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Abstract  38	

 39	

Although clonal expansion is a hallmark of adaptive immunity, the location(s) where 40	

antigen-responding T cells enter cell cycle and complete it have been poorly explored.  41	

This lack of knowledge stems partially from the limited experimental approaches 42	

available.  By using Ki67 plus DNA staining and a novel data analysis technique, we 43	

distinguished antigen-specific CD8 T cells in G0, in G1, and in S-G2-M phases after 44	

intramuscular vaccination of BALB/c mice with antigen-expressing viral vectors.  We 45	

discovered an entire population of cycling cells that are usually missed.  This “extra” 46	

population was present early after vaccination in lymph nodes, spleen and, 47	

surprisingly, also in the blood, which is not expected to be a site for mitosis of normal 48	

non-leukemic cells.  These results have implications for previous and future 49	

immunological studies in animal models, and potentially in humans.  They might also 50	

inspire hematologists to seek for other missed populations of dividing cells in blood. 51	

 52	
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Introduction  54	

 55	

Cell-to-cell interactions within tissue niches in solid organs and hematopoietic bone 56	

marrow (BM) regulate proliferation of stem cells and differentiated progenitors (1, 2), 57	

along with structural, physical, paracrine and neural cues provided by the 58	

microenvironment (3). Similarly, clonal expansion of T cells during adaptive immune 59	

responses is driven by antigen presenting cells within specialized niches in lymphoid 60	

organs, where local chemokines and cytokines guide T cell responses (4). 61	

 62	

We nevertheless still lack essential spatial information on clonal expansion, 63	

particularly as to the location of T cells during each phase of the cell cycle. To date, T 64	

cell expansion in animal models has been mostly measured by dyes that label cells 65	

proliferating over time (e.g. CFSE; BrdU)	(5, 6), without the ability to assess whether 66	

the labeled cells found in a particular location proliferated locally or rather migrated 67	

into that organ after dividing elsewhere. Another common method is staining for the 68	

intranuclear protein Ki67, after cell fixation and permeabilization (7–10). Though 69	

Ki67 is generally considered to label dividing cells, it actually labels all cells not in 70	

G0, not distinguishing actively cycling cells committed to mitosis (those in S-G2-M) 71	

from those in G1, which may quickly proceed into S, or stay in a prolonged G1, or 72	

even revert to G0 without dividing (11). 73	

 74	

Here we used Ki67 plus DNA staining to track rare naïve antigen-specific CD8 T 75	

cells responding to vaccination in wild-type mice (12, 13). The naïve CD8 T cells 76	

clonally expanded, and we analyzed the resulting polyclonal population.  77	

 78	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 14, 2018. ; https://doi.org/10.1101/391664doi: bioRxiv preprint 

https://doi.org/10.1101/391664


	 4	

We found a significant number of antigen-responding CD8 T cells cycling in lymph 79	

nodes (LNs), spleen and (surprisingly) in the blood, a finding that opens new 80	

directions for the analysis of immune responses. 81	

 82	
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Results 84	

 85	

BALB/c mice were vaccinated intramuscularly (i.m.) against the model antigen, HIV-86	

1 gag, using a recombinant chimpanzee-derived adenoviral vector (ChAd3-gag) and a 87	

Modified Virus Ankara (MVA-gag) for priming and boosting, respectively (12).  The 88	

cell cycle stages of gag-specific CD8 T cells were analyzed using Hoechst 33342, a 89	

DNA dye, and anti-Ki67 mAb (14, 15). 90	

 91	

Fig 1A-B shows the steps for analysing gag-specific CD8 T cells by flow cytometry, 92	

fig. 1B an example of spleen and LN cell analysis at day (d) 3 post-boost.  Steps 1-2 93	

identify single cells by DNA analysis, and live cells by dead cell marker exclusion.  94	

Step 3 uses Forward Scatter-A (FSC-A) and Side Scatter-A (SSC-A) profiles to 95	

identify certain leukocyte populations.  Lymphocytes tend to have low SSC-A and 96	

medium-low FSC-A, whereas granulocytes have high SSC-A, and are normally 97	

excluded from the canonical ‘narrow’ gate used for lymphocyte studies (16–19) (Fig. 98	

1B, Step 3, ‘narrow’).  However, we noticed an unusual population of cells with high 99	

SSC-A that appeared only in vaccinated spleens and contained a significant number 100	

of antigen-specific lymphocytes (Fig. 1B, Step 3, arrow).  When we enlarged our 101	

FSC-A/ SSC-A gate (Step 3 ‘relaxed’), before labeling CD8 T cells (Step 4) and 102	

antigen-specific T cells (Step 5), we found a 2-6 fold greater proportion of gag-103	

specific CD8 T cells in the ‘relaxed’ gate population than in the ‘narrow’ gate 104	

population: not only in the spleen but also in the LNs (Fig. 1B-D).  Although this 105	

gating strategy is novel for standard ex vivo studies of lymphocytes (Fig. 1-S1), cells 106	

with high FSC-A and high SSC-A are often included when examining in vitro 107	

activated T cells (20). 108	
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 109	

In order to discriminate between gag-specific CD8 T cells in G0, G1, and S-G2-M, we 110	

examined Ki67 expression plus DNA content, using either the ‘narrow’ or the 111	

‘relaxed’ gate (Fig. 2). We observed a striking difference in the percentages of 112	

proliferating cells between the two strategies. The ‘narrow’ gate missed most of the 113	

dividing cells in S-G2-M (<2%), whereas the ‘relaxed’ gate revealed that these cells 114	

made up to 42% of the gag-specific cells in LNs and 26% in spleen (Fig. 2A, C). Cell 115	

cycle entry and progression was accompanied by a graded increase of FSC-A, and 116	

more prominently of SSC-A (Fig. 2B-C). Proliferation was also seen after a single 117	

priming dose, though the kinetics were slower and there were fewer cells in S-G2-M 118	

(Fig. 2-S1). 119	

	120	

The ‘narrow’ gate missed up to a third of gag-specific CD8 T cells in the blood (Fig. 121	

3A), which —with the ‘relaxed’ gate— averaged 2% at d3, 36% at d7, and 13% at 122	

d44 post-boost (Fig. 3B). As expected (12), gag-specific cells down-modulated 123	

CD62L (Fig 3-S1A-B).  A well-defined population of mitotic gag-specific CD8 T 124	

cells was revealed uniquely using the ‘relaxed’ gate.  Cells in S-G2-M were obvious at 125	

d3 (up to 13%) and less evident at d7 when Ki67+ peaked (up to 94%), suggesting that 126	

Ki67+ cells (non G0) persist in blood after mitotic cells disappear (Fig. 3C-D; 3-S1C-127	

D). By day 44, almost all gag-specific cells were in G0 (Fig. 3C), suggesting that they 128	

had mostly switched to a resting memory state. We also saw mitotic antigen-specific 129	

CD8 T cells in blood after a single priming shot of vaccine (Fig. 3-S2).  130	

 131	

Hypothesizing that the increased DNA content of the expanding CD8 T cells could be 132	

exploited as a marker to identify antigen-responding cells in the blood, we focussed 133	
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on CD62L(-) cells, as CD62L is generally down-regulated upon activation (Fig. 3-134	

S1A-B). We evaluated the frequency of gag-specific cells among the following 4 135	

populations of CD8 T cells (Fig. 4A): 1) total CD8 T (including naïve, memory and 136	

recently activated cells), 2) CD62L(-) (non-naïve cells), 3) CD62L(-) Ki67+ (non-Go 137	

non-naïve cells), 4) CD62L(-) in S-G2-M (dividing non-naïve cells).  At day 3, the 138	

average percentage of gag-specific cells among the dividing non-naïve cells was 15-139	

fold higher than among total CD8 T cells (Fig. 4C), sometimes up to 70% (Fig 4B), a 140	

much higher proportion than observed among the other 3 populations (Fig 4B-C).  By 141	

d7, the gag-specific cells comprised 40% of the dividing non-naïve and 84% of the 142	

non-G0 non-naïve population.  By d44 gag-specific cells were decreased in all the 143	

populations, though less evidently in the CD62L(-)  population (Fig. 4C). Results were 144	

similar, though the kinetics slower, after a single priming dose (Fig 4-S1). 145	

 146	

Since CD62L is a cell membrane molecule, and DNA can be visualized using vital 147	

dyes, our results suggest that the dividing CD62L(-) CD8 T cells in blood could 148	

potentially be a valuable source of live antigen-specific CD8 T cells at early times of 149	

response. 150	

 151	

  152	
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Discussion 153	

 154	

Long ago, Sprent showed that, within days of an immunogenic stimulus, antigen-155	

specific ‘blast’ T cells circulated in the thoracic duct lymph (21).  There was no way 156	

of knowing at that time whether these were proliferating or simply activated cells.  157	

Here we show that mitotic antigen-specific T cells circulate in the blood stream, 158	

challenging the current view that the S-G2-M phases of clonal expansion occur only in 159	

lymphoid organs, or sometimes in BM, or in extra-lymphoid follicles in tissues (22, 160	

23).  Thus proliferation is not always limited to supportive tissues sites, but cells that 161	

have been stimulated in one organ can expand while circulating to other sites. 162	

 163	

Mitotic gag-specific CD8 T cells were found in the blood after a single dose of 164	

ChAd3-gag, although they were fewer than after a boost with MVA-gag, possibly due 165	

to slower kinetics, and/or differences in spatial distribution of antigen-responding 166	

CD8 T cells inside the LNs (24) that were reflected in the blood.  Further studies will 167	

be necessary to elucidate whether naïve and memory cells behave differently upon 168	

stimulation in vivo, whether vaccination route matters, and whether the cycling CD8 169	

T cell clones in the blood comprise a special highly dividing subset and/or express 170	

high affinity TCRs.  171	

 172	

The majority of dividing CD8 T cells in blood, spleen and LNs showed increased 173	

FSC-A and unusually high SSC-A, likely due to changes in mitochondria, chromatin 174	

condensation, etc. (25, 26).  Cells with these characteristics are usually excluded from 175	

the analysis of normal lymphocytes ex vivo, for example human blood lymphocytes 176	

in conditions apart from cancer.  Considering that nearly all immunological studies in 177	
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humans use blood samples, important informations are likely to be missed, perhaps 178	

leading to incorrect conclusions.  For example, it was found that up to 70% of virus-179	

specific CD8 T cells were Ki67+ in the blood of patients at early phases of primary 180	

infections (8, 9), whereas memory-phenotype CD8 T cells from the blood of donors 181	

with no apparent infections comprised about 2-10% of Ki67+ cells (27). Furthermore, 182	

an early increase of Ki67+ PD-1+ CD8 T cells was observed in the blood of a subset of 183	

lung cancer patients treated with checkpoint inhibitors, and it was proposed that this 184	

could be relevant for antitumor effects (28). In all these studies it was suggested that 185	

the Ki67+ cells were proliferating in response to a recent immunogenic stimulus (8, 9, 186	

27, 28), however cells with high side scatter were discarded (9, 28), and DNA content 187	

was not evaluated (8, 9, 27, 28), thus it cannot be distinguished whether the Ki67+ 188	

were actively cycling, or rather they were non-proliferating cells in G1, possibly on 189	

their way back to G0. Furthermore, the proliferation —when present— was likely 190	

greatly underestimated.  A single study in humans did use DNA staining, and found 191	

that an average of <0.1% of memory-phenotype CD8 T cells were in S-G2-M in the 192	

blood of donors with no systemic diseases (27).  The interpretation at that time was 193	

that blood-derived memory CD8 T cells are resting (27, 29, 30). We suggest instead 194	

that the cells in S-G2-M could have been newly activated cells responding to an 195	

environmental antigen. 196	

 197	

Our results have several potential translational uses.  For example, human blood 198	

might be the source of enriched populations of recently activated CD8 T cells, 199	

proliferating in response to vaccines, infections, transplantation and cancers, that 200	

could be studied, cloned and used therapeutically, even without knowing the antigen 201	

to which they are responding, or as a way of searching for that antigen.  And, in cases 202	
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where a patient presents with symptoms of immune activation, but no obvious 203	

infection, an analysis of the mitotic cells in the blood could reveal clues as to the 204	

cause of the symptoms and/or the target of the response. 205	

  206	
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Material and Methods  207	

 208	

Adenoviral and MVA vectors  209	

Replication defective, ΔE1 ΔΕ2 ΔΕ3 ChAd3 vector encoding HIV-1 gag protein 210	

under HCMV promoter (ChAd3-gag, 21) (31) and Modified Vaccinia Ankara 211	

encoding the HIV-1 gag protein under the control of vaccinia p7.5 promoter (MVA-212	

gag) were used in all experiments. 213	

 214	

Vaccination 215	

Six-week-old female BALB/c mice from Envigo (S. Pietro al Natisone, Udine, Italy) 216	

were housed at Plaisant animal facility (Castel Romano, Rome, Italy), and divided 217	

into experimental groups of at least 40 mice each (untreated and vaccinated). All mice 218	

of the vaccinated group were primed with ChAd3-gag, and a subset was analyzed 219	

after priming only. The remaining primed mice were boosted once with MVA-gag, at 220	

either d60 (range 60-67) or d100 (range 95-109) post-prime. Results of d60 and d100 221	

boosts were similar, thus we combined them. Viral vectors were administered i.m. in 222	

the quadriceps at a dose of 107 viral particles (vp) for ChAd3-gag and 106 plaque-223	

forming units (pfu) for MVA-gag, in a volume of 50 µl per side (100 µl total).  All 224	

experimental procedures were approved by the local animal ethics council and 225	

performed in accordance with national and international laws and policies (UE 226	

Directive 2010/63/UE; Italian Legislative Decree 26/2014). Vaccination procedures 227	

were performed under anesthesia, and all efforts were made to reduce animal numbers 228	

and minimize suffering. 229	

 230	

Organs 231	
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Spleen, LNs and blood were obtained at different times after either prime or boost, i.e. 232	

d7, d10 and d14 post-prime; d3, d7 and d44 post-boost. At each time, the organs were 233	

collected from 3 vaccinated and 3 untreated mice, and cells from the 3 mice of each 234	

group were pooled. At d7 (and in one experiment at d3) blood was obtained by 235	

submandibular vein puncture in conscious mice. At all the other time points organ 236	

harvesting was scheduled, thus blood was obtained by cardiac puncture upon carbon 237	

dioxide euthanasia. Blood was immediately put into Heparin or EDTA blood 238	

collection tubes and further processed for analysis. Single-cell suspensions were 239	

prepared from spleen and LNs (iliac and inguinal) by mechanical disruption and 240	

passage through cell strainers (32).  241	

 242	

Membrane Staining  243	

Spleen and LN cells were incubated with Fixable Viability Dye conjugated with 244	

eFluor780 fluorochrome (Affimetrix, eBioscience, Santa Clara, CA) and background 245	

staining was blocked with anti-FcγR mAb (clone 2.4G2). Cells were then incubated 246	

for 15 minutes at 4°C with H-2k(d) AMQMLKETI APC-labeled Tetramer (Tetr-gag, 247	

NIH Tetramer Core Facility, Atlanta, GA) and PE-labeled Pentamer (Pent-gag, 248	

Proimmune, Oxford, UK) to stain for gag197-205(gag)-specific CD8 T cells. Cells were 249	

incubated for further 15 minutes at 4°C after addition of the following mAbs: anti-250	

CD3 peridinin chlorophyll protein (PerCP)-Cy5.5 (clone 145-2C11, BD Biosciences), 251	

anti-CD8α BUV805 (clone 53-6.7, BD Biosciences), anti-CD62L phycoerythrin (PE)-252	

Cy7 (clone MEL-14, Biolegend, San Diego, CA, USA). Blood samples were 253	

incubated for 30 minutes at RT with the above antibodies/reagents that were placed 254	

all together. After washing, blood cells were fixed with Cell Fix solution (BD 255	

Biosciences). Red cells were lysed with Pharm Lyse solution (BD Biosciences). 256	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 14, 2018. ; https://doi.org/10.1101/391664doi: bioRxiv preprint 

https://doi.org/10.1101/391664


	 13	

 257	

Intracellular Staining 258	

Intracellular staining for Ki67 and DNA was performed as previously described, with 259	

some modifications (14, 15). Cells were fixed and permeabilized with 260	

Foxp3/Transcription Factor Staining Buffer (Affimetrix, eBioscience). Intracellular 261	

staining was performed with anti-Ki67 mAb conjugated with Fluorescein 262	

isothiocyanate (FITC) or Alexafluor 700 (clone SolA-15; eBioscience). DNA was 263	

stained by incubation with Hoechst 33342 (Thermo Fisher Scientific, Waltham, MA).  264	

 265	

Flow cytometry analysis 266	

Samples were analyzed by LSRFortessa flow cytometer (BD Biosciences), gating out 267	

CD3(-) cells when acquiring spleen samples. Data were analysed using FlowJo 268	

software, v.10 (FlowJo, Ashland, OR, USA). 269	

 270	

Statistical analysis  271	

At each time point, the vaccinated group was compared with its corresponding 272	

untreated group by performing a two-tailed unpaired Student t test with Welch’s 273	

correction. A two-tailed paired Student t test was used for comparison of N and R 274	

gates. Friedman test with Dunn’s multiple comparison was used for comparison of 275	

multiple cell subsets within vaccinated mice samples. Differences were considered 276	

significant when *p ≤ 0.05; ** p ≤ 0.01;  *** p ≤0.001. Statistical analysis was 277	

performed using Prism v.6.0f, GraphPad Software (La Jolla, CA, USA). 278	

  279	
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FIGURE 1. Comparison between the narrow (N) and the relaxed (R) gating strategy to evaluate 
frequency of gag-specific CD8 T cells from spleen and LNs of vaccinated mice at day (d) 3 post-boost. 
Female BALB/c mice were vaccinated by prime i.m. with ChAd3-gag (107 vp) and boost i.m. with MVA-gag (106 pfu). Cells 
from Spleen (SP) and LN (LNs) of vaccinated and untreated mice were analyzed by flow cytometry at d3 post-boost. CD3(-) 
cells were gated out when acquiring spleen samples. (A) Scheme of the gating strategy for analysis of flow cytometry data in 
5 steps, to identify the following cells: single cells (Step 1); live cells (Step 2); lymphocytes (Step 3); CD8 T cells (Step 4); 
gag-specific cells (Step 5). (B) Examples of flow cytometry analysis of cells from spleen (top) and LNs (bottom). At step 1, 
we discriminated single cells from doublets and aggregates by DNA content (DNA-A versus DNA-W). At Step 2 we 
excluded dead cells by using the eFluor780 Fixable Viability Dye. At Step 3, we used either the canonical gate for 
lymphocyte analysis (‘narrow’, N) or our proposed gate (‘relaxed’, R) in the FSC-A/ SSC-A plot, as indicated. At Step 4 we 
gated on CD3+ CD8+ cells, and at Step 5 we evaluated the percentages of gag197-205 (gag)-specific cells among them, by 
combined staining with Pent-gag and Tetr-gag. The numbers represent the percentages of cells in the indicated regions. The 
arrow in the vaccinated spleen FSC-A/ SSC-A plot indicates an unusual population of cells that was excluded by the N gate 
(see main text). (C) Summary of gag-specific CD8 T cell frequencies in spleen and LNs. The figure summarizes results 
obtained in 5 prime/boost experiments with a total of 30 mice. Statistically significant differences between N and R are 
indicated (** p ≤ 0.01). Differences in the frequency of gag-specific CD8 T cells between untreated and vaccinated mice 
were statistically significant both in spleen and LNs, using either R or N gating strategy (p ≤ 0.05, not shown). (D) Typical 
FSC-A/ SSC-A plots of gag-specific and not-specific CD8 T cells from spleen and LNs of vaccinated mice at d3 post-boost, 
gated using the R gate as in B.  
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FIGURE 2. Comparison between the narrow (N) and the relaxed (R) gating strategy to evaluate cell cycle 
of gag-specific CD8 T cell from spleen and LNs of vaccinated mice at d3 post-boost.  
Cell cycle of gag-specific CD8 T cells at d3 post-boost was analyzed by Ki67 plus DNA staining, using either the N or the R 
gating strategy as in Fig. 1B. (A) Typical DNA/ Ki67 staining profiles of spleen (left) and LNs (right), after gating on gag-
specific CD8 T cells. Fluorescence Minus One (FMO) controls and Ki67 staining are shown, as indicated. Based on DNA 
and Ki67 staining, cells in the following phases of cell cycle were identified in the corresponding quadrant: cells in G0 
(Ki67(-), 2n DNA), cells in G1 (Ki67+, 2n DNA) and cells in S-G2-M (Ki67+, 2n<DNA<4n), as indicated. The numbers 
represent the percentages of cells in the corresponding quadrant. (B) Typical FSC-A/ SSC-A plots of gag-specific CD8 T 
cells in G0, G1 and S-G2-M, gated as in A. (C) Summary of the percentages of gag-specific CD8 T cells in G0, in G1 and in S-
G2-M in spleen (top) and LNs (bottom), gated as in A. The figure summarizes results obtained in 5 boost experiments with a 
total of 30 mice. Statistically significant differences between N and R are indicated (* p ≤ 0.05; ** p ≤ 0.01).  
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FIGURE 3. Analysis of the frequency and cell cycle of gag-specific CD8 T cells in the blood of vaccinated 
mice at d3, d7 and d44 post-boost.  
Female BALB/c mice were vaccinated as in Fig. 1. Blood was obtained from untreated and vaccinated mice at d3, d7 and 
d44 post-boost and gag-specific CD8 T cells were analyzed in 5 steps as in Fig. 1A and B, using either the N or the R gates at 
Step 3. (A) Example of flow cytometry analysis of blood cells from untreated and vaccinated mice at d3 post-boost. The 
numbers represent the percentages of cells in the indicated regions. (B) Summary of gag-specific CD8 T cell frequencies in 
the blood of untreated and vaccinated mice, obtained using the R gate. (C) Summary of the percentages of gag-specific CD8 
T cells in G0 (top), in G1 (middle) and in S-G2-M (bottom) in the blood of vaccinated mice, compared with corresponding 
percentages among blood CD8 T cells from untreated controls, all obtained using the R gate. (D) Summary of the 
percentages of blood gag-specific CD8 T cells in G0 (top), in G1 (middle) and in S-G2-M (bottom) at d3, d7, and d44 post-
boost, gated using either the N or the R gates as in A (see examples of cell cycle analysis using the R gate in Fig S3.1). The 
figure summarizes results obtained in 6 prime/boost experiments with a total of 60 mice. In B and C statistically significant 
differences between vaccinated and untreated mice are indicated at each time of analysis. In D statistically significant 
differences between N and R are indicated (*p ≤ 0.05; ** p ≤ 0.01;  *** p ≤0.001). 
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FIGURE 4. Specific enrichment of gag-specific CD8 T cells within a population of CD62L(-) CD8 T cells in 
S-G2-M in the blood of vaccinated mice at d3 post-boost.   
Mice were vaccinated and blood samples analyzed at d3, d7 and d44 post-boost as in Fig. 3, using the R gate. 
The frequency of gag specific CD8 T cells among the following cell populations was determined: total CD8 T 
cells; CD62L(-) CD8 T cells; Ki67+ CD62L(-) CD8 T cells, and CD62L(-) CD8 T cells in S-G2-M. (A) Gating 
strategy. (B) Example of flow cytometry profiles at d3 post-boost. (C) Summary of the results. In B the numbers 
represent the percentages of cells in the indicated regions. In C statistically significant differences are indicated 
at each time of analysis (*p ≤ 0.05; ** p ≤ 0.01). The figure summarizes results obtained in 6 prime/boost 
experiments with a total of 60 mice.  
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