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Abstract 14 

For at least 40 years now, evolutionary biologists have discussed the relative roles of natural selection 15 

and genetic drift in shaping the genetic composition of populations. Range expansions are of 16 

particular interest in this discussion: They normally occur over environmental gradients allowing 17 

local adaptation to take place, but the demographic properties of these expansions also potentiate 18 

genetic-drift effects, which may in turn randomly generate extreme changes in allele frequencies as 19 

populations expand in territory and numbers (i.e. allele surfing). Here, we address the detection and 20 

measurement of selection in such scenario using simulations. We mimic a range expansion over a 21 

variable selective gradient where individuals have in their genomes both loci that are neutral and loci 22 

determining a quantitative trait subject to selection. The responsiveness of summary statistics to the 23 

selective pressure is then assessed, and estimates of the selective pressure are made – based on these 24 

statistics – with approximate Bayesian computation (ABC). We observe that statistics related to 25 

isolation-by-distance patterns present a strong response to selection. This response can be used in 26 

ABC to estimate the strength of selection acting on the simulated populations with very reliable 27 

measures of estimability, regardless of the genetic architecture underlying the selected trait. 28 

Furthermore, these estimates are robust to noise produced by other genetic and demographic 29 

parameters such as heritability, mutation, migration and population-growth rates. This approach of 30 

taking into account the spatial dimension of differentiation in quantitative traits offers a promising 31 

avenue of investigation about the role of natural selection in range-expansion scenarios, with possible 32 

implementations in the study of natural cases, as well.  33 
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Introduction 34 

The opposition between selectionism and neutralism is one of the most significant debates in 35 

evolutionary biology (Ewens 1977; Kimura 1984; Hey 1999; Nei 2005). Ultimately, the question 36 

relies on which kind of processes (neutral or selective) lead to the majority of patterns observed in 37 

nature. Even though reconciliatory ideas have been proposed (Wagner 2008), the dilemma regarding 38 

selection vs. neutrality still endures in different contexts of evolutionary biology (Nei et al. 2010). 39 

One evolutionary context that has drawn increasing attention from evolutionary biologists is the 40 

context of ‘range expansions’. Range expansions are a ubiquitous phenomenon in nature involved in 41 

processes such as biological invasions (Parmesan and Yohe 2003; Walther et al. 2009), adaptive 42 

radiations (Rundell and Price 2009), speciations (Thorpe 1984; Hewitt 1996), pest and disease 43 

outbreaks (Jepsen et al. 2008; Roth et al. 2010), and post-glacial recolonizations (Hewitt 1996). 44 

Contractions and recolonizations following glacial oscillations are immensely common in nature, not 45 

only in temperate areas, but in tropical and subtropical regions, as well (Colinvaux et al. 2000; Hewitt 46 

2000). Therefore, it is probably safe to say that range expansions are likely involved in the 47 

evolutionary history of most of the organisms on the planet. 48 

In the selection vs. neutrality discussion, range expansions are particularly important because 49 

populations increasing their range tend to do so over environmental gradients, leaving room for 50 

selection to act, possibly leading to local adaptation (Hewitt 1996). When different forms are 51 

established across this gradient, a cline is produced (Endler 1977). Clines have been thoroughly 52 

studied in the context of hybrid zones, where two allopatric populations get into secondary contact 53 

forming a tension zone in which the hybrids are selected against, so that the width of the cline is 54 

inversely proportional to the strength of selection (Barton and Hewitt 1985). The same rationale was 55 

later applied to clines appearing in ecological transition zones (i.e. ecotones): Mullen and Hoekstra 56 

(2008), in what has become a classical example, demonstrated that strong selection maintains two 57 

color-morphs of deer mice separated in two different habitats. These studies, however, have 58 

concentrated on small geographical scale clines. When it comes to large-scale clines (such as those 59 

appearing across continents) the literature is relatively scarcer with some theoretical studies focused 60 

on gene frequencies (Bazykin 1969; Endler 1977) and quantitative traits (Barton 1999; Leimar et al. 61 

2008), and other empirical studies mostly dedicated to the description of clinal patterns in organisms 62 

like Drosophila spp. (Hallas et al. 2002; Weeks et al. 2002), Populus tremula (Ingvarsson et al. 2006), 63 

Quercus petrea (Zanetto and Kremer 1995), Pinus sylvestris (García-Gil et al. 2003), Arabidopsis 64 

thaliana (Kronholm et al. 2012), and yet other plant species (Savolainen et al. 2007). However, no 65 

attempt to measure selection in any of these or any other large-scale systems has been carried out, to 66 

our knowledge. 67 
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Still in the context of expanding populations, Edmonds et al. (2004) proposed that the 68 

formation of (genotypic) allele-frequency clines across environmental gradients could also (and 69 

mainly) be caused by a purely neutral process during range expansion: the allele-surfing phenomenon, 70 

further studied and named by Klopfstein et al. (2006). In populations undergoing a range expansion, 71 

mutations arising at the front of the wave of expansion can “surf” on this wave and increase in 72 

frequency simply due to a series of founder events. This surfing leaves behind a pronounced cline in 73 

allele frequencies, which may in turn have an effect on phenotype, generating a phenotypic cline. 74 

Recent studies are bringing a growing body of evidence that allele surfing alone is capable of 75 

producing many of the allele-frequency clines observed in natural populations (Currat et al. 2006; 76 

Excoffier and Ray 2008; Hofer et al. 2009). Some more recent findings even show that range 77 

expansions might allow for the accumulation of deleterious mutations generating an ‘expansion load’ 78 

in populations of recently colonized areas (Peischl et al. 2013; Peischl and Excoffier 2015; Gilbert et 79 

al. 2017). 80 

Expansion load has been demonstrated to have a complex interaction with the adaptation 81 

dynamics of an expanding population. The existence of an environmental gradient can reduce the 82 

accumulated genetic load during the expansion process, while the consequent maladaptation in the 83 

front-end of expansion may in fact reduce the speed of the process (Gilbert et al. 2017). Moreover, 84 

the steepness and patchiness of the environmental gradient combined with different genetic 85 

architectures can have significant consequences on the outcome of the range expansion, as well. In 86 

fact, if the gradient is too steep and the genetic architecture relying on large-effect alleles, the range 87 

expansion might fail altogether (Gilbert and Whitlock 2017). 88 

The focus of this work is not on expansion load, and rather on the adaptive processes possibly 89 

involved in range expansions. And there is indeed evidence that range expansions may foster adaptive 90 

processes, bringing about the idea of adaptive clines. For example, White et al. (2013) found 91 

indications of adaptive evolution in an ongoing range expansion in Irish bank voles, where several 92 

genes related to immune and behavioral systems were shown to form consistent clines across three 93 

independent transects of the expansion. Empirical evolutionary studies have also suggested that range 94 

expansion could facilitate adaptive change (Gralka et al. 2016). Furthermore, it appears that dispersal 95 

ability itself is a trait commonly affected by selection in range expansions: higher dispersal is often 96 

selected for in the margins of an expansion, as theoretical analyses suggest (Travis and Dytham 2002). 97 

Empirical support for this finding has been documented in several species (Hughes et al. 2007; Monty 98 

and Mahy 2010; Moreau et al. 2011). Furthermore, rapid adaptation to climate variation also 99 

facilitates range expansion, as has been verified in the invasive plant Lythrum salicaria in North 100 

America (Colautti and Barrett 2013). The body of evidence favoring selection in range-expansion 101 
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systems is substantial, and it often includes the examples of the (continental) large-scale clines 102 

mentioned above, as well (Bazykin 1969; Endler 1973; Barton 1999; Leimar et al. 2008). One 103 

particularly interesting case in large-scale cline and range expansion systems is the European barn 104 

owl (Tyto alba) and its coat-color cline (Antoniazza et al. 2010, 2014). In this species, a gradient of 105 

colors has established across Europe, probably during or after a post-glacial range expansion, with 106 

white morphs nearly fixed in the southwest and dark-brown morphs in the northeast. This and the 107 

above-mentioned cases all suggest selection has been acting. However, the current challenge persists 108 

in (i) distinguishing neutrality from selection and (ii) properly measuring the strength of natural 109 

selection in large-scale clinal systems involved in range expansions. 110 

The question of whether or not one is able to assess selection in range expansions is still 111 

unsolved. Here, we take advantage of spatially explicit simulations to investigate the role of selection 112 

in the context of range expansions. First, we assess the ability of selection to leave a distinctive 113 

signature of its activity on the populations, despite the occurrence of the complicating demographic 114 

effects of range expansions (e.g. allele surfing). Second, with approximate Bayesian computation 115 

(ABC) (Beaumont et al. 2002), we address the detection and estimation of natural selection operating 116 

in this system. Finally, focused on the estimation of selection, we also explore the effect of other 117 

demographic and genetic parameters (nuisance parameters) on the accuracy of the selection estimates. 118 

Variations in these parameters may affect the probability of allele surfing. Therefore assessing the 119 

robustness of selection estimates across these parameters can bring valuable insight on the interplay 120 

between neutrality and natural selection in the ubiquitous demographic scenario of range expansions. 121 
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Material & Methods 122 

Range expansion – Simulations were run in a rectangular world 5 patches wide and 51 (0-50) patches 123 

long (Fig. 1A) in an internal-development version of the program quantiNEMO2 (Neuenschwander 124 

et al. 2008a, 2018). To mimic a range expansion, only the left-most patches started the simulations 125 

occupied at their carrying capacity (K = 100). These five patches evolved without any range 126 

expansion for arbitrary 100 generations in order to establish a background of genetic diversity, 127 

mimicking a refugium. The colonization of the remaining patches occurred after this initial phase and 128 

lasted 400 generations, at a speed that depended on the migration rate (m, uniform [0.1, 0.4]) and the 129 

intrinsic growth rate of each patch (r, uniform [0.2, 0.8]). We further varied narrow-sense heritability 130 

value (h2, details below) and mutation rate (µ, log-uniform [10-5, 10-2]), which were used as 131 

“nuisance” parameters to test the robustness of the selection-related parameter’s estimates. As neutral 132 

genetic markers, ten multi-allelic loci were simulated with the same mutation rate implemented for 133 

the quantitative loci (µ) and a single-step mutation model, mimicking microsatellite markers. 134 

Selection implementation – Fig. 1B illustrates how selection was implemented: we assumed 135 

a local hard stabilizing-selection scheme with a gradient of optima along the colonization path. On 136 

the left-hand side of the map, the selective optimum was defined at one extreme of the phenotypic 137 

range (ZOPT = 0); while, at the right-hand side, it was set to the other extreme (ZOPT = 1). Each patch 138 

along the colonization path had a different optimum value (ZOPT), linearly distributed between 0 and 139 

1. Individual fitness is given by the function: 140 

𝑊𝑖𝑗 =  𝑒
−

(𝑍𝑖𝑗−𝑍𝑂𝑃𝑇𝑗)
2

2𝜔2  141 

where Wij is the fitness of individual i from patch j with phenotype Zij, where the patch optimum is 142 

ZOPTj and the selection intensity (identical for all patches) is given by ω. This latter parameter 143 

determines the strength of selection in our model (ω, log-uniform [0.1, 100], Fig. 2A). The ω 144 

parameter translates directly into a selection coefficient (s) (Fig. 2B) according to equation: 145 

𝑠 = 1 − 𝑒
−

1
2𝜔2 146 

where s is the selection coefficient – defined as the difference in fitness between the two extreme 147 

pheno/genotypes (Z = 0 or 1) at any of the ends of the map – and ω is selection intensity, as already 148 

defined above. Part of the phenotype is environmentally determined, depending on trait heritability 149 

(h2). We explored a wide range of heritability values (h2, uniform [0.01, 1]), kept constant over time 150 

within the same simulation. Our goal is to estimate the selection coefficient (s), having nuisance 151 

parameters corresponding to the heritability of the trait (h2), migration (m), mutation (µ) and growth 152 

(r) rates. 153 
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Six genetic architectures – Six different genetic architectures were implemented for the trait 154 

under selection where the allelic effects were entirely additive within and between loci. First, we 155 

assumed a trait encoded by one locus and two co-dominant alleles (1L2A). In this case, only one 156 

mutation was needed to make the leap between the two extremes of phenotype. The second model 157 

still involved only one locus, but with multiple alleles (1L10A), whose effects on the phenotype were 158 

linear and additive. Here, there are only two alleles completely adapted to the two extremes of the 159 

environmental gradient; all other alleles have intermediate values, which are able to match the 160 

intermediate optima along the colonization range. The third genetic architecture was that of a trait 161 

encoded by ten bi-allelic loci (10L2A) where all loci are required to adapt to obtain the extreme 162 

phenotypes. A second version of this architecture was one with the same number of loci and alleles, 163 

but with allelic effects large enough for a mutation at a single locus to allow for perfect adaptation to 164 

the extremes (10L2A+). A fifth architecture involved 10 alleles at 10 loci (10L10A), similar to 165 

1L10A, but extended to ten independent loci. Similar to the extension of large allele effects applied 166 

in 10L2A+, a sixth architecture was defined with the possibility of any given locus as being able to 167 

modify the phenotype across its complete range (10L10A+). Mutation rate was scaled to the number 168 

of loci encoding the trait, so that the trait’s mutation rate was the same across architectures (i.e. it was 169 

10× lower for each locus in the 10L architectures). 170 

ABC for selection – One suitable way to address complex evolutionary questions is to 171 

implement approximate Bayesian computation (ABC). With this approach, one can assess the 172 

probability of different scenarios and parameter values therein via summary statistics, thus dismissing 173 

the need of an exact likelihood function (Beaumont et al. 2002). Summary-statistic values are taken 174 

from the observation (i.e. the real populations) and compared to the values of the same statistics 175 

obtained in simulations. A large number of simulations are then used to explore different 176 

combinations of parameter values; the simulations that better match the summary statistics values of 177 

the observation are then used to draw a posterior distribution of parameter values. As a Bayesian 178 

method, ABC can (and should) incorporate prior information on the parameter distributions into the 179 

simulated model. Here, we applied ABC to the estimation of selection in a spatially explicit setting 180 

involving range expansions. Since this a simulation study, the observations were also taken from the 181 

simulations in the form of pseudo-observations (see below). 182 

ABC: summary statistics – Based on our previous experience with a similar set-up in natural 183 

populations of barn owls (Antoniazza et al. 2010, 2014), we decided to focus on isolation-by-distance 184 

(IBD) pattern statistics as the statistics more likely to reveal the presence of selection: From the 185 

correlation between pairwise geographic distance and pairwise pheno/genotypic distance, we 186 

extracted the mean, slope and sum of residuals for ten neutral multi-allelic markers (FST), and the 187 
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phenotype (QST). Finally, we also retained the difference of slopes of IBD between the phenotype 188 

and the neutral markers (Δ-slope), which represents how much steeper is the differentiation in the 189 

quantitative trait when compared to the one produced by the neutral loci (Fig. S1). 190 

ABC: parameter estimates and estimability assessment – We tested the precision and accuracy 191 

of parameter estimates through ABC’s validation approach as implemented in ABCtoolbox 192 

(Wegmann et al. 2010). Since the actual parameter values for all simulations are known (pseudo-193 

observations), the ABC parameter-estimation pipeline was used to assess the quality of the estimates 194 

(i.e. how close the estimates were to the actual values). This was done by comparing 1000 of these 195 

estimates with their actual pseudo-observed values taken directly from the simulations, for each one 196 

of the genetic-architecture models. This procedure involved retaining the 1000 (out of ~1 million) 197 

simulations with summary statistics values closest to the pseudo- observation’s, and then to use 198 

locally weighted linear regressions to obtain the posterior distributions for the parameter estimates 199 

(Wegmann et al. 2010). The overall estimability of selection coefficient for the different architectures 200 

was assessed using the coefficient of determination (R2) of the regression between the true value of 201 

the parameter (pseudo-observation) and the parameter point estimate (given by the mode of the 202 

posterior distribution) (Neuenschwander et al. 2008b). Two other statistics were also used to assess 203 

estimability: the root mean square error (RMSE), which depicts the prediction errors of our model by 204 

means of the mean absolute differences between pseudo-observations and estimates (Wegmann and 205 

Excoffier 2010); and proportion of the estimated posterior encompassing the pseudo-observed value 206 

for 50% and 95% of the higher-posterior density intervals (proportion of HPD50% and 95%). This 207 

latter statistics may indicate a low accuracy, when proportion of HPD50% << 0.5, or HPD95% << 208 

0.95; or excessive conservativeness, when proportion of HPD50% >> 0.5, or HPD95% >> 0.95. 209 

Ideally, HPD50% and 95% should be exactly 0.5 and 0.95, respectively. 210 

Moreover, to assess the effect of the nuisance parameters (m, r, µ, h2) on the estimability of 211 

selection coefficients, a second test was devised in which the parameter space of each one of the 212 

nuisance parameters was restricted to ten quantiles. The estimations of selection coefficient were 213 

obtained only in that restricted space. For example, heritability (h2) varied randomly from 0.01 to 1 214 

across all simulations. To test whether estimates of selection were robust to a predetermined h2 value, 215 

we separated the simulations in ten different sets according to different quantile intervals of the h2 216 

prior distribution – e.g. the first interval includes the simulation in which h2 ranges from 0.01 to ~0.1. 217 

For each of the h2 intervals, we obtain estimations of selection coefficient (s) that were then compared 218 

to their pseudo-observed value. This was also done for the other three nuisance parameters (m, r and 219 

µ) and across all six genetic architectures. Quantiles of the parameter values, instead of fixed bins, 220 

had to be used in order to insure that all estimates were made based on the same number of 221 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/391110doi: bioRxiv preprint 

https://doi.org/10.1101/391110
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

simulations. This is because the inherent sampling process, combined with the failure of some 222 

simulations (see supplement), does not necessarily leads to the same density of simulations across the 223 

whole parameter space. So, for each quantile interval, 1000 estimates were run with 500 retained 224 

simulations, and the estimability was again measured by means of R2, allowing for comparisons 225 

across the quantiles. 226 
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Results 227 

Overall, the statistics related to the regressions between pairwise differentiation (QST) and pairwise 228 

geographical distances were very sensitive to variation in selection strength, regardless of the genetic 229 

architecture implemented (Fig. 3). In particular, the difference of QST and FST IBD slopes (Δ-slope) 230 

showed to be particularly responsive to small selection coefficients, while mean differentiation on 231 

the phenotype (mean QST) was more sensitive to moderate and high selection coefficients. 232 

Additionally, as expected for independent neutral loci, the statistics related to FST alone did not vary 233 

with the selection coefficients (results not shown). For nearly all architectures, mean QST showed a 234 

constant quasi-linear increase with higher selection coefficients (Fig. 3A). The only two exceptions 235 

were the 1L2A and the 10L2A+ (with large-effect alleles) architecture models. In fact, these two 236 

architectures showed very concordant responses also in the other statistics, such as Δ-slope (Fig. 3B). 237 

In both cases, one can observe a lack of points for high selection coefficient values (s > 0.5). Indeed, 238 

these simulations failed to colonize the entire habitat (further examined below in ‘Discussion’). 239 

Moreover, Δ-slope, for all architectures, reaches an asymptote when s > 0.4. This is because, when 240 

selection is very strong, even closely neighboring demes are highly differentiated (high QST). This 241 

leads to high mean QST, but limits (or even reduces) the values obtained for the slope of differentiation 242 

across the environmental gradient (Fig 3B). Noteworthy are also the similarities between 1L10A and 243 

10L10A+. 244 

The quality of estimates for selection coefficient (s) in all models was high (Table 1, Fig. 4). 245 

The genetic-architecture models 1L10A, 10L2A, 10L10A and 10L10A+ had particularly high 246 

coefficients of determinations (R2 > 0.9), with 1L2A and 10L2A+ falling shortly behind (R2 > 0.7). 247 

This difference among the architectures derives from the differences in the summary statistics 248 

(above), where simulations with s > 0.5 failed to leave any signature on the summary statistics (Fig. 249 

3), resulting in a limited range of s values (Fig. 4). Furthermore, the root mean square error values 250 

were proportionally low for all architectures (RMSE ≈ 5 to 9% of s estimates), implying a very high 251 

accuracy of estimates. The proportion of posterior-estimate distributions that encompassed the 252 

pseudo-observed value – both with HPD50% and 95% – resulted in conservative estimates (Table 1), 253 

with proportion values always larger than the HPD interval. This suggests that, even though accurate, 254 

the posterior distributions are not necessarily very precise, with rather wide ranges. 255 

Remarkably, in our simulations, the estimability results are robust to the variation in the 256 

nuisance parameters and to the position in the largest part of the nuisance parameters’ space, with the 257 

clear exception of lower values of heritability (h2 < 0.1) for all architectures and also, to a lesser 258 

extent, lower values of mutation rate for some architecture models (Fig. 5). Interestingly, variation in 259 

migration (m) and growth rate (r) in the interval explored (m = [0.1, 0.4] and r = [0.2, 0.8]) has very 260 
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little effect. Here too, there seems to be a ranking of estimation quality among the genetic-architecture 261 

models across the nuisance parameter quantiles: 1L2A and 10L2A+ being the worse (but still good); 262 

followed by 10L10A; and then having 10L10A+, 10L2A and 1L10A as the better ones. 263 
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Discussion 264 

We have shown that it is possible to assess selection and estimate its intensity in range expansions by 265 

taking advantage of the information contained in IBD-derived statistics and by using spatially explicit 266 

simulations. Even though plenty of variance in the response of the summary statistics was observed 267 

when comparing the different genetic-architecture models, in all cases, selection left a distinctive 268 

signature on these statistics. It seems, however, that the probability of the populations to respond to 269 

selection was not the same across all architectures. In a nutshell, the more alleles and loci encoded 270 

the trait; the better was the estimation of the selection coefficient. 271 

The architectures can be divided in three groups: (i) 1L10A and 10L10A+ with very high R2 272 

and low RMSE (i.e. very good estimability), (ii) 10L2A and 10L10A with still high R2 and low RMSE 273 

values but with a distinct signature in the Δ-slope statistic (Fig. 3B), and (iii) 1L2A and 10L2A+ with 274 

slightly worse R2 and RMSE results. Not surprisingly, these last two architectures are also the ones 275 

that present the least number of allele combinations (within the phenotypic range between Z = 0 and 276 

1) that could lead to adaptation across the selection gradient. The 1L2A model has only three possible 277 

genotypes to be translated into phenotypes. In essence, this architecture is just as capable as the others 278 

to adapt to the two extremes and the exact center of our simulated environment (patches p0, p50 and 279 

p25, respectively). However, this does not apply for any of the patches in between. In these other 280 

patches, there is no combination of alleles that would make an individual perfectly adapted to the 281 

local conditions. This same explanation applies to 10L2A+ because the large-effect alleles turn up to 282 

make too big a leap in between pheno/genotypic values (Z in Fig. 1). Indeed, if a second locus mutates 283 

as well in 10L2A+, the Z-value of the resulting phenotype would almost certainly fall outside the 284 

range of adapted phenotypes in all patches (Z = 0 to 1). This is why, when selection is too strong (s 285 

> 0.5), simulations failed to finish the colonization due to the recurrent extinction of pioneer 286 

populations. Conversely, all the other architectures present many more Z-value combinations 287 

allowing to locally adapt to all patches across the colonization range. These results may suggest that 288 

adaptation may be easier to occur when many loci and alleles contribute to a trait – offering several 289 

to many combinations of loci and alleles in order to adapt to the local conditions – in agreement with 290 

previous studies (Le Corre and Kremer 2012; Gilbert and Whitlock 2017). 291 

It is important to highlight the impact of the inclusion of spatial information in the 292 

understanding of the effect of selection in range-expansion scenarios. The process of range expansion 293 

is essentially a spatial phenomenon and, to fully understand its outcome, a spatially explicit approach 294 

is warranted. Even though some of the statistics we used – mean FST and QST – do not explicitly 295 

contain spatial information, it was only with the addition of Δ-slope and the other IBD-associated 296 

statistics that we managed to grasp the full extent of the of the effect of selection in range-expansion 297 

processes. The importance of the spatial dimension in population genetics is not a novel idea, though. 298 
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It has been explored in numerous previous publications, both in the disciplines of phylogeography 299 

(Avise et al. 1987; Diniz-Filho et al. 2008) and in landscape genetics (Manel et al. 2003). Studies 300 

looking for signatures of selection, however, have been systematically neglecting the relevance of the 301 

spatial distribution of genes and phenotypes (Li et al. 2012). 302 

Furthermore, combining more than one pattern statistics (at least mean QST and Δ-slope, Fig. 303 

3) seems to be of key importance to properly assess the effect of selection on populations facing range 304 

expansions. For instance, the analysis of mean QST alone could lead to false positives when selection 305 

is very low (virtually zero), given that a few observations of high overall differentiation appear in 306 

these quasi-neutral conditions (Fig. 3A). Also, looking at Δ-slope alone could lead to false negatives 307 

– or simply lack of information – when selection is too strong, leading to less steep slopes than the 308 

ones observed at intermediate selection coefficients (Fig. 3B). Therefore, to properly benefit from 309 

our proposed ABC approach, we believe that one should always, of course, consider all available 310 

information contained in the different IBD pattern statistics. 311 

Even though we modeled selection via intensity of selection (ω) – a parameter widely used in 312 

quantitative genetics (Falconer and MacKay 1996) – we decided to estimate selection through 313 

selection coefficient (s), which is a relatively more common measure in population genetics (Hartl 314 

and Clark 2007). Selection coefficient is a parameter whose effect on fitness (W) is directly accessible 315 

(W = 1 - s), making biological interpretation easier. Also, while ω had to be treated in the logarithmic 316 

scale (to obtain a more linear relation with the summary statistics), s could be dealt with in a linear 317 

scale. Besides, the results for estimability calculated for log10ω showed only a slight trend to lower 318 

R2 values and did not differ substantially from the ones obtained with s (Table S1). Regarding the 319 

scale of selection coefficient here, it is worth to remember that it concerns the difference in fitness in 320 

the extreme patches and the difference in fitness between the extreme pheno/genotypes (p0 and p50, 321 

Fig. 1). It becomes smaller as one approaches the center of the map and/or compares closer 322 

pheno/genotypes, and therefore represents the maximum strength of selection operating in the system. 323 

We mentioned that some simulations “failed to finish the colonization altogether”. This 324 

requires further explanation. By failed simulations, we do not necessarily mean simulation where the 325 

population went extinct, but actually simulations that resulted in missing-data (NA) for any of the 326 

statistics. First, the simulations were run assuming a hard-selection system (i.e. individual fitness is 327 

absolute). So – even though local populations could react to loss of individuals via population growth 328 

(r) – if selection was too strong and no locally-adapted individuals were yet present at the population, 329 

that specific deme would go extinct delaying or stopping the wave of expansion. Alternatively, we 330 

also ran the same simulations with a soft-selection system (supplementary material). These showed 331 

a lower failure rate, but did not affect further results, suggesting that the approach presented here is 332 

also robust to the softness of the selection implemented. Second, some architecture models lead to 333 
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higher failure rates than others, predominantly due to the non-colonization effect described above. 334 

This is again related to the limited combinations of loci and alleles observed in architectures 1L2A 335 

and 10L2A+. As a result, the realized prior distribution (i.e. the parameter distribution after the 336 

removal of simulations containing NAs) for selection intensity (ω) – and therefore selection 337 

coefficient (s, as in Fig. 2) – was altered for these two architectures, being limited to ω = 10-0.5 to 102 338 

(s ≈ 0.8 to 0, respectively, Fig. S2 and S3). Beyond selection strength, for the other simulation 339 

parameters (i.e. nuisance parameters), there was no differential effect of the architecture model on 340 

the way these parameters produced simulations containing missing data. There was, however, a more 341 

elevated missing data production, for all architectures, associated with low mutation rates (when µ < 342 

10-4), when not enough variation was produced to adapt to new environments; low growth rates (r < 343 

0.3), when the negative effect of higher selection coefficients was stronger on the populations; and, 344 

to a lesser extent, higher migration rates, where the homogenizing effect of migration more often 345 

erased the differentiation signatures created by selection. As a result, the prior distributions for the 346 

nuisance parameters were altered after the removal of such failed simulations (Fig. S2). 347 

Consequently, the ten quantiles presented in Fig. 5 do not necessarily represent 10% intervals of the 348 

original prior distributions, but rather regular intervals taken from realized prior distributions. The 349 

analysis was done this way in order to have the same number of simulations out of which to make the 350 

estimates in each interval, allowing for a balanced comparison of estimability across quantiles.  351 

The estimability of selection was little affected by variation in the nuisance parameters, as R2 352 

remained well above 0.7 for all genetic architecture models across most of these parameters’ 353 

distributions. Some of the architectures seemed to be more sensitive to the noise caused by these 354 

parameters than others: Again, 1L2A and 10L2A+ showed to be the most sensitive models, probably, 355 

due to the lack of possible genotypic combinations, limiting adaptation to intermediary positions 356 

across the environmental gradient, as discussed above. However, the variation in mutation rate also 357 

had some effect on these architectures. The lower the mutation rate, the harder to deal with very 358 

strong selection, especially when combinations are limited. Another architecture in which selection 359 

estimability strongly responded to mutation rate was 10L10A. Curiously, this is the one with highest 360 

number of genotype combinations. This can be explained by the fact that it also is the architecture 361 

that needs the most mutations in order to adapt to the opposite environmental conditions during the 362 

range expansion. All ten loci need to adapt by fixing one of ten possible alleles each. Finally, as one 363 

could already expect, low values of heritability led to lower estimability for all architectures. Clearly, 364 

if the trait under selection has a very small genetic component, selection can do very little to affect 365 

the differentiation of the quantitative trait, leaving no signature of adaptation in the pattern statistics 366 

we explored, or any other statistics one could think of, as well. 367 
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It is still computationally expensive to run the individual-based spatially explicit simulations 368 

required to study the evolution of quantitative traits in range expansions, especially with several 369 

models of genetic architecture (e.g. ~350 CPU days for 1 million simulations on a Linux server with 370 

2.4GHz Intel Xeon processors). This is because an ABC implementation generally requires many 371 

simulations (at least 1 million) to obtain reliable parameter estimates (Fagundes et al. 2007; 372 

Neuenschwander et al. 2008b), even though this can dependent at a large extent on the number of the 373 

parameters to be estimated (i.e. the dimensions of the parameter space to explore). Alternatively, 374 

improvements on the ABC algorithm such as MCMC-ABC (Wegmann et al. 2009) can help reducing 375 

the number of simulations needed for investigating a given question. Besides, selection was not the 376 

only parameter varying in our model. Nuisance parameters, even though not estimated, also affect 377 

the parameter space to be explored by the simulations. These do not have to be used, though: We 378 

added them to our analysis to assess the robustness of our estimates, but this does not need to be done 379 

in empirical studies. An approach that could be followed in such studies would be a two-step ABC 380 

analysis (Bazin et al. 2010), where (i) one would determine a neutral demographic background based 381 

on neutral markers and coalescent simulations, and (ii) then use the estimates of this previous step as 382 

priors for the following one in which individual-based simulations would be run to explore a different 383 

set of fewer parameters (e.g. selection coefficient and heritability), assuming that the effects of 384 

selection on demography would have already been captured in the first step. 385 

Contrary to an impression one might get reading some of the recent theoretical literature on 386 

range expansions (Klopfstein et al. 2006; Travis et al. 2007; Excoffier et al. 2009; Peischl et al. 2013), 387 

selection is able to operate in such scenarios. Recent empirical studies have been showing evidence 388 

that adaptation has occurred in several cases (Hughes et al. 2007; Antoniazza et al. 2010, 2014; Monty 389 

and Mahy 2010; Road et al. 2012). When compared to allele surfing, selection seems to be much 390 

more efficient in producing differentiation across the range of an expansion, according to our results. 391 

Even though we observed consistent isolation by distance in the neutral loci (proxy for pure allele 392 

surfing), this isolation was always much lower than what was observed for the trait under selection. 393 

The direct observation of some simulations provided evidence that locally maladapted 394 

variants could appear and reach relatively high frequencies during the range expansion process (Fig. 395 

S4), but these events tended to be transient and were quickly erased by selection, leaving virtually no 396 

signature after the whole map had been occupied. This observation may be the result of the model 397 

implemented here, where only one locus or a few loci were involved with selection and, therefore, 398 

could bear locally maladaptive (deleterious) variants. Another theoretical study, focused on the 399 

evolution of genetic load, provided evidence that, when many loci are involved, the overall 400 

deleterious load of populations undergoing range expansions tends to increase (PEISCHL et al. 2013). 401 

Indeed, there seems to be a decrease in the efficiency of purifying selection in purging a genome-402 
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wide deleterious load during range expansion (i.e. expansion load). However, here we investigated a 403 

process involving positive selection acting on one specific phenotypic trait whose genetic architecture 404 

was relatively simple. It is in this situation, we showed that natural selection during range expansions 405 

is still effective. Furthermore, in real populations, the simultaneous occurrence of adaptation at a 406 

given trait with the accumulation of an expansion load is perfectly possible and may be one 407 

explanation for the success of so many range expansions observed in nature. The combined effect of 408 

these two processes, however, remains to be more carefully investigated in the future. 409 

Even though neutrality (including background selection) (Kimura 1984) should always be the 410 

null hypothesis for any investigation of a process leading to a given observed pattern, we believe that 411 

here we have gathered sufficient in silico evidence that selection can operate on range expansion 412 

scenarios, leaving a distinguishable signature in spatially explicit statistics. Furthermore, this 413 

signature allows estimating the strength of selection operating on the study system and could be 414 

promptly used in empirical studies investigating selection in range expansion scenarios – which could 415 

be post-glacial recolonizations, species invading new habitats, or populations coping with 416 

environmental changes. All of these processes were and still are very common, not only in temperate 417 

regions (Hewitt 2004), but also anywhere else on the globe, rendering the spatially explicit ABC 418 

approach presented here particularly valuable. 419 
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Tables 427 

Table 1: Assessment of selection coefficient (s) estimability for all genetic architectures. R2 stands 428 

for the coefficient of determination of the pseudo-observation on the estimates; RMSE is root mean 429 

square error of the estimates; and Prop. HPD50% and HPD95% represent the proportion of posterior 430 

distributions encompassing the pseudo-observed value. These values were obtained based on 1000 431 

estimates, with 1000 retained simulations out of 1 million simulations, under a stabilizing hard 432 

selection system. 433 

 434 

Architecture R2 RMSE Prop. HPD50% Prop. HDP95% 

1L2A 0.837 0.049 0.726 0.988 
1L10A 0.958 0.065 0.646 0.982 
10L2A 0.952 0.066 0.703 0.989 
10L2A+ 0.738 0.056 0.665 0.992 
10L10A 0.911 0.087 0.654 0.988 
10L10A+ 0.963 0.060 0.590 0.971 

  435 
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Figures 436 

 437 

 438 

Figure 1: Implementation of the simulations with range expansion over a selection gradient. 439 

In A, the range expansion process over 300 generations (T), across the simulated map (51x5 440 

demes). Two layers overlap here: population size (gray scale, underneath) and frequency of 441 

the allele adapted to the left-hand side of the map (cyan-magenta scale). In B, the fitness 442 

landscape for three patches from above (p0 magenta, p25 black, and p50 cyan) with selection 443 

intensity ω=0.1 and pheno/genotype space defined between 0 and 1. Note that the x-axis in B 444 

(Z-value) is different from the one in A (deme position p).  445 
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 446 

Figure 2: Fitness distribution and selection coefficient under different selection intensities 447 

(ω). In A, different fitness distributions with ZOPT always at 0.5, as in patch p25 (see Fig. 1B), 448 

depicting the extremes of the ω prior distribution ω=0.1 and 100. In B, the effect of ω on the 449 

difference of fitness [i.e. selection coefficient (s)] between opposing pheno/genotype values 450 

at the extreme patches (p0 and p50).  451 
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 452 

Figure 3: The relation between selection coefficient (s) and the most informative pattern 453 

statistics used to assess the selection coefficient. For all six architectures, in A, the response 454 

of mean differentiation across populations (Mean QST); and in B, the response of the 455 

difference between the QST and the neutral FST slopes of IBD (Δ-Slope).  456 
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 457 

 458 

Figure 4: Validation plots, pseudo-observed vs. estimated, for selection coefficient (s). For 459 

each genetic-architecture model, a plot of 1000 simulations’ actual selection coefficient values 460 

(s) against their estimates (open circles). The back line stands for the perfect diagonal; and the 461 

red dashed line, the calculated linear regression. Coeffiecients of determination of the pseudo-462 

observation on the estimates (R2) are also reported in red.  463 
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 464 

Figure 5: Estimability assessment across the nuisance-parameter space, for all genetic 465 

architectures. In each panel, the estimability of selection coefficient (by means of R2) is shown 466 

for ten different quantiles of the realized prior distributions fo the four nuisance parameters 467 

(each panel) and all six genetic architectures (within panels).  468 
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