orientation and low myelin
density (Seehaus et al., 2015). Diffusion MRI studies applying more advanced
biophysical models of white matter microstructure may be able to provide additional
insight into the specific biological attributes underlying these brain-behaviour

associations (Assaf et al., 2017; Huber et al., 2018).

The causes of inter-individual variation in white matter microstructure are not fully
understood, but likely involve a complex interplay between genetic and
environmental factors over the lifespan. Evidence from both adults and neonates, for
instance, suggests that the microstructure of the fornix is highly heritable (Lee et al.,
2015; Budisavljevic et al., 2016). The fornix is also one the earliest white matter
tracts to mature, reaching its peak FA and minimum MD before age 20 (Lebel et al.,
2012), and potentially nearing maturation during infancy and childhood (Dubois et
al., 2008). At the same time, evidence suggests that fornix microstructure displays
learning-related plasticity, even over short time periods. For instance, short-term
spatial learning, in both rodents and humans, has been shown to induce alterations
in diffusion indices of fornix microstructure (Hofstetter et al., 2013). Similarly,
navigational ability is influenced by both genetic factors and experience (Lee and

Spelke, 2010; Wolbers and Hegarty, 2010). Thus, fornix microstructure is likely to
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both shape, and be shaped by spatial navigation, in a bidirectional fashion (Bechler

et al., 2018).

To conclude, by modelling learning performance on a virtual-reality water maze, we
showed that the microstructure of the main white matter pathway linking the
hippocampus and medial diencephalon — the fornix — predicted individual differences
in human navigational learning. These results suggest that a full understanding of
the biological underpinnings of individual differences in human navigational ability
requires not only the analysis of individual processing regions, but of a distributed
“navigation system”, underpinned by white matter. Critically, given the vulnerability of
this brain system to the deleterious effects of aging (Lester et al., 2017), but also
pathology in Alzheimer’s disease (Braak and Braak, 1991; Oishi et al., 2012), itis a
key priority to develop behavioural markers of navigational ability that are sensitive to
individual variation in this network, as seen here. One study in rodents, for instance,
found that poorer learning on the MWM in early life predicted cognitive impairment in
later life, but also that extensive training in poorer learners buffered against age-
related learning impairments (Hullinger and Burger, 2015). Studies such as this
highlight the potential of navigational learning, particularly as assessed using
translation paradigms (Possin et al., 2016), for characterising, and potentially

ameliorating, the effects of cognitive decline.
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