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Abstract
Moving fronts of cells are essential for development, repair and disease progression. Therefore,
understanding and quantifying the details of the mechanisms that drive the movement of cell fronts
is of wide interest. Quantitatively identifying the role of intercellular interactions, and in particular
the role of cell pushing, remains an open question. Indeed, perhaps the most common continuum
mathematical idealization of moving cell fronts is to treat the population of cells, either implicitly
or explicitly, as a population of point particles undergoing a random walk that neglects intercellular
interactions. In this work, we report a combined experimental-modelling approach showing that
intercellular interactions contribute significantly to the spatial spreading of a population of cells.
We use a novel experimental data set with PC-3 prostate cancer cells that have been pretreated
with Mitomycin-C to suppress proliferation. This allows us to experimentally separate the effects
of cell migration from cell proliferation, thereby enabling us to focus on the migration process in
detail as the population of cells recolonizes an initially-vacant region in a series of two-dimensional
experiments. We quantitatively model the experiments using a stochastic modelling framework,
based on Langevin dynamics, which explicitly incorporates random motility and various intercel-
lular forces including: (i) long range attraction (adhesion); and (ii) finite size effects that drive
short range repulsion (pushing). Quantitatively comparing the ability of this model to describe the
experimentally observed population-level behaviour provides us with quantitative insight into the
roles of random motility and intercellular interactions. To quantify the mechanisms at play, we
calibrate the stochastic model to match experimental cell density profiles to obtain estimates of
cell diffusivity, D, and the amplitude of intercellular forces, f0. Our analysis shows that taking a
standard modelling approach which ignores intercellular forces provides a poor match to the exper-
imental data whereas incorporating intercellular forces, including short-range pushing and longer
range attraction, leads to a faithful representation of the experimental observations. These results
demonstrate a significant role for intercellular interactions in cell invasion.
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Author summary
Moving cell fronts are routinely observed in various physiological processes, such as wound heal-
ing, malignant invasion and embryonic morphogenesis. We explore the effects of a previously
overlooked mechanism that contributes to population-level front movement: pushing. Our frame-
work is flexible and incorporates range of reasonable biological phenomena, such as random motil-
ity, cell-to-cell adhesion, and pushing. We find that neglecting finite size effects and intercellular
forces, such as cell pushing, reduces our ability to mimic and predict our experimental observa-
tions.

Introduction
Moving cell fronts occur during many physiological processes, such as wound healing, develop-
mental morphogenesis, and malignant invasion [1, 2, 3, 4, 5, 6]. Typically, cell fronts are observed
as advancing, sharp boundaries between densely occupied and vacant regions, or as a moving inter-
face between two distinct populations of cells. An example of the first scenario is wound healing,
where populations of cells close and recolonize an initially vacant space [7, 8], as shown in Fig
1. An advancing interface between two populations of cells is often associated with malignant
invasion into surrounding tissues [9, 10, 11]. Thus, improving our understanding of how cell pop-
ulations spread can provide important, clinically-relevant information about the nature of moving
cell fronts. Historically, moving cell fronts have been studied, both in vitro and in vivo, to provide
both qualitative and quantitative information about the mechanisms that drive front movement. We
note that quantifying the precise contributions of various cellular-level mechanisms that lead to
population-level front behavior is a nontrivial task that requires the integration of many different
types of experimental data [12]. Often it is assumed that the movement of advancing cell fronts
is driven by combined effects of undirected cell migration and carrying capacity-limited cell pro-
liferation [13, 12]. At present, a fundamental question, which remains largely overlooked in the
mathematical biology literature, is – what is the role of cell-to-cell interactions and how does short
range cell pushing influence population-level front movement?

Cell motility is a complicated process involving both the interplay and competition between
various individual-level mechanisms [14, 15, 16, ?]. One of the most well-studied individual-level
cell motility mechanisms is lamellipodial cell migration where cells undergo undirected move-
ment due to myosin-powered contractions of the actin network under the cytoplasmic membrane
[17]. Since this process is observed in many cell types, it remains prevalent in many mathemati-
cal modelling frameworks. As such, the assumption that cells undergo Brownian motion is often
invoked and cells are represented, either implicitly or explicitly, as non-interacting point particles
that move according to a white Gaussian process [18]. While this approach is appealing due to
its simplicity, it neglects the effects of intercellular interactions, such as adhesion and finite size
(crowding) effects. The neglect of cell-cell adhesion can be problematic because it is known that
mesenchymal cell types, such as keratinocytes, can be strongly affected by cell-cell adhesion dur-
ing wound healing [19]. Furthermore, adherent cells can form clusters that exhibit qualitatively
different behaviour from isolated cells [20, 21, 22]. Arguably, some of the most striking examples
of front-like spreading of a cell population occur during embryonic development, such as neural
crest cell invasion in the developing gut tissues, which is though to arise as a consequence of com-
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Figure 1: What drives the movement of cell fronts? A: Experimental image showing the leading edge of a moving
front of PC-3 prostate cancer cells. This front is moving in the positive x direction. B: Schematic of A showing the
position of the front (vertical dashed line) with the front moving in the positive x direction. The location of the region
in A is the blue rectangle superimposed in Fig 2(A).

bined undirected Brownian cell motility and carrying capacity-limited cell proliferation [13, 23].
However, previous investigations have made the point that short range cell pushing can also play
a role in driving the movement of cell fronts in confined environments, such as living tissues [24].
Henceforth, we hypothesize that cells in a confined space may generate population pressure, driven
by finite size effects and local repulsion, which can stimulate spatial expansion of the population.

Perhaps the most popular mathematical framework for modelling the movement of cell fronts
involves using reaction-diffusion equations [25, 26, 27, 28, 29], including the Fisher-Kolmogorov
equation, and generalisations thereof. Although classical reaction-diffusion equations are routinely
used to describe the movement of cell fronts, there are a few notable disadvantages of this frame-
work, namely: (i) classical reaction-diffusion models based on linear diffusion do not include any
cell-to-cell interaction forces; and (ii) classical reaction-diffusion models do not explicitly model
individual cells within the population. Previously, the lack of individual-level experimental data
meant that classical reaction-diffusion models might have been an acceptable way to conceptualize
and simulate collective cell behaviour. However, with the increasing availability of individual-level
information it is becoming increasingly important to develop mathematical models that provide
both population-level information and individual-level information.

In this work we quantitatively examine the roles of random motility and intercellular inter-
actions, including both long range adhesion and short range pushing, in a canonical experiment
describing the movement of cell fronts on a two-dimensional substrate. Previously, cell pushing
has been incorporated into lattice-based models of cell motility where agents move on a spatial
domain that is represented as a regular lattice [30, 31]. However, these previous studies about
the role of cell pushing are primarily theoretical studies that do not consider calibrating models to
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quantitatively match any experimental data. Our current work is the first attempt to incorporate
intercellular interactions, including both long range adhesion and short range cell pushing, into
a more realistic spatially continuous off-lattice discrete model of cell migration. Importantly, we
directly apply the model to quantitatively mimic a novel experimental data set. In our experiments
we isolate the role of cell migration from the effects of cell proliferation by working with a popula-
tion of cells that is pre-treated with a chemotherapy drug to suppress proliferation. This is a critical
feature of our work because it is well-known that carrying capacity-limited cell proliferation tends
to dominate and mask the role of cell migration, and that it can be difficult to distinguish between
different cell migration mechanisms in the presence of carrying capacity-limited cell proliferation
[32]. Fig 2 illustrates the IncuCyte ZOOMTM scratch assay experimental protocol that we use in
this work, at t = 0 h and t = 48 h. The IncuCyte ZOOMTM experimental system is an automatic
live cell imaging technology which has two important advantages over classical scratch assays: (i)
scratches are uniform and reproducible; and (ii) images are automatically recorded without inter-
rupting an experiment [33]. As previously mentioned, we work with cells that are pretreated with
the chemotherapy drug Mytomicin-C to block DNA replication and, consequently, suppress prolif-
eration [34]. This means that the number of cells present in the experimental field of view over the
duration of the experiment remains approximately constant. However, a side effect of Mytomicin-
C pretreatment is that individual cells increase in size during the experiment as the cells prepare
to proceed through the cell cycle but are unable to divide [35]. This dynamic increase in cell size,
which is typically neglected in previous modelling studies [35], can significantly influence inter-
cellular interactions during the experiment and so we take great care to incorporate these effects
into our mathematical model. We find that our approach for incorporating dynamic cell size effects
in the model is justified by also working with a simpler model that neglects dynamic changes in
cell size and we find that the simpler, standard model leads to a poor match with the experimental
data.

This work is structured as follows. We begin by describing the IncuCyte ZOOMTM exper-
imental protocol, the experimental data, and the procedure we use to process the experimental
images. We then introduce the discrete mathematical model which accounts for random motility
and intercellular interactions including short range pushing and longer range attraction, as well as
incorporating a mechanism for describing dynamic cell size changes. We refer to this model as
Model I since it incorporates all four mechanisms that are thought to be relevant to the experimen-
tal system. To quantitatively explore the significance of these various cell-level mechanisms we
systematically repeat the model calibration process for a range of simpler, more commonly used
models. These simplified models account for: (i) random motility and intercellular forces (Model
II); (ii) intercellular forces only (Model III); and (iii) random motility only (Model IV). We discuss
the performance of each model when applied to the IncuCyte ZOOMTM data in the Results and
Discussion section. Finally, in the Conclusions we summarize our findings and discuss alternative
applications and extensions of our modelling framework.
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Figure 2: Experimental data. A-B: Images from an IncuCyte ZOOMTM assay with Mitomycin-C pretreated PC-
3 prostate cancer cells. The scale bar in each image corresponds to 300 µm. The green solid lines show the initial
position of the two opposingly directed cell fronts. The blue rectangle denotes the location of the subregion highlighted
in Fig 1(A). C: Cell diameter data as a function of time, δ(t), from a sample of 30 randomly chosen cells at each time
point. Black dots indicate the sample mean and the error bars denote the sample standard deviation about the sample
mean. Red solid line represents the best-fit linear approximation, δ(t) = 29.26 + 0.33t. R2 is the adjusted coefficient of
determination measuring the goodness of fit.

Materials and methods

IncuCyte ZOOMTM experimental data
Monolayer scratch assays are performed using the IncuCyte ZOOMTM system (Essen BioScience,
MI USA [33]) as shown in Fig 2(A-B). This technology automatically captures images of cell cul-5
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tures without disrupting the fragile micro-environment. All experiments are performed using the
PC-3 prostate cancer cell line [36] from the American Type Culture Collection (ATCC, Manassas,
USA). The cell culture is prepared in RPMI 1640 medium (Life Technologies, Australia) in 10 %
foetal calf serum (Sigma-Aldrich, Australia), with 100 U/mL penicillin, 100 g/mL streptomycin
(Life Technologies), in plastic flasks (Corning Life Sciences, Asia Pacific) that are maintained in
5 % CO2 and 95 % air in a Panasonic incubator (VWR International) at 37 C. Cells are regularly
screened for Mycoplasma (Nested PCR using primers from Sigma-Aldrich). Cells are removed
from the flask using TrypLETM (Life Technologies) in phosphate buffered saline, resuspended in
medium and seeded at a density of 20,000 cells per well in 96-well ImageLock plates (Essen Bio-
Science) as shown in Fig 3). The diameter of each individual well is 9000 µm.

BA

C D

96-well plate

9000 μm

1979 μm

740 μm

Figure 3: Experimental geometry. A: Image of a 96-well culture plate. The diameter of each well is 9000 µm.
B: Schematic demonstrating the monolayer of cells (black dots) with approximately constant density. C: Schematic
showing an artificial wound (white) in the monolayer of cells. D: Field of view of the experimental images showing
that the field of view is much smaller than the extent of the well in the 96-well plate.

After seeding, cells are grown overnight to form a spatially uniform monolayer. Mitomycin-C
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is added at a concentration of 10 g/mL for two hours before a scratch is made in the monolayer of
cells [34, 37]. A WoundMakerTM (Essen BioScience) is used to create identical scratches in the
uniformly distributed populations. After creating the scratch, the medium is aspirated and wells
are washed twice with fresh medium. After these washes, 100 L of fresh medium is added to each
well. Once fresh medium is added, the plate is placed into the IncuCyte ZOOMTM apparatus and
images of are captured every two hours for a total duration of 48 hours. In total, these experiments
are performed in eight of the 96 wells on the 96-well plate. After a preliminary visual inspection
of the resulting eight experimental images, we selected four typical wells for analysis. Throughout
this work we will refer to these four identically prepared experiments as Experiment A, Experiment
B, Experiment C and Experiment D.

Comparing images across the 48 hour duration of the experiment, summarized in Fig 2(A-B),
we see that each opposingly-directed cell front moves together to close the initially-vacant region
created by the scratch. By the end of the experiment we see that the Mitomycin-C pretreated cells
have approximately doubled in size [35]. To quantify this increase in cell size we randomly choose
30 cells from the experimental images at t = 0, 12, 24, 36 and 48 h and use these cells to estimate
the average diameter as a function of time, δ(t). To do this we estimate the area on the image
occupied by each particular cell, and then convert this estimate of area into an equivalent diameter,
δ =

√
4A/π, where A is the area estimate. With 30 estimates of the diameter at t = 0, 12, 24, 36

and 48 h, we compute the sample mean and sample standard deviation at each time point and plot
the data in Fig 2(C). Visually we see that the average diameter appears to increase approximately
linearly with time, and so we fit a linear model to the data. The cell diameter data and the linear
model are shown in Fig 2(C). Note that had our experiments been performed over a longer period
of time it would be better to use a different model, such as the logistic growth function, to model
the temporal cell size dynamics.

Image analysis
The experimental data used in our work is provided in the form of images from the IncuCyte
ZOOMTM system. An example of a raw experimental image and a detailed description of the pro-
cedure we use to extract density information from that image are summarized in Fig 4. Here, the
size of the field of view is (Lx × Ly) = (1979 µm × 1439 µm), as shown in Fig 4(A). Through-
out this work we use data from four identically-prepared experimental replicates of the scratch
assay. Experimental images at the beginning of the experiment for each of the four replicates are
shown in Fig 5. These four experimental replicates are performed simultaneously under identical
experimental conditions. For completeness, the time series of experimental images for all four
identically prepared experiments is given in the Supporting Information (S1 Fig). This includes
images recorded at five equally-spaced time points for each of the four identically prepared exper-
iments, giving a total of 20 experimental images.

To process each experimental image we first separate the background of the image from the
cells using Ilastik [38]. Ilastik is a machine learning tool that enables automatic object identifica-
tion, and allows us to separate the cells in each image from the background. An example of a grey
scale segmented image is shown in Fig 4(B). A visual comparison of the raw image in Fig 4(A)
with the segmented image in Fig 4(B) confirms that the identification of cells from the background
in the image is accurate. Since the density of cells in the original images is independent of the
vertical coordinate, as shown in Fig 5, we divide each image into 40 equally-spaced columns as
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Figure 4: Processing of raw experimental images from the IncuCyte ZOOMTM scratch assay. A: Raw experimental
image showing the field of view, of dimension (Lx × Ly) = (1979 µm × 1439 µm). The scale bar corresponds to
300 µm. B: Binary image obtained after segmenting the raw image with Ilastik. C: Zoomed-in image showing
the region contained within the blue rectangle in B after processing with CellProfiler. Feint green outlines denote
individual objects that are identified as cells. D: The one-dimensional cell density profile is estimated by counting the
number of objects per equally-spaced column. Shaded regions in D show boundary regions that are neglected owing
to the presence of scale bar and time label that are automatically superimposed on the IncuCyte ZOOMTM images.

shown in Fig 4(B). Working with 40 columns means that the width of each column is 49.5 µm. We
then use CellProfiler to automatically estimate the number of cells per column [39]. With this data
we divide the number of cells per column by the area of each column to give an estimate of the cell
density across the horizontal coordinate of the experimental images.

A typical column-averaged cell density profile, shown in Fig 4(D), summarizes the spatial vari-
ations in density as a function of the horizontal coordinate for the particular arrangement of cells in
Fig 4(A). We employ this technique to extract density profiles at each time point, t = 0, 12, 24, 36,
and 48 h. This process is repeated four times for each of the four experimental replicates. The
data presented in Fig 4(D) shows the average cell density that we associate with the centre of each
column. This particular density profile is relatively noisy because it is associated with the single
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Figure 5: Experimental images of four identically prepared IncuCyte ZOOMTM scratch assays just after the scratch
has been made, t = 0 h. A-D: In each experimental replicate the positions of individual cells are extracted using
CellProfiler and highlighted with a red dot.

image in Fig 4(A). Before we proceed, we discard density data from the two right-most columns of
each image because the time label and scale bar are automatically superimposed on the IncuCyte
ZOOMTM images and these objects partially obscure the numbers of cells in these subregions of
each images. We also discard the left-most column from each image, which leaves us with a
slightly smaller image that is discretized into 37 equally-spaced columns of width 49.5 µm, and a
reduced domain width of 1831 µm. Next, to reduce the magnitude of the fluctuations in the cell
density profile, we average the density profiles associated with each of the four experimental repli-
cates to obtain a single averaged cell density profile as a function of time, as summarized in Fig 6.
For completeness, the relatively noisy column-averaged cell density profiles associated with each
of the four individual experimental replicates are given in the Supporting Information (S2 Fig).
Visual inspection of the averaged density profiles in Fig 6 confirms that we observe a well-defined
vacant region at the beginning of the experiment and that we see the vacant region become smaller
with time as the two opposingly-directed cell fronts move to close the vacant region over time.
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Figure 6: Averaged cell density profiles. A-E: Averaged cell density profiles at t = 0, 12, 24, 36, and 48 h, as indicated.
All profiles report the sample mean density computed using four identically prepared experimental replicates. The
error bars denote the sample standard deviation. For clarity we only present the error bar at every second column.
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Now that we have quantified our experimental observations in terms of the temporal variation
in the column-averaged cell density profiles, further averaged across four identically prepared ex-
perimental replicates, we will now attempt to use a suite of discrete mathematical models to mimic
the experimental data set. To provide the most realistic discrete simulations, we always take care
to initialize each discrete simulation using the exact same number and locations of cells that are
present in the experimental images at t = 0 h. To do this we extract the position of each individual
cell from the experimental images at t = 0 h using the object identification tool in CellProfiler, Fig
5. This approach means that our initial condition for the discrete simulations is precisely the same
as in our experimental data set.

Discrete stochastic model
To simulate our experimental data set we use a novel two-dimensional discrete model of cell motil-
ity that incorporates random motility, intercellular interactions including both long range cell-to-
cell adhesion and short range cell pushing, as well as capturing dynamic changes in cell size.
We choose to work with a discrete modelling framework because discrete individual-based ap-
proaches are more natural to compare with experimental images than continuum models. Such
discrete individual-based models are used to study a range of cell biology phenomena including,
malignant invasion [40], wound healing [41], self-organization [42], angiogenesis [43] and em-
bryonic development [13]. Since we work with an off-lattice discrete framework, each agent is
allowed to move in any direction on a continuous domain. This off-lattice approach is more real-
istic than a simpler lattice-based model where the locations of agents are restricted to an artificial
lattice structure [18, 44, 45, 42, 46].

Our modelling approach is flexible since it can incorporate a range of individual-level pro-
cesses such as random motility, long range cell-to-cell adhesion, short range cell pushing and
captures dynamic changes in cell size. We refer to this model as Model I since it describes the
most fundamental situation where all four processes are acting simultaneously. We begin by intro-
ducing Model I and then describe three simplifications of this model in which we systematically
neglect certain features. These simplifications include: (i) capturing random motility, long range
cell-to-cell adhesion and short range cell pushing (Model II); (ii) capturing long range cell-to-cell
adhesion, short range pushing (Model III); and (iii) capturing random motility only (Model IV). To
explore the relevance of the mechanisms inherent in these four models we carefully calibrate each
model to match the density data summarized in Fig 6 and quantitatively compare the results of the
calibration procedure.

Model I: random motility, long range cell-to-cell adhesion, short range cell pushing and dy-
namic changes in cell size

A key novelty of our approach is that we simulate the dynamic change in agent diameter, δ(t). This
approach is very different to standard approaches where agents in discrete models are thought of as
having either no size or a constant size. Here, to match our experimental measurements presented
in Fig 2(C), we assume that δ(t) increases linearly,

δ(t) = 29.26 + 0.33t, (1)

where t is time, measured in hours.
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We assume that the location of each individual in the population is described by an appropri-
ate equation of motion [42, 47, 48], and we employ a Langevin stochastic framework where a
population of N cells is modelled by a system of N first order stochastic differential equations

du(i)

dt
=

directed force︷       ︸︸       ︷∑
j,i

Fi j(r, t) +

random noise︷︸︸︷
ξi , i = 1, . . . ,N, (2)

where u(i) is the position vector of the ith agent on a two-dimensional domain, Fi j is the determin-
istic interaction force between agents i and j that are separated by distance t, and ξi is a random
stochastic force exerted on the ith agent. The stochastic force ξi is sampled from the Gaussian
distribution [48] with zero mean and a variance, 2D/∆t, where D is the diffusivity, and ∆t is the
time step used to numerically solve Eq 2. Since the Langevin equation formalism does not in-
clude any inertial forces, this framework implicitly neglects agent acceleration. This assumption is
reasonable at low Reynolds numbers, and is routinely invoked at cellular length scales [49].

The Langevin stochastic model, Eq 2, implies that the movement of each agent is determined by
the combined effects of the deterministic intercellular force, Fi j, and the random stochastic force,
ξi. The details of the deterministic interaction force, Fi j, can be chosen to incorporate a range of
relevant phenomena such as long range attraction and short range repulsion [50], as illustrated in
Fig 7. In this work we specify that the interaction force, Fi j, depends upon the distance between
agents, r, and time, t, and is given by

Fi j(r, t) = f0 Z(r, t)
u(i) − u( j)

|u(i) − u( j)|
, (3)

where f0 is dimensional magnitude of the interaction force, Z(r, t) is a dimensionless function
describing how the interaction force depends on the separation between the agents, r = |u(i) − u( j)|.
As with all models of the form of Eq 2, the dimensional magnitude of the interaction force, f0, has
dimensions of velocity.

In this work we use the dimensionless function, Z(r, t), to incorporate three main features of
cell-cell interactions: (i) short range repulsion forces which mimic cell pushing; (ii) longer range
attraction forces which mimic cell-to-cell adhesion; and (iii) dynamic changes in agent size. The
short range repulsion forces can be interpreted as cell resistance to deformation, which leads to
crowding and volume exclusion effects [51]. In contrast, the longer range attraction forces mimic
intercellular attraction. These cell-to-cell attraction forces are thought to be a predominant factor
in the cell-cell adhesion [52]. To incorporate these effects we use a modified Morse potential [53],

Z(r, t) =


2
(

exp(−2a [r − δ(t)]) − exp(−a [r − δ(t)])
)
, r < 2δ(t),

2
(

exp(−2a [r − δ(t)]) − exp(−a [r − δ(t)])
)

g(r, t), 2δ(t) ≤ r ≤ 3δ(t),

0, r > 3δ(t),

(4)

where δ(t) is the time-dependent agent diameter, a > 0 is a parameter that controls the shape of
the force function, and g(r) is the Tersoff cut-off function [54] which ensures a finite range of
interactions,

g(r, t) =
1
2

(
1 − sin

[π(2r − δ(t))
2δ(t)

])
. (5)
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The cell-cell interaction range is finite, and set to three agent diameters [47]. As such, the inter-
action force is zero for separation distances of greater than three agent diameters. For all results
presented here we set a = 0.08 which implies that the agents are relatively rigid and highly unlikely
to overlap [53].

Schematics showing the key features of Z(r, t) at t = 0 h and t = 48 h are shown in Fig 7(C-
D). Here we see that at short separation distances we have strong positive Z(r, t), which captures
short range repulsion and pushing, owing to finite size effects. Over longer separation distances we
have smaller negative Z(r, t) which models attraction, such as adhesion. Finally, over sufficiently
large distances we have no interactions as Z(r, t) = 0. To capture the effects of the increase in
cell size, all length scales in Fig 7(C-D) are given in terms of the average cell diameter, δ(t),
which can vary with time. In this work we use a linear function for δ(t) because this matches our
experimental observations, however other functional forms for δ(t) are possible, for example if we
were to consider experiments performed over a longer time scale where the linear increase would
not be relevant.

In all simulations we apply the Langevin model on a domain of size 1831.5 µm × 1439 µm,
which is the size of the experimental field of view after the boundary columns have neglected.
Furthermore, we always initiate each stochastic simulation so that the initial number and location of
agents in the simulation corresponds to the initial number and location of cells in the experiments,
as shown in Fig 5. Fig 8 shows a schematic of how we apply this model to simulate the geometry
of the IncuCyte ZOOMTM assay. In this schematic we highlight the spatial arrangement of agents
in the simulation and the interaction forces acting upon these agents.

Model II: random motility, long range cell-to-cell adhesion, short range cell pushing and
constant cell size

Model II differs from Model I only in that we make the standard assumption that the size of the
cells remain constant during the cell migration process. Consequently, we set δ(t) = δ0 = 29.26
µm during the simulations. This number corresponds to the average diameter of the cells at the
beginning of experiments, t = 0 h. All other features of Model II are identical to Model I.

Model III: long range cell-to-cell adhesion, short range pushing, dynamic cell size changes
and no random motility

Model III differs from Model I only in that we neglect the role of random motility. Therefore,
setting ξi = 0 we rewrite Eq 2 as

du(i)

dt
=

directed force︷ ︸︸ ︷∑
j,i

Fi j , i = 1, . . . ,N. (6)

It is useful to note that with a deterministic initial condition, the solution of Eq 6 is deterministic.

Model IV: random motility only

Model IV differs from Model 1 in that we neglect the role of the interaction force and cell migra-
tion is purely random, implying that agents are point particles without any size or deterministic
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Figure 7: Schematic showing how short and long range forces are introduced in the model through the dimensionless
force function, Z(r, t). A-B: Green circles denote isolated agents that are unaffected by cell-to-cell interactions and, as
a consequence, undergo random migration. Red circles indicate agents that are sufficiently close to other agents that
they interact with them. Comparing the schematics in A and B shows that the increase in agent size leads to additional
agent-to-agent interactions because agent growth reduces the distance between agents. The arrows in A and B indicate
the direction of the deterministic forces Fi j. C-D: Dimensionless force function Z(r, t) for t = 0 h and t = 48 h. δ0 is the
agent size at the start of the experiment, t = 0 h. The red shaded regions indicate a sufficiently small distance between
agents, r ≤ 3δ(t), where agent-to-agent interactions are present. The green shaded regions indicate a sufficiently large
distance between agents, r > 3δ(t), so that there is no interaction.

interactions. This assumption reduces the system of Langevin equations to a Brownian process
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Figure 8: Schematic of the experiment. Vectors u(i) and u( j) denote position vectors of two arbitrary agents. Vector
Fi j is the interaction force between the yellow agent i and the blue agent j. Dashed lines represent the approximate
boundary between the initially-vacant and the initially-occupied regions.

which can be written as
du(i)

dt
=

random noise︷︸︸︷
ξi , i = 1, . . . ,N. (7)

As we described previously, the initial coordinates of agents in each stochastic simulation is
taken to be the precise position of each individual cell at t = 0 h, as depicted in Fig 5. To simulate
Models I–IV we must apply appropriate boundary conditions to reflect the conditions relevant to
the experiment. To determine these boundary conditions, we note that the experimental images,
shown in Fig 2(A-B), correspond to a field of view that is much smaller than the spatial extent of
the experiment. For example, the width of the field of view in Fig 2(A-B) is 1979 µm, which is
much smaller than the diameter of the well in the 96-well plate, which is 9000 µm, as shown in
Fig 3. The schematic in Fig 3 is important because it emphasizes that the images from this kind of
assay only show a small proportion of the population of cells present in the well. In particular, it
is important to remember that the boundaries around the field of view are not physical boundaries
since the spatially uniform population of cells extends far beyond the boundaries around the field
of view. This means that whenever the density is below confluence, cells will migrate, in each
direction, across the boundaries of the field of view. However, since the population of cells is
placed uniformly into each well of the 96-well plate, the net flux of cells across the boundaries of
the field of view will be zero owing to symmetry. Therefore, the appropriate boundary conditions
for all of our simulations is to impose zero net flux boundary conditions around all boundaries of
the field of view [55]. We implement these boundary conditions by simply aborting any potential
movement event that would take a particular agent across one of the boundaries.
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All model simulations presented in this work are obtained by numerically integrating the gov-
erning equations using a forward Euler method with a constant time step of duration δt = 0.02 h.
This choice of time step is sufficiently small that our results are grid-independent.

Results and Discussion
To quantitatively compare the suitability of Models I–IV to describe our experimental data set,
we calibrate each model to provide the best match to the experimental density data. For Model
1 our aim is to estimate the two model parameters, (D, f0), that leads to the best match with the
experimental measurements. To facilitate this we introduce a measure of the discrepancy between
the experimental data and the model solution,

E(D, f0) =
1

148

4∑
j=1

37∑
i=1

[
pdata(xi, t j) − pmodel(xi, t j)

]2
, (8)

where E(D, f0) measures the discrepancy between the experimental cell density, pdata(xi, t j), and
the density predicted by the model, pmodel(xi, t j), for given values of D and f0. The index i denotes
column number along x coordinate, and index j denotes time so that j = 1, 2, 3 and 4 correspond
to the experimental time points t = 12, 24, 36, and 48 h, respectively. The experimental density
estimates, pdata(xi, t), corresponds to the averaged experimental density, where the average is taken
across all four identically-prepared experimental replicates. We find that it is necessary to estimate
E(D, f0) using averaged experimental data, rather than working with the four experimental data
sets separately since the fluctuations in the data from the individual replicates lead to sufficiently
large fluctuations in our estimates of E(D, f0). Throughout this work we will refer to the function
E(D, f0) as an error surface as we will visualize the surface and seek to find values of D and
f0 that minimize the error, or discrepancy between the experimental density data and the density
data predicted by the mathematical models. Overall, our aim is to find estimates of D and f0

that minimize E(D, f0), and we denote these estimates as D̄ and f̄0, respectively. All results, for
Models I–IV, are obtained by simulating the stochastic models in two-dimensional space. We
then construct one-dimensional density distributions from the model output, pmodel(xi, t j), using the
same procedure that is used to convert the distribution of cells in the two-dimensional experimental
images into one-dimensional density profiles.

Since we have access to four identically prepared initial conditions for our experimental data
set, each time we attempt to match the models with the averaged experimental data we repeat the
process four times using the four different choices of initial conditions associated with experimen-
tal data sets A, B, C and D. This approach means that we can estimate and visualize the error
surface four times for each particular model. Despite the additional computational overhead asso-
ciated with this approach, we note that it is a useful approach because it provides us with additional
quantitative insight about the suitability of each model. In particular, a mathematical model that
is compatible with the data ought to lead to estimates of D and f0 that are consistent across the
four initial conditions, and so we will examine Models I–IV to see whether they are capable of
providing parameter estimates that are consistent across the four different initial conditions.

Previous modelling studies based on using reaction-diffusion equations indicate that estimates
of diffusivity for PC-3 prostate cancer cells varies significantly, from about 300 µm2/h for low
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density conditions to approximately 1000 µm2/h for high density conditions [56]. Consequently,
we focus our search for parameter estimates in the interval 0 ≤ D ≤ 1100 µm2/h. In contrast, there
are no previous estimates of f0 for the PC-3 cell line. Since we have little initial guidance about
an appropriate choice of f0, we first conducted a series of preliminary simulations (not shown)
to determine an acceptable range of f0 for each model. This exercise suggests that acceptable
ranges are approximately 0 ≤ f0 ≤ 0.11 µm/h for Model I; 0 ≤ f0 ≤ 0.6 µm/h for Model II; and
0 ≤ f0 ≤ 0.11 µm/h for Model III.

To estimate D̄ and f̄0 for Model I we estimate discrete values of E(D, f0) by using a series
of numerical solutions of Eq 2 over many (D, f0) pairs. For each parameter pair we generate
an ensemble of 100 identically prepared realizations of the stochastic model and then estimate
E(D, f0) by averaging the density data from the 100 identically prepared realizations. Results in
Fig 9(A-D) show contour plots of the error surface constructed using seven values of diffusivity,
D = 0, 100, 300, 500, 700, 900, 1100 µm2/h, and 12 equally-spaced values of the force amplitude
in the interval 0 ≤ f0 ≤ 0.11 µm/h. All contour lines in Fig 9 are obtained using Matlab’s spline
interpolation function griddedInterpolant. The four different contour plots in Fig 9(A-D)
show separate error surfaces obtained by applying Model I to each of the four identically prepared
experimental replicates. Since the initial positions of agents in the discrete simulations exactly
correspond to the positions of cells in experimental images, given in Fig 5, the magnitude of the
fluctuations in the experimental data are consistent with the magnitude of the fluctuations from one
realization of the stochastic model. In general, the magnitude of the fluctuations in the stochastic
model scales with the number of realizations of the stochastic model, ∼ 1/

√
N . Therefore, our

choice of using N = 100 realizations leads to averaged discrete density profiles with fluctuations
that are approximately one order of magnitude smaller than fluctuations in the experimental data.

Preliminary estimates of D̄ and f̄0 are obtained by evaluating the error surface across a relatively
coarse discretisation of the parameter space. These estimates are shown in Fig 9(A-D) as red
circles. We then refine our estimates of D̄ and f̄0 by considering a refined discretisation of a
subregion surrounding each red circle in Fig 9(A-D). These subregions are shown as red rectangles
in Fig 9(A-D). Refined plots of the error surface in Fig 9(E-H) are obtained by calculating E(D, f0)
across five equally-spaced values of D in 100 ≤ D ≤ 500 µm2/h and five equally-spaced values
of f0 in 0.05 ≤ f0 ≤ 0.07 µm/h. Each individual plot of E(D, f0) in Fig 9(E-H) shows that we
have a well-defined minmum from which we can estimate D̄ and f̄0. Comparing data in Fig 9(E-
H) shows that our estimates of D̄ and f̄0 are consistent between the four different experimental
replicates. In fact, three of the four refined plots give remarkably consistent estimates of (D̄, f̄0)
= (250, 0.06). Only one of the experimental replicates, shown in Fig 9(E), gives slightly different
parameter estimates, (D̄, f̄0) = (150, 0.065).

To visualize the quality of match between the experimental data and discrete profiles predicted
by the stochastic model we use the best-fit parameter estimates (D̄, f̄0) = (250, 0.06) for experiment
D. First, we solve Model I with (D̄, f̄0) = (250, 0.06) and calculate the density profiles from the
simulations as before. Second, we superimpose density profiles from the discrete simulations
with the experimental density distributions, as shown in Fig 10. The choice of initial conditions
in the stochastic model guarantees that we have an exact match between the experimental density
profile and the simulation density profiles at t = 0 h. However, since we are dealing with stochastic
experimental data and a stochastic mathematical model we do not expect there to be an exact match
at later times. Results in Fig 10(A-B) show that we have a reasonable match between the calibrated
simulation results and the experimental density data for a single realization of the stochastic model.

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/391557doi: bioRxiv preprint 

https://doi.org/10.1101/391557


100 300 500 700 900 1100
D [μm2/h]

0.02
0.04
0.06
0.08

0.10

f 0 [μ
m

/h
]

A

B

C

D

0.4

0.6

0.8

1.0

1.2

1.4

1.6
1.8

x 10-8

100 300 500
0.05

0.06

0.07

D [μm2/h]

f 0 [μ
m

/h
]

E

F

G

H

D [μm2/h]

f 0 [μ
m

/h
]

D [μm2/h]

f 0 [μ
m

/h
]

D [μm2/h]

f 0 [μ
m

/h
]

100 300 500
0.05

0.06

0.07

D [μm2/h]
f 0 [μ

m
/h

]

100 300 500
0.05

0.06

0.07

D [μm2/h]

f 0 [μ
m

/h
]

100 300 500
0.05

0.06

0.07

D [μm2/h]

f 0 [μ
m

/h
]

0.00

100 300 500 700 900 1100

0.02
0.04
0.06
0.08
0.10

0.00

100 300 500 700 900 1100

0.02
0.04
0.06
0.08
0.10

0.00

100 300 500 700 900 1100

0.02
0.04
0.06
0.08
0.10

0.00

Experiment A Experiment A

Experiment B Experiment B

Experiment C Experiment C

Experiment D Experiment D

Figure 9: E(D, f0) for Model I. A-D: Error surface contours, E(D, f0), for four identically-prepared IncuCyte
ZOOMTM scratch assays. Each surface contour plot is constructed using seven values of the diffusivity in 0 ≤ D ≤
1100 µm2/h, and 12 equally-spaced values of the force amplitude in 0 ≤ f0 ≤ 0.11 µm/h. E-H: Refined error surface
contours obtained by estimating E(D, f0) on a refined discretisation of the parameter space within the red rectangles
in A-D. The values of E(D, f0) are shown on the color bar. The location of the best-fit estimate (D̄, f̄0) is shown as a
red circle in each subfigure.

Similarly, results in Fig 10(C-D) show that we also have a good match between the simulation
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results and the experimental density data over 100 identically prepared realizations of the stochastic
model where we see that the magnitude of the fluctuations in the averaged stochastic data are
reduced.
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Figure 10: Comparison of the calibrated solutions of Model I and experimental profiles from experiment D. Results in
A-B compare the experimental data (red, green) and Model I solution (black) at t = 0 and t = 48 h, respectively, for
N = 1 model realization. Results in C-D compare the experimental data (red, green) and Model I solution (black) at
t = 0 and t = 48 h, respectively, averaged over N = 100 identically prepared realizations of the model. The best-fit
parameter estimates are (D̄, f̄0) = (250, 0.06) from Fig 9(H).

We now turn our attention to calibrating Model II to match the experimental data. To achieve
this we repeat the exact same calibration process except that we implement Model II with constant
agent size. We repeat the process of generating error surfaces using Model II. Comparing results
in Fig 9(A-D) and Fig 11(A-D) shows that the best fit parameters in Model II lead to a larger
value of E(D, f0). Furthermore, comparing estimates of D̄ and f̄0 for Model II between the four
identically prepared experimental data sets shows that we have a much higher degree of variability
between our parameter estimates for Model II than we did for Model I. Overall, these results
suggest that Model I is more consistent with our experimental data than Model II, and so we do
not proceed with any further refinement of our parameter estimates for Model II. This result shows
that the traditional approach of neglecting the dynamical changes in cell size has clear impact on
the ability of the model to describe the behaviour of the entire cell population.

To visualize the quality of match between the experimental data and best-fit density profiles
predicted by Model II we use the best-fit parameter estimates (D̄, f̄0) = (500, 0.3) for experimental
replicate D. Again, we solve Model II with these parameter estimates and then estimate the density
profiles from those simulations. Results in Fig 12 show the density profiles from the discrete
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Figure 11: E(D, f0) for Model II. A-D: Error surface contours, E(D, f0), for four identically-prepared IncuCyte
ZOOMTM scratch assays. Each surface contour plot is constructed using seven values of diffusivity in 0 ≤ D ≤
1100µm2/h and seven equally-spaced values of the force amplitude in 0 ≤ f0 ≤ 0.6 µm/h. The values of E(D, f0) are
shown on the color bar. In each case the location of the best-fit estimate (D̄, f̄0) is shown as red circle.

simulations superimposed on the corresponding experimental density distributions. Visually, we
see that the quality of match in Fig 12(B) and Fig 12(D) is notably poorer than the quality of match
in Fig 10(B) and Fig 10(D). This visual difference is consistent with the quantitative differences in
E(D, f0) in Fig 9 and Fig 11.

Finally, we calibrate Models III and IV to match the experimental data. Note that Model III
neglects the role of random motility so our parameter estimation involves just one parameter, f0.
Similarly, Model IV neglects the role of intercellular forces so our parameter estimation involves
just one parameter, D. Following a now familiar procedure, we compute measures of discrepancy,
E( f0) and E(D), for Models III and IV, respectively. Results in Fig 13(A) show a well-defined
minimum for each of the four experimental replicates for Model III, however the best-fit estimates
are in the range 0.07 ≤ f0 ≤ 0.1 µm/h, which is approximately double the estimate we identified
previously for Model I. In contrast, results in Fig 13(B) show that we have relatively poorly-defined
minimum for all four experimental replicates for Model IV. In this case the best-fit estimates are
in the range 700 ≤ D ≤ 1000 µm2/h which is approximately four times greater than the estimates
we obtained for Model I.

Results in Fig 14 compare the discrete density profiles obtained using Model III parameterized
with the best-fit estimate f0 = 0.09 µm/h and the experimental density profiles from experiment
D. We note that Model III is deterministic and produces the same density distribution regardless
of the number of model realizations. The quality of match between calibrated Model III and the
experimental data for experimental replicate D is reasonable, however the value of E( f̄0) is greater
than the value of E(D̄, f̄0) for Model I, thereby indicating that Model I produces an improved match
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Figure 12: Comparison of the calibrated solutions of Model II and experimental profiles from experiment D. Results
in A-B compare the experimental data (red, green) and Model II solution (black) at t = 0 and t = 48 h, respectively,
forN = 1 model realization. Results in C-D compare the experimental data (red, green) and Model II solution (black)
at t = 0 and t = 48 h, respectively, averaged over N = 100 identically prepared realizations of the model. The best-fit
parameter estimates are (D̄, f̄0) = (500, 0.3) from Fig 11(D).

to the experimental data. Results in Fig 15 compares discrete density profiles obtained using Model
IV parameterized with the best-fit estimate D = 700 µm2/h where we see no improvement in the
quality of match between the calibrated mathematical model and the experimental data relative to
Model 1.

All results presented in this section of the main document focus on comparing the quality
of match between Models I–IV and the experimental data using experimental replicate D. Similar
comparisons between the best-fit solution of Models I–IV and experimental data from experimental
replicates A, B and C are given in the Supporting Information (S3-S14 Fig). These additional
comparisons are consistent with the comparisons made here in the main document.

Conclusion
In this work we use a combined experimental-mathematical modelling approach to quantitatively
explore the contribution of cell-to-cell interactions and random motility in driving the movement
of cell fronts. We perform a series of IncuCyte ZOOMTM scratch assay experiments in which
cells are pretreated with the chemotherapy drug, Mitomycin-C. This approach is useful because
Mitomycin-C suppresses proliferation, thereby allowing us to focus on the role of cell migration

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/391557doi: bioRxiv preprint 

https://doi.org/10.1101/391557


BA

Experiment A
Experiment B
Experiment C
Experiment D

0.01 0.03 0.05 0.07 0.09 0.11

0.5

1.0

1.5

2.0

2.5

3.0

3.5

f0 [μm/h]

E(
f 0)

x 10-8

100 400 700 1000 1300

D [μm2/h]

E(
D

)

x 10-8

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Experiment A
Experiment B
Experiment C
Experiment D

Figure 13: E( f0) and E(D) for Models III and IV. A: E( f0) for Model III constructed for each experimental repli-
cate with 11 equally-spaced values of f0 in 0.01 ≤ f0 ≤ 0.11 µm/h. B: E(D) for Model IV constructed for each
experimental replicate with eight equally-spaced values of D in 100 ≤ D ≤ 1500 µm2/h.

in the experiments.
We quantitatively assess the role of cell-to-cell interactions, including short range pushing and

longer range adhesion, by calibrating an off-lattice discrete stochastic model to match our experi-
mental data set. The mathematical model that we use accounts for random cell motility, long range
cell-to-cell attraction (adhesion), short range cell-to-cell repulsion (pushing) and dynamic cell size
changes. We refer to this model as Model I. To explore the significance of these various cell-level
mechanisms we systematically repeat the model calibration process for a range of simpler, more
commonly used models. These simplified models account for: (i) random cell motility, long range
cell-to-cell attraction (adhesion) and short range cell-to-cell repulsion (pushing) without any dy-
namical changes in cell size (Model II); (ii) long range cell-to-cell attraction (adhesion) and short
range cell-to-cell repulsion (pushing) (Model III); and (iii) random cell motility only (Model IV).

Comparing the calibration of these four models to our experimental data provides insight into
which model provides the most faithful representation of the experimental observation. Comparing
estimates of E(D̄, f̄0) between the four models shows that Model I provides the best match to the
experimental data. This result suggests that properly accounting for random motility, intercellular
forces, including short range repulsion and longer range attraction, as well as dynamic changes
in cell size, are important for this fairly typical experimental protocol. In contrast, calibrating
Models II-IV to the data always provides estimates of model parameters that give the best match to
the experimental data, but this does not mean that these simpler, more commonly used modelling
frameworks, are the best model of the underlying biological processes. This is an important result
because often in the mathematical biology literature a single type of model will be used to mimic
an experiment, without investigating the more important question of whether that model provides a
reasonable description of the underlying biological processes. Here, by systematically comparing
the performance of four different, but related, mathematical models to our novel experimental
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Figure 14: Comparison of the calibrated solutions of Model III and experimental profiles from experiment D. Results
in A-B compare the experimental data (red, green) and Model II solution (black) at t = 0 and t = 48 h, respectively,
forN = 1 model realization. Results in C-D compare the experimental data (red, green) and Model II solution (black)
at t = 0 and t = 48 h, respectively, averaged over N = 100 identically prepared realizations of the model. The best-fit
parameter estimate is f̄0 = 0.08 µm/h from Fig 13(A).

data set, we provide insight into the underlying biological mechanisms in a way that is not possible
when working with a single mathematical model in isolation. This approach of calibrating multiple
competing mathematical models to match a single data set is a useful way to provide insight into
the underlying biological processes, as well as providing insight into the important question of
model selection [56, 57].

There are many ways that our study could be extended to provide additional insight. A key sim-
plifying assumption that we make in our modelling of the experiments is that we give all agents in
the simulations the same size at the beginning of the simulation, δ(0) = δ0. While our estimates of
this initial size are based on experimental estimates given in Fig 2(C), our approach is to represent
the distribution of observed cell sizes using a sample mean. A close examination of the experi-
mental images in Fig 5 shows that there is considerable variability in the distribution of cell sizes
at the beginning of the experiment. This variability is captured in the error bars in Fig 2(C) but
neglected in our analysis. Therefore, a reasonable extension of the current analysis would be to
incorporate this initial variability into the stochastic models with a view to understanding how this
initial variability influences the population-level motion of the cell fronts. We leave this extension
for future consideration.
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Figure 15: Comparison of the calibrated solutions of Model IV and experimental profiles from experiment D. Results
in A-B compare the experimental data (red, green) and Model II solution (black) at t = 0 and t = 48 h, respectively,
forN = 1 model realization. Results in C-D compare the experimental data (red, green) and Model II solution (black)
at t = 0 and t = 48 h, respectively, averaged over N = 100 identically prepared realizations of the model. The best-fit
parameter estimates is D̄ = 700 µm2/h from Fig 13(B).
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