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Abstract 
 

Computer simulations play an important role in testing hypotheses, integrating knowledge, 

and providing predictions of neural circuit functions. While considerable effort has been 

dedicated into simulating primate or rodent brains, the fruit fly (Drosophila melanogaster) is 

becoming a promising model animal in computational neuroscience for its small brain size, 

complex cognitive behavior, and abundancy of data available from genes to circuits. 

Moreover, several Drosophila connectome projects have generated a large number of 

neuronal images that account for a significant portion of the brain, making a systematic 

investigation of the whole brain circuit possible. Supported by FlyCircuit 

(http://www.flycircuit.tw), one of the largest Drosophila neuron image databases, we began a 

long-term project with the goal to construct a whole-brain spiking network model of the 

Drosophila brain. In this paper, we report the outcome of the first phase of the project. We 

developed the Flysim platform, which 1) identifies the polarity of each neuron arbor, 2) 

predicts connections between neurons, 3) translates morphology data from the database into 

physiology parameters for computational modeling, 4) reconstructs a brain-wide network 

model, which consists of 20,089 neurons and 1,044,020 synapses, and 5) performs computer 

simulations of the resting state. We compared the reconstructed brain network with a 

randomized brain network by shuffling the connections of each neuron. We found that the 

reconstructed brain can be easily stabilized by implementing synaptic short-term depression, 

while the randomized one exhibited seizure-like firing activity under the same treatment. 

Furthermore, the reconstructed Drosophila brain was structurally and dynamically more 

diverse than the randomized one and exhibited both Poisson-like and patterned firing 

activities. Despite being at its early stage of development, this single-cell level brain model 

allows us to study some of the fundamental properties of neural networks including network 

balance, critical behavior, long-term stability, and plasticity. 
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Introduction 
 

Understanding brain function requires knowledge of both molecular biology at the cellular 

level and of the interactions between neurons and the underlying circuit structure(Morgan and 

Lichtman 2013). In addition to various experimental approaches, computational modeling is 

becoming an increasingly important technique because it facilitates the validation of 

hypotheses and theories regarding neural circuit operation through the integration of existing 

observations into computer models(Churchland and Abbott 2016; Chaudhuri and Fiete 2016; 

Denève and Machens 2016; Sporns 2013). Indeed, extensive studies on neural network 

models covering Caenorhabditis elegans(Szigeti et al. 2014; Izquierdo and Beer 2016; 

Palyanov et al. 2011), insects(Wessnitzer and Webb 2006), rodents, and primates(Markram 

2006; Izhikevich and Edelman 2008; Eliasmith et al. 2012) have greatly contributed to our 

understanding of neural circuit functions at the systems level. However, computer modeling 

also faces two major challenges: 1) a large number of neural network models were built to 

simulate specific functions in one or few brain regions(Izhikevich and Edelman 2008; 

Eliasmith et al. 2012). This approach limits our ability to study integrated functions or 

behavior at the systems level. 2) Due to the lack of connectomic data at the single-cell level 

for most species, large-scale neural network models can only be constructed based on the 

connectome at the macroscopic level(Izhikevich and Edelman 2008). 

These challenges can be addressed by large-scale connectome projects(Milham 2012; 

Burns, Vogelstein, and Szalay 2014; Peng et al. 2015; Lo and Chiang 2016), which aim to 

reconstruct a high-resolution connectome of the whole brain at the single-cell level. While 

this is still a major challenge for large animals such as primates(Helmstaedter 2013), 

acquisition of single-cell level connectomes for small animals, such as the Drosophila 

melanogaster (fruit fly), has seen rapid progress(Chiang et al. 2011; Takemura et al. 2013; 

Shinomiya et al. 2011). Therefore, we suggest that the Drosophila is currently one of the best 

model animals for developing a high-resolution full brain computational model due to the 

availability of extensive neuron databases and neuroinformatics tools (Chiang et al. 2011; 

Shinomiya et al. 2011; Osumi-Sutherland et al. 2012; Parekh and Ascoli 2013; Ukani et al. 

2016; Givon and Lazar 2016; Zheng et al. 2018; “Frontiers | Neuroarch: A Graph-Based 

Platform for Constructing and Querying Models of the Fruit Fly Brain Architecture” n.d.). 

Although being relatively small and simple, the fruit fly brain exhibits many high-level 

functions, including learning, memory, pattern recognition, decision making, and others. 

Hence, studying the neural circuits of small animals (insects) is extremely useful for our 

understanding of many essential brain functions(Webb and Wystrach 2016; Wessnitzer and 

Webb 2006; Su et al. 2017; Chang et al. 2017), and constructing a full brain model of the fruit 
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fly brain may enable us to investigate how different subsystems in the brain integrate and how 

high-level behavior is carried out. 

In this paper, we present our result from the first phase (Figure 1) of the Flysim project, a 

long-term research project aiming to develop a full-brain computational model of the 

Drosophila brain at the cellular and synaptic levels. The most distinct difference between the 

proposed model and other large-scale brain models is that in the proposed model every neuron 

was uniquely derived from a neuron image from the FlyCircuit database(Chiang et al. 2011). 

The database currently hosts 28573 and 22835 neuron images from female and male 

Drosophila brains, respectively, and the amount of data is rapidly increasing. The 22835 

images account for 22.83%-15.22% of the estimated total neurons (100,000-150,000) in a 

Drosophila brain. Although being a small percentage, these neurons fairly represent the entire 

brain as they widely distributed throughout every neuropil and cover more than 93% voxels 

(each voxel is 0.32x0.32x0.64 µm in dimension) of the standard brain space (Chiang et al. 

2011).  

Reconstructing a full-brain model based on a neuron image database poses several 

challenges. In the first phase of the project we developed mathematical and statistical tools 

that are required for transforming the neuronal morphologies into computational models and 

for deriving parameters that allow the modeled brain to maintain a stable resting state. 

Specifically, we needed to 1) predict the polarity of each neuron based on its morphology, 2) 

infer the synaptic connections and their weight between any two neurons, 3) derive membrane 

parameters for each neuron based on its size, 3) design a neural network simulator that is able 

to accommodate the simulations, and 4) find the balance condition of the brain model that is 

active and stable in the resting state. We also analyzed the network structure and the activity 

of the reconstructed fruit fly brain and found that it exhibits much higher diversity yet more 

stability than those observed in a randomized brain network. Finally, we discuss the issues in 

the current model, including identification of neuron type, receptor type and polarity, models 

for modulatory synapses, image alignment, and choice of single neuron model. We further 

suggest the technology and methodology that are required to address these issues in the next 

phase of the model development. 

 

 

Material and method 

Data preprocessing and analysis 

 
The FlyCircuit database provides detailed neuron images and accurate tracing lines 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/391474doi: bioRxiv preprint 

https://doi.org/10.1101/391474


(skeletons) for each neuron. However, to construct a computational model of the brain 

network, we need the following additional information: 1) polarity of each neuron arbor, 2) 

connections between neurons, and 3) their physiological properties. Here we describe the 

methods we used to estimate the parameters associated with these properties. 

Synapse polarity prediction and validation The information regarding the polarity (axon 

and dendrite) of each neuron was not available in the original neuron skeleton data obtained 

from the FlyCircuit database. To infer the polarity, we used the SPIN method(Lee et al., n.d.), 

which is a machine-learning algorithm designed for identifying the axonal and dendritic 

domains of a neuron based on its skeleton. Although this method is not 100% accurate 

(~84–92% on the original test dataset (Lee et al., n.d.)), it is the only available automated 

method that can be applied to a large-scale neuron image database.  

The original SPIN method was tested on a small subset of neurons that innervate the 

protocerebral bridge (PB) and modulus (MD). To apply this method to the entire brain, we 

tweaked several parameters and re-trained the classifier. We first randomly selected 90 

neurons that cover diverse morphologies from several neuropils including the PB, MD, 

antennal lobe (AL), and mushroom body (MB). We chose these neuropils because the polarity 

of their neurons is largely known. We manually labeled the polarity of the neurons and used 

them as the training data for SPIN. To identify the best combination of the morphological 

features for polarity classification, we tested all three feature selection methods provided by 

SPIN: sequential, exhaustive, and manual assignment. We found that the sequential method 

provided the best result, which indicated that there are 11 morphological features correlated 

with the polarity (Table 1). Among the 11 features, the top five are: path length to soma, mean 

branch order, maximum path length, maximum branch order, and number of branch points 

and volume of the convex hull. 

 

The training yielded a new polarity classifier. Next, SPIN separated each test neuron into 

several domains and classified the polarity of each domain. Because the data used in the 

present study have a higher resolution, i.e., more terminal points, than those used in the 

development of the SPIN method, SPIN tended to separate some neurons into too many 

domains. This issue was resolved by changing the parameter ThDP from 0.01 to 0.001. To 

validate the performance of the new classifier, we selected the 442 neurons that were reported 

in Lin et al 2013(Lin et al. 2013) as test neurons because their polarity has been reported in 

detail by two studies(Lin et al. 2013; Wolff, Iyer, and Rubin 2015). We removed the EIP 

neuron class, which innervates the ellipsoid body, inferior dorsofrontal protocerebrum, and 

protocerebral bridge, because the reported polarity is inconsistent between the two studies. 

Our test result indicated a 91.3% of terminal level accuracy, which means that on average, the 
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polarity of 91.3% of the terminals in each neuron was correctly classified. Finally, we used 

the new classifier to classify the polarity of all the neurons in the FlyCircuit database.  

Synapse weight prediction and connection validation Next, we estimated whether 

connections exist between any two given neurons. In FlyCircuit, each neuron image was 

taken from one individual fly brain. Although each image has been transformed (or warped) 

and registered in a standard brain space, this process inevitably created warping error. Ideally, 

the probability of synapse formation between two neurons is correlated with the degree of 

contact between them (Douglass and Strausfeld 2003; Tanaka, Endo, and Ito 2012; Peters and 

Payne 1993). However, due to the warping error, if two neurons have closely contacted 

branches in the standard brain space, this does not necessarily indicate that they form 

synapses. Likewise, two neurons that are not closely contacted in the standard brain space 

may in fact form synapses (Figure 2A and 2B). Therefore, additional procedures were 

required in order to infer the probability of synaptic formation between neurons. 

 

To this end, we designed a protocol that infers neuronal connections based on two criteria: 

distance and contact point. The distance criterion sets a maximum distance between an axonal 

segment of one neuron and a dendritic segment of another neuron that can be considered to be 

forming a contact point. A segment is the straight line between two consecutive nodes on a 

neuronal skeleton. For two selected neurons, we calculated the distances for all pairs of 

segments (one from each neuron) with different polarity. Next, we counted the number of 

contact points for these two neurons. The contact point criterion sets the minimum number of 

contact points between two neurons that can be considered to be forming synapses (Figure 

2C). We used the relative number R, rather than the absolute number, for the contact point 

criterion. Specifically, if Nik represents the number of contact points between neuron i (axonal 

side) and neuron k (dendritic side), then neuron i is considered as forming synapses with 

neuron k if ��� ∑ ����⁄ � �. Intuitively, one would place the number of all output contact 

points, i.e., ∑ ���� , in the denominator, so that R represents the ratio between the contact 

points of neuron i to neuron k and the contact points of neuron i to all downstream neurons. 

However, such a ratio leads to an undesired consequence, which limits the possible number of 

downstream neurons. For example, if R is set to 0.01, neuron i will have no more than 99 

downstream neurons. This is because if we rank the downstream neurons by their contact 

points with neuron i, the 100th downstream neuron must have an R smaller than 0.01. This 

problem will have a strong impact on neurons that have a large number of downstream 

neurons. Instead, using the number of all input contact points, i.e., ∑ ���� , as the denominator 

solves the problem. Although it seems odd to calculate the ratio based on the number of input 

contact points, it is not because the number is in fact roughly proportional to its total number 
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of output contact points (S1 Fig).  

The optimal values of D and R for the two criteria were determined by the following 

procedure: 1) we started from a small distance criterion (D = 1 �m) and contact point 

criterion (R = 0.1%), 2) for every pair of neurons in the test neuron set, we calculated the 

number of contact points and determined whether the two neurons form synapses based on the 

criteria; 3) we compared the result with data from a previous research (Lin et al. 2013) and 

calculated the true positive rate and false positive rate, and 4) we changed the distance and the 

contact point criteria and repeated steps 2–3. Finally, we used the receiver operating 

characteristic (ROC) analysis (Fawcett 2006; Lasko et al. 2005) to determine the best 

criteria to be: distance = 13 �m with contact points = 1% (Figure 2D). With these criteria, we 

achieved an acceptable true positive rate of 0.71 and a very low false positive rate of 0.058.  

All procedures were performed with the 442 neurons reported in Lin et al 2013(Lin et al. 

2013). Based on Lin et al 2013(Lin et al. 2013) and Wolff et al. 2015(Wolff, Iyer, and 

Rubin 2015), who reported the anatomy of the same circuits, we were able to derive the 

network connections of these neurons and use them as a reference to optimize our connection 

estimation protocol. Lin et al 2013(Lin et al. 2013) and Wolff et al. 2015(Wolff, Iyer, and 

Rubin 2015) reported the polarity and innervated subregions of each neuron. To construct the 

reference connectivity of these neurons, we assumed that a neuron that projects its axonal 

arbor to a glomerulus forms synapses with another neuron that has its dendritic arbor in the 

same glomerulus. Our assumption is reasonable considering that each defined glomerulus 

takes a small spatial volume (on average 16 �m in size(Chang et al. 2017)) and a neuron that 

innervates a subregion typically fills up the volume with its arbors and highly overlaps with 

other innervated neurons. 

Estimate of Membrane parameters For each neuron, we estimated its membrane 

parameters in order to create a LIF model for simulation. The LIF model requires the 

following parameters: resting potential Vresting, spike threshold Vthreshold, reset potential Vreset, 

refractory period Trefract, membrane time constant τ�, and membrane capacitance Cm. To 

determine the first three parameters, we extensively reviewed the literature and estimate the 

typical value for each parameter (S1 Table). In consequence, we set Vresting = -70 mV, Vthreshold = 

-45 mV, Vreset = -55 mV, and τ� = 16 ms for every neuron. The refractory period was set to 

2.0 ms. The membrane capacitance of each neuron was size-dependent and was determined 

by the following procedures. 

The membrane capacitance, Cm, depends on the total area of the cell and hence roughly 

correlates with the size, or the total branch length, of the cell. Therefore, at the current stage 

we simply assumed that Cm of a cell linearly correlates with its total skeleton length. Based on 

this assumption, we can easily estimate the Cm for each neuron if we find the typical value of 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/391474doi: bioRxiv preprint 

https://doi.org/10.1101/391474


the membrane capacitance per unit length of the skeleton, denoted cm. Although this was a 

very rough estimate, it gave us a size-dependent membrane capacitance and is certainly 

superior to simply setting all neurons with an equal membrane capacitance. We have found 

that cell membrane capacitance was 0.6  µF/��  to 1.0  µF/��  from previous work 

(Gouwens and Wilson 2009)(Weir, Schnell, and Dickinson 2014) and we considered the 

average value, 0.8 µF/��, as the membrane capacitance per unit area for our neuron model. 

Because the information about the diameter of each neuron branch is not available in the 

current database, we were not able to directly calculate the membrane area of a neuron but 

had to estimate the value indirectly based on other studies. Wilson and Laurent 2005(Wilson 

and Laurent 2005) measured the total length and area of three antennal lobe projection 

neurons. By comparing the skeleton length of the neurons in our database to that reported by 

Wilson and Laurent 2005(Wilson and Laurent 2005), we obtained an empirical equation for 

the total area A of a neuron, � � ��� � 2� � 0.147� � 2.38 � 5340, where ��  is the skeleton 

length of the neuron i. By multiplying A by 0.8 µF/��, we obtained the estimated membrane 

conductance of each neuron.  

 

Model network construction 

 
Based on the procedures describe above, we established a brain-wide neural circuit model 

including an individual LIF model (described below) for each neuron and the 

conductance-based synapses formed by these neurons. We acquired neurons from the female 

fruit flies in the FlyCircuit database, and excluded the isolated neurons (those not connected 

to any other neurons based on our connection estimation). We obtained a total of the 20,089 

neurons that can be used in the brain-wide circuit model. Next, we inferred the type, in terms 

of released transmitters, of each neuron by the driver used to image the given neuron. The 

driver type is indicated by the first part of a neuron’s name in the database. For example, the 

neuron named VGlut-F-200532 is assumed to be a glutamatergic neuron. Specifically, there 

were 3365 putative cholinergic (Cha) neurons, 5998 putative glutamatergic (VGlut) neurons, 

and 7956 putative GABAergic (Gad) neurons. At the current stage we only simulated synaptic 

projections from these three types of neurons, which form a total of 1,044,020 synapses. The 

other 2,770 neurons were likely modulatory neurons, which release neurotransmitters such as 

dopamine, octopamine, serotonin, and others. We argue that it is safe to exclude their 

synapses at the current stage because their slow effect does not significantly impact brain 

dynamics at the millisecond to second time scales, as the present study focused on. We will 

include the modulatory synapses in the future when we simulate the fruit fly behavior at the 

minute to hour time scales.  
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Neuron and synapse models. Each neuron was simulated by a compartment of the LIF 

model with conductance-based synapses. The neuron model is described by: 

 

 �,�
�	�
�


� !"�,�#$� ! $�,�% ! ∑ &���                                            (1) 

 

where the subscripts i and j are the neuron indices, g� �  �/(�  is the membrane 

conductance, VL (=Vresting) is the resting potential, and &��  is the synaptic current, which is 

contributed by glutamatergic (including AMPA and NMDA receptors), cholinergic (Ach), and 

GABAergic (GABAA) synapses formed by projections from the presynaptic neuron j. For 

AMPA receptors in glutamatergic synapses, as well as cholinergic and GABAergic synapses, 

we have 

 

&� � "��)���$� ! $���                                                       (2) 

 

and for NMDA receptors in glutamatergic synapses, we have 

 

&� �
�������	��	����

��
���	
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.�����
��.��	��

                                                  (3) 

 

where " and ) are the synaptic conductance and the gating variable, respectively, $�� is 

the reversal potential, which is 0 mV for the excitatory (including AMPA, NMDA, and Ach) 

and -70 mV for the inhibitory (GABAA) synapses, respectively, and [Mg2+] (=1mM) is the 

extracellular magnesium concentration, which is used to describe the effect of the magnesium 

block on the NMDA channels. We would like to clarify the use of the term “synapse.” In 

biology, a neuron can make multiple contacts and form multiple synapses with another neuron. 

However, in the single-compartmental model used in the present study, the effect of multiple 

synapses between two neurons can be combined and described by only one synaptic equation. 

Therefore, a model synapse between the presynaptic neuron i and the postsynaptic neuron j 

can be treated as a collection of all biological synapses formed between the two neurons, i and 

j. The gating variable )��  is given by: 

 

����
�
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���     for AMPA and GABAA receptors                    (4) 
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  for NMDA receptors.         (5) 
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δ is the delta function, and +�
� is the time of the k-th spike from the presynaptic neuron j. 

The synaptic conductance " is an unknown parameter that indicates the strength of the 

synapse. We assume that the synaptic strength between a presynaptic neuron i and 

postsynaptic neuron j are proportional to the number of their contact points, Nij: 

 

"�� � 012���                                                             (6) 

 

The proportion constant is the multiplication of three variables: D, B, and k. D is a variable for 

short-term depression described below. B was different between excitatory and inhibitory 

synapses and was used to adjust the balance between excitation and inhibition of the system 

as described in the Results. k is a variable used to balance the relative contribution between 

excitatory synapses that contain AMPA, NMDA, or Ach receptors. k was set to be 1/300 for 

AMPA receptors. Because the NMDA time constant is 50 times larger than that of AMPA, we 

set k = 1/15000 for NMDA receptors, so that both NMDA and AMPA contributed equally to 

the synaptic current in a glutamatergic synapse. Likewise, k was set to be 1/3000 for an Ach 

synapse because its time constant is 10 times larger than that of AMPA. For GABAA synapses, 

k was set to be 1/300, which is equal to that of AMPA. Note that for a given glutamatergic 

synapse, the corresponding NMDA and AMPA components shared the same D, ���, and B. 

We delivered to each neuron a small but fluctuating membrane current as the background 

noise. Specifically, at each time step and for each neuron, a value of membrane current was 

drawn from a Gaussian distribution and was applied to the neuron in order to generate 

membrane potential fluctuation. The width of the Gaussian distribution is dependent on the 

size of each neuron to ensure that the resulting mean membrane potential (= -60 mV) and its 

standard deviation (3 mV) at the resting state are the same for all neurons. The background 

noise is so small that each neuron barely fires (with a mean firing rate of ~0.004 Hz) without 

external synaptic input.  

Short-term plasticity We implemented the STD, a feature commonly observed in various 

nervous systems including the Drosophila’s (Wilson and Laurent 2005; Nagel, Hong, and 

Wilson 2015; Root et al. 2007). We adopted a model which describes STD as a presynaptic 

calcium dependent dynamic, in which the available vesicles decrease following each 

presynaptic spike and exponentially return to the baseline with a long time constant(Hempel 

et al. 2000; Varela et al. 1997; Abbott et al. 1997). Specifically, the STD variable D is given 

by: 

 
��

�

�

�����

��
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where τ� is the time constant of STD, and pv is the synapse vesicle release probability(X.-J. 

Wang 1999), δ�t� is a delta function that is infinity at the time of every presynaptic spike 

and 0 elsewhere. D is used to modulate the synaptic conductance as indicated in Eq. (6). 

The randomized brain network 

To investigate the neural network dynamics of the reconstructed fruit fly brain, it is useful 

to compare it to a randomized network to assess the contribution of the brain network 

structure to the network dynamics. To this end, we created a randomized fruit fly brain 

network using the following procedure. We preserved all neurons in the reconstructed fruit fly 

brain model as well as all synaptic conductance gij’s. Next, we rewired all connections by 

randomly assigning a new postsynaptic neuron i to every gij, while keeping the presynaptic 

neuron j unchanged. The randomized fruit fly brain network had the same number of neurons, 

the same number of synapses, and the same synaptic weight (gij) distribution with those in the 

reconstructed fruit fly brain network. Because of the random rewiring, the isolated neurons in 

the reconstructed brain network became connected in the randomized brain network, which 

had a slightly larger number of neurons (22,835). 

 

Model network simulation 

To perform simulations for the model fruit fly brain, we built a neural network simulator, 

Flysim, in C++. Flysim includes four major components: 1) two-pass network compilation, 2) 

data managing and optimization, 3) computation, and 4) data output.  

Two-pass network compilation The network building process requires a special design 

because of the large size of the parameter file, which specifies unique parameters for each of 

the 20,089 neurons and 1,044,020 synapses. In order to facilitate the computer memory access 

and to shorten the network construction time in this large-scale neuron network, we utilized 

the “two-pass compiler” concept in network compilation. In the first pass (Figure 3A), Flysim 

reads through the parameter file, calculates the number of total neurons and synapses, and 

allocates the memory for each neuron and synapse. In the second pass (Figure 3B), Flysim 

reads every parameter and fill them into the pre-allocated memory. This two-pass approach 

avoids the time needed for dynamic memory allocation when building neuron data, and hence 

reduces the time for network construction from over 15 minutes down to only 1.5 minutes. 

 

Data managing and optimization We also adopted the compact data structure to reduce 

memory access. Because in our network model each neuron has different parameters and 
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connections, the data are not linearly reducible. To improve the memory access efficiently, we 

separated the data into two categories: membrane-related and synapse-related (Figure 3C). 

Flysim sorts the synapse-related data, which are compiled in the previous process, and then 

reduces the fast-responding gating variables of each neuron as follows. In our network model, 

the dynamics of fast-responding receptors such as AMPA, GABAA, and acetylcholine are 

described by a simple exponential decay. This property makes it possible for us to linearly 

combine all gating variables of the same receptor type (AMPA, GABAA, or acetylcholine) in 

each post-synaptic neuron i into one single variable, 6� :  

 

6� � ∑ "��)���                                                              (8) 

 

where "��  and )��  are defined in equations (4) and (6), respectively. The dynamics of 6�  

are described by 

 

6� � ! �

��
6� � ∑ "��*�+ ! +�

����                                                (9) 

 

where +�
�  indicates the time of k-th spikes from the presynaptic neuron j. Instead of 

calculating a large number of gating variables for each connection for a given neuron, we only 

needed to calculate one gating variable for each receptor type. In the simulator, Equation 9 

was used to replace Equation 4 for the AMPA, GABAA, and cholinergic receptors. This 

reduction led to program space and time localities, which greatly improved memory fetch and 

storage through the high-speed buffering mechanism in the modern computer memory 

hierarchy. 

Computation To further reduce the computation time, we entered the calculations of 

membrane current and potential in the same program block for spatial and temporal localities, 

which allowed the C++ compiler to automatically optimize the operations and improve the 

speed. 

When performing threading level parallelism (TLP), load balance greatly influences 

computing performance (Figure 3D). Load balance can be easily achieved for neuron-related 

data because each neuron is described by the same number of neuronal parameters. However, 

this is not the case for synapse-related data because the number of synapses varies greatly 

between neurons. To address this issue, we assembled multiple arrays, and each contained 

synapse-related data from randomly selected neurons. Due to the nature of random selection, 

the arrays were roughly of the same size, or balanced. Each array was then loaded into one 

thread for computation. By performing TLP with load balance, we could achieve a 1:35 
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simulation speed (1 second of biological time requires 35 s of real time to simulate) using four 

threads with the current network size (20,089 neurons and 1,044,020 synapses) (see Results). 

We found that the synaptic strengths in the reconstructed brain network have broad 

distributions. Therefore, some neurons received an extremely large number of innervations 

from GABAergic neurons, which produced excessive inhibitory current input and brought the 

membrane potential of the postsynaptic neuron to a level much lower than the reversal 

potential, or $� 7 $���, in equation 2. When this occurred, subsequent GABAergic input 

instead produced depolarized current (&� 8 0, see equation 2). If the subsequent GABAergic 

input is again very strong, the large depolarization current might in fact bring the membrane 

potential above the firing threshold and generate an action potential. To eliminate such 

artifacts, we implemented a constrain on the maximum potential change 9$���  of a neuron 

in one simulation time step. The maximum value was set to be: 

 

9$��� � $
� ! $���                                                        (10) 

 

For the numerical solver, we used the first order exponential integrator method(Cox and 

Matthews 2002) instead of the commonly used 4th-order Runge-Kuta method. The reason is 

that due to the nature of the LIF model, we only needed to solve the equations for the 

sub-threshold membrane dynamics, which evolve much slower than those of spike activity. 

Using the exponential integrator can greatly improve the speed while at the same time retain 

high precision (comparable to the look-up table method). To speed up the generation of the 

Gaussian noise, which is used for membrane noise, we used the ziggurat(“The Ziggurat 

Method for Generating Random Variables | Marsaglia | Journal of Statistical Software” 

n.d.) method to generate a Gaussian-distributed random number. This approach further 

improved the speed three-fold compared to the standard C++ random number generator. 

Data output For the simulated data output module, we adopted a direct-access approach in 

which neuron variables are written to files directly rather than through a commonly used 

independent message queue or message buffer (Figure 3E). Flysim uses clock-driven 

simulation and it exports various data, including spike time, firing rate, membrane potential, 

and others, in each time step. The direct data-access approach provides a high output rate with 

low latency, and therefore minimizes the time spent on non-simulation processes.  
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Results 

Statistics of the network structure 

 
We first examined several key statistics of the reconstructed fruit fly brain network and 

found that it is highly diverse and exhibits interesting patterns of local connectivity. The 

network contains 20,089 neurons and the average number of edges (connections) is 52. The 

neuron sizes, as represented by individual neuron’s total skeleton length, cover two orders of 

magnitude. The distribution of neuron size forms two peaks, suggesting two distinct neuron 

types in the fruit fly brain (Figure 4A). Further analysis revealed that one peak mainly 

corresponds to the projection neurons (mean skeleton length = 1753 µm) and the other 

corresponds to the local neurons. Projection neurons are those innervating more than one 

neuropils and are usually much larger than the local neurons, which only innervate one 

neuropil. We further found that the local neuron distribution also formed two peaks. The peak 

that corresponds to the shorter mean length is mainly contributed by the local neurons in the 

medulla (MED), while the longer one is contributed by the rest of the local neurons (Figure 

4A inset). The MED local neurons have a mean skeleton length of 858 µm, while the 

non-MED local neurons have a longer mean skeleton length of 1206 µm, which is still 

significantly shorter than that of the projection neurons (t-test, p < 10-21). We noted that the 

MED local neurons account for a significant number (1455) of the total neurons in our sample. 

However, considering that each MED consists of roughly eight hundred visual columns and 

each column contains a few dozen local neurons (Zhu 2013; Morante and Desplan 2008), the 

number of MED local neurons in our sample seems to be reasonable. 

We further examined the connectivity of the fruit fly brain networks. The connectivity 

exhibited long tail distribution and connectivity was 0.003, meaning that each neuron made 

connections to ~0.3% of neurons in the brain, on average. The degree distribution, or the 

distribution of the number of connections made by each neuron, formed a broad distribution 

with the largest connection number up to 944 for in degree (input connections) and 3,982 for 

out degree (output connections) (Figure 4B). Both distributions roughly followed an 

exponential form, at large degrees. If we consider the full brain (estimated 100,000-150,000 

neurons in total), connectivity of 0.3% gives rise to an average degree of 390 per neuron. 

Although the number seems to be high, note that the degree distribution follows a long 

distribution with a fat tail, suggesting that the average number is strongly influenced by a 

small number of highly connected neurons while the degrees of most neurons are smaller than 

390.  

Next, we examined the total input and output contact points of each neuron (see Methods) 
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and found that their distribution also formed broad distributions, but with power-law tails 

(Figure 4C). The broad degree and connection weight distributions indicate that the 

connectivity of the fruit fly brain network is multi-scaled. 

 

We further investigated the local connectivity under the consideration of neuron types, 

which influence the network balance. The fruit fly brain network, just like any other neural 

network, is characterized by strong recurrent/feedback connections with both excitatory and 

inhibitory synapses. We expect that the ratio between the excitatory and inhibitory input has 

to remain balanced. Otherwise, slightly more excitation (or less inhibition) could be quickly 

magnified through the recurrent connections and destabilize the entire network. A balanced 

network does not imply that it is lack of spontaneous activity or is unresponsive to the input 

as one may imagine. Several theoretical studies suggested that a balanced state can improve 

functionality of a neural network compared to unbalanced one (Lo, Wang, and Wang 2015; 

C.-T. Wang et al. 2013; Vogels and Abbott 2009; Chance, Abbott, and Reyes 2002) and such a 

balanced state has been observed in various nervous systems (Haider et al. 2006; Mariño et al. 

2005; Shu, Hasenstaub, and McCormick 2003; Berg, Alaburda, and Hounsgaard 2007). We 

calculated the E-I index for each neuron and plotted its distribution separately for each neuron 

type (Figure 5). The E-I index of a neuron is defined as �� ! �!� �� � �!�⁄ , where �  is 

the total excitatory input (from VGlu and Cha neurons) and �! is the total inhibitory input 

(from Gad neurons) to the given neuron. The E-I index can be calculated with unweighted or 

weighted input: the former only counts the number of input neurons and the latter weights 

each input with its contact point number. 

 

As a comparison, we also plotted the distributions of the E-I index for the randomized 

fruit fly brain network (see Methods). We found that the distributions of weighted inputs for 

the reconstructed fruit fly brain were much wider than those of the randomized one, 

suggesting that the neural connections in the fruit fly brain are organized in a way that leads to 

numerous neurons with high or low E-I index. This trend was much more significant for the 

weighted than the unweighted inputs. Specifically, we found that the putative cholinergic 

neurons (Cha) in the reconstructed brain are characterized by a wider and roughly symmetric 

distribution of the E-I index. In other words, this neuron population had equally large 

percentages of neurons with very high or very low E-I indices. In contrast, the putative 

GABArgic inhibitory neurons (Gad) in the reconstructed brain were characterized by a wider 

but asymmetric distribution of the E-I index, which indicates that there were many more Gad 

neurons receiving strong inhibitory input in the fruit fly brain network than in a randomized 

brain network. Moreover, the putative glutamatergic neurons (VGlu) in the reconstructed 

brain were characterized by a trend opposite to that of the inhibitory neurons: the VGlu 
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neurons tend to receive stronger excitatory input than the inhibitory ones. One may suspect 

that the wide E-I index distributions of the reconstructed brain may had been artifacts due to 

subsampling of the full brain network. To address this question, we hypothesized that the full 

brain network (estimated to possess 100,000 - 150,000 neurons) is random-network like and 

exhibits narrow E-I index distributions, which become significantly widened after 

subsampling. We tested this hypothesis by constructing a random network of 130,000 neurons 

with the percentage of each neuron type and their connectivity (in percentage) following those 

in the reconstructed brain. Next, we randomly selected ~20,000 glutamatergic, cholinergic, 

and GABAergic neurons and calculated their E-I indices. We found that the subsampled 

random network exhibits much narrower E-I index distributions than those of the 

reconstructed brain (S2 Fig). Therefore, the hypothesis of subsampling artifacts was rejected.  

The wide E-I index distributions of the reconstructed brain indicate that it is potentially 

unstable due to mutually suppressed inhibitory neurons and mutually facilitated excitatory 

neurons. Next, we investigated the actual stability of the fruit fly brain network by computer 

simulation. 

  

Dynamical properties of the fruit fly brain model 

 
We performed the neural network simulations for the fruit fly brain model. At this 

early stage of whole-brain model development, we focused on establishing a stable resting 

state (see Methods) and on investigating its dynamical properties. The stability of the network 

is determined by the network structure and the overall strength of the excitatory and inhibitory 

connections. While the network structure was derived and determined by the connectomic 

data, the strength of the excitatory and inhibitory connections can be tuned by adjusting the 

variable B in Eq. 6. We defined the I/E factor as the ratio between B’s for the inhibitory and 

excitatory synapses. B was a fixed value (= 2.2) for all excitatory synapses, and therefore the 

I/E factor was determined by setting B for inhibitory synapses. For example, B is equal to 22 

for the inhibitory synapses if the I/E factor is 10. We found that if we set the I/E factor to be 

one, the network was extremely unstable; the mean firing rate of the whole network quickly 

arose to nearly 100 Hz within 1 s. Next, we tuned the I/E factor and examined whether the 

brain network can be stabilized with a larger I/E factor (Figure 6). We varied the factor in the 

range between 0.1 and 100, and found that although the average firing rate of the whole 

network decreased dramatically with the increase of the I/E factor (Figure 6A), the network 

was still unstable. The instability was indicated by seizure-like firing activity, or hyperactivity, 

which is defined as a rapid surge of the mean firing rate of the whole brain to more than 1.0 

Hz. Increasing I/E factor moderately prolonged the onset of the seizure-like events, but did 
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not completely eliminate them (Figure 6B). We found that once the seizure-like activity 

occurred, it never stopped (Figures 6C and 6D). We further checked the distribution of the 

firing rate of individual neurons and found that for the case of I/E factor = 1, there were 

numerous neurons exhibiting extremely high firing rates (Figure 6E). While for a large I/E 

factor (100, for example), although the number of high firing rate neurons decreased, the 

distribution still exhibited a long tail (Figure 6F). The inefficiency of the I/E factor in 

stabilizing the network may be contributed by the following two factors: 1) Some of 

excitatory neurons have a highly positive E-I index, or less inhibitory input, making them less 

sensitive to strong inhibitory synapses. 2) The negative mean E-I index in the inhibitory 

neurons indicates strongly recurrent inhibition. Therefore, these neurons tend to inhibit 

themselves and limit the overall inhibitory output to the excitatory neurons.  

 

Our simulations indicated that a strong inhibitory system, as characterized by a large 

I/E factor, is unable to stabilize the brain network. Therefore, we needed another neural 

mechanism that can efficiently “cool down” the network when the overall activity was high. 

To this end, we tested the short-term depression (STD), which is commonly observed in many 

species, including the Drosophila(Kazama and Wilson 2008). We implemented STD in 

every synapse of the fruit fly brain network and set the I/E factor equal to 10. We noted that 

the precise value of the I/E factor is not crucial. Setting the value above 5 would lead to the 

same network dynamics, qualitatively. We represented the degree of stability by the 

prevalence of the hyperactivity, as defined by its total duration in a 10-s simulation period, for 

different STD strengths, which is indicated by the recovery time constant ((�) of STD. We 

found that STD effectively stabilized the reconstructed brain network and the prevalence 

dropped to 50% or lower when (� was larger than 125 ms (Figure 7A). Moreover, while the 

seizure-like activity ran continuously in the brain network without STD (Figure 7B; Video S1), 

these hyperactivity events generally did not last for more than a few seconds in the brain 

network with strong STD (Figures 7B–D, Videos S2 and S3). This is intriguing considering 

that STD was not able to stabilize the randomized fly brain with (� up to 1,000 ms (Figure 

7A). When the hyperactivity was suppressed by a strong STD ( (� � 600  ms) in a 

reconstructed fly brain, it exhibited more diverse firing activity, as characterized by 

intermittent low activity and bursts of spikes with various durations (Figure 7D). 

 

 

STD effectively stabilized the brain activity in terms of the population (the whole 

brain) firing rate. Next, we examined the activity of individual neurons by plotting the 

distribution of their mean firing rates. We found that although both reconstructed and 
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randomized brain networks were characterized by broad firing rate distributions and could be 

fitted by power-law functions with exponential cut-off (y � A.�"=�#� , or, truncated power 

law), they exhibited distinct characteristics (Figure 8). The firing rates distribution of the 

randomized brain network could also be fitted by an exponential function (Figure 8A) with 

small χ�  errors (~10-3), comparable to those in the fitting with a truncated power law 

(χ�~10-3). Moreover, the fitting with the truncated power law gave rise to an extremely small 

power-law exponent (α~0.012 ! 0.058), indicating the insignificance of the power-law 

component in the distributions. Fitting the distributions with a power-law function alone 

yielded larger χ� errors (~10-1-10-2). Therefore, we concluded that the firing rate distributions 

of the randomized brain network were better described by exponential functions. In contrast, 

the firing rate distributions of the reconstructed brain were better described by power-law than 

by exponential functions. Fitting the distributions with an exponential function did not yield 

any meaningful result (χ� > 5.1) while fitting with a truncated power law distribution led to 

much smaller χ� errors (~10-2-10-3). Furthermore, the power-law component was much more 

significant (α~1.48 ! 0.84) in the reconstructed than in the randomized brain network.  

 

 

So far, we have examined the mean neuronal activity at the population level (Figures 8 

and 9) and at the single neuron level (Figure 8). In addition to the mean activity, the 

fluctuation of neuronal activity also exhibited distinct differences between the reconstructed 

brain network and the randomized one. We calculated the Fano factor for each neuron (10 

trials, each lasting for 10 s) in the reconstructed and randomized networks (Figure 9) and 

found that while the mean Fano Factor was comparable between the two networks, the former 

had a much wider distribution than the latter. The result indicates that the reconstructed brain 

had highly diverse neural dynamics, characterized by a large number (compared to the 

randomized network) of neurons that fired randomly or with some non-random patterns. 

Intriguingly, we discovered that some of the high Fano factor neurons exhibited brief and high 

frequency burst activity with relatively long quiescent duration. Since the neurons were 

modeled with the simple leaky integrate-and-fire (LIF) model, such patterned activities were 

the result of network interactions. 

 

Simulator benchmark 

 
We tested the performance of the Flysim simulator on a PC equipped with an Intel CPU 

at 3.6 GHz (E3-1270v5) with 64 Gigabytes of RAM. The reconstructed brain network (20,098 

neurons and 1,044,020 synapses) required only 35 Mbytes of RAM and its simulation could 
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be carried out in Flysim with four parallel threads at the speed of 1/35 of the real time. Next, 

we compared the Flysim simulator with NEST, a popular neural network simulator, using a 

simple 2-population random network. In the network, an excitatory population, E, of 16,000 

neurons formed a recurrent circuit with an inhibitory population, I, of 4,000 neurons. The 

in-degree was set to 50 for each neuron. NEST provides a variety of neuron and synapse 

models. However, because the available combination of the neuron and synapse models do 

not exactly match those used in the Flysim simulator, we tested NEST with two sets of 

combinations, with one requiring more and the other requiring less computational power than 

our simulator. We first tested the HT model(Hill and Tononi 2005) in NEST because this 

model offers a synaptic dynamic that is comparable to that used in Flysim. However, the HT 

model is endowed with soma dynamics that are more complex than ours. Next, we also tested 

the LIF model, which is endowed with a simpler synapse model (iaf_psc_exp_multisynapse). 

The LIF model is comparable to ours but the synapse model is much simpler than that used in 

Flysim. Our result indicated that Flysim required less memory and ran faster than NEST in all 

conditions we tested (S3 Fig). We did not test NEST with the fruit fly brain model because it 

contains descriptions of parameters for more than 20,000 unique neurons and 1,000,000 

unique synapses. The python interface used in NEST could not handle such a large size 

parameter input.  

 

Discussion 
In the present study, we constructed the first brain-wide computational model based on 

the cellular-level connectome of the Drosophila. This model is the first of its kind for any 

species, except for C. elegans(Szigeti et al. 2014; Izquierdo and Beer 2016; Palyanov et al. 

2011), which, however, is not considered to possess a brain. The proposed fly brain model, 

although still in its early stage of development, already exhibits several intriguing dynamical 

properties when compared to a randomized brain network. First, the E-I index was more 

widely distributed in the reconstructed brain network than in the randomized one, suggesting 

large populations of neurons receiving strongly excitatory or inhibitory inputs in the 

reconstructed brain. Second, despite the diversity in the E-I index, the reconstructed brain 

network was more stable, as measured by the prevalence of hyperactivity, than the 

randomized brain network. Third, although being more stable, the reconstructed fruit fly brain 

was characterized by diverse firing patterns: some neurons exhibited clusters of bursting 

activity while others fired more evenly.    

The ultimate goal of our study is to develop a single-neuron level computational model 

of the fruit fly brain that can reproduce the detailed neuronal activity and behavior of fruit 
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flies and that can be used to elucidate the computational principles of a fruit fly brain. 

Achieving such a goal requires a long-term effort together with highly detailed connectome 

and physiological data that are not yet available. Nevertheless, the purpose to present our 

early effort toward this goal in this paper is (1) to demonstrate, at the whole brain level, the 

unique dynamical features of a brain model reconstructed from the single-cell level 

connectome, and (2) by actually building one, to identify the technology and methodology 

that are required to improve the accuracy of the model, and (3) to draw attention to the issue 

regarding what exactly an “accurate brain model” means. We discuss these points as follows. 

We demonstrated that both reconstructed and randomized networks are unstable at any 

level of the I/E factor without STD, and the reconstructed brain only becomes significantly 

more stable and diverse than the randomized one when STD is implemented. Therefore, the 

critical factor that leads to the stability of the reconstructed brain should be a certain 

interaction between the network structure and STD. It will be interesting to investigate which 

aspects of the network structure, globally or locally, may play roles in the STD-induced 

stability and study whether such structure characteristics exist in the brains of all species. Our 

study also delivered an important message: it is crucial to use a network structure that 

resembles a real brain. Using random networks, which are very popular among many 

theoretical studies of neural network dynamics, may not reveal the phenomena that actually 

occur in the brain.  

The proposed fly brain model can be improved in several aspects: 

1. Neuron type identification. Currently neuron types, including glutamatergic, 

GABAergic, and cholinergic, are recognized by the three GAL4 drivers, vGlut, GAD, 

and Cha, respectively. This driver-type mapping is known to be less than 100% 

accurate. Moreover, some neurons were found to release more than one types of 

neurotransmitters. Therefore, improved genetic tools are required in order to obtain 

more accurate cell type categorization (Diao et al. 2015).  

2. Receptor type identification. Being a glutamatergic or GABAergic neuron does not 

automatically imply that the downstream neurons receive excitatory or inhibitory input, 

respectively. For example, glutamate-gated chloride channels have been observed in 

fruit flies. Since this type of channels cause an opposite effect to the AMPA and 

NMDA channels, it is important to conduct a systematic and high-resolution mapping 

of the expression of the synaptic receptors in the fruit fly brain so that the model can be 

updated accordingly.  

3. Models of modulatory synapses. We currently only model four types of synaptic 

receptors: AMPA, NMDA, GABAA, and acetylcholine, which are fast-acting excitatory 

or inhibitory receptors. Therefore, the proposed fly brain circuits can only be used for 

model brain dynamics in short (sub-second) time scales. We will implement other 
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slow-acting modulatory receptors, such as dopamine and serotonin, which will expect 

to endow the brain model with long-term and more complex behavior. 

4. Polarity identification. The polarity of each neuron arbor is identified by the SPIN 

method. Although being highly efficient and reasonably accurate, the method still has 

room to improve. In particular, due to the small sizes and irregular morphology of local 

neurons, their polarity is more difficult to be correctly identified. Moreover, some local 

neurons have been shown to exhibit co-localized presynaptic and postsynaptic 

terminals (Chou et al. 2010). Improved image segmentation and tracing algorithms 

will provide more detailed morphological features for SPIN and will greatly improve 

its accuracy.  

5. Image alignment and warping. Due to the potential deformation of the brain during the 

image acquisition process, when warping each neuron image into the standard brain 

space, it inevitably introduces errors that cause inaccuracy in the connection prediction. 

This issue will be largely improved by the in situ imaging method that will be adopted 

for the next generation of the FlyCircuit database. In addition, GRASP and related 

technology (Feinberg et al. 2008; Macpherson et al. 2015) can be used to verify the 

synapses and their activity in the selected circuits.  

6. Single neuron model. Currently we use the single compartmental leaky 

integrate-and-fire model, and the membrane area is simply considered to be 

proportional to a neuron’s total branch length. As the information about the thickness 

of each branch will soon be available in the database, we will be able to more 

accurately calculate the area of the membrane and thus derive better estimates for 

related parameters. Adopting a multi-compartmental model will also help to improve 

the accuracy of the simulations (Günay et al. 2015). Moreover, some neurons in the 

visual system conduct signals by graded potentials or by mixed graded and action 

potentials (Mu et al. 2012; Baden et al. 2013). Although in the current study we only 

investigated the resting state activity of the model brain without visual stimulus, it is 

important to identify those non-spiking neurons in our sample and choose models that 

correctly represent their response properties in the future study which involves visual 

responses of the brain.  

 

Finally, it is natural to ask how accurate the brain model is and how it can be verified. 

We would like to stress that, the term “accuracy” itself is not well-defined because of 

inter-individual differences. In the FlyCircuit database, each neuron image was taken from a 

different brain. Therefore, the reconstructed brain based on the database can be treated as an 

“average brain” sampled from a large number of individuals. In this sense, it is not 
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meaningful to verify our fly brain model against a connectome reconstructed from a single 

brain. However, we argue that it is more meaningful to verify our brain model at the 

functional level; although each fruit fly may have slightly different brain circuits, they all 

perform the same basic functions. Although the connectome reconstructed based on electron 

microscopy has the potential to accurately reflect the neural network of one individual, it is 

not clear whether a model built upon one individual brain has an advantage over that built 

upon an average brain from the perspective of computer modeling. Moreover, an important 

perspective came from the consideration of neurodegenerative diseases, such as Alzheimer’s 

disease, which is characterized by significant loss of neurons and synapses. Unless in the 

advanced stages, patients with Alzheimer’s still maintain basic motor and cognitive functions, 

suggesting that these functions are robust against moderate alternation of neural circuits. 

Therefore, even though it is not possible to know whether the reconstructed fruit fly brain 

accurately reproduces the brain of any individual, as long as we continuously update the 

model with the availability of new data and improve the algorithms for estimating the model 

parameters, we presume that the reconstructed fruit fly brain will exhibit some basic brain 

functions in the near future.  

Among all the brain functions, response to sensory input is the most suitable one for 

validating our brain model. In the next phase of model development, we will start with some 

of the most robust innate behaviors, such as the escape response, in which fruit flies jump 

directly away from a looming threat (von Reyn et al. 2017). A looming threat can be 

simulated by presenting a booming visual stimulus on the small field neurons in the unilateral 

medulla, while the initiation of the escape behavior can be represented by the activation of the 

giant fiber neurons (Tanouye and Wyman 1980). By then, the fruit fly brain model will 

provide an excellent platform for studying the neural circuit mechanisms of brain functions 

and behaviors.  
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Table 1. Morphological features that are correlated with the neuronal polarity as determined by the 

SPIN method. The weight represents the degree of correlation. Positive values indicate positive 

correlation while negative values indicate negative correlation. The definition of each feature is 

described in Cuntz et al. 2010(Cuntz et al. 2010). 

Morphological features                            weight 

Path length to soma    0.599 

Mean branch order    -0.413 

Maximum path length    0.402 

Maximum branch order    0.303 

Volume of the convex hull    -0.291 

Number of branch points    -0.285 

Mean path length    0.215 

Summation of segment lengths    0.054 

Mean volume of Voronoi pieces    0.023 

Mean branch angle    0.012 

Mean branch length    -0.003 

 

 

Figure captions 
Figure 1. The Flysim platform for Drosophila full-brain modeling The platform imports neuron 

skeleton data from the FlyCircuit database. The data undergo several processes before they are 

transformed into a computational model. The processes include polarity (axon or dendrite) 

identification, neuron connection prediction, and membrane parameter estimation. These processes lead 

to a raw model that can be simulated by the Flysim simulator, developed in-house. The raw model 

requires tuning and testing before it reaches a stable state. The activity of the stabilized brain model can 

be visualized on the web and used for studying brain dynamics.  

 

Figure 2. Prediction of neuron connections based on distance and number of contact points (A) - 

(C) Schematics of neuron connections illustrate how the prediction error can be reduced by the 

consideration of distance and contact points. (A) The dendritic arbor of neuron 1 is far apart from the 

axonal arbor of neuron 2 and they do not form any synapse. Neuron 2 and neuron 3, however, form five 

synapses as indicated by the five contact points (red circles) between them. (B) Warping error may 

occur when neurons are transformed and aligned in the standard brain space. In this case, neurons 1 and 

2 come in contact while neurons 2 and 3 become separated. If the connection prediction is made only 

based on the distance between neuron processes, errors would occur in this case. (C) To address this 

issue, we set two criteria: contact point and distance. Axonal and dendritic branches are counted as 

having a contact point when their shortest distance falls within a preset distance. Two neurons are 
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considered to form synapses when their contact point number is larger than a preset value. When proper 

values for the two criteria are set, neurons 1 and 2 are no longer connected but neurons 2 and 3 become 

connected. (D) Using the receiver operating characteristic analysis with various contact point and 

distance criteria, we identified the best criteria that lead to a high true positive rate (x-axis) with a 

reasonably low false positive rate (y-axis). Each black line represents a fixed distance criterion (dot: 1 

�m, solid: 13 �m, dashed: 20 �m) with varying contact point criteria. The gray line represents the 

result when synaptic connections between neurons are randomly assigned. The cross indicates the best 

criteria: the contact point number > 0.1% (of the total input contact points of the presynaptic neuron, 

see text) and the distance < 13 �m. 

 

Figure 3. The architecture of the Flysim simulator In the fruit fly brain model, each neuron and 

synaptic connection are unique. Therefore, the entire model requires a large amount of computer 

memory. The simulator is designed to address this challenge. (A) The simulator first goes through the 

network configuration file and estimates the number of neurons and synapses. Next, the simulator 

pre-allocates memory. (B) The simulator goes through the network configuration file again, reads all 

parameters, and then builds the whole network by filling each membrane-related and synapse-related 

datum into the pre-allocated memory. (C) The simulator performs linear reduction for synapse-related 

data to reduce computation and archive threading level parallelism. (D) The simulator dispatches each 

thread with one assembled neuron array and aligns each thread into a 5-stage pipeline for parallel 

processing. (E) Simulation results, including spike, membrane potential, average firing rate, and other 

data are directly accessed from assembled neuron arrays to archive high throughput and low latency 

data output. 

 

Figure 4. The neuron size and network connectivity of the fruit fly brain network are highly 

diverse (A) the distribution of neuron size as represented by the total skeleton length. The probability 

density was calculated by dividing the number of neurons in each bin by the total number of neurons 

and by the bin size. The sizes for all neurons (thick black) exhibit a bi-modal distribution. The left peak 

is mainly contributed by the local neurons (dotted curve), while the right peak is mainly contributed by 

the projection neurons (dashed curve). The distribution of the local neurons also forms two peaks with 

the shorter-length peak contributed by medulla (MED) local neurons and the longer-length peak, by 

non-MED local neurons (inset). (B) The distribution of degree (number of connections of each neuron) 

follows a broad distribution for both in-degree (input connections) and out-degree (output connections). 

Inset: a double-log plot of the same curves. (C) The distribution of the contact point number of each 

neuron also exhibits a long tail distribution for both input and output contact points. Inset: the same 

curves in a double-log plot.  

 

Figure 5. The normalized difference between the excitatory and inhibitory inputs (the E-I index) 

for different types of neurons in the fruit fly brain indicates the striking diversity of the local 

circuits (A) - (C) The distributions of the E-I index of each neuron, plotted separately for the putative 

cholinergic, GABAergic, and glutamatergic neurons, respectively. (D) - (F). Same with the panels (A) - 
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(C), respectively, but the E-I index are calculated based on the connections weighted by the contact 

point numbers. Solid curves: the reconstructed fruit fly brain. Dashed curves: the randomized fruit fly 

brain. The reconstructed brain exhibits much broader distributions than the randomized brain does in all 

conditions. The putative GABAergic neurons receive more inhibitory inputs, while the putative 

glutamatergic neurons receive more excitatory inputs in the reconstructed than in the randomized brain. 

 
Figure 6. The seizure-like hyperactivity can be reduced but not completely eliminated by stronger 

weights for the inhibitory synapses, as represented by the I/E factor (A) The mean firing rate as a 

function of the I/E factor for the reconstructed fruit fly brain and a randomized fruit fly brain. (B) The 

mean onset time of the seizure-like activity as a function of the I/E factor. Larger I/E factors 

significantly delay the onset time for the reconstructed fruit fly brain, but not for the randomized fruit 

fly brain. Furthermore, the reconstructed fruit fly brain is more stable than the randomized brain as 

indicated by the larger onset time for all I/E factors. Asterisks indicate the statistical significance 

(Student-t test, p<0.05) in the change of mean onset time between different I/E factor conditions for the 

reconstructed brain. (C) and (D) The spike rastergrams (grey dots) and the firing rates (black curves) of 

the reconstructed fruit fly brain at the low (0.1, point I in B) and high (100, point II in B) I/E factors, 

respectively. (E) and (F) The distributions of single neuron firing rates of the reconstructed fruit fly 

brain with the same I/E ratio as in (C) and (D), respectively. 

 

Figure 7. Short-term depression (STD) effectively stabilized the reconstructed fruit fly brain 

network by suppressing hyperactivity The I/E factor is 10 in all panels. (A) The prevalence of 

hyperactivity, as defined by its total duration in a 10-s simulation period, as a function of the time 

constant of STD. A large time constant indicates stronger STD, which dramatically reduces the 

prevalence of hyperactivity for the reconstructed brain, but not for the randomized brain. (B) - (D) The 

spike rastergrams (grey dots) and the averaged firing rates (black curves) of the reconstructed fly brain 

without STD, with ��=125 ms, and with ��=600 ms, respectively. (E) - (G) Same as in (B) - (D), but 

for the randomized brain. The activity displayed in panels (B) - (G) corresponds to the data points 

labeled by the roman numerals I–VI in the panel (A), respectively. 

 

Figure 8. The distributions of single neuron mean firing rate with different short-term depression 

(STD) conditions (A) The distributions for the randomized brain network with or without STD 

(�� � 125 or 600 ms) in double-log plot. Inset, same data but in a semi-log plot. The solid lines 

indicate exponential fits to the distributions and the characteristic time constant decreases with ��. (B) 

Same as in (A), but for the reconstructed brain network. The distributions had strong power-law 

components and could be better fitted with a truncated power-law function (solid lines). Inset, same 

data but in a semi-log plot. The result indicated distinct dynamics between the randomized and 

reconstructed brain networks. 

 

Figure 9. The reconstructed brain network exhibits firing patterns that are more diverse than 

those of the randomized brain network (A) The distribution of the Fano factors for the reconstructed 
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(solid line) and randomized (dotted line) brain networks without short-term depression (STD) (�� � 0 

ms). The arrows and the numbers indicate the mean of each distribution. Although both networks have 

comparable mean Fano factors, the reconstructed brain is characterized by a much wider distribution 

than the randomized one. (B) Sample spike trains with different Fano factors from the randomized and 

the reconstructed brain networks without STD (�� � 0 ms). Neurons with high Fano factors in the 

reconstructed brain are characterized by clusters of bursting activity, while neurons with low Fano 

factors have a more evenly distributed spike activity. (C) Same as in (A) but with strong STD 

(�� � 125 ms). (D) Same as in (B) but with strong STD (�� � 125 ms). 

 

S1 Fig. The input (ordinate) and output (abscissa) contact points of each neuron generally follow 

a linear relationship in a double-logarithmic plot The solid line represents the linear regression of 

the data: log(y) = 0.48 * log(x) + 2.6. 

 

S2 Fig. E-I index distributions for a subsampled network in comparison to the reconstructed and 

randomized fruit fly brain networks To test whether the broad E-I index distributions of the 

reconstructed brain network are artifacts due to subsampling from the full brain network, we 

constructed a full-size (130,000 neurons) random network (see text) and subsampled it by randomly 

selecting 22,835 neurons from the full network. The subsampled network exhibits much narrower E-I 

index distributions than those of the reconstructed brain network. 

 

S3 Fig. Benchmark tests indicated the superior efficiency and performance of the Flysim 

simulator compared to a similar simulator (A) To perform the comparison, we constructed a simple 

recurrent network with two populations. The network has 20,000 neurons and each one receives input 

from 50 randomly chosen neurons. Population E consists of 16,000 excitatory neurons while 

population I contains 4,000 GABAergic neurons. (B) We recorded that memory usage and the 

performance, as measured by the amount of CPU time required to simulate one second of biological 

time, for the Flysim simulator and NEST v2.12.0. For NEST, we tested the HT and leaky 

integrate-and-fire (LIF) models. In all conditions, the Flysim simulator consumed less memory and 

performed faster than NEST. 

 
S1 Table. Summary of membrane properties of neurons in Drosophila and the source of the data 

These values are used to determine the standard membrane properties in the model (see text). 

 
S1 Video. Activity of the reconstructed fruit fly brain without short-term depression 
S2 Video. Activity of the reconstructed fruit fly brain with moderate short-term depression 

(�� � 	
� ms) 
S3 Video. Activity of the reconstructed fruit fly brain with strong short-term depression 

(�� � � ms) 
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