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Abstract 1 

Studies in rodents have demonstrated that transecting the white matter pathway 2 

linking the hippocampus and anterior thalamic nuclei - the fornix - impairs flexible 3 

navigational learning in the Morris Water Maze (MWM), as well as similar spatial 4 

learning tasks. While diffusion MRI studies in humans have linked fornix 5 

microstructure to scene discrimination and memory, its role in human navigation is 6 

currently unknown. We used high-angular resolution diffusion MRI to ask whether 7 

inter-individual differences in fornix microstructure would be associated with spatial 8 

learning in a virtual MWM task. To increase sensitivity to individual learning across 9 

trials, we adopted a novel curve fitting approach to estimate a single index of 10 

learning rate. We found a significant correlation between learning rate and the 11 

microstructure (mean diffusivity) of the fornix, but not that of a control tract linking 12 

occipital and anterior temporal cortices (the inferior longitudinal fasciculus, ILF). 13 

Further, this correlation remained significant when controlling for hippocampal 14 

volume. These findings extend previous animal studies by demonstrating the 15 

functional relevance of the fornix for human navigational learning, and highlight the 16 

importance of a distributed neuroanatomical network, underpinned by key white 17 

matter pathways, such as the fornix, in complex spatial behaviour. 18 

 19 

Key words: hippocampus; navigation; spatial learning; cognitive map; diffusion MRI; 20 

connectivity 21 
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Introduction 25 

The ability to navigate, and learn the location of rewards and goals in the 26 

environment, is a fundamental and highly adaptive cognitive function across species 27 

(Landau and Lakusta, 2009; Wolbers and Hegarty, 2010; Murray et al., 2016). 28 

Lesion studies in animals suggest that this ability depends, in part, on several key 29 

brain regions, including the hippocampus, mammillary bodies, and the anterior 30 

thalamic nuclei (Sutherland and Rodriguez, 1989; Warburton and Aggleton, 1998; 31 

Jankowski et al., 2013), which in turn connect with a broader network including 32 

entorhinal, parahippocampal, retrosplenial, and posterior parietal cortex, all thought 33 

to be important for navigation (Ekstrom et al., 2017). In particular, the hippocampus, 34 

mammillary bodies, and anterior thalamic nuclei are connected anatomically by an 35 

arch-shaped white matter pathway called the fornix (Saunders and Aggleton, 2007). 36 

Given the role of these interconnected structures in spatial learning and navigation 37 

(Jankowski et al., 2013), the ability for these distributed regions to communicate via 38 

the fornix may also be critical for successful spatial learning and navigation.  39 

 40 

Indeed, transecting the fornix in rodents and monkeys impairs learning for objects-in-41 

place, but not the objects themselves (Gaffan, 1992, 1994; Simpson et al., 1998). 42 

These findings also extend to performance on spatial navigation tasks, most notably 43 

the Morris Water Maze (MWM). The MWM is one of the most widely used laboratory 44 

tasks in studies of navigational behaviour across non-human species and has been 45 

recognized as an excellent candidate for a universal test of spatial navigation ability 46 

(Morris, 1984; Possin et al., 2016). In this task, animals are placed in a circular pool 47 

and required to swim to a hidden platform beneath the surface using allocentric cues 48 
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outside the pool. Several studies have shown that fornix-transected rodents are 49 

impaired on the MWM, particularly when required to navigate flexibly from multiple 50 

positions within the maze (Eichenbaum et al., 1990; Packard and McGaugh, 1992; 51 

Warburton et al., 1998; Warburton and Aggleton, 1998; De Bruin et al., 2001; Cain et 52 

al., 2006). Fornix transection also impairs allocentric place learning in other maze 53 

tasks (O’Keefe et al., 1975; Olton et al., 1978; Packard et al., 1989; Dumont et al., 54 

2015). 55 

 56 

Critically, while these animal studies highlight a key role for the fornix in spatial 57 

learning - across both visuo-spatial discrimination and navigation tasks - the role of 58 

this white matter pathway in human wayfinding is currently unknown. Studies using 59 

diffusion magnetic resonance imaging (dMRI), which allows white matter 60 

microstructure to be quantified in vivo, have reported associations in healthy human 61 

subjects between fornix microstructure and inter-individual differences in scene and 62 

spatial context processing across both memory (Rudebeck et al., 2009; Hodgetts et 63 

al., 2017) and perceptual tasks (Postans et al., 2014; Hodgetts et al., 2015). Given 64 

differences in the visuospatial representations underpinning navigation across 65 

rodents and humans (Ekstrom, 2015), it begs the question whether this same 66 

extended functional system, structurally linked by the fornix, is similarly important for 67 

navigational learning in humans. 68 

 69 

To test this, we acquired dMRI data in healthy human subjects who performed a 70 

human analogue of the MWM (Figure 1). In this task, individuals were required to 71 

learn, over trials, the location of a hidden sensor within a virtual art gallery. Similar to 72 
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the rodent paradigm, subjects were required to navigate from multiple starting 73 

positions, thus placing greater demand on flexible allocentric processing (Figure 1). 74 

To create a single index of navigational learning rate, we used a curve fitting 75 

approach to model the time taken to reach the sensor across trials (for similar 76 

approaches, see Stepanov and Abramson, 2008; Pereira and Burwell, 2015; Kahn et 77 

al., 2017). We predicted, based on previous work (Packard and McGaugh, 1992; 78 

Warburton and Aggleton, 1998; Cain et al., 2006; Hodgetts et al., 2015), that 79 

microstructure of the fornix, but not a control tract connecting occipital and anterior 80 

temporal cortices (the “inferior longitudinal fasciculus”, ILF) (Latini, 2015), would be 81 

significantly related to spatial learning rate in a virtual MWM task.  82 

 83 

Methods 84 

Participants 85 

Thirty-three healthy volunteers (15 males, 18 females; mean age = 24 years; SD = 86 

3.5 years) were scanned at the Cardiff University Brain Research Imaging Centre 87 

(CUBRIC). These same participants completed a virtual Morris Water Maze task in a 88 

separate behavioural session. All subjects were fluent English speakers with normal 89 

or corrected-to-normal vision. Participation in both sessions was undertaken with the 90 

understanding and written consent of each subject. The research was completed in 91 

accordance with, and approved by, the Cardiff University School of Psychology 92 

Research Ethics Committee. 93 
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 94 

Figure 1. The virtual reality Morris Water Maze. (A) Birds-eye schematic of the 95 

virtual art gallery that the participants explore during the task. The artwork on the 96 

outer walls of the gallery are the “landmarks” in the virtual arena. An example first 97 

person perspective from within the maze is shown. (B) Movement trajectories and 98 

(C) location heatmap across all 20 trials for an example participant. 99 

 100 

Virtual Morris Water Maze Task 101 

We used the virtual MWM task developed by Kolarik et al. (2016). This task was 102 

created using Unity 3D (Unity Technologies, San Francisco) and required 103 

participants to explore, from a first-person perspective, a virtual art gallery using the 104 

arrow keys on the computer keyboard (Figure 1A). The room was 8 x 8 virtual m2 in 105 
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size, and contained four distinct paintings, one on each wall of the environment. On 106 

a given trial, the participants’ task was to locate a hidden sensor on the floor as 107 

quickly as possible. This sensor occupied 0.25% of the total floor space (i.e., an 0.8 108 

x 0.8 m2 square). When the participant walked over the hidden platform it became 109 

visible and the caption ‘You found the hidden sensor’ was displayed in the centre of 110 

the screen. At this point, the exploration time was recorded automatically and a 10 111 

second countdown appeared in the centre of the display during which the 112 

participants could freely navigate the room. After this countdown, an inter-trial 113 

window appeared and the participants could click on a button to start the next 114 

learning trial. The maximum duration of each learning trial was 60 seconds. If the 115 

participant did not find the target location within this period, the sensor became 116 

visible. The task involved 20 learning trials, which comprised five blocks of four trials. 117 

Within each block, participants started from each of the four starting positions 118 

(arbitrary North, South, East, West). The movement trajectories and location 119 

heatmap for an example participant is shown in Figure 1B-C.  120 

 121 

MRI acquisition 122 

Whole brain dMRI data were acquired at the Cardiff University Brain Research 123 

Imaging Centre (CUBRIC) using a 3T GE HDx Signa scanner with an eight-channel 124 

head coil. Single-shell high-angular resolution dMRI (HARDI) (Tuch et al., 2002) data 125 

were collected with a single-shot spin-echo echo-planar imaging pulse sequence 126 

with the following parameters: 30 directions; TE= 87 ms; 60 continuous slices 127 

acquired along an oblique-axial plane with 2.4 mm thickness and no gap. The scans 128 

were cardiac-gated using a peripheral pulse oximeter placed on the participants’ 129 

fingertips. A T1-weighted 3D FSPGR sequence was also acquired with the following 130 
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parameters: TR= 7.8 ms; TE= 3 ms, TI= 450 ms, flip angle= 20°; FOV= 256 mm*192 131 

mm*172 mm; 1 mm isotropic resolution. 132 

 133 

Diffusion MRI preprocessing 134 

Diffusion MRI data were corrected for subject head motion and eddy currents using 135 

ExploreDTI (Version 4.8.3; Leemans and Jones, 2009). The bi-tensor 'Free Water 136 

Elimination' (FWE) procedure was applied post hoc to correct for voxel-wise partial 137 

volume artifacts arising from free water contamination (Pasternak et al., 2009). Free 138 

water contamination (from cerebrospinal fluid) is a particular issue for white matter 139 

pathways located near the ventricles (such as the fornix), and has been shown to 140 

significantly affect tract delineation (Concha et al., 2005). Following FWE, corrected 141 

diffusion-tensor indices FA and MD were computed. FA reflects the extent to which 142 

diffusion within biological tissue is anisotropic, or constrained along a single axis, 143 

and can range from 0 (fully isotropic) to 1 (fully anisotropic). MD (10-3mm2s-1) reflects 144 

a combined average of axial diffusion (diffusion along the principal axis) and radial 145 

diffusion (diffusion along the orthogonal direction).  146 

 147 

Tractography 148 

Deterministic whole brain white matter tractography was performed using the 149 

ExploreDTI graphical toolbox. Tractography was based on constrained spherical 150 

deconvolution (CSD) (Jeurissen et al., 2011), which can extract multiple peaks in the 151 

fiber orientation density function (fODF) at each voxel. This approach permits the 152 

representation of crossing/kissing fibers in individual voxels. Each streamline was 153 

reconstructed using an fODF amplitude threshold of 0.1 and a step size of 1mm, and 154 

followed the peak in the fODF that subtended the smallest step-wise change in 155 
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orientation. An angle threshold of 30° was used and any streamlines exceeding this 156 

threshold were terminated.  157 

 158 

Three-dimensional reconstructions of each tract were obtained from individual 159 

subjects by using a waypoint region of interest (ROI) approach, based on an 160 

anatomical prescription. Here, “AND” and “NOT” gates were applied, and combined, 161 

to extract tracts from each subject’s whole brain tractography data. These ROIs were 162 

drawn manually on the direction-encoded FA maps in native space by one 163 

experimenter (MS) and quality assessed by other experimenters (CJH, ANW).  164 

 165 

Fornix  166 

A multiple region-of-interest (ROI) approach was adopted to reconstruct the fornix 167 

(Metzler-Baddeley et al., 2011). This approach involved placing a seed point ROI on 168 

the coronal plane at the point where the anterior pillars enter the fornix body. Using a 169 

mid-sagittal plane as a guide, a single AND ROI was positioned on the axial plane, 170 

encompassing both crus fornici at the lower part of the splenium of the corpus 171 

callosum. Three NOT ROIs were then placed: (1) anterior to the fornix pillars; (2) 172 

posterior to the crus fornici; and (3) on the axial plane, intersecting the corpus 173 

callosum. Once these ROIs were placed, and the tracts reconstructed, anatomically 174 

implausible fibers were removed using additional NOT ROIs (see Hodgetts et al., 175 

2017). 176 

 177 

Inferior longitudinal fasciculus (ILF)  178 

Fiber-tracking of the ILF (control tract) was performed using a two-ROI approach in 179 

each hemisphere (Wakana et al., 2007). First, the posterior edge of the cingulum 180 
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bundle was identified on the sagittal plane. Reverting to a coronal plane at this 181 

position, a SEED ROI was placed that encompassed the whole hemisphere. To 182 

isolate streamlines extending towards the anterior temporal lobe (ATL), a second 183 

ROI was drawn at the most posterior coronal slice in which the temporal lobe was 184 

not connected to the frontal lobe. Here, an additional AND ROI was drawn around 185 

the entire temporal lobe. Similar to the fornix protocol above, any anatomically 186 

implausible streamlines were removed using additional NOT ROIs. This approach 187 

was carried out in both hemispheres; diffusion properties of the left and right ILF (for 188 

both FA and MD) were averaged across hemispheres to provide a bilateral measure 189 

of ILF FA and MD in each participant. 190 

 191 

Grey matter volumetry 192 

Bilateral hippocampal volume was derived using FMRIB's Integrated Registration & 193 

Segmentation Tool (FIRST; Patenaude et al., 2012). As temporal lobe substructures 194 

have been shown to correlate with intracranial volume (Moran et al., 2001), 195 

individual-level hippocampal volumes were divided by total intracranial volume 196 

(eTIV) to create proportional scores (Westman et al., 2013).  197 

 198 

Statistical analysis of maze learning 199 

To increase sensitivity to individual-level performance across learning trials, and to 200 

derive a single index of learning rate, we analysed the relationship between spatial 201 

learning and fornix tissue microstructure using a curve fitting approach (see e.g., 202 

Pereira and Burwell, 2015; Kahn et al., 2017). Performance on each learning trial 203 

was defined by the time (in seconds) to reach the hidden sensor. As can be seen in 204 

Figure 2A, there was high inter-individual variability in spatial learning, with subjects 205 
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varying in both learning speed and the shape of their learning pattern. Here, 206 

individual learning data was fit using a power function: Time to sensor = a * xb, 207 

where b specifies the slope of the fitted power model.  208 

 209 

One aspect of this data is that some subjects learned quickly (and plateaued) before 210 

displaying variable, or slow, performance in the later trials (e.g., subjects 9, 13, and 211 

20; Figure 2B). This presents a challenge for a curve fitting approach across all trials 212 

(and potentially produces counterintuitive results), as some of the fastest learners 213 

will show the poorest model fits. For instance, both subjects 9 and 16 display an 214 

initial steep learning curve and an early plateau (Figure 2B), but a power model fit to 215 

all trials provides a poor fit of the subject who does not sustain performance until the 216 

end of the task. In order to account for this complexity in learning patterns, we 217 

adopted a data-driven approach to determine a cut-off in individual subjects. 218 

Specifically, a second-order polynomial model was fit to all trials in each subject 219 

using the curve fitting toolbox in Matlab (Mathworks, Inc.). The cut-off was defined as 220 

the trough of this curve, which is where the first derivative of the second-degree 221 

polynomial crosses zero (Figure 2C). Trials up to and including this cut-off were then 222 

modelled using a power function (mean trials included = 14.3; range = 7 – 20). 223 

 224 

 225 
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 226 

Figure 2. Modelling navigational learning in individual participants. MWM task 227 

learning at the (A) group-level and (B) individual-level. Y-axes represent the time to 228 

reach the hidden sensor in seconds. The number of trials (total = 20) is shown on the 229 

x-axis. (C) Method for determining the number of learning trials to-be-modelled. 230 

Some participants appeared to learn rapidly and plateau before displaying variable 231 

performance in later trials. For instance, a power model fits the example participant’s 232 

latency data poorly when all trials are considered. In order to capture initial learning, 233 

therefore, we fitted the latency data (across all trials) with a second-order polynomial 234 

in each subject. The point at which the first derivative of this polynomial crossed zero 235 

was used to define the number of trials to-be-modelled. The trials up to this point 236 

were then fit with a power function and the b parameter derived to index learning 237 

rate. Power fits are shown by linearly fitting the log-transformed data. (D) Learning 238 

rate measures were correlated with diffusion metrics (FA, MD) from the fornix (blue) 239 

and the ILF (yellow). Tract reconstructions are shown against an inflated brain for 240 

visualisation purposes. 241 
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Using this approach, we derived a single measure of learning rate, denoted by the b 242 

parameter (or slope) of the fitted power model (b; mean = -0.32, SD = 0.08, range = -243 

0.49 to -0.19). The b parameter reflects slope curvilinearity in each subject, where 244 

lower, negative values reflect more convex downward curves and thus faster 245 

learning rates. As such, we predict a positive association between fornix MD and 246 

learning rate, and negative associations between fornix FA and learning rate.  247 

 248 

Directional Pearson correlations were conducted between the learning rate and free 249 

water corrected MD and FA values for the fornix and ILF (Figure 2D). The resulting 250 

coefficients were compared statistically using directional Steiger Z-tests (Steiger, 251 

1980) within the ‘cocor’ package in R (Diedenhofen and Musch, 2015). 252 

Pearson correlations were Bonferroni-corrected by dividing α = 0.05 by the number 253 

of statistical comparisons for each DTI metric (i.e., 0.05/2 = 0.025) (Lakens, 2016). 254 

Prior to correlational analyses, outliers for each tract and metric were identified and 255 

removed using the Tukey method in R. This excluded an extreme value for fornix 256 

MD, fornix FA, and ILF FA. To exclude poor performers who were not engaging with 257 

the task, we used a resampling approach where individual-level data was shuffled 258 

over 500 permutations and confidence intervals (CIs) derived. Participants with a 259 

model R2 that fell outside the CI of their individually-defined random distribution were 260 

excluded (Subjects 10, 15, 17, 18 and 21).  261 

 262 

We also conducted Bayesian correlation analyses using JASP (https://jasp-263 

stats.org). From this, we report default Bayes factors and 95% Bayesian credibility 264 

intervals (BCI). The Bayes factor, expressed as BF10 grades the intensity of the 265 

evidence that the data provide for the alternative hypothesis (H1) versus the null 266 
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(H0) on a continuous scale. A BF10 of 1 indicates that the observed finding is equally 267 

likely under the null and the alternative hypothesis. A BF10 much greater than 1 268 

allows us to conclude that there is substantial evidence for the alternative over the 269 

null. Conversely BF10 values substantially less than 1 provide strong evidence in 270 

favour of the null over the alternative hypothesis (Wetzels and Wagenmakers, 2012).  271 

 272 

Complementary Spearman’s rho tests were also conducted for our key correlations. 273 

The strength of Spearman’s correlations were compared directly using a robust 274 

bootstrapping approach (Wilcox, 2016), as implemented using ‘comp2dcorr’ in 275 

Matlab (https://github.com/GRousselet/blog/tree/master/comp2dcorr). 276 

 277 

Results 278 

Correlating navigational learning with tract microstructure 279 

There was a significant positive correlation between the derived learning rate and 280 

fornix MD, as shown in Figure 3. This suggests that those subjects with lower fornix 281 

MD had faster learning rates (r = 0.44, p = 0.01, 95% BCI [0.09, 0.68], B+0 = 5.5; 282 

Figure 3). There was no significant relationship between individual learning rate and 283 

MD in a control tract - the inferior longitudinal fasciculus (ILF; r = -0.06; p = 0.62, 284 

95% BCI [0.37, 0.01], B0+ = 5.38). A directional Steiger Z-test (Steiger, 1980) 285 

revealed that the correlation between derived learning rate and fornix MD was 286 

significantly greater than with ILF MD (z = 2.26, p = 0.01).  287 

 288 

A moderate trend was observed between fornix FA and learning rate but this did not 289 

reach our experiment-wise significance level (r = -0.34, p = 0.04, 95% BCI [-0.62, -290 

0.04], B-0 = 1.99; Figure 3). There was no significant correlation between ILF FA and 291 
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learning rate (r = -0.17; p = 0.2, 95% BCI [-0.51, -0.01], B-0 = 1.68). These two 292 

correlations did not differ significantly (z = 0.22, p = 0.21). 293 

 294 

 295 

Figure 3. The correlation between tract microstructure and learning rate (b 296 

parameter) for the fornix (top row) and the inferior longitudinal fasciculus (ILF). 297 

 298 

Controlling for hippocampal volume 299 

To examine whether hippocampal volume contributes to the microstructural-300 

behavioural correlations reported above, partial correlations (both frequentist and 301 

Bayesian) were conducted. The significant positive correlation between the learning 302 

rate parameter and fornix MD remained when controlling for bilateral hippocampal 303 

volume (r = 0.4, p = 0.02, BF+0 = 3.59), as seen in prior studies (Hodgetts et al., 304 
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2017). For fornix FA, a slightly stronger negative trend was observed (r = -0.35, p = 305 

0.04, BF-0 = 0.09) when hippocampal volume was controlled for, though this did not 306 

reach our experiment-wise significance level (i.e., p = 0.025). When examining 307 

hippocampal volume, independent of fornix microstructural measures, there was no 308 

significant association found between hippocampal volume and learning rate (r = 309 

0.03, p = 0.94, 95% BCI [-0.25, -0.002], B-0 = 10.2).  310 

 311 

Non-parametric correlations between tract microstructure and learning 312 

Finally, we also conducted complementary directional Spearman’s rho tests for our 313 

key correlations, with such tests robust to univariate outliers (Croux and Dehon, 314 

2010). As above, Spearman’s correlations were Bonferroni-corrected by dividing α = 315 

0.05 by the number of statistical comparisons for each DTI metric (i.e., 0.05/2 = 316 

0.025). A significant positive association was observed between learning rate and 317 

fornix MD (ρ = 0.4, p = 0.02). No significant association was found with ILF MD (ρ = -318 

0.18, p = 0.82). A strong trend was found between the b parameter and fornix FA (ρ 319 

= -0.32, p = 0.05) but not ILF FA (ρ = -0.21, p = 0.14).  320 

 321 

A direct comparison between these correlations revealed a significant difference 322 

between fornix MD and ILD MD and their association with navigation learning rate, 323 

as indicated by the bootstrap distribution not overlapping with zero (95% CI = 0.2 – 324 

0.88, p = 0). There was no significant difference between the FA correlations (95% 325 

CI = -0.7191 - 0.2962, p = 0.4). 326 

 327 

 328 

 329 
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General discussion 330 

Using a virtual-reality analogue of a classic navigational paradigm, the Morris Water 331 

Maze (Morris, 1984), we asked whether inter-individual variation in the 332 

microstructure of the fornix (linking hippocampus with medial diencephalon and 333 

prefrontal cortex) is related to individual differences in navigational learning. To 334 

increase sensitivity to individual learning across trials we adopted a curve fitting 335 

approach (Kahn et al., 2017), which generated a single index of learning rate (‘b’) in 336 

each individual. We found that fornix microstructure (particularly MD) was 337 

significantly associated with navigational learning rate in a virtual MWM task, as 338 

defined by the slope of the fitted power model, and this association remained when 339 

controlling for bilateral hippocampal volume. Furthermore, this effect was 340 

significantly stronger than that seen for the ILF, a control tract linking occipital and 341 

anterior temporal cortices, which has previously been implicated in semantic learning 342 

(Qi et al., 2015; Ripollés et al., 2017). 343 

 344 

These results build upon previous animal studies that highlight a potential key role 345 

for the fornix in mediating place learning and navigational behaviour. Critically, we 346 

provide novel evidence, using a MWM task analogous to that used in animals 347 

(Kolarik et al., 2016; Possin et al., 2016), that the fornix supports navigational 348 

learning in humans. In rodents, fornix transection has been shown to impair MWM 349 

learning, as characterised by more gradual learning slopes and slower latencies in 350 

finding the hidden platform (Eichenbaum et al., 1990; Packard and McGaugh, 1992; 351 

Warburton and Aggleton, 1998; Cain et al., 2006). By applying a curve fitting 352 

approach, we were able to characterise the steepness of learning slopes at the 353 
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individual participant level, and relate this directly with fornix microstructure. 354 

Strikingly consistent with the animal studies described above, reduced structural 355 

connectivity in the fornix (indexed by higher MD) was related to more gradual 356 

learning rates. Further, by identifying individual learning plateaus in a data-driven 357 

way, this approach also accounts for potential fatigue, mind-wandering or other 358 

factors that may affect performance later in the learning session. 359 

 360 

Similar to lesioning hippocampus and anterior thalamic nuclei, learning deficits 361 

following fornix transection in rodents are also more severe when the animal is 362 

required to navigate from multiple start positions (Eichenbaum et al., 1990). Such 363 

findings suggest, therefore, that this broader neuroanatomical system, structurally 364 

underpinned by the fornix (Aggleton et al., 2010), supports spatial learning in a 365 

flexible manner (i.e., from novel start positions, or from different perspectives), rather 366 

than response-based learning, that appears to recruit regions outside this extended 367 

hippocampal system, specifically the caudate nucleus (Packard and McGaugh, 368 

1992; Devan et al., 1996; Chersi and Burgess, 2015). Consistent with this, we 369 

observed an association between navigational learning and fornix properties in a 370 

task which required participants to navigate to the goal from multiple starting 371 

positions.  372 

 373 

Overall, this study provides support for the idea that an individual’s spatial navigation 374 

ability (Wolbers and Hegarty, 2010) is underpinned, at least in part, by the integrated 375 

functioning of a distributed neuroanatomical network, comprising not only individual 376 

regions (such as the hippocampus and anterior thalamic nuclei), but also the white 377 
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matter connections linking these brain areas (Jankowski et al., 2013; Murray et al., 378 

2016). While MWM performance is considered to depend, at least partly, on the 379 

ability to form and utilise detailed allocentric mental representations, or “cognitive 380 

maps” (Tolman, 1948; O’Keefe and Nadel, 1976), human and animal studies 381 

suggest that the role of the fornix in spatial processing may be linked to mechanisms 382 

beyond spatial mapping per se.  383 

 384 

For instance, while fornix transection impairs, or at least slows, navigational learning 385 

in the MWM (Warburton and Aggleton, 1998), as discussed above, these 386 

impairments are not as severe as that seen following lesions to the anterior thalamic 387 

nuclei or the hippocampus proper (Eichenbaum et al., 1990; Warburton and 388 

Aggleton, 1998; Cain et al., 2006). This is not to suggest that fornix connectivity is 389 

not important for place representations (Miller and Best, 1980; Shapiro et al., 1989), 390 

but rather that the fornix may support processes which help build and support 391 

detailed cognitive maps (e.g., scene-based processing, path integration) in 392 

conjunction with other brain areas involved in a broader navigation network 393 

(Whishaw and Maaswinkel, 1998; Gaffan et al., 2001). For instance, evidence from 394 

non-human primates suggests a potential key role in forming conjunctive scene 395 

representations (Gaffan, 1991; Hodgetts et al., 2015; Murray et al., 2017). The ability 396 

to learn and remember object-in-scene associations, as well as naturalistic scenes, 397 

is impaired significantly following fornicectomy (Gaffan, 1992; Gaffan et al., 2001; 398 

Buckley et al., 2008).  399 

 400 
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Convergent with scene learning deficits reported in monkeys, diffusion MRI studies 401 

in humans have reported associations between fornix microstructure and scene 402 

recollection (Rudebeck et al., 2009), complex scene discrimination (Postans et al., 403 

2014; Hodgetts et al., 2015) and the ability to retrieve spatiotemporal detail in real-404 

world memories (Hodgetts et al., 2017). Rather than suggesting a selective role in 405 

allocentric spatial navigation per se, these studies support the view that the 406 

connections established by the fornix may be critical for integrating scenes into 407 

coherent spatial representations, which then may contribute to the generation of 408 

detailed map-like representations useful for navigation (Ryan et al., 2010; Fidalgo 409 

and Martin, 2016). An alternative account (Relational Memory Theory), by contrast, 410 

posits that while the extended hippocampal system is essential to spatial navigation 411 

via a cognitive map, its role derives from the relational organization and flexibility of 412 

cognitive maps and not from a selective role in the spatial domain (Eichenbaum, 413 

2017; see also Ekstrom and Ranganath, 2017). The initial formation of such flexible 414 

spatial relations has been argued to critically rely on cholinergic system modulation 415 

of the hippocampus (Ikonen et al., 2002), which is dependent on the fornix (Alonso et 416 

al., 1996), consistent with our findings. 417 

 418 

Note, it is possible that some individual differences in navigational performance may 419 

actually reflect differences in types of spatial strategies employed. For instance, 420 

while some individuals may use a strategy akin to cognitive mapping, i.e., based on 421 

allocentric vectors from the “landmarks” to the hidden sensor, some individuals may 422 

use a strategy based on matching and integrating disparate viewpoints from the 423 

sensor location; a strategy more akin to building a model of the broader scene and 424 
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layout (Wolbers and Wiener, 2014). While participants were not asked about their 425 

use of spatial strategies in the current study, this would be an interesting avenue for 426 

disentangling scene-based and cognitive mapping approaches in future studies.  427 

 428 

While our findings support the notion that an extended hippocampal-based system, 429 

mediated by the fornix, may be important for navigational learning in humans, it was 430 

notable that the fornix association was present when controlling for HC volume. 431 

Further, there was no independent association between place learning and HC 432 

volume in this task. Though some studies have found associations between 433 

hippocampal grey matter volume and navigational ability in humans (Maguire et al., 434 

1997; Bohbot et al., 1998; Schinazi et al., 2013; Chrastil et al., 2017), others have 435 

shown that fornix microstructure (but not hippocampal volume) predicts individual 436 

differences in remembering spatiotemporal aspects of autobiographical memories 437 

(e.g., Hodgetts et al., 2017). In addition, studies of individuals with profound 438 

orientation deficits (termed development topographical disorientation, or DTD) 439 

similarly show impairments in connectivity patterns to the hippocampus (in this case, 440 

between hippocampus and prefrontal cortex). Interestingly, like in our study, 441 

hippocampal grey matter does not appear to explain these differences (Iaria et al., 442 

2009; Iaria and Barton, 2010). This highlights that variation in broader 443 

neuroanatomical systems, rather than regional volumetric variation, may be 444 

particularly sensitive to individual differences in navigational learning.  445 

 446 

Similar to our previous work, we observed stronger effects for fornix MD versus FA 447 

(Postans et al., 2014; Hodgetts et al., 2015). The biological interpretation of this 448 
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difference is not straightforward, as variation in either measure could arise from 449 

multiple aspect(s) of the underlying white matter, including axon density, axon 450 

diameter, myelination, and the manner in which fibres are arranged in a voxel 451 

(Beaulieu, 2002). A recent study reported strong correspondence between DTI 452 

microstructural indices and underlying myelin microstructure, where high FA was 453 

linked to high myelin density and a sharply tuned histological orientation profile, 454 

whereas high MD was related to diffuse histological orientation and low myelin 455 

density (Seehaus et al., 2015). Diffusion MRI studies applying more advanced 456 

biophysical models of white matter microstructure may be able to provide additional 457 

insight into the specific biological attributes underlying these brain-behaviour 458 

associations (Assaf et al., 2017; Huber et al., 2018). 459 

 460 

The causes of inter-individual variation in white matter microstructure are not fully 461 

understood, but likely involve a complex interplay between genetic and 462 

environmental factors over the lifespan. Evidence from both adults and neonates, for 463 

instance, suggests that the microstructure of the fornix is highly heritable (Lee et al., 464 

2015; Budisavljevic et al., 2016). The fornix is also one the earliest white matter 465 

tracts to mature, reaching its peak FA and minimum MD before age 20 (Lebel et al., 466 

2012), and potentially nearing maturation during infancy and childhood (Dubois et 467 

al., 2008). At the same time, evidence suggests that fornix microstructure displays 468 

learning-related plasticity, even over short time periods. For instance, short-term 469 

spatial learning, in both rodents and humans, has been shown to induce alterations 470 

in diffusion indices of fornix microstructure (Hofstetter et al., 2013). Similarly, 471 

navigational ability is influenced by both genetic factors and experience (Lee and 472 

Spelke, 2010; Wolbers and Hegarty, 2010). Thus, fornix microstructure is likely to 473 
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both shape, and be shaped by spatial navigation, in a bidirectional fashion (Bechler 474 

et al., 2018).  475 

 476 

To conclude, by modelling learning performance on a virtual-reality water maze, we 477 

showed that the microstructure of the main white matter pathway linking the 478 

hippocampus and medial diencephalon – the fornix – predicted individual differences 479 

in human navigational learning. These results suggest that a full understanding of 480 

the biological underpinnings of individual differences in human navigational ability 481 

requires not only the analysis of individual processing regions, but of a distributed 482 

“navigation system”, underpinned by white matter. Critically, given the vulnerability of 483 

this brain system to the deleterious effects of aging (Lester et al., 2017), but also 484 

pathology in Alzheimer’s disease (Braak and Braak, 1991; Oishi et al., 2012), it is a 485 

key priority to develop behavioural markers of navigational ability that are sensitive to 486 

individual variation in this network, as seen here. One study in rodents, for instance, 487 

found that poorer learning on the MWM in early life predicted cognitive impairment in 488 

later life, but also that extensive training in poorer learners buffered against age-489 

related learning impairments (Hullinger and Burger, 2015). Studies such as this 490 

highlight the potential of navigational learning, particularly as assessed using 491 

translation paradigms (Possin et al., 2016), for characterising, and potentially 492 

ameliorating, the effects of cognitive decline.  493 

 494 

 495 

 496 

 497 
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