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Summary 
Cognitive control is necessary for goal-directed behavior, yet people treat control as costly, 
discounting goal value by cognitive demands in a similar manner as they would for delayed or 
risky outcomes. It is unclear, however, whether a putatively domain-general valuation network 
implicated in other cost domains also encodes the subjective value (SV) of cognitive effort. 
Here, we demonstrate that a valuation network, centered on the ventromedial prefrontal cortex 
and ventral striatum, also encodes SV during cognitive effort-based decision-making. We doubly 
dissociate this network from a primarily frontoparietal network recruited as a function of decision 
difficulty. We also find evidence that SV signals predict choice and are influenced by state and 
trait motivation, including sensitivity to reward and anticipated task performance. These findings 
unify cognitive effort with other cost domains, and inform physiological mechanisms of SV 
representations underlying the willingness to expend cognitive effort. 

Introduction 

Cognitive control is required for flexible, precise, goal-directed behavior (Botvinick et al., 2001; 
Egner and Hirsch, 2005; Miller, 2000). Yet, intriguingly, control is subjectively costly, leading 
individuals to avoid control demands, even when foregoing valuable outcomes (Dixon and 
Christoff, 2012; Kool et al., 2010; Westbrook et al., 2013). Subjectively high effort costs have 
clinical consequences, undermining functioning in disorders as diverse as schizophrenia 
(Culbreth et al., 2016; Gold et al., 2015), ADHD (Volkow et al., 2010), depression (Cohen et al., 
2001), and Parkinson’s disease (Manohar et al., 2015; Sinha et al., 2013). It is thus critical to 
identify cognitive effort-based decision-making mechanisms, to address motivational 
impairments in cognitive function and develop new targets for clinical intervention.   

Effort-based decision-making may involve computation of subjective value (SV) in a “common 
currency”, by integrating effort costs with reward benefits (Padoa-Schioppa, 2011). Such SV 
representations would facilitate fungible exchange across cost and benefit dimensions (Rangel 
et al., 2008). Numerous studies have identified a core valuation network that appears to encode 
SV, including the ventromedial prefrontal cortex (vmPFC) and ventral striatum (VS) (Bartra et 
al., 2013; Levy and Glimcher, 2012). This network has been implicated in integrating diverse 
benefits, including both primary and secondary rewards, with diverse cost factors, such as risk, 
delay, and physical effort. As yet, however, this network has not been shown to encode SV for 
choices about cognitive effort. 

Indeed, only two prior studies have investigated SV encoding during cognitive effort decision-
making (Chong et al., 2017; Massar et al., 2015). Surprisingly, they did not implicate the core 
valuation network. Instead, they identified frontoparietal regions more typically associated with 
cognitive control itself: the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex 
(dlPFC), and intra-parietal sulcus (IPS). The involvement of such regions is consistent with an 
account by which greater working memory and cognitive control resources are recruited to 
support more difficult decisions: when options are close in value (Pochon et al., 2008; Shenhav 
et al., 2014). It is also consistent with the specific comparator hypothesis postulated for regions 
including the ACC (Hunt et al., 2012; Klein-Flugge et al., 2016), in which the differences in 
chosen versus unchosen offer costs and benefits are tracked. Thus, these prior studies provide 
valuable novel evidence implicating a dorsal frontoparietal network in decision-making about 
cognitive effort, while also leaving open the question of whether the SV of cognitive effort is 
encoded by a ventral, core valuation network. 

The fact that these prior studies found no evidence to support SV encoding in the core valuation 
network raises the possibility cognitive effort-based decision-making involves different 
mechanisms than other decision-making domains. Perhaps, for example, decisions about 
cognitive effort engagement are not made by computing SV per se, but by prospectively 
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simulating the relative cognitive demands of tasks under consideration, and potential benefits, to 
determine whether to allocate limited resources. This approach would be consistent with the 
hypotheses that: 1) the subjective cognitive effort reflects context-specific opportunity costs, 
proportional to the resources demanded by a given task (Kurzban et al., 2013; Shenhav et al., 
2017), and 2) cognitive control is recruited in proportion to the controllability of a task and the 
expected value of its allocation (Boureau et al., 2015; Musslick et al., 2015; Shenhav et al., 
2013). 

Alternatively, it may be that the prior cognitive effort studies used methods which were primarily 
sensitive to detecting regions as a function of choice difficulty rather than single offer SV. 
Indeed, the primary regressor of interest in one study (Chong et al., 2017) was the difference in 
offer values, while the value of the discounted offer, orthogonalized with respect to the 
undiscounted offer was the primary regressor in the other (Massar et al., 2015). Hence, it is 
critical to complement these approaches with methods focused on isolating the representation 
of SV of individual offers. Furthermore, to demonstrate SV encoding, it is critical to show that SV 
representations are simultaneously sensitive to all choice features including both costs 
(cognitive load) and benefits (reward magnitude). Regions tracking either of these dimensions 
alone would correlate with SV, but not encode SV per se. Reward processing is ubiquitous in 
the brain – diverse regions are increasingly active in response to cues of increasing reward 
magnitude (Vickery et al., 2011). Similarly, regions like the dorsal ACC (dACC) are well-
established to encode anticipated cognitive demand (Kerns, 2004; Ridderinkhof et al., 2004), 
and may thus correlate with, but not strictly encode SV.  Alternatively, given its hypothesized 
role in computing the expected value of control, the dACC may track both costs and benefits 
(Shenhav et al., 2013). Finally, it is noteworthy that although many neuroeconomic studies show 
BOLD signal tracking objective cost-benefit features, few studies test whether putative SV 
representations are truly subjective. Claiming that a region tracks subjective value, requires 
demonstrating that value signals covary with subjective measures of objective choice features. 
Note that subjectivity may reflect either stable, trait differences, context-specific state 
differences, or both (Westbrook and Braver, 2015). For example, state willingness to exert 
cognitive effort is known to vary as a function of sleep deprivation (Libedinsky et al., 2013). 

In the present study, we utilized a variant of a cognitive effort discounting task (COGED) 
(Westbrook and Braver, 2015), in conjunction with fMRI, to test whether a domain-general 
valuation network, by comparison with regions associated with cognitive control implicated in 
two prior studies, encodes the SV of cognitive effort. In prior work, we have shown that COGED 
choices are sensitive to both objective features like cognitive load and reward, and subjective, 
trait features like typical daily engagement with cognitive demands (Westbrook et al., 2013), 
cognitive aging (Westbrook et al., 2013), and negative symptoms in schizophrenia (Culbreth et 
al., 2016). Here, we modified COGED to test whether a putatively domain-general valuation 
network encodes SV during evaluation of single offers, thus isolated from decision-making 
processes and decision difficulty effects. We further tested whether regions encoding SV 
reflected all three cardinal dimensions: costs, benefits, and subjectivity. Finally, we examined 
factors giving rise to subjectivity, as well as the relationship between SV representations and 
ultimate choice outcomes. 

Results 
Reward is Discounted Subjectively by Cognitive Load 

In COGED, participants decide whether to perform variously demanding N-back working 
memory task levels for money (Braver et al., 1997; Kirchner, 1958). Prior work has 
demonstrated that the N-back is perceived as effortful, and self-reported effort increases 
systematically with cognitive load (Hopstaken et al., 2015; Westbrook et al., 2013). Critically, 
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subjective effort costs are measured by the 
extent to which cash offers are discounted for 
each load level (N) (Westbrook et al., 2013). In 
the present study, outside the scanner, 
participants first experienced all N-back levels, 
then made repeated decisions between 
performing a high-load N-back level (N = 2–6) 
for one of three base offer amounts ($2, $3, or 
$4) or instead performing the low-load 1-back 
condition for a smaller, variable amount. Low-
load (1-back) offers were iterated in a 
staircase fashion, until an indifference point 
was reached. Indifference points indicate the 
subjective value (SV) of offers, discounted by 
costs of each higher N-back load relative to 
the low-load baseline. Replicating prior 
findings (Westbrook et al., 2013), offers were 
discounted at all (high) load levels (SV < 1), with SV reliably decreasing as load increased (F1,20 
= 49.3; p < 0.01; h2 = 0.68), indicating rising effort costs (Figure 1). Importantly, there were 
strong individual differences in the degree of discounting. Given theoretical uncertainty 
regarding the form of the discount function (Chong et al., 2017; Hartmann et al., 2013), we 
quantified individual differences with an area under the curve (AUC; Figure 1) measure that 
prior work has shown to be psychometrically optimal for individual difference analyses (Myerson 
et al., 2001). Higher AUC indicates that a participant is more willing to expend cognitive effort for 
reward, on average.  

Participants may discount high-effort tasks because they anticipate poorer performance as task 
load increases. However, it is unlikely that discounting reflects performance alone. First, 
participants were instructed that they would be paid for completing a task, even if they 
performed poorly. Second, although poor performance predicts steeper discounting, there is 
considerable discounting variance not explained by performance. For example, even when 
controlling for N-back performance (d¢; B = 9.83´10-2, p = 0.02), load significantly (B = -8.16´10-

2, p < 0.01) predicted SV in a hierarchical multiple regression (load levels nested within 
participants). Furthermore, indexed by d¢, steep discounters (below-median AUC) performed the 
N-back as well as shallow discounters (Wilcoxon p = 0.62), and numerically better at high load 
levels (though not reliably: p’s ³ 0.16). Hence, although declining performance with higher load 
may contribute to discounting, it does not satisfactorily explain individual differences.  

In the fMRI scanner, participants again decided between a base offer ($2, $3, or $4) to perform 
the high-load N-back (N = 2–6), and a variable amount for the low-load, but this time with the 
low-load offer systematically adjusted with respect to participants’ own indifference points, to 
control decision difficulty and balance choice bias. Specifically, with g referring to the fractional 
difference between the indifference offer and the bounds of $0 or the base amounts ($2, $3, or 
$4), participants decided between offers in which the low-load amount was slightly above 
indifference (g = 0.2, 0.6), biasing low-load choices (“low-load biased”), or slightly below 
indifference (g = -0.1, -0.4), biasing high-load choices (“high-load biased” trials). We also 
included catch trials, in which we offered equal amounts (g = 1.0) for the 1-back and high-load 
task, strongly biasing low-load choices (“low-load catch”) or instead $0 (g = -1.0), strongly 
biasing high-load choices (“high-load catch”). A key advantage of this design is that decision 
difficulty, high-load versus low-load preference, and SV were all orthogonalized across trials. 
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Figure 1. Decreasing SV reflects rising subjective costs as 
N-back level increases. Grey bars and black lines reflect 
group means and SEM. Grey dashed lines show individual 
participants’ discounting curves. Area Under the Curve 
(AUC) values provided for two example participants. 
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As anticipated, bias reliably (F1,20 = 341.1; p 
< 0.01) influenced the probability of selecting 
the high-load offer on a given trial. Moreover, 
even excluding catch trials, there was a 
reliable preference for high-load offers on 
high-load biased trials (choice probability > 
0.5; t20 = 5.12; p < 0.01), and a reliable 
preference for low-load offers on low-load 
biased trials (g > 0; choice probability < 0.5; 
t20 = 2.31; p = 0.03; Figure 2A).  

Choice reaction times provide further 
evidence that our discounting procedure 
identified indifference points accurately: 
participants responded more slowly on trials 
closer to indifference, consistent with 
increasing decision difficulty. On “pro-bias” 
trials, in which participants’ choices were 
consistent with offer biases, median reaction 
times were slower on more difficult decision 
trials (|g| < 1.0) relative to catch trials (g = -
1.0 or 1.0; t20 = 7.51, p < 0.01; Figure 2B). 
Furthermore, when decisions went against 
offer biases (“anti-bias” trials), reaction times 
were significantly slower than on pro-bias 
trials (t20 = 7.03, p < 0.01). Such a pattern is 
consistent with a response conflict account 
of decision difficulty (Botvinick, 2007; Pochon 

et al., 2008; Yarkoni et al., 2005), as conflict would be highest, on average, when deciding 
against typically preferred alternatives. 

SV Encoding  
Our central question was whether a domain-general valuation network encoded cognitive effort-
discounted SV. To test this, we asked whether BOLD 
response reliably tracked the SV of offers to repeat N-
back tasks for money. Specifically, participants were 
instructed to consider the value of single high-load N-
back options (N= 2—6) paired with single base 
amounts ($2, $3, or $4), presented in isolation for 6 
seconds (i.e. high-load offers were presented first; 
Figure 3). Consequently, brain activity 6—8 s after 
first offer onset was regarded as reflecting single offer 
valuation, temporally isolated from other decision 
processes, accounting for hemodynamic lag (Miezin 
et al., 2000). We tested whether activity during this 
“valuation period” tracked trial-by-trial, first-offer SV 
within a set of regions of interest (ROIs) derived from 
prior meta-analyses identifying the putatively domain-
general valuation network (yellow in Figure 4A) 
including the vmPFC, VS, anterior insula (AI), 
posterior cingulate cortex (PCC), and dACC (Bartra et 

Figure 2. A) Proportion of high demand options selected as a 
function of biasing of the low demand offer, and N-back level. 
B) Median reaction times as a function of proximity and 
whether choices went with (pro-) or against (anti-) low 
demand offer biasing (High-Load: g < 0; Low-Load: g > 0). 
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al., 2013; Levy and Glimcher, 2012). The focus on a priori ROIs was motivated by strong prior 
beliefs about regions encoding SV, and the desire to maximize statistical power (for 
completeness, a whole-brain analysis is provided in Supplementary Figure S.1, although this did 
not identify any regions outside of our candidate ROIs). We contrasted the encoding of SV in 
this domain-general network with sets of candidate loci identified in two recent studies 
specifically focused on decision-making about cognitive effort (blue in Figure 4A) (Chong et al., 
2017; Massar et al., 2015).	Note that to combine ROIs as a set in an unbiased way (each ROI 
gets equal weight), the response of each ROI at 6—8s was z-scored across trials and then 
ROIs were averaged together to obtain a network-level response on each trial.  

As predicted, the SV meta-analysis network of regions positively and reliably tracked first-offer 
SV in the valuation period, 6—8 sec following the first offer onset (B = 4.19´10-2; p = 0.002). 
Individual ROIs tracking first offer SV (at p < 0.05) included the	 bilateral vmPFC, VS, PCC, 
ACC, and dACC/pre-SMA (Figure 4B; Table 1, Column 3). These results are consistent with the 
hypothesis that a core valuation network encodes SV, discounted by cognitive effort costs. 
Furthermore, they extend the notion of domain-generality from delay, risk, and physical effort 
costs (Bartra et al., 2013; Levy and Glimcher, 2012) to the domain of cognitive effort. At the 
level of individual ROIs, only the brainstem showed no evidence of encoding SV, despite this 
region reliably encoding SV in other cost domains (Bartra et al., 2013).	 

Figure 4 A. 6 mm radius spheres centered at all a priori ROIs. Colors indicate origination from either of two prior 
meta-analyses of domain-general SV encoding (yellow15,16) or two recent studies on SV encoding during cognitive 
effort decision-making (blue17,18). Note that the amygdala is projected to the surface for display purposes only. B. 
Proportion of ROIs from each set tracking SV 6—8s after first offer onset by p-value. Map shows ROIs reliably 
tracking SV at p < 0.05. C. Proportion of ROIs from each set with reliably more activity on difficult, regular versus 
easy catch trials by p-value. Map shows ROIs with a reliable difficulty contrast at p < 0.05. 
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By contrast, sets of ROIs identified by the two prior cognitive effort studies did not reliably 
encode first-offer SV. The set of ROIs from one study (Study1) encoded SV at trend-level (B = 
2.54´10-2; p = 0.053) while the set identified in by the other study did not (Study2; B = 2.12´10-2; 
p = 0.14). Moreover, at the sub-network level, most individual ROIs from either study did not 
reliably track first-offer SV. Notable exceptions to this pattern include the right temporal pole 
from Study1 and right amygdala from Study2 (the left amygdala also encoded trial wise SV at 
trend-level). The amygdala is notable as a region that has been previously implicated in 
encoding SV during cognitive, relative to physical effort-based decision-making (Chong et al., 
2017) and also supporting cognitive effort-based decision-making in rats (Hosking et al., 2014). 
Despite these exceptions, the broader pattern did not replicate the findings from the two prior 

Table 1. Effects of choice difficulty and first offer SV, amount and load on BOLD signal in all a priori ROIs, grouped 
by study of origin. Column 2: MNI coordinates for each ROI. Columns 3—5: Effect estimates and corresponding p-
values for activity in a priori networks and individual ROIs predicting mean residual activity 6—8 s after first offer 
onset, after regressing out motion and other predictors of non-interest. Column 3 describes first offer SV as a 
predictor of residuals. Columns 4 and 5 provide relationships with first offer amount and load simultaneously 
estimated in a hierarchical multiple regression. Column 6: t-tests contrasting the canonical hemodynamic response 
on regular versus catch trials. Cells are shaded in greyscale according to their p-value. Dark grey is p < 0.01; 
medium is 0.01 < p < 0.05; light is 0.05 < p < 0.10. Network-level effects at the top of each section were estimated 
from the mean response at 6—8 s, z scored across trials, then averaged across ROIs in each network. 

 

Anatomical  SV Amount Load Regular vs. 
Description MNI (x,y,z) B´10-2 (p-value) Catch t20(p) 
All SV Meta-Analysis ROIs 4.2 (<0.01) 4.1 (<0.01) -5.0 (<0.01) 1.77 (0.09) 

Levy and Glimcher (2012) 
l vmPFC  (-7,38,-11) 2.2 (<0.01) 2.1 (<0.01) -2.1 (<0.01) -1.38 (0.18) 
r vmPFC (4,35,-12) 2.2 (<0.01) 1.8 (<0.01) -2.3 (<0.01) -1.22 (0.24) 

Bartra, McGuire, and Kable (2013) 
PCC (-2,-35,31) 1.9 (0.04) 1.7 (0.04) -2.2 (<0.01) 0.36 (0.72) 
dACC/pre-SMA (-1,15,44) 2.3 (0.02) 0.9 (0.28) -2.5 (<0.01) 5.21 (<0.01) 
ACC (0,30,27) 1.9 (0.04) 1.7 (0.04) -2.2 (<0.01) 1.19 (0.25) 
l striatum (-12,12,-6) 3.8 (0.02) 2.5 (<0.01) -1.8 (<0.01) 0.92 (0.37) 
r striatum (12,10,-6) 4.1 (0.05) 2.8 (<0.01) -1.8 (0.02) 0.39 (0.70) 
r vmPFC (2,46,-8) 3.1 (<0.01) 2.4 (0.01) -3.2 (<0.01) -1.48 (0.16) 
l AI (-30,22,-6) 0.8 (0.10) 0.5 (0.26) -1.2 (<0.01) 3.28 (<0.01) 
r AI (32,30,-6) 0.8 (0.05) 0.5 (0.18) -0.8 (0.02) 2.28 (0.03) 
Brainstem (-2,-22,-12) 0.9 (0.30) 1.1 (0.19) -1.6 (0.05) 2.97 (<0.01) 

Massar, Libedinsky, Weiyan, Huettel, and Chee (2015) 
All Massar et al. ROIs (Study1) 2.6 (0.05) 1.8 (0.19) -3.7 (0.02) 3.50 (<0.01) 
r supramarg. gyr. (33,-52,32) 0.4 (0.38) 0.1 (0.81) -0.7 (0.09) 2.83 (0.01) 
l cingulate (-24,-49,36) 0.4 (0.24) 0.1 (0.63) -0.5 (0.13) 2.61 (0.02) 
l inf. temp. gyr. (-58,-35,-22) 1.1 (0.08) 0.5 (0.25) -1.7 (<0.01) -1.78 (0.09) 
l IFG (-43,53,-4) 0.4 (0.61) 0.4 (0.67) -1.8 (0.03) 0.66 (0.51) 
l IPL (-30,-43,43) 0.5 (0.35) 0.3 (0.48) -0.7 (0.12) 5.10 (<0.01) 
I IPL (-41,-55,46) -0.2 (0.82) 0.1 (0.93) -0.9 (0.22) 3.42 (<0.01) 
r temporal pole (34,16,-26) 3.1 (0.03) 1.8 (0.02) -1.4 (0.08) 0.04 (0.97) 

Chong, Apps, Giehl, Sillence, Grima, Husain (2017) 
All Chong et al. ROIs (Study2) 2.1 (0.14) 1.7 (0.20) -3.5 (0.04) 3.41 (<0.01) 
l amygdala (-24,0,-22) 2.2 (0.08) 1.6 (0.04) -1.7 (0.04) -0.41 (0.69) 
r amygdala (24,0,-22) 2.8 (0.03) 2.1 (0.02) -1.4 (0.13) -0.15 (0.88) 
l IPS (-36,-44,38) 0.4 (0.50) 0.1 (0.90) -0.8 (0.12) 6.04 (<0.01) 
dACC/dmPFC (-4,22,44) 1.1 (0.12) 0.4 (0.56) -1.9 (<0.01) 2.61 (0.02) 
r IPS  (24,-60,42) 0.6 (0.25) 0.3 (0.56) -1.0 (0.04) 4.95 (<0.01) 
r Insula (34,22,2) 0.2 (0.75) 0.2 (0.65) -0.4 (0.30) 3.78 (<0.01) 
l dlPFC (-44,26,26) 0.9 (0.23) 0.8 (0.18) -0.6 (0.36) 3.29 (<0.01) 
r dlPFC (44,36,30) 0.1 (0.95) -0.4 (0.55) -1.3 (0.07) 1.68 (0.11) 
l Insula (-28,22,4) 0.5 (0.17) 0.3 (0.24) -0.5 (0.11) 3.08 (0.01) 
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cognitive effort studies: in neither the intraparietal sulcus (IPS), inferior parietal lobule (IPL), nor 
the lateral PFC loci did activity reliably track first offer SV.  

Direct comparisons between sets of ROIs reveal that the meta-analysis network not only tracks 
trial-wise SV more reliably than ROIs identified in the two prior cognitive effort studies, but their 
activity is modulated more strongly by, and in turn explains more trial-by-trial variance in, first 
offer SV. First, as a group, meta-analysis regression weights (Table 1, Column 3) are reliably 
larger across individual ROIs than those from the two prior cognitive effort studies (t20 = 2.94; p 
< 0.01). Second, in hierarchical, nested model comparisons, meta-analysis ROIs explained 
more variance in first-offer SV when added to the full set of ROIs from the prior effort studies. 
For example, after controlling for activity 6—8 s after first offer onset in all ROIs from Study1 
and Study2, adding activity from the left (𝜒"# = 4.93, p = 0.03) or right (𝜒"# = 4.01, p = 0.04) 
vmPFC, or left (𝜒"#	= 9.99, p < 0.01) or right (𝜒"# = 7.66, p < 0.01) VS significantly improved 
model deviance. When adding all 11 meta-analysis ROIs at once, model deviance also 
improved at trend-level (𝜒""#  = 18.21, p = 0.077) above a model including all ROIs from Study1 
and Study2. By contrast, adding Study1 and Study2 ROIs, to a base model containing meta-
analysis ROIs, did not improve model deviance (𝜒"%#  = 17.47, p = 0.36).  

Relatively weak SV encoding among ROIs from the prior cognitive effort studies suggests that 
they were previously implicated because they are primarily responsive to factors correlated with 
SV, rather than SV per se. One possibility is decision difficulty. Correlation between SV and 
difficulty might occur, for example, if participants typically prefer high-effort, high-reward 
alternatives (such alternatives have higher SV on most trials), and the decision only becomes 
difficult on infrequent trials when the SV of the high-effort option is low and differences in SV 
between offers are small. Moreover, as noted, the prior cognitive effort studies also used 
methods that were likely more sensitive to choice difficulty (e.g., using value difference 
regressors, or examining BOLD signal while participants contrast two offers rather than evaluate 
a single offer), rather than single-offer SV.   

To examine whether ROIs from the prior cognitive effort studies were relatively more sensitive 
to decision difficulty, we first tested whether they were more sensitive to differences in offer SV. 
Specifically, we contrasted hemodynamic response functions, time-locked to second offer onset, 
between difficult trials, when the differences in SV of were small (|g| < 0.6), and easy catch trials, 
when differences in SV were large (g = -1.0 or 1.0). In a reversal of the SV encoding analysis, 
sets of ROIs from the prior cognitive effort studies were robustly sensitive to this difficulty 
contrast (Study1: t20 = 3.50, p < 0.01; Study2: t20 = 3.41, p < 0.01) while the SV meta-analysis 
network was only sensitive at trend-level (t20 = 1.77, p = 0.09). The pattern of results across sets 
of ROIs suggests a double dissociation, which is buttressed by a striking pattern at the 
individual ROI level: individual ROIs were either more reliably active on difficulty trials or reliably 
tracked SV, but not both (Table 1; Figure 4B&C). Sole exceptions to this pattern were the dACC 
and trend-level results in the inferior temporal gyrus and bilateral AI. As noted, ROIs sensitive to 
the difficulty contrast comprise regions more typically associated with cognitive control, working 
memory, and evidence accumulation (Basten et al., 2010; Braver et al., 1997; Dosenbach et al., 
2006; Kouneiher et al., 2009), including the bilateral IPS, the dACC and pre-supplementary 
motor area (pre-SMA), and dlPFC. These ROI-level analyses are consistent with a double 
dissociation, in which a domain-general valuation network tracks first-offer SV significantly 
better than frontoparietal regions implicated in prior cognitive effort studies, while conversely 
these latter frontoparietal regions are more sensitive to decision difficulty than those involved 
with domain-general valuation. As above, for completeness, we examined the decision difficulty 
contrast across the whole brain; the results (Supplemental Figure S.2; Table S.1) re-capitulate 
our ROI analysis: a network of regions including the dACC, dlPFC, and IPS were more active on 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/391805doi: bioRxiv preprint 

https://doi.org/10.1101/391805
http://creativecommons.org/licenses/by-nc/4.0/


	 9 

difficult versus easy trials while valuation network regions were not differentially active across 
trial types. 

RT—BOLD signal relationships further support the hypothesis that the prior cognitive effort 
studies implicated regions that were primarily sensitive to decision difficulty. Namely, mirroring 
the hierarchical multiple regression strategy above, we tested whether mean BOLD signal 6—8 
s after second offer onset (during the decision period) among ROIs from the prior cognitive 
effort studies explained more variance in RT on pro-bias trials (related to response slowing, 
when participants’ choices were consistent with their prior discounting patterns, cf. Figure 2B). 
Adding all 16 ROIs from Study1 and Study2, as a group, improved model deviance (𝜒"%#  = 37.88, 
p < 0.01) over a base model with only SV meta-analysis ROIs in predicting inverse RT. 
Conversely, adding the SV meta-analysis ROIs second also improved model deviance (𝜒""#  = 
38.33, p < 0.01), but this is perhaps unsurprising given that these ROIs included the dACC, 
which is known to robustly track RT across diverse perceptual and economic decision-making 
tasks (Yarkoni et al., 2009). Indeed, after excluding the dACC, we find that adding SV meta-
analysis ROIs second no longer improved model deviance (𝜒"&#  = 15.51, p = 0.11), supporting 
the hypothesis that ROIs identified by the two prior cognitive effort studies are relatively more 
sensitive to decision difficulty, as indexed by response slowing.  

Costs and Benefits are Jointly Encoded in the Valuation Network 
For a region to track SV, it should encode both offer benefits and costs, and with opposing 
signs. Surprisingly few SV encoding studies decompose these sources of variance, however, 
leaving open the possibility that BOLD signal correlating with SV may track costs or benefits 
alone. Thus, we tested whether trial wise first-offer amount (benefits) and N-back load (costs) 
jointly and independently predicted mean valuation period (at 6—8 s) activity in a priori ROIs, 
again using hierarchical linear models. We found that the SV meta-analysis network covaried 
both positively with amount (controlling for load; B = 4.07´10-2; p = 0.002), and negatively with 
load (controlling for amount; B = -4.95´10-2; p < 0.001; Table 1). This was also true, moreover, 
among most individual ROIs within this network. For example, bilateral vmPFC and VS activity 
both reliably increased with higher offer amounts and decreased with increasing task loads 

Figure 5. Residual timecourses in a priori ROIs, averaged by first offer amount or load. Error bands reflect SEM across 
participants. Reliability of amount and load effects in separate hierarchical multiple regression (trials and ROIs, nested within 
participants) at each time point indicated by * for p < 0.05. Grey region highlights 6—8 s after first offer onset; vertical dashed 
line indicates second offer onset. 
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(Figure 5). This result supports that the putatively domain-general valuation network not only 
correlates with SV, but independently tracks both cognitive costs and benefits. By contrast, and 
mirroring our SV analysis, we did not find encoding of both dimensions in the networks of 
regions implicated by the prior cognitive effort studies. In both cases, we found evidence that 
these networks encoded first-offer load (Study1: B = -3.70´10-2, p = 0.02; Study2: B = -3.51´10-

2, p = 0.04), but not first-offer amount (Study1: B = 1.77´10-2, p = 0.19; Study2: B = 1.67´10-2, p 
= 0.20). Relative insensitivity to first offer amount helps explain why these ROIs did not reliably 
track first-offer SV.	 
There were some individual ROIs within the SV meta-analysis network, however, for which our 
data only support the encoding of single dimensions. For example, load reliably (and negatively) 
predicted activity in the dACC and the bilateral AI (all p’s £ 0.02), but reward did not (all p’s ³ 
0.18). These findings leave open the possibility that certain ROIs tracking SV here and in other 
studies may have reflected encoding of specific dimensions, rather than SV per se. There may 
be methodological reasons, however, why these ROIs do not track first offer amount, (e.g. low 
power) so particular negative results should be interpreted with caution. 

	 Trait	Subjectivity in Value Encoding 
Beyond objective dimensions like reward amount and task load, SV further implies subjectivity 
in how those dimensions are experienced. Indeed, participants varied considerably in their 
willingness to exert effort for reward across load and reward levels (Figure 1). To investigate 
subjectivity in valuation, we tested whether SV (a subjective measure) predicted valuation 
period activity (at 6—8 s), controlling for objective features (the amount / load ratio) in two 
regions that reliably tracked SV: the VS and vmPFC. In the left VS (B = 3.85´10-2, p = 0.03) and 
right (trending; B = 3.95´10-2, p = 0.08), SV remained a positive predictor of activity, controlling 
for the ratio of amount to load. The same test across all three vmPFC loci (nested within 
participants) was not statistically reliable (B = 1.40´10-2, p = 0.13), implying weaker evidence for 
trait subjectivity in the vmPFC. 

Subjectivity may partly reflect stable, trait experience. To test for trait subjectivity in the 
experience of offers, we utilized AUC, a measure of participants’ overall tendency to accept an 
offer to perform the N-back for reward. Prior work has shown that COGED AUC predicts 
personality traits and individual differences in delay discounting, cognitive aging, and negative 
schizophrenia symptoms (Culbreth et al., 2016; Westbrook et al., 2013), supporting its use as a 
trait measure. One possible explanation for covariance across these diverse domains is reward 
sensitivity. Thus, we tested whether AUC predicted the effect of offer amount (reward) on SV 
representations. 
Specifically, we fit models 
with amount and load 
jointly predicting activity in 
those ROIs reliably 
tracking SV for each 
participant, and then 
tested whether AUC 
predicted individual 
differences in fitted 
amount effects. 
Furthermore, we took 
advantage of the fact that 
we measured participants’ 
AUC in multiple sessions 

Figure 6. Cross-session AUC predicts the average amount effect on mean activity at 6—
8 s following first offer onset in both the bilateral ventral striatum (B = 2.49´10-2, p = 
0.03) and bi-lateral amygdala (B = 2.43´10-2, p = 0.02). Shaded regions show 95% CI. 

0.3 0.5 0.7 0.9

−0
.0

5
0.

00
0.

05
0.

10

Bi−Lateral Amygdala

AUC

Am
ou

nt
 E

ffe
ct

 B

0.3 0.5 0.7 0.9

0.
00

0.
10

0.
20

Bi−Lateral Ventral Striatum

AUC

Am
ou

nt
 E

ffe
ct

 B

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/391805doi: bioRxiv preprint 

https://doi.org/10.1101/391805
http://creativecommons.org/licenses/by-nc/4.0/


	 11 

to estimate stable, trait-like tendencies to discount rewards for performing the N-back (see 
Supplement). In both the left (B = 2.41´10-2, p < 0.01) and right VS (B = 2.57´10-2, p = 0.06, 
trending), and left (B = 1.85´10-2, p = 0.09, trending) and right amygdala (B = 3.01´10-2, p < 
0.01), amount effects were positively predicted by mean, cross-session AUC. Note that 
excluding the high amount effect participant (BVS Amount Effect = 0.24; Figure 6) did not attenuate 
the relationship between AUC and amount effects for the remaining participants in either the left 
(B = 2.41´10-2, p < 0.01) or right VS (B = 1.35´10-2, p = 0.04).	 Furthermore, the formal 
interaction of AUC and amount was also a reliable predictor of BOLD signal within each of these 
ROIs separately, demonstrating the robustness of these effects (in a hierarchical regression 
model; see Supplement). This AUC-amount interaction implies that high AUC participants were 
more willing to perform the high-load N-back because they were more sensitive to increasing 
reward amounts. Indeed, the interaction in the VS and amygdala appears to be driven by higher 
activity for $4 offers among high versus low AUC participants (Supplement, Figure S.3). This 
suggests that high AUC participants perceived higher SV for $4 offers (relative to low AUC 
participants), via stronger encoding in the VS and amygdala, and this translated into a greater 
willingness to accept these high reward offers.  

 State Value Signals in the vmPFC Predict Subsequent Choice 

In addition to stable, trait subjectivity, valuation may also involve state variation, from factors 
such as satiety or fatigue that can influence motivation (Hare et al., 2014; Rudorf and Hare, 
2014). Although we did not manipulate state motivation directly, most non-catch trials were 
close enough to indifference for choice to be sensitive to motivational fluctuations from trial to 
trial. To test for such effects, we examined whether trial-wise variation in SV representations 
predicted choice; specifically, whether higher valuation period signal predicted high-effort 
choices, above and beyond the bias (g) imposed by the second offer. We focused our analysis 
on the vmPFC, given clear SV tracking in this region, and also prior literature implicating vmPFC 
both in state incentive motivation, and in causally determining choice (Hare et al., 2014; 2009; 
2011; Rudebeck and Murray, 2014; San-Galli et al., 2016). 

During the valuation period, we found 
that higher vmPFC activity predicted 
choice of the high-load option, and that 
this effect was most pronounced on anti-
bias trials (i.e., when the offer was 
designed to bias choice of the low-load 
offer). A hierarchical model with trials and 
3 vmPFC ROIs nested within 
participants, revealed that this interaction 
of choice and bias significantly predicted 
mean vmPFC activity during the 
valuation period (B = 7.89´10-2; p < 
0.01). Thus, even before participants 
knew what the low-load (1-back) offer 
amount would be, trial-wise variation in 
vmPFC activity predicted subsequent 
choice – consistent with state-dependent, 
causal SV representations (Figure 7). 
Notably, this pattern was not observed in 
either the right (B = 2.86´10-2; p = 0.57) 
or left VS (B = 5.48´10-2; p = 0.22), 
despite the VS otherwise co-varying with 

Figure 7. Mean residual timecourses at vmPFC loci, averaged by 
whether participants chose the high or low demand offer and whether 
the low demand offer amount biased them toward the high or low 
demand offer. Error bands reflect SEM across participants. Reliability 
of choice-bias effects in separate, fully random hierarchical multiple 
regressions at each time point indicated by * for p < 0.05, and • for p 
< 0.075. Based on a Choose Low, Pro-Bias < Choose Low, Anti-Bias 
< Choose High, Pro-Bias < Choose High, Anti-Bias coding scheme. 
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SV. Stronger coupling of choice to vmPFC activity is consistent with the hypothesis that while 
both VS and vmPFC are part of a distributed valuation network, the vmPFC serves as a final 
common node incorporating state motivation during decision-making (Levy and Glimcher, 
2012). As shown in Figure 7, the interaction of choice and bias also reliably predicted BOLD 
signal later in trials with the opposite sign: activity was higher on trial in which participants 
selected the low-effort option. While it is possible that this reflects interesting post-decisional 
processes, the timing of this the interaction, pursuant to presentation of two offers and choice 
commitment precludes unambiguous interpretation of this effect. 

Cognitive Demand Encoding in AI and dACC Reflects Working Memory 
Performance  
Finally, we considered the possibility that subjective effort, and SV representations, may be 
related to cognitive task performance, since N-back performance correlated with discounting in 
the present data. Also, one recent study found that subjective effort closely tracked task 
performance errors (Dunn et al., 2017). Thus, we tested whether average N-back performance 
(the sensitivity index d¢) predicted the effect of load on SV representations. We focused on the 
AI and dACC as these regions have been implicated previously by multiple lines of evidence, 
including involvement in attention and control modulation (Dosenbach et al., 2006), error 
awareness and processing (Klein et al., 2007), decision-making and learning about physical 
effort costs (Prévost et al., 2010; Skvortsova et al., 2017), and, in the case of the AI, self-
reported cognitive effort ratings (Otto et al., 2014). As above, we first fit a model in which 
valuation period activity was jointly predicted by task load and amount separately for each 
participant, and then tested whether d¢ predicted individual differences in load effects. Lower 
average N-back performance predicted more negative load effects across participants in the 
bilateral AI (Figure 8; B = 2.15´10-2; p = 0.05) though this effect was unreliable in the dACC 
(both p’s > 0.36). In other words, in the AI, 
participants with the worst average N-back 
performance show the strongest load effects 
during the valuation period (activity decreasing 
with increasing load). Given that this analysis 
collapsed performance across N-back levels, it 
may have been insensitive to load-specific 
associations in performance.  Thus, we also 
tested the full interaction of load-specific 
performance and load in predicting BOLD signal 
6—8s after first offer onset. In both the left AI (B 
= 1.22´10-2; p = 0.02) and right AI (B = 8.91´10-

3; p = 0.02) and also the dACC ROI from an SV 
meta-analysis (Bartra et al., 2013) (B = 3.27´10-

2; p < 0.01), and also for the dACC region 
identified in Study2 (Chong et al., 2017) (B = 
1.46´10-2; p = 0.05), we found reliable, positive 
interactions indicating stronger load effects on 
BOLD signal for increasingly bad N-back performance. These interactions support the 
hypothesis that cognitive effort cost representations which inform the computation of SV, and 
thus effort discounting, are influenced by predicted task failure. That these effects obtained 
specifically in the AI and dACC supports their hypothesized, specialized role in processing effort 
costs.  

 Cognitive Effort Discounting Does not Merely Reflect Task Performance 

Figure 8. Higher mean N-back performance (measured 
by sensitivity index d¢) predicts shallower load effects in 
bi-lateral AI across participants (B = 2.15´10-2; p = 0.05). 
The shaded region shows 95% CI. 
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Although participants were promised payment contingent on merely repeating the N-back tasks 
of their choosing (not on performance), it is possible that decision-making was primarily driven 
by anticipated likelihood of successful performance at a given load level. In other words, an 
alternative interpretation of our results is rather than reflecting effort discounting and SV 
encoding per se, apparent SV encoding instead reflected concerns about performing well. This 
alternative account is plausible given that N-back performance covaried negatively with task 
load, and positively with SV. To test this alternative account, we estimated hierarchical multiple 
regression models to determine whether valuation period activity in the vmPFC and VS (two 
regions robustly encoding SV in our dataset), was predicted by SV, controlling for load level-
specific N-back performance, and vice versa. The results clearly reject the alternative, 
performance-based interpretation. In the VS, N-back performance did not reliably predict BOLD 
signal variation (both p’s > 0.74), while SV did, controlling for performance (left VS: B = 3.8´10-2, 
p = 0.02; right VS: B = 4.0´10-2, p = 0.06). In the vmPFC, although N-back performance 
significantly predicted BOLD signal variation (left B = 1.4´10-2, p = 0.055, and right vmPFC B = 
1.4´10-2, p = 0.046 from (Levy and Glimcher, 2012);  B = 2.7´10-2, p = 0.02 from (Bartra et al., 
2013)), SV was also a significant predictor, controlling for performance (left B = 1.8´10-2, p = 
0.03 from (Levy and Glimcher, 2012), and right vmPFC B = 2.2´10-2, p = 0.06 from (Bartra et 
al., 2013)). These results support that while anticipated performance partially determines 
discounting, SV, and neural representations of SV, SV representations further reflect other state 
and trait factors (e.g. working memory load and reward sensitivity) determining willingness to 
expend cognitive effort. 

Discussion 
Decisions about whether to expend cognitive effort for reward involve weighing effort costs and 
benefits. Indeed, subjective effort costs are reflected in demand avoidance (Kool et al., 2010; 
Schouppe et al., 2014b) and effort-based discounting (Botvinick et al., 2009; Chong et al., 2017; 
Dixon and Christoff, 2012; Massar et al., 2015; Westbrook et al., 2013). However, a central 
outstanding question is what mechanisms support decision-making about cognitive effort. In the 
current study, we used fMRI to monitor brain activity as participants made decisions about 
performing a high-load N-back working memory task for more money, or a low-load condition (1-
back) for less money, to determine where the brain encodes the SV of rewards discounted by 
cognitive effort costs. Our key finding is that a putatively domain-general valuation network, 
centered on the vmPFC and VS, tracks cognitive effort-discounted SV. This result elucidates 
mechanisms of cognitive effort-based decision making, and links cognitive effort valuation 
closely with value-based decision-making in other domains including delay, risk, and physical 
effort (Bartra et al., 2013; Levy and Glimcher, 2012).  

Earlier studies have shown that putative valuation regions reflect modulation of reward signals 
as a function of prior cognitive load, for example, or of incentive cues as a function of 
anticipated cognitive demands (Botvinick et al., 2009; Dobryakova et al., 2017; Nagase et al., 
2018; Satterthwaite et al., 2012; Schmidt et al., 2012; Schouppe et al., 2014a; Vassena et al., 
2014). These prior results imply that the domain-general valuation network should also encode 
SV during cognitive effort-based decision-making. Yet, to date, this has not been shown. In fact, 
the only two prior studies directly examining SV encoding while participants made cognitive 
effort decisions (Chong et al., 2017; Massar et al., 2015) largely identified regions outside the 
core valuation network, raising the possibility that decisions about cognitive effort rely on 
fundamentally different mechanisms than other cost domains. Indeed, these studies found that 
SV scaled with activity primarily in a dorsal, frontoparietal network typically associated with 
cognitive control, including the dACC / pre-SMA, dlPFC, and IPS.  
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Our results suggest that these two prior studies highlighted regions primarily as a function of 
choice difficulty, i.e., the differences in offer value during a decision trial, rather than the SV 
associated with the high-load offer. In particular, we identified a double dissociation, in which the 
putative valuation network covaried more robustly and reliably with SV than these frontoparietal 
regions, as a group, while conversely these frontoparietal regions were more sensitive to 
decision difficulty measures including offer value differences and response slowing, as a group. 
Note that we are agnostic as to whether frontoparietal ROIs encode SV during offer comparison 
between effort-demanding alternatives. To the extent that they track differences in offer value, 
they may reflect differences in component value features incorporating both reward magnitude 
and effort demands. Indeed, the dACC / pre-SMA and ACC have been shown elsewhere to 
encode differences between competing alternatives in both reward and physical effort demands 
(Klein-Flugge et al., 2016). However, it may be that these regions are recruited primarily when 
choices are difficult, involving careful comparison between competing alternatives. This could 
explain why they did not reliably track first-offer SV in our study, since our design and analysis 
focused on SV encoding for a single offer in isolation, with first offer amount and load 
orthogonalized with respect to decision difficulty. 

It is possible, however, to mistakenly implicate regions in encoding SV when instead they 
primarily encode decision difficulty, if the two are correlated. Consider, for example, general 
purpose control regions that are recruited more intensively to focus attention during difficult 
discrimination tasks. Such regions would be recruited as a function of differences in offer value, 
without computing SV per se. Thus, we reasoned, it was critical to control for decision difficulty. 
We designed our study to control for difficulty by ensuring that: 1) SV effects were identified 
during a temporally isolated valuation period in which only one offer was available, 2) offers 
were designed so that participants would prefer the high-demand/high-benefit option on roughly 
half the trials, and 3) offer attributes were fully-crossed with offer value differences (|g|), 
guaranteeing that first-offer SV and difficulty were uncorrelated. Controlling for difficulty in this 
way critically revealed a double dissociation such that a core valuation network reliably tracked 
SV when participants evaluated a single high-load offer, but a dorsal frontoparietal network did 
not. Conversely, and consistent with prior studies, a dorsal frontoparietal network was recruited 
when value differences between offers were compared. A full account of cognitive effort-based 
decision-making likely involves integrated communication across multiple networks recruited for 
SV computation and offer comparison, particularly when choices are difficult because the offers 
are close in SV. 

Beyond showing that a domain-general valuation network tracks first-offer SV, we further show 
that this network scales both positively with amount, and negatively with cognitive load. This 
result was critical to demonstrate that the network encoded SV rather than merely correlating 
with, for example, larger rewards on offer – a result which is already well-established within 
regions like the vmPFC and VS (Bartra et al., 2013). On an individual ROI basis, two regions – 
the AI and dACC – demonstrated sensitivity to cognitive load but not reward amount. This could, 
of course, reflect limited power to detect reward encoding in our relatively small sample. The 
dACC has elsewhere been shown to track both physical effort costs and reward amount, for 
example (Harris and Lim, 2016; Klein-Flugge et al., 2016). Also, unit recordings of monkey ACC 
neurons engaged in physical effort-based decision-making involves opposing signs in 
neighboring cells processing cost and benefit information (Kennerley et al., 2011) indicating that 
particular cost or benefit signals may cancel out at the resolution of fMRI. Interestingly, however, 
numerous lines of evidence also suggest a somewhat more specialized role for these regions in 
processing cognitive effort costs including their involvement in cognitive task attention and 
control modulation (Dosenbach et al., 2006), error awareness and processing (Klein et al., 
2007), processing of affectively negative stimuli (Duerden et al., 2013), decision-making and 
learning about physical effort costs (Croxson et al., 2009; Kennerley et al., 2011; Kurniawan et 
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al., 2013; Prévost et al., 2010; Skvortsova et al., 2014), self-reported cognitive effort ratings, in 
the case of the AI (Otto et al., 2014), and perhaps most pointedly, learning about cognitive effort 
costs (Botvinick, 2007; Nagase et al., 2018). Our results are thus consistent with the 
overarching hypothesis that the dACC and AI specialize in processing effort cost information in 
the service of SV computation. This interpretation is bolstered by the fact that both the dACC 
and AI appeared to encode cost information (load effects) as a function of individual differences 
in N-back task performance – two factors which we have been shown to influence cognitive 
effort discounting. Finally, we also note that while the AI and dACC have been shown to encode 
physical effort costs positively instead of negatively in several recent studies (Croxson et al., 
2009; Kennerley et al., 2011; Kurniawan et al., 2013; Prévost et al., 2010; Skvortsova et al., 
2014), AI and dACC activity have correlated both positively and negatively with SV across a 
broader value-based decision-making literature (Bartra et al., 2013) suggesting that cost sign 
effects (negative or positive) might be task context-dependent. 

Beyond implicating a domain-general valuation network in SV encoding, our study also reveals 
state and trait factors which drive subjectivity in SV, and provides preliminary evidence about 
the routes by which such factors are incorporated during offer valuation. First, in the VS and 
amygdala, we found that shallower effort discounting (indexed with higher, cross-session AUC) 
predicted larger amount effects across individuals, suggesting that individuals were more willing 
to perform high N-back task levels in part because they were more sensitive the offered reward 
amounts. Trait reward sensitivity in the VS is consistent with a large literature linking VS 
response to reward cues with both impulsivity and other forms of psychopathology (Beck et al., 
2009; Hariri et al., 2006; Plichta and Scheres, 2014). The functional coupling of the VS and the 
amygdala in our data is moreover consistent with close structural and functional connectivity 
between the regions during the processing of affective stimuli (Cardinal et al., 2002). Second, as 
noted above, we find evidence that SV representations reflect load-dependent performance. 
Specifically, in the AI and dACC, we find that negative encoding of load is stronger for those 
with worse N-back performance. This result is consistent with behavioral evidence that 
subjective effort costs are closely coupled with perceived error rates during task performance 
(Dunn et al., 2017). Third, we find that state (trial-by-trial) variation in SV representations in the 
vmPFC predict subsequent choice. Specifically, high-load offer selection was anticipated by 
higher-than-average vmPFC BOLD signal during the valuation period, and this was particularly 
true on “anti-bias” trials, in which offers biased low-load offer selection. This finding supports the 
hypothesis that state variation in SV, as encoded by the vmPFC, determines momentary 
preference (Hare et al., 2014; 2011; 2009; Rudebeck and Murray, 2014). Moreover, the pattern 
is also consistent with the notion that the vmPFC serves as final common pathway for economic 
decision-making (Levy and Glimcher, 2012), incorporating the current motivational state (Bouret 
and Richmond, 2010). Our fMRI result also converges with single-cell neurophysiological 
evidence that vmPFC activity predicts a monkey’s willingness to perform effortful instrumental 
tasks (San-Galli et al., 2016). 

An influential hypothesis implicates the ACC/dACC in regulating cognitive control as a function 
of expected value, including reward benefits and effort costs (Shenhav et al., 2013). This 
hypothesis is motivated by prior evidence implicating the ACC in cost-benefit action selection 
(Croxson et al., 2009; Kennerley et al., 2009; Klein-Flugge et al., 2016; Kurniawan et al., 2010; 
Prévost et al., 2010; Schouppe et al., 2014a), maintaining temporally-extended action 
sequences (Holroyd and Yeung, 2012), and regulating cognitive control in response to cognitive 
demands (Botvinick et al., 2001). Our results support the hypothesis by demonstrating that 
information about both costs and benefits is represented in the ACC proper during offer 
valuation. The Expected Value of Control hypothesis does not stipulate whether the ACC/dACC 
would compute expected value during abstract, prospective single-offer valuation as opposed to 
instrumental action selection. Nevertheless, there is evidence of signed prediction-error value 
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signaling in the ACC/dACC (reviewed in Shenhav et al., 2013), and such signaling should occur 
as participants are presented with unpredictable pairings of first offer amount and load. Beyond 
encoding cognitive costs and benefits, another prediction of the hypothesis is that the 
ACC/dACC region is more active when decision stakes are high, as on more difficult decision 
trials. Our data confirm this prediction by showing that dACC activity was higher on when 
participants where deciding between two offers that were close in value versus when they were 
far apart. In fact, the dACC was one of the few ROIs sensitive to both prospective (first offer) 
cognitive load and decision difficulty (the difference in first and second offer SV), a unique 
pattern of results which are consistent with the Expected Value of Control hypothesis. 

Recent theoretical (Boureau et al., 2015; Kurzban et al., 2013; Shenhav et al., 2017) and 
empirical work (Dixon and Christoff, 2012; Kool and Botvinick, 2012; Westbrook et al., 2013) 
highlights that subjective cognitive effort costs modulate cognitive control demand avoidance, 
and contribute psychopathology (Cohen et al., 2001; Culbreth et al., 2016; Gold et al., 2014; 
Volkow et al., 2010; Westbrook et al., 2013). Using fMRI to monitor the brain while individuals 
considered offers to perform demanding cognitive tasks for money, we confirm that a putative, 
domain-general valuation network integrates cognitive costs and benefits, along with state and 
trait subjective factors to determine the value of cognitive effort. Importantly, and contrary to 
recent evidence, this network is the same one used to make decisions in other cost domains. 
This finding yields considerable leverage in understanding the mechanisms by which decisions 
about cognitive effort are made. As such, it provides a coherent set of neural targets for 
investigation of effort-based decision-making deficits in impaired populations, and for future 
development of interventions to enhance cognitive effort expenditure.  
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Methods 
CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources should be directed to and will be fulfilled by the 
lead contact, Andrew Westbrook (andrew.westbrook@brown.edu).  

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Participants Twenty-one healthy, right-handed, volunteer participants (eleven females, mean 
age = 21 years) recruited from the local Saint Louis community, gave informed consent as 
prescribed by the Institutional Review Board at Washington University. Prior to the current 
imaging study, all participants previously performed a separate behavioral and imaging study 
focused on N-back task performance, which will be the focus of a forthcoming report. Participant 
selection for the current study was based on ensuring both uniformly high N-back performance 
and sufficient individual variability in cognitive effort discounting in the included sample.  
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Compensation for participation was provided at the rate of $25 / hour (plus additional bonus for 
task completion; see below). 

METHOD DETAILS 

Apparatus and stimuli Stimuli were presented using the Psychophysics 
(www.psychtoolbox.com) toolbox in MATLAB (Mathworks, Natick, MA). For each N-back load, 2 
runs of 64 lower-case consonants were presented in 32 point Arial font, in one of six colors 
corresponding to the N-back load level: black (rgb code [0,0,0]), red [240,0,0], blue [0,0,255], 
purple [95,0,115], green [0,110,0], and brown [102,51,0] for the 1—6-back, respectively. Load 
levels were labeled by different colors, rather than by numeric load (“N”), to avoid anchoring 
confounds during decision-making (Chapman and Johnson, 1999). MR images were collected 
using a 12-channel 3-T Siemens Trio scanner (Siemens Medical Solutions USA, Inc., Malvern, 
PA).  

Procedure and task design The study was implemented in three-phases. In the first phase, 
following consent and screening for MR compatibility, participants performed the N-back task, 
completing 2 runs of each load level, in order of increasing load. In the second phase, 
indifference points were estimated, according to a discounting procedure detailed previously 
(Westbrook et al., 2013). Participants made a series of choices between repeating one of the 
higher N-back load level (N = 2—6) for ($2, $3, or $4) and the 1-back for amounts that varied by 
stepwise titration (over 5 choices per amount-load pair) until participants were indifferent 
between offers. In the third phase, the focus of this report, participants were scanned while 
performing a series of decision trials that systematically and orthogonally varied both decision 
difficulty and SV of the high-load offer. Over the course of 150 trials (3 amounts ´ 5 loads ´ 10 
repetitions), participants made a choice between performing the high-load N-back with the given 
load level and reward amount, and the 1-back at a lower, variable amount. The amount offered 
for the 1-back was determined by the proximity parameter g described in the main text. The 
proximity parameter g was repeated twice for each value from the set {-0.4, -0.1, 0.2, 0.6} and 
once each from the set {-1.0, 1.0} yielding 30 catch and 120 regular trials. Each trial lasted 13 s. 
As noted, these decision trials began with a single offer presented in isolation for 6 s, followed 
by a second offer presented for up to 5.25 s, or until a decision was made. Trials were 
concluded with either a fixation-cross, presented after the response was made, or instead, 
feedback that the response deadline was missed followed by a fixation cross until the next trial. 
Trials in which participants did not respond in time (1.15% of trials overall) were omitted from 
further analyses. 

Data were collected in two cohorts. In an early cohort (7 participants), T1 and T2 anatomical 
images were collected first, after which all decision trials were completed in a single run while 
1019 functional volumes were collected. In the later cohort, to reduce discomfort, trials were 
broken down into 3 runs (345 volumes each); in between task runs, participants were invited to 
relax, motionless while T1 and T2 anatomical scans were acquired. After all images were 
collected, one decision trial was chosen at random, and participants were required to repeat 1 
run of the chosen N-back level, after which they received the associated reward amount, as a 
monetary bonus added to their base compensation. 

Imaging parameters and acquisition T1 images were collected in 176 frames of 1´1´1 mm 
voxels using 2.4 s TRs, and spin-echo times of 3,080 ms, and an 8° flip angle. Anatomical T2 
images were also collected in 176 frames of 1´1´1 mm voxels using 3.2 s TRs, spin-echo times 
of 455 ms, and a 120° flip angle. Functional imaging sequences during decision trials were 
collected in 4´4´4 mm voxels using a 256´256 voxel field of view, 2,000 ms TRs, 27 ms spin-
echo times, and 90° flip angles. 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Imaging analyses All DICOM images were converted to NIFTI format using the Freesurfer 
function mri_convert. Subsequent steps of the analysis were implemented with AFNI software 
functions (Cox, 1996). Brain tissue was masked using the 3dSkullstrip function, images were 
concatenated using 3dTcat, aligned from oblique to cardinal orientation using the 3dWarp 
function, and then up-sampled to 3´3´3 mm voxels and aligned across all functional runs to the 
first run. Parameters for registration of functional volumes with anatomical T1 images were 
computed for each participant separately. Precise registration was verified visually for every 
participant and cost functions were tailored to optimize registration for each participant. Then, 
parameters for warping participant-specific anatomical images to a standard MNI space 
(MNI152_T1_2009c+tlrc) (Fonov et al., 2011) were computed. All registration and warping 
parameters were concatenated using the cat_matvec function, and applied as a single 
transformation to aligned functional image volumes using the 3dAllineate function. Following 
these transformations, functional images were smoothed using an 8.0 mm FWHM kernel and 
the 3dmerge function.  

Three distinct General Linear Models (GLMs) were fit to functional data using the 3dDeconvolve 
function. One GLM, designed to investigate the contrast of catch and regular trials, included 
stick regressors for the onset of the first offer convolved with a canonical hemodynamic 
response (gamma) function; this approach was used to obtain statistics in column 6 of Table 1. 
A second GLM, for investigating trial-wise modulation of signal by first offer SV, included finite 
impulse response regressors (“tent” functions in AFNI) spanning two trial epochs to capture the 
hemodynamic response lag (13 time points, 24 seconds), with the amplitude of each impulse 
response parametrically modulated by the SV of the first offer using the –stim_times_AM2 
argument to 3dDeconvolve. Note that we could estimate trial-wise modulation by SV, despite 
fixed inter-trial intervals and overlapping hemodynamics, by exploiting the pseudo-random order 
and uncorrelated variation in first offer load-amount pairs. This approach was used only for 
Supplemental Figure S.2. A third GLM included regressors of no interest only. Residuals of this 
third GLM were used for most analyses, including Figures 4—8 and columns 3-5 of Table 1. All 
GLMs included six motion regressors, polynomial regressors suited to run duration for low-
frequency drift, and a gamma-convolved stick function associated with the infrequent onset of a 
brief 5 s reminder menu listing all load levels in their associated color labels. In addition to 
motion regression, we censored all images with mean displacement ³ 0.3 mm prior to 
parameter estimation to minimize the effects of high-motion transients (Siegel et al., 2013). 

After fitting GLMs for individual subjects, we conducted random effects analyses. These were 
either on the contrast of regular and catch trials (first GLM), or on the average regression weight 
for the amplitude modulation 6—8 s after first offer onset (second GLM). As noted, these time 
points are coincident with the first 0—2 s of the second offer and are thus un-confounded by 
response to the second offer, accounting for hemodynamic lag. For the third GLM, we extracted 
and averaged residuals from all voxels lying within 6 mm radius spheres centered on loci of 
interest identified by prior literature. In all cases, we used exact coordinates as reported, except 
in the case of the amygdala, since the amygdala were slightly anterior of the center of mass 
reported in (Chong et al., 2017). For those loci, we used the anatomical amygdala centers as 
defined by (Eickhoff et al., 2005). We then conducted all statistical analyses on averaged 
sphere values, across trials and subjects. 

For testing whether activity encodes SV across trials and subjects, we fit hierarchical linear 
models of residual BOLD signals (𝑌()) as predicted by z-scored SV on trial i (𝑆𝑉()), with trials 
nested within participants (j): 

𝑌() = 𝐵&) + 𝐵")𝑆𝑉() + 𝜀() 
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𝐵&) = 𝛼&& + 𝑢&)	
𝐵") = 𝛼"& + 𝑢") 

Note that for this, and all other trial-level regression analyses, we excluded trials in which 
participants did not respond. Also, note that for individual ROIs, we fit models in which SV 
predicted mean BOLD signal, after regressing motion and signals of no interest, but with no 
further transformation. For fitting models in which set of ROIs comprising, for example, the SV 
meta-analysis network, we combined all ROIs into a single outcome measure (𝑌()) by first z-
scoring mean residual BOLD signals at 6—8 seconds, across trials, for each ROI, then 
averaging these z-scores across ROIs for each participant. This method was used to give each 
component ROI equal weighting in quantifying the mean, network / set-level response on a 
given trial. For all hierarchical models, we used the arm package for R version 1.10-1 
(https://CRAN.R-project.org/package=arm). 

For testing whether sets of ROIs, as a group, predict first offer SV in a series of nested, 
hierarchical models, we fit the following models including either ROIs from set 𝐴 alone (𝑅𝑂𝐼𝐴), 
then included ROIs from set 𝐵 (𝑅𝑂𝐼𝐵). Note that 𝑛7 refers to the total count of ROIs in set 𝐴, 
and so on. 

𝑆𝑉() = 𝐵&) + 𝐵7𝑅𝑂𝐼𝐴(

89

7:"

+ 𝜀() 

𝑆𝑉() = 𝐵&) + 𝐵7𝑅𝑂𝐼𝐴(

89

7:"

+ 𝐵;𝑅𝑂𝐼𝐵(

8<

;:"

+ 𝜀() 

𝐵&) = 𝛼&& + 𝑢&) 

After estimating these models, we compared model fit according to	𝜒# distributed DIC, to ask 
whether the additional degrees of freedom justify the inclusion of additional ROIs as predictors 
in the nesting model. Note that we also conduct a parallel analysis where we swapped response 
slowing (inverse reaction time) for SV as the dependent variable. 

Similarly, for testing whether z-scored amount and load are jointly predictive of residuals, we fit 
additional hierarchical linear models that replaced SV with these two terms. Note, however, that 
we did not model random effects for amount and load as they were fixed across participants, 
and also because including random effects for these predictors did not explain sufficient 
variance to justify the additional degrees of freedom according to a nested model comparison. 

𝑌() = 𝐵&) + 𝐵"𝐴𝑚𝑜𝑢𝑛𝑡( + 𝐵#𝐿𝑜𝑎𝑑( + 𝜀() 

For testing whether SV predicts residuals, controlling for the z-scored ratio of amount to load 
(𝑅C:E), we fit the following. Again, a nested model comparison provided evidence against 
estimating the random effects for the ratio predictor. 

𝑌() = 𝐵&) + 𝐵")𝑆𝑉() + 𝐵#𝑅C:E( + 𝜀() 

For testing whether SV predicts residuals, controlling for the ratio of amount to load in the three 
vmPFC ROIs (k), we fit the following three-level model to account for trials nested within 
spheres nested within participants. 

𝑌(F) = 𝐵&F) + 𝐵"F)𝑆𝑉(F) + 𝐵#𝑅C:E( + 𝜀(F) 

𝐵&F) = 𝛼&&) + 𝜀&F) 

𝐵"F) = 𝛼"&) + 𝜀"F) 
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𝛼&&) = 𝜈&&& + 𝑢&&) 

𝛼"&) = 𝜈"&& + 𝑢"&) 

For testing whether trait AUC, at the subject level, predicts residuals as a main effect, and in 
interactions with amount and load, we fit the following. Note that again, amount and load are 
treated as fixed effects, but that AUC was a predictor of those effects at the participant level of 
the model. 

𝑌() = 𝐵&) + 𝐵")𝐴𝑚𝑜𝑢𝑛𝑡( + 𝐵#)𝐿𝑜𝑎𝑑( + 𝜀() 

𝐵&) = 𝛼&& + 𝛼&"𝐴𝑈𝐶) + 𝑢&) 

𝐵") = 𝛼"& + 𝛼""𝐴𝑈𝐶) 

𝐵#) = 𝛼#& + 𝛼#"𝐴𝑈𝐶)	
We also tested whether choice and second offer bias related to BOLD residuals present during 
the valuation period, fitting a model with trials, i, 3 vmPFC ROIs, k, nested within participants, j. 

𝑌(F) = 𝐵&F) + 𝐵"𝐶ℎ𝑐𝐵𝑖𝑎𝑠( + 𝜀(F) 

𝐵&F) = 𝛼&&) + 𝜀&F) 

𝛼&&) = 𝜈&&& + 𝑢&&) 

The predictor ChcBias was coded to incorporate two factors: 1) whether the low or high demand 
option was chosen; and 2) whether the amount for the low demand option was above or below 
indifference, thus biasing choice towards the low or high demand option, respectively. The 
regressor took the following values, mapping to increasing trial-wise motivation to select the 
high-cost, high-benefit option on a given trial. For low demand chosen, anti-bias ChcBias = -1.5, 
for low demand chosen, pro-bias ChcBias = -0.5, for high demand chosen, pro-bias ChcBias = 
0.5, and for high demand chosen, anti-bias ChcBias = 1.5. This coding scheme was selected to 
emphasize the effect of higher state motivation reflected to select the high-load offer, particularly 
when choice was biased against this offer. 

To investigate whether level-specific N-back performance (𝑑′()) interacted with load level in 
predicting BOLD signal 6—8 s after first offer onset (𝑌()) on trial i for participant j, the following 
multi-level models were estimated in the dACC, and the bilateral AI.  

𝑌() = 𝐵&) + 𝐵"𝐴𝑚𝑜𝑢𝑛𝑡( + 𝐵#𝐿𝑜𝑎𝑑( + 𝐵O𝑑′() + 𝐵P) 𝑑′()×𝐿𝑜𝑎𝑑( + 𝜀() 

𝐵&) = 𝛼&& + 𝑢&) 

𝐵P) = 𝛼P& + 𝑢P) 

Finally, to test whether SV predicted BOLD signal 6—8 s after first offer onset, controlling for 
performance at that task load, we examined regression weights for the SV term in the following 
model. Note that random effect terms were not included for the performance predictor because 
they did not explain sufficient variance to justify their inclusion according to nested model 
comparisons. 

𝑌() = 𝐵&) + 𝐵")𝑆𝑉() + 𝐵#𝑑′() + 𝜀() 

𝐵&) = 𝛼&& + 𝑢&)	
𝐵") = 𝛼"& + 𝑢") 

KEY RESOURCES TABLE 
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REAGENT or RESOURCE SOURCE IDENTIFIER 
Software and Algorithms 
Psychtoolbox version 3.0.11 (Brainard, 1997) http://psychtoolbox.org/ 
AFNI version AFNI_17.2.09 (Cox, 1996) https://afni.nimh.nih.gov/ 
Freesurfer mri_convert   https://surfer.nmr.mgh.harvar

d.edu/ 
ICBM 152 Nonlinear atlases version 2009 (Fonov et al., 2011) http://www.bic.mni.mcgill.ca/S

ervicesAtlases/ICBM152NLin
2009 

R version version 3.4.1 R Core Development 
Team (Team) 

http://www.r-project.org/ 

arm package version 1.10-1 Gelman & Su (2018) https://CRAN.R-
project.org/package=arm 

lme4 package version 1.1-17 Bates, Maechler, Bolker, & 
Walker (2015) 

https://CRAN.R-
project.org/package=lme4 

lmerTest package version 3.0-1 Kuznetsova, Brockhoff, & 
Christensen (2017) 

https://CRAN.R-
project.org/package=lmerTest 

reshape package version 0.8.7 Wickham (2007) https://CRAN.R-
project.org/package=reshape 

Functional Magnetic Resonance Imaging 
Siemens Magnetom Trio 3T scanner Siemens Medical 

Solutions, USA 
http://www.siemensmriequipm
ent.com/ 
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