High mobility group box 1 in dilated cardiomyopathy. Kido et al. 1

1	The administration	of high-mobility	group box	1 fragment p	prevents d	leterioration	of cardiac

- 2 performance by enhancement of bone marrow mesenchymal stem cell homing in the
- 3 delta-sarcoglycan-deficient hamster
- 4
- 5 Takashi Kido, MD, PhD¹, Shigeru Miyagawa, MD, PhD¹, Takasumi Goto, MD¹, Katsuto
- 6 Tamai, MD, PhD², Takayoshi Ueno, MD, PhD¹, Koichi Toda, MD, PhD¹, Toru Kuratani, MD,
- 7 PhD^1 ,
- 8 Yoshiki Sawa, MD, PhD^{1*}
- 9
- 10 ¹Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
- 11 ²Department of Stem Cell Therapy Science, Osaka University Graduate School of Medicine

12

- 13 *Corresponding Author
- 14 E-mail address: <u>sawa-p@surg1.med.osaka-u.ac.jp</u>
- 15
- 16 These authors contributed equally to this work.

17

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 2

19

20 Abstract

- 21 **Objectives:** We hypothesized that systemic administration of high-mobility group box 1
- 22 fragment attenuates the progression of myocardial fibrosis and cardiac dysfunction in a hamster
- 23 model of dilated cardiomyopathy by recruiting bone marrow mesenchymal stem cells thus
- 24 causing enhancement of a self-regeneration system.
- 25 Methods: Twenty-week-old J2N-k hamsters, which are δ-sarcoglycan-deficient, were treated
- 26 with systemic injection of high-mobility group box 1 fragment (HMGB1, n=15) or phosphate
- 27 buffered saline (control, n=11). Echocardiography for left ventricular function, cardiac
- 28 histology, and molecular biology were analyzed. The life-prolonging effect was assessed
- 29 separately using the HMGB1 and control groups, in addition to a monthly HMGB1 group which
- 30 received monthly systemic injections of high-mobility group box 1 fragment, 3 times (HMGB1,
- 31 n=11, control, n=9, monthly HMGB1, n=9).

32 **Results:** The HMGB1 group showed improved left ventricular ejection fraction, reduced

- 33 myocardial fibrosis, and increased capillary density. The number of platelet-derived growth
- 34 factor receptor-alpha and CD106 positive mesenchymal stem cells detected in the myocardium
- 35 was significantly increased, and intra-myocardial expression of tumor necrosis factor α
- 36 stimulating gene 6, hepatic growth factor, and vascular endothelial growth factor were

37	significantly upregulated after high-mobility group box 1 fragment administration. Improved
38	survival was observed in the monthly HMGB1 group compared with the control group.
39	Conclusions: Systemic high-mobility group box 1 fragment administration attenuates the
40	progression of left ventricular remodeling in a hamster model of dilated cardiomyopathy by
41	enhanced homing of bone marrow mesenchymal stem cells into damaged myocardium,
42	suggesting that high-mobility group box 1 fragment could be a new treatment for dilated
43	cardiomyopathy.
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 4

55 Introduction

56	Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure and is
57	associated with left ventricular dilatation and contractile dysfunction [1]. While significant
58	improvements have been made in medical therapies, such as angiotensin-converting enzyme
59	inhibitors and beta-blockers [2], and interventions, such as implantable cardioverter
60	defibrillators [3] and cardiac resynchronization therapy [4], the prognosis for heart failure
61	patients is still poor with 1-year mortality of 25–30% and a 50% survival rate at 5 years [5].
62	DCM remains the most common indication for cardiac transplantation but donor shortages have
63	become a serious issue. To deal with this problem, several novel approaches using cell therapy
64	have been developed in DCM patients with encouraging results [6-8].
65	
66	Stem cells are an endogenous physiological healing mechanism of the body. A number of
67	reports have suggested that damaged tissues may release various cytokines, which facilitate not
68	only the mobilization of bone marrow-derived mesenchymal stem cells (BMMSCs) into the
69	peripheral blood, but also their homing to sites of wound healing [9–11]. The enhancement of
70	such healing mechanisms by drug administration might have beneficial effects in various
71	diseases.

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 5

73	High-mobility group box 1 (HMGB1) is a non-histone nuclear protein that regulates chromatin
74	structure remodeling by acting as a molecular chaperone in the chromatin DNA-protein
75	complex [12]. Previous reports have demonstrated that endogenous platelet-derived growth
76	factor receptor-alpha positive (PDGFR α^+) BMMSCs accumulate in damaged tissue and
77	contribute to regeneration in response to elevated HMGB1 levels in serum [13]. Moreover,
78	systemic administration of HMGB1 further induces the accumulation of PDGFR α^+ BMMSCs in
79	the damaged tissue through CXCR4 upregulation, which is followed by significant
80	inflammatory suppression [14].
81	
-	
82	Since BMMSCs have been reported to have therapeutic effect in DCM through paracrine effects
	Since BMMSCs have been reported to have therapeutic effect in DCM through paracrine effects [6,7], the above-mentioned "drug-induced endogenous regenerative therapy" might have
82	
82 83	[6,7], the above-mentioned "drug-induced endogenous regenerative therapy" might have
82 83 84	[6,7], the above-mentioned "drug-induced endogenous regenerative therapy" might have effectiveness for DCM without supply of viable ex vivo cells. Recently, we developed a
82 83 84 85	[6,7], the above-mentioned "drug-induced endogenous regenerative therapy" might have effectiveness for DCM without supply of viable ex vivo cells. Recently, we developed a HMGB1 fragment containing the mesenchymal stem cell mobilization domain from human
82 83 84 85 86	[6,7], the above-mentioned "drug-induced endogenous regenerative therapy" might have effectiveness for DCM without supply of viable ex vivo cells. Recently, we developed a HMGB1 fragment containing the mesenchymal stem cell mobilization domain from human HMGB1. We hypothesize that systemic administration of this HMGB1 fragment attenuates the

5

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 6

91 Material and Methods

92	Animal procedures	were carried o	out under the approva	l of the Institutional	Ethics Committee
----	-------------------	----------------	-----------------------	------------------------	------------------

- 93 (reference number 28-011-002). The investigation conformed to the "Principles of Laboratory
- 94 Animal Care" formulated by the National Society for Medical Research and the "Guide for the
- 95 Care and Use of Laboratory Animals" (National Institutes of Health Publication). All
- 96 experimental procedures and evaluations were performed in a blinded manner.
- 97
- 98 Experimental Animals
- 99 Male J2N-k hamsters, which are deficient in δ-sarcoglycan, were used for this study. J2N-k
- 100 hamsters are an established animal model of DCM. They exhibit progressive myocardial
- 101 fibrosis and moderate cardiac dysfunction at 8–9 weeks of age. Accordingly, the average life
- 102 span of J2N-k hamsters is much shorter (approximately 42 weeks) than control hamsters
- 103 (approximately 112 weeks) [15,16].
- 104
- 105 HMGB1 Fragment
- 106 Mesenchymal stem cell mobilization domain from human HMGB1 was produced as "HMGB1
- 107 fragment" by solid-phase synthesis and provided by StemRIM (StemRIM Inc., Osaka, Japan).

- 108 The HMGB1 fragment was dissolved in phosphate buffered saline (PBS) to a concentration of 1
- 109 mg/ml before administration.
- 110
- 111 Procedure of HMGB1 Fragment Administration
- 112 Male 19-week-old J2N-k hamsters were purchased from Japan SLC (Shizuoka, Japan). HMGB1
- 113 fragment (3mg/kg/day; HMGB1, n= 15) or PBS (3ml/kg/day; control, n=11) was administered
- 114 for 4 consecutive days at the age of 20 weeks in the following manner: The external jugular vein
- 115 was exposed by a median neck skin incision under 1.5% isoflurane anesthesia. Subsequently,
- 116 HMGB1 fragment or PBS was injected through the external jugular vein. After the complete
- 117 hemostasis, the skin incision was closed, and the hamsters were housed in a
- 118 temperature-controlled cage.
- 119
- 120 Transthoracic Echocardiography
- 121 Transthoracic echocardiography was performed to assess cardiac function using M-mode
- 122 echocardiography with Vivid I (GE Healthcare) under isoflurane inhalation (1%). Diastolic and
- 123 systolic dimensions of the left ventricle (LVDd/Ds), and left ventricular ejection fraction
- 124 (LVEF) were measured before treatment, and reassessed at 4 and 6 weeks after treatment.
- 125

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 8

126 Histological Analysis

127	The heart was excised under isoflurane anesthesia (5%) 6 weeks after treatment to perform
128	histological and molecular biological analysis. The excised heart was fixed with either 10%
129	buffered formalin for paraffin sections or 4% paraformaldehyde for frozen sections. The
130	paraffin sections were stained with picrosirius red to assess the degree of myocardial fibrosis.
131	The paraffin sections were used for immunohistochemistry and labeled using polyclonal CD31
132	antibody (1:50 CD31, Abcam, Cambridge, UK), anti-α-sarcoglycan (clone: Ad1/20A6;
133	Novocastra, Weltzar, Germany), and anti- α -dystroglycan (clone: VIA4-1; Upstate
134	Biotechnology, Lake Placid, NY) to assess capillary vascular density and the organization of
135	cytoskeletal proteins. The paraffin sections were also labeled using rabbit monoclonal
136	anti-CD106 antibody (ab134047, Abcam, Cambridge, MA) and goat polyclonal anti-PDGFR α
137	(R&D). PDGFR α and CD106 are known to be expressed in BMMSCs and are commonly used
138	as markers for mesenchymal stem cells (MSCs) [17,18]. The frozen sections were also used for
139	immunohistochemistry and labeled with rabbit polyclonal anti-SDF1 antibody (ab9797, Abcam
140	Cambridge, MA) and mouse monoclonal CXCR4 antibody (4G10, sc-53534, Santa Cruz
141	Biotechnology). The frozen sections were also stained with 4-hydroxynonenal to estimate lipid
142	peroxidation [19], and dihydroethidium to estimate superoxide production [20].

8

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 9

144	More than 5 sections were prepared per specimen and 3 low power fields per section were
145	analyzed and averaged. The fibrotic area, the expression of α -sarcoglycan and α -dystroglycan,
146	and the 4-hydroxynonenal positive area were measured using Metamorph image analysis
147	software (Molecular Devices, Inc., Downingtown, PA). The capillary density, the number of
148	PDGFR α^+ and CD106 positive (CD106 ⁺) cells, the number of CXCR4 positive (CXCR4 ⁺) cells
149	and SDF-1 positive area (mm ²), and the number of dihydroethidium positive dots were
150	measured using the BZ-analysis software (Keyence, Tokyo, Japan).
151	
152	Transmission electron microscopy
153	Cardiac tissue was pre-fixed with Karnovsky fixative containing 2.5% glutaraldehyde, 2%
154	paraformaldehyde in a 0.1 M (pH 7.4) cacodylate buffer for 2 hours at 4°C and post-fixed with
155	2% osmium tetroxide for 2 hours at 4°C. The samples were then immersed in 0.5% uranyl
156	acetate for 3 hours at room temperature, dehydrated in ethanol (50%, 70%, 80%, 90%, 95%, and
157	100%) and propylene oxide, and embedded in epoxy resin. Semithin sections (0.5 μ m) were
158	stained with 0.1% toluidine blue solution and examined under a light microscope. Ultrathin
159	sections were made with a Leica ultramicrotome. These sections were counterstained with
160	uranyl acetate and lead citrate, before examination with a Hitachi H-7100 electron microscope
161	at 75 kV.

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 10

- 163 Real-Time Polymerase Chain Reaction
- 164 Total RNA was extracted from cardiac tissue and reverse transcribed using Omniscript reverse
- 165 transcriptase (Quiagen, Hilden, Germany). The resulting cDNA was used for real-time
- 166 polymerase chain reaction with the ABI PRISM 7700 system (Applied Biosystems) and
- 167 Taqman Universal Master Mix (Applied Biosystems, Division of Life Technologies
- 168 Corporation, Carlsbad, Calif) and using hamster-specific primers for tumor necrosis factor-α
- 169 stimulating gene 6 (TSG-6), vascular endothelial growth factor (VEGF), and CXCR4. Each
- 170 sample was analyzed in duplicate for each gene studied. Data were normalized to
- 171 glyceraldehyde-3-phosphate dehydrogenase expression level. For relative expression analysis,
- 172 the ddCT method was used, and a sample from a control hamster was used as reference. The
- 173 real-time polymerase reaction was also conducted using Fast SYBR Green Master Mix and
- 174 primers designed for hepatic growth factor and glyceraldehyde-3-phosphate dehydrogenase as
- 175 shown in Table 1. For relative expression analysis, we prepared a 5-fold serial standard curve
- 176 using a sample from a HMGB1 hamster as reference.

177	Table 1. Forw	Table 1. Forward and reverse primers and probe					
178							
179		F-primer	R-primer	Probe			
180	GAPDH	CTG CAC CAC CAC CTG CTT AGC	GCC ATG CCA GTG AGC TTC C	CTG CAC CAC CAC CTG CTT AGC			
181	HGF	AGG TCC CAT GGA TCA CAC AGA	GCC CTT GTC GGG ATA TCT TTC T	ACC AGC AGA CAC CAC ACC GGC A			
182	GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HGF, hepatic growth factor						

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 12

183 Evaluation of hamster prognosis after treatment

- 184 The life-prolonging effect of the HMGB1 fragment on J2N-k hamsters was assessed separately.
- 185 Twenty-week-old J2N-k hamsters were treated with HMGB1 (HMGB1, n= 11) or PBS (control,
- 186 n= 9) as described above. An additional treatment group received monthly administration of
- 187 HMGB1 fragment 3 times, (monthly HMGB1, n= 9) to evaluate the long-term therapeutic
- 188 effects of HMGB1 fragment (Fig 1). The animals were randomly allocated to each treatment
- group and housed after the initial treatment. The survival rate in the 3 groups was calculated by
- 190 the Kaplan-Meier method using JMP Pro 12 (SAS Institute, Cary, NC, USA) and the
- 191 significant difference between the groups was tested at 22 weeks (equal to 42 weeks of age, the
- 192 average lifespan of J2N-k hamsters) by log-rank analysis.
- 193

194 Statistical Analysis

195 Continuous variables were summarized as means with standard deviations and compared using

- an unpaired t-test. Survival curves were prepared using the Kaplan-Meier method and
- 197 compared using the log-rank test. All data were analyzed using JMP Pro 12. Differences were
- 198 considered statistically significant at P-values < 0.05.

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 13

200 **Results**

- 201 Preserved Cardiac Performance with HMGB1 Fragment Administration
- 202 The functional effects of HMGB1 fragment on the DCM heart were assessed by transthoracic
- 203 echocardiography over time. LVDd/Ds and LVEF at 20 weeks of age, just before the treatment,
- 204 were not significantly different between the HMGB1 group and the control group. After
- 205 treatment, echocardiography showed that the LVEF was significantly preserved until 6 weeks in
- the HMGB1 group compared with the control group (4 weeks: 43±8% vs 33±9%, p=0.01; 6

207 weeks: 41±7% vs 31±7%, p=0.0001, HMGB1 vs control, respectively) (Fig 1).

- 208
- 209 Fig 1.
- 210 Changes in LVEF (a), LVDd (b), and LVDs (c) over time after the treatment.
- 211 Diastolic and systolic dimensions of the left ventricle, and LVEF were measured before
- treatment, and reassessed at 4 and 6 weeks after treatment. The LVEF was significantly
- 213 preserved until 6 weeks after the treatment in the HMGB1 group compared with the control
- 214 group.
- 215 LVEF, left ventricular ejection fraction; LVDd, left ventricular diastolic dimension; LVDs, left
- 216 ventricular systolic dimension.
- 217

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 14

218 Effect of HMGB1 Fragment on Myocardial Fibrosis

- 219 The degree of myocardial fibrosis 6 weeks after HMGB1 fragment treatment was assessed by
- 220 picrosirius red staining and compared with control group. Quantification of fibrotic area
- 221 confirmed that the degree of myocardial fibrosis was significantly reduced in the HMGB1 group
- compared with the control group $(16.6\pm3.8\% \text{ vs } 22.7\pm5.4\%, \text{ respectively, } p=0.04)$ (Fig 2).
- 223
- 224 Fig 2.
- 225 Suppression of myocardial fibrotic change in J2N-k hamsters by HMGB1 fragment.
- (a), Representative photomicrographs (×20, scale bar=1000µm) of picrosirius red staining.
- (b), Tissue sections were stained by picrosirius red and the fibrous area was quantified by image
- analysis. Percentage of myocardial fibrosis was significantly less in the HMGB1 group than in
- the control group.
- HMGB1, high-mobility group box 1.
- 231

232 Increased Vasculature in the Heart After HMGB1 Fragment Administration

- 233 Capillary vascular densities 6 weeks after the treatment were assessed by CD31
- immunostaining. In the HMGB1 group, the number of CD31 positive arterioles and capillaries

- was significantly increased compared with the control group (654±171 units/mm² vs 484±74
- units/mm², respectively, p=0.02) (Fig 3).
- 237
- 238 Fig 3.
- 239 Increased myocardial capillary density in J2N-k hamsters by HMGB1 fragment.
- 240 (a), Representative photomicrographs (×200, scale bar=50µm) of anti-CD31 staining.
- 241 (b), Tissue sections were immunostained for CD31 and the capillary density was measured with
- the analysis software. The HMGB1 group showed significantly higher capillary vascular density
- than the control group.
- HMGB1, high-mobility group box 1.
- 245
- 246 PDGFRa and CD106 Positive Cells in the Hearts
- 247 Immunohistochemistry showed that the number of PDGFR α^+ and CD106⁺ cells in the heart
- tissue was significantly greater in HMGB1 group compared with the control group (12±5 cells
- 249 /field vs 4±2 cells/field, respectively, p<0.001) (Fig 4).
- 250
- 251 **Fig 4.**

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 16

- 252 The increased accumulation of PDGFR α^+ and CD106⁺ cells in the heart tissue by HMGB1
- 253 fragment.
- 254 (a), Representative photomicrographs (×1000, scale bar=50 μm) of PDGFRα (green), CD106
- (red) staining.
- 256 (b), Tissue sections were immunostained for PDGFR α and CD106. The number of PDGFR α^+
- and CD106⁺ cells was measured with the analysis software. The HMGB1 group showed
- 258 significantly increased numbers of PDGFR α^+ and CD106⁺ cells than the control group.
- 259 PDGFRα, platelet-derived growth factor receptor-alpha; HMGB1, high-mobility group box 1.
- 260
- 261 Increased CXCR4 Positive Cells in the Heart after HMGB1 Fragment Administration
- 262 Immunohistochemistry showed significantly increased ratio of the number of CXCR4⁺ cells to
- 263 SDF-1 positive area (mm²) in heart tissue in the HMGB1 group than in the control group
- 264 $(1.3\pm1.0 \text{ vs } 0.3\pm0.1 \text{ cells/mm}^2, \text{ respectively, } p=0.02)$ (Fig 5).
- 265
- 266 Fig 5.
- 267 Increased CXCR4⁺ cells in SDF-1 positive area in the heart tissue by HMGB1 fragment.

- 269 (a), Representative photomicrographs (×600, scale bar=50µm) of SDF-1 (green) and CXCR4
- (red) staining.
- (b), Tissue sections were immunostained for CXCR4 and SDF-1. The number of CXCR4⁺ cells
- 272 was measured with analysis software and SDF-1 positive area was measured with image
- analysis. The HMGB1 group showed significantly higher CXCR4⁺ cells to SDF-1 positive area
- 274 (mm²) in heart tissue than the control group.
- 275 HMGB1, high-mobility group box 1; SDF-1, stromal derived factor-1.
- 276
- 277 Preservation of Cytoskeletal Proteins after HMGB1 Fragment Administration
- 278 Immunohistochemistry showed increased expression of α-sarcoglycan and α-dystroglycan in the
- 279 basement membrane beneath the cardiomyocytes in HMGB1 group, whereas lower expression
- 280 levels of these proteins was seen in the control group (α -sarcoglycan, 12.2±2.7% vs 2.8±1.4%,
- 281 p<0.001, α-dystroglycan, 20.2±3.5% vs 8.3±1.8%, p<0.001, HMGB1 vs control, respectively)
- 282 (Fig 6).
- 283
- 284 Fig 6.
- 285 Immunostaining for alpha-sarcoglycan and alpha-dystroglycan in cardiomyocytes.

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 18

- 286 (a), Representative photomicrographs (×600, scale bar=50µm) of immunostaining of
- 287 α -sarcoglycan and α -dystroglycan in cardiomyocytes.
- 288 (b), Quantitative analysis of immunohistologic signals showed significantly increased staining
- 289 of both α -sarcoglycan and α -dystroglycan in HMGB1 group than the control group.
- HMGB1, high-mobility group box 1.
- 291
- 292 Mitochondrial Ultramicrostructure
- 293 Transmission electron microscopy of the myocardium showed a relatively regular arrangement
- of mitochondrial cristae in the HMGB1 group. In contrast, the mitochondrial cristae were
- disordered in the control group (Fig 7).
- 296
- 297 Fig 7.
- 298 Mitochondrial ultramicrostructure was detected by TEM. Representative image (×12000) of
- 299 mitochondrial morphology and cristae of myocardium in the HMGB1 group and the control
- 300 group. The HMGB1 group showed relatively regular arrangement of mitochondrial cristae
- 301 compared with the control group.
- 302 TEM, Transmission electron microscopy; HMGB1, high-mobility group box 1.

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 19

304 Effect of HMGB1 Fragment on Oxidative Stress in the Hearts

305	The lipid peroxidation and superoxide production were assessed by 4-hydroxynonenal staining
306	and dihydroethidium staining, respectively. The results showed a trend towards reduced lipid
307	peroxidation (3.5±2.4% vs 5.6±3.7%, p= 0.06, HMGB1 vs control) and a significant reduction
308	in superoxide production in the HMGB1 group compared with control (219 \pm 32 units/mm ² vs
309	1185±97 units/mm ² , respectively, p<0.0001) (Fig 8).
310	
311	Fig 8.
312	Decreased oxidative stress in the heart tissue by HMGB1 fragment.
313	Representative photomicrographs of dihydroethidium staining (×400, scale bar=50 μ m) (a) and
314	4-hydroxynonenal staining (×100, scale bar=50µm) (b).
315	Tissue sections were stained with dihydroethidium to estimate superoxide production, and
316	4-hydroxynonenal to estimate lipid peroxidation. The HMGB1 group showed significantly
317	reduced production of superoxide (c) and a trend towards reduced lipid peroxidation (d)
318	compared with the control group.
319	HMGB1, high-mobility group box 1.

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 20

321 Upregulated TSG-6, VEGF, HGF, and CXCR4 in the Heart after HMGB1 Fragment

- 322 Administration
- 323 Real-time PCR was used to quantitatively assess the expression levels of BMMSC-derived
- 324 factors, such as VEGF, TSG-6, HGF, and CXCR4. Intramyocardial mRNA levels of VEGF,
- 325 TSG-6, and HGF were significantly upregulated in HMGB1 group compared with the control
- 326 group (TSG-6, 1.5±0.6 vs 1.1±0.2, p= 0.03, VEGF, 1.3±0.4 vs 1.0±0.2, p= 0.04, HGF, 3.2±2.3
- 327 vs 1.3±0.6, p=0.02, HMGB1 vs control, respectively). The intramyocardial mRNA levels of
- 328 CXCR4 in the HMGB1 group showed a trend towards increased expression compared with
- 329 control (1.5±0.4 vs 1.2±0.3, respectively, p=0.06).
- 330
- 331 Survival Benefit of Monthly HMGB1 Administration
- 332 Survival of J2N-k hamsters was assessed using the Kaplan–Meier method. There was no
- 333 significant difference in survival between HMGB1 and control. In contrast, the monthly
- HMGB1 group all survived to the full 42 weeks, and they showed significantly improved
- survival rate compared with control group (log-rank p=0.001) (Fig 9).

- 337 Fig 9.
- 338 Survival after each treatment assessed by the Kaplan–Meier method.

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 21

- 339 There was no significant difference between the single HMGB1 treatment (n=11) group and the
- 340 control group (n=9), whereas the monthly HMGB1 group (n=9) showed a significantly greater
- 341 survival rate than control (p=0.01).

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 22

343 **Discussion**

344 I	In the present s	study we h	nave shown	that, f	ĩrst, s	systemic	administratio	n of HMGB1	fragment
-------	------------------	------------	------------	---------	---------	----------	---------------	------------	----------

- leads to the accumulation of PDGFR α^+ and CD106⁺ cells in damaged myocardium possibly
- 346 through the SDF-1/CXCR4 axis and upregulated expression of cardioprotective factors such as
- 347 TSG-6, VEGF, and HGF in the heart tissue of J2N-k hamsters. Second, the myocardial
- 348 histology in the HMGB1 group demonstrated significantly decreased fibrosis, increased
- 349 capillary vascular density, decreased oxidative stress, and well-organized cytoskeletal proteins
- 350 compared with the control group. Finally, cardiac function was significantly preserved after
- 351 HMGB1 fragment administration and the survival benefit was shown with monthly HMGB1
- 352 fragment treatment.
- 353

354	The present study demonstrates the feasibility of "drug-induced endogenous regenerative
355	therapy" using an HMGB1 fragment in a hamster model of DCM. While the precise
356	mechanism remains unclear, it is well known that HMGB1 acts as a chemoattractant for MSCs
357	[13,14,21]. Systemic HMGB1 administration has been reported to induce accumulation of
358	PDGFR α^+ cells around blood vessels in the bone marrow and significant increases in these cells
359	in the peripheral blood [13]. In addition, the enhancement of CXCR4 expression with HMGB1

360	treatment promotes the local migration to damaged tissue through the SDF-1/CXCR4 axis,
361	which might be essential in DCM [22] as well as ischemic cardiomyopathy [23-25].
362	
363	While PDGFR α^+ BMMSCs might be the predominant cell population mobilized by
364	administration of HMGB1 fragment and therefore exerting therapeutic effects on damaged
365	myocardium, it has been suggested that PDGFR α^+ MSCs include other defined subpopulations
366	with distinct functions [26]. As HMGB1 is also reported to induce other cell types [27], the
367	accumulated cells in damaged heart tissue after HMGB1 administration might be highly
368	heterogeneous and it will therefore be important to identify in the future, specific PDGFR α^+
369	subpopulations induced by HMGB1 which have therapeutic benefits.
370	
371	Paracrine signaling is a well-investigated mechanism of protective effects exhibited by
372	BMMSCs on surrounding cells [28–32]. TSG-6 plays a key role in the anti-inflammatory effects
373	of BMMSCs [31,33]. TSG-6 attenuates oxidative stress through activation of CD44 [34,35], and
374	downregulates TGF- β by suppressing plasmin activity [33], which could result in decreased
375	myocardial fibrosis. Since increased oxidative stress is one of the essential factors in the
376	pathogenesis of myocardial fibrotic changes in J2N-k hamsters [16], our results suggest that

378	known to promote	angiogenesis in i	schemic conditions	[29,36,37],	which might have a
-----	------------------	-------------------	--------------------	-------------	--------------------

- 379 beneficial effect on the defective vascularization within the left ventricle, which is associated
- 380 with the pathophysiology of DCM [38,39]. HGF is known to be a putative paracrine mediator in
- 381 cardiac repair mechanisms of BMMSCs [40]. Our group has previously reported that HGF
- induced the appropriate microenvironment for extracellular matrix remodeling, including strong
- 383 expression of cytoskeletal proteins in damaged myocardium [41,42].
- 384
- 385 No significant difference in survival was observed between the HMGB1 and control groups,
- 386 however, animals that received monthly HMGB1 treatment showed significantly better survival
- 387 compared with control. The therapeutic benefits of HMGB1 fragment might be sustained by
- 388 repeated administration in J2N-k hamsters and further investigation concerning the optimal dose
- and interval of administration of HMGB1 fragment will be needed for the clinical use of
- 390 HMGB1 fragment in DCM patients.
- 391
- 392
- 393
- 394
- 395

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 25

396 Conclusion

397	Systemic HMGB1 fragment administration attenuates the progression of left ventricular
398	remodeling in a hamster model of DCM by enhanced homing of BMMSCs into damaged
399	myocardium, suggesting that HMGB1 fragment could be beneficial in the treatment of DCM.
400	
401	
402	
403	
404	
405	
406	
407	
408	
409	
410	
411	
412	
413	

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 26

414 Acknowledgments

415	We thank Hanne Gadeberg, PhD, from Edanz Group (<u>www.edanzediting.com/ac</u>) for editing a
416	draft of this manuscript.
417	
418	
419	
420	
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 27

432 **Reference**

- 433 1. Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet.
- 434 2017;390:400-414.
- 435 2. Hoshikawa E, Matsumura Y, Kubo T, Okawa M, Yamasaki N, Kitaoka H, et al. Effect of
- 436 Left Ventricular Reverse Remodeling on Long-Term Prognosis After Therapy With
- 437 Angiotensin-Converting Enzyme Inhibitors or Angiotensin II Receptor Blockers and β
- 438 blockers in Patients With Idiopathic Dilated Cardiomyopathy. Am J Cardiol.
- 439 2011;107:1065-1070
- 440 3. Kober L, Thune JJ, Nielsen JC, Haarbo J, Videbaek L, Kroup E, et al. Defibrillator
- 441 Implantation in Patients with Nonischemic Systolic Heart Failure. N Engl J Med.
- 442 2016;375:1221-1230
- 443 4. Ito M, Shinke T, Yoshida A, Kozuki A, Takei A, Fukuzawa K, et al. Reduction in coronary
- 444 microvascular resistance thorough cardiac resynchronization and its impact on chronic
- reverse remodeling of left ventricle in patients with non-ischemic cardiomyopathy.
- 446 Europace. 2015;17:1407-1414
- 447 5. Dec GW, Fuster V. Idiopathic Dilated Cardiomyopathy. N Engl J Med.
- 448 1994;331:1564-1575

449	6.	Fischer-Rasokat U.	Assmus B.	Seeger FH.	Honold J	Leistner D	Fichtlscherer S.	et al. A
-----	----	--------------------	-----------	------------	----------	------------	------------------	----------

- 450 Pilot Trial to Assess Potential Effects of Selective Intracoronary Bone Marrow-Derived
- 451 Progenitor Cell Infusion in Patients With Nonischemic Dilated Cardiomyopathy. Circ Heart
- 452 Fail. 2009;2:417-423
- 453 7. Bhargava B, Narang R, Ray R, Mohanty S, Gulati G, Kumar L, et al. The ABCD
- 454 (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) Trial A Long-Term
- 455 Follow-Up Study. J Am Coll Cardiol. 2010;55:1643-1647
- 456 8. Vrtovec B, Poglajen G, Lezaic L, Sever M, Domanovic D, Cernelc P, et al. Effects of
- 457 Intracoronary CD34⁺ Stem Cell Transplantation in Nonischemic Dilated Cardiomyopathy
- 458 Patients. Circ Res. 2013;112:165-173
- 459 9. Chen Y, Xiang LX, Shao JZ, Pan RL, Wang YX, Dong XJ, et al. Recruitment of
- 460 endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med.
- 461 2010;14:1494-1508
- 462 10. Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR. Mesenchymal stem cells: A promising
- 463 candidate in regenerative medicine. Int J Biochem Cell Biol. 2008;40:815-820
- 464 11. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesencymal stem cells are
- 465 recruited into wounded skin and contribute to wound repair by transdifferentiation into
- 466 multiple skin cell type. J Immnol. 2008;15:2581-2587

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 29

467	12.	Osmanov 7	L. Ugrinova	I, Pasheva E.	The char	perone like	function	of the	nonhistone	protein

- 468 HMGB1. Biochem Biophys Res Commun. 2013;8:231-235
- 469 13. Tamai K, Yamazaki T, Chino T, Ishii M, Otsuru S, Kikuchi Y, et al. PDGFRα-positive cells
- 470 in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured
- 471 epithelia. Proc Natl Acad Sci. 2011;108:6609-6614
- 472 14. Aikawa E, Fujita R, Kikuchi Y, Kaneda Y, Tamai K. Systemic high-mobility group box 1
- 473 administration suppresses sikin inflammation by inducing an accumulation of PDGFR⁺
- 474 mesenchymal cells from bone marrow. Sci Rep. 2015 Jun
- 475 5;5:11008.doi:10.1038/srep11008.
- 476 15. Mitsuhashi S, Saito N, Watano K, Igarashi K, Tagami S, Shima H, et al. Defect of
- 477 Delta-Sarcoglycan Gene Is Responsible for Development of Dilated Cardiomyopathy of a
- 478 Novel Hamster Strain, J2N-k: Calcineurin/PP2B Activity in the Heart of J2N-k Hamster. J
- 479 Biochem 2003;134:269-276
- 480 16. Maekawa K, Hirayama A, Iwata Y, Tajima Y, Nishimaki-Mogami T, Sugawara S, et al.
- 481 Global metabolic analysis of heart tissue in a hamster model for dilated cardiomyopathy. J
- 482 Mol Cell Cardiol. 2013 Jun;59:76-85. doi: 10.1016/j.yjmcc.2013.02.008.

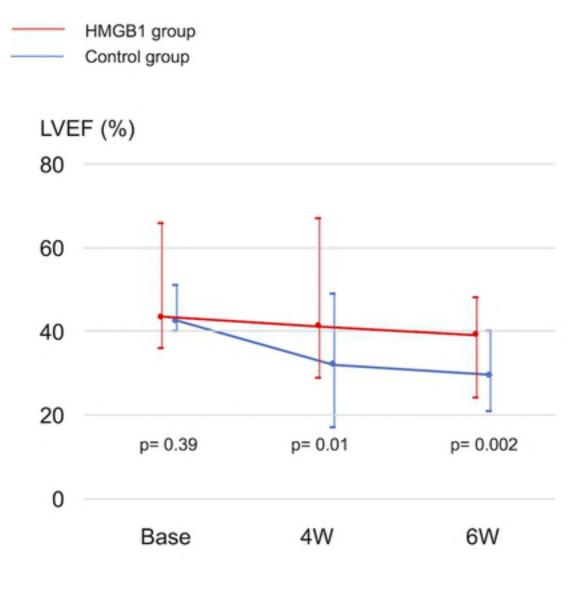
483 17. Chamberlain G, Fox J, Ashton B, Middleton J. Concise Review: Mesenchymal Stem C	i Cells
---	---------

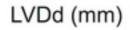
- 484 Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for
- 485 Homing. Stem Cells. 2007;25:2739-2749
- 486 18. Miwa H, Era T. Tracing the destiny of mesenchymal stem cells from embryo to adult bone
- 487 marrow and white adipose tissue via Pdgfrα expression. Development. 2018 Jan 29;145(2).
- 488 pii: dev155879. doi: 10.1242/dev.155879.
- 489 19. Nakamura K, Kusano K, Nakamura Y, Kakishita M, Ohta K, Nagase S, et al. Carvedilol
- 490 Decreases Elevated Oxidative Stress in Human Failing Myocardium. Circulation.
- 491 2002;105:2867-2871
- 492 20. Fujii T, Onohara N, Maruyama Y, Tanabe S, Kobayashi H, Fukutomi M, et al.
- 493 Galpha12/13-mediated production of reactive oxygen species is critical for angiotensin
- 494 receptor-induced NFAT activation in cardiac fibroblasts. J Bio Chem. 2005;280:23041-7
- 495 21. Meng E, Guo Z, Wang H, Jin J, Wang J, Wang H, et al. High Mobility Group Box 1 Protein
- 496 Inhibits the Proliferation of Human Mesenchymal Stem Cells and Promotes Their Migration
- 497 and Differentiation along Osteoblastic Pathway. Stem Cells Dev. 2008;17:805-814
- 498 22. Theiss HD, David R, Engelmann MG, Barth A, Schotten K, Naebauer M, et al. Circulation
- 499 of CD34⁺ progenitor cell populations in patients with idiopathic dilated and ischemic
- 500 cardiomyopathy (DCM and ICM). Eur Heart J. 2007;28:1258-1264

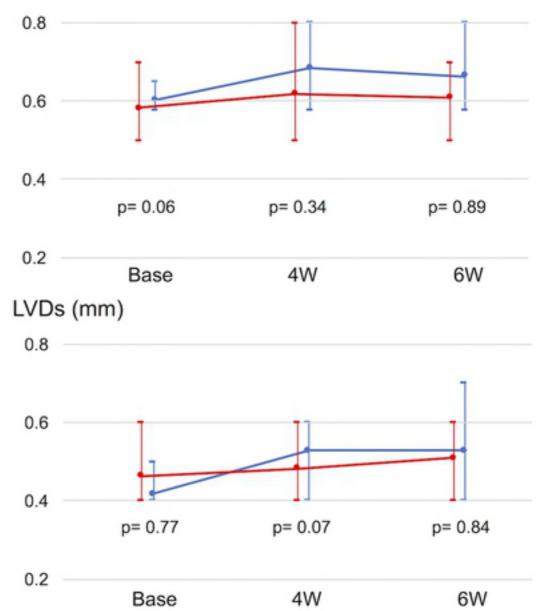
501	23. Abbott JD.	, Huang Y, Liu D	D. Hickey R. 1	Krause DS, C	Giordano FJ.	Stromal C	Cell-Derived

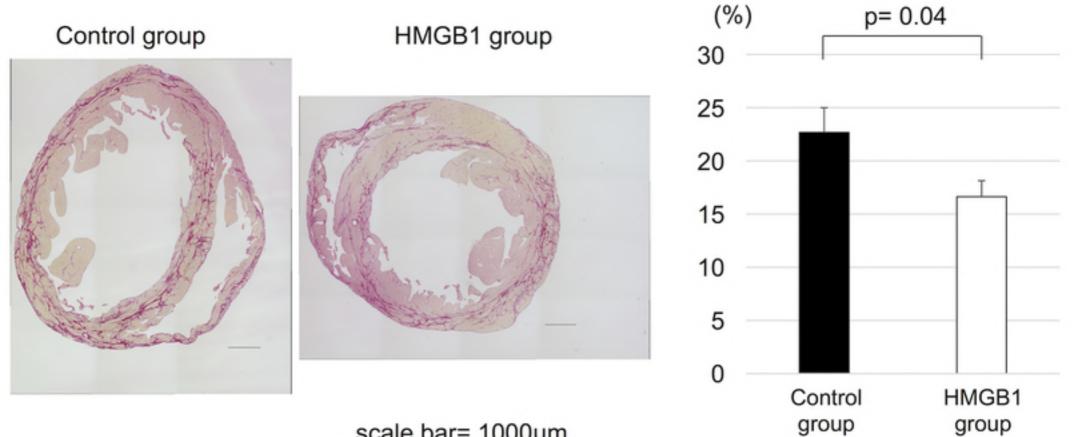
- 502 Factor-1α Plays a Critical Role in Stem Cell Recruitment to the Heart After Myocardial
- 503 Infaction but Is Not Sufficient to Induce Homing in the Absence of Injury. Circulation.
- 504 2004;110:3300-3305
- 505 24. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, et al. Effect of
- 506 stromal –cell-derived factor 1 on stem-cell homing and tissue regeneration in ischemic
- 507 cardiomyopathy. Lancet 2003;362:697-703
- 508 25. Hu X, Dai S, Wu WJ, Tan W, Zhu X, Mu J, et al. Stromal cell derived factor-1 alpha
- 509 confers protection against myocardial ischemia/reperfusion injury: role of the cardiac
- 510 stromal cell derived factor-1 alpha CXCR4 axis. Circulation. 2007;116:654-663
- 511 26. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al.
- 512 Pluriotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-49
- 513 27. Palumbo R, Sampaolesi M, De Marchis F, Tonlorenzi R, Colombetti S, Mondino A, et al. J
- 514 Cell Biol. 2004;164:441-449
- 515 28. Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular
- 516 remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98:1414-1421
- 517 29. Markel TA, Wang Y, Herrmann JL, Crisostomo PR, Wang M, Novotny NM, et al. VEGF is
- 518 critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining

519	the age three	shold in adu	It and neonata	ıl stem cell	function.	Am J Pł	nysiol Hear	Circ Physiol.
-----	---------------	--------------	----------------	--------------	-----------	---------	-------------	---------------


- 520 2008; 295:H2308-H2314
- 521 30. Kawamura M, Miyagawa S, Fukushima S, Saito A, Toda K, Daimon T, et al.
- 522 Xenotransplantation of Bone Marrow-Derived Human Mesechymal Stem Cell Sheets
- 523 Attenuates Left Ventricular Remodeling in a Porcine Ischemic Cardiomyopahty Model.
- 524 Tissue Eng Part A. 2015;21:2272-2280
- 525 31. Lee RH, Yu JM, Peltier G, Reneau JC, Bazhanov N, Oh JY, et al. TSG-6 as a biomarker to
- 526 predict efficacy of human mesenchymal stem/progenitor celss in modulating sterile
- 527 inflammation in vivo. Proc Natl Acad Sci U S A. 2014;111:16766-71
- 528 32. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Anti-inflammatory protein TSG-6
- 529 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing
- 530 TLR2/NF-κB singnaling in resident acrophages. Blood. 2011;118:330-338
- 531 33. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs
- 532 improve myocardial infarction in mice because cells embolized in lung are activated to
- secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009;5:54-63
- 534 34. Kota DJ, Wiggins LL, Yoon N, Lee RH. TSG-6 produced by hMSCs delays the onset of
- autoimmune diabetes by suppressing Th1 development and enhancing tolerogenicity.
- 536 Diabetes. 2013;62:2048-2058

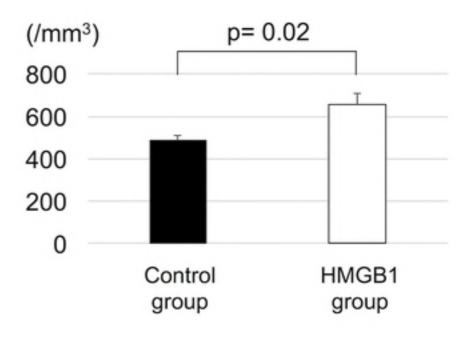

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 33


- 537 35. He Z, Hua J, Qian D, Gong J, Lin S, Xu C, et al. Intravenous hMSCs Ameliorate Acute
- 538 Pancreatitis in Mice via Secretion of Tumor Necrosis Factor-α Stimulated Gene/Protein 6.
- 539 Sci Rep. 2016 Dec 5;6:38438. doi: 10.1038/srep38438.
- 540 36. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor
- 541 (VEGF) and its receptors. FASEB J. 1999;13:9-22
- 542 37. Zisa D, Shabbir A, Mastri M, Suzuki G, Lee T. Intramuscular VEGF repairs the failing
- heart: role of host-derived growth factors and mobilization of progenitor cells. Am J Physiol
- 544 Regul Integr Comp Physiol. 2009;297:R1503-15
- 545 38. Roura S, Planas F, Prat-Vidal C, Leta R, Soler-Botija C, Carreras F, et al. Idiopathic dilated
- 546 cardiomyopathy exhibits defective vascularization and vessel formation. Eur J Heart Fail.
- 547 2007;9:995-1002
- 548 39. Mela T, Meyer TE, Pape LA, Chung ES, Aurigemma GP, Weiner BH. Coronary arterial
- 549 dimension-to-left ventricular mass ratio in idiopathic dilated cardiomyopathy. Am J Cardiol.
- 550 1999;83:1277-1280
- 40. Shafei AE, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, et al.
- 552 Mechanistic effects of mesenchymal and hematopoietic stem cells: New therapeutic targets
- in myocardial infarction. J Cell Biochem 2018;119:5274-5286

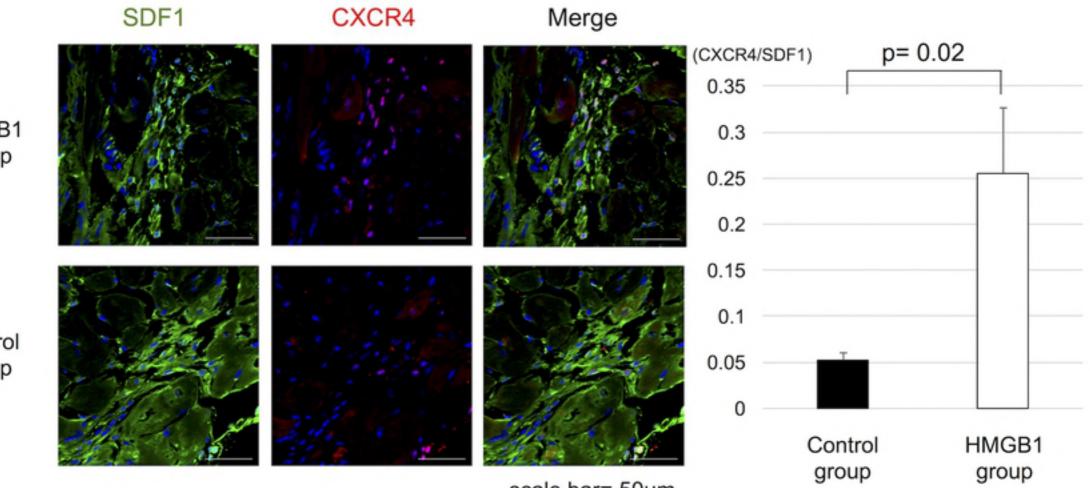

High mobility group box 1 in dilated cardiomyopathy. Kido et al. 34

- 41. Miyagawa S, Sawa Y, Taketani S, Kawaguchi N, Nakamura T, Matsuura N, et al.
- 555 Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the
- effect of cellular cardiomyoplasty. 2002;105:2556-2561
- 557 42. Kondoh H, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Kitagawa-Sakakida S, et al.
- 558 Reorganization of cytoskeletal proteins and prolonged life expectancy caused by hepatocyte
- growth factor in a hamster model of late-phase dilated cardiomyopathy. J Thorac
- 560 Cardiovasc Surg. 2005;130:295-302

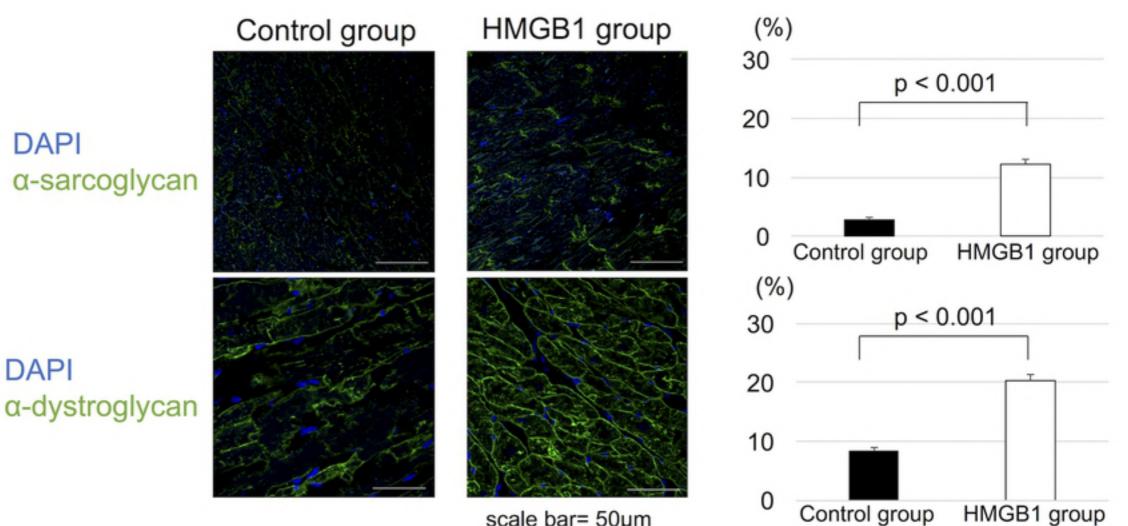


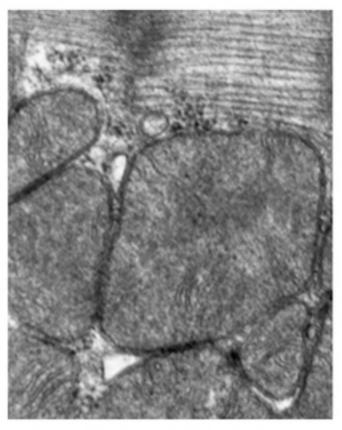


scale bar= 1000µm



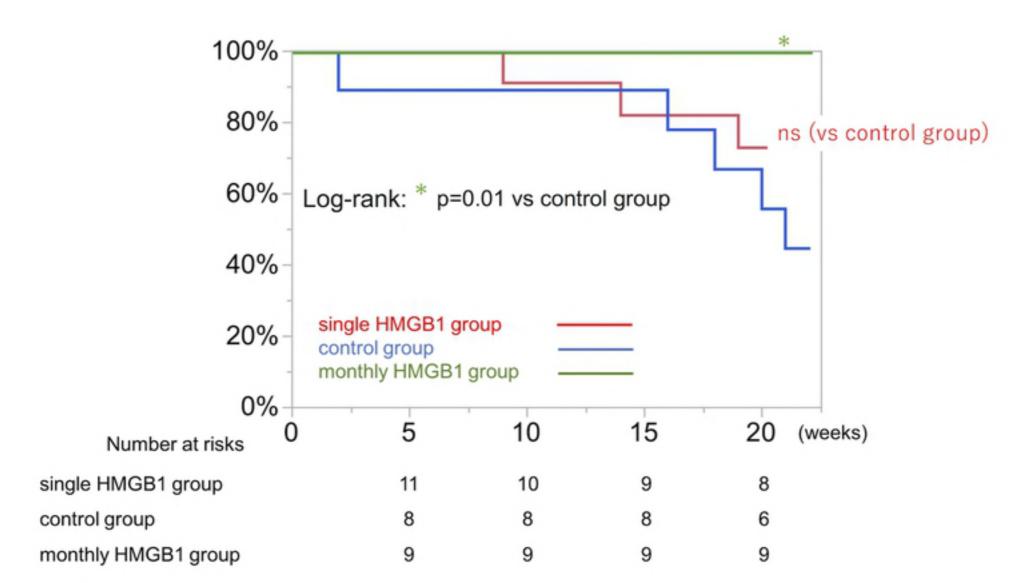
scale bar= 50µm

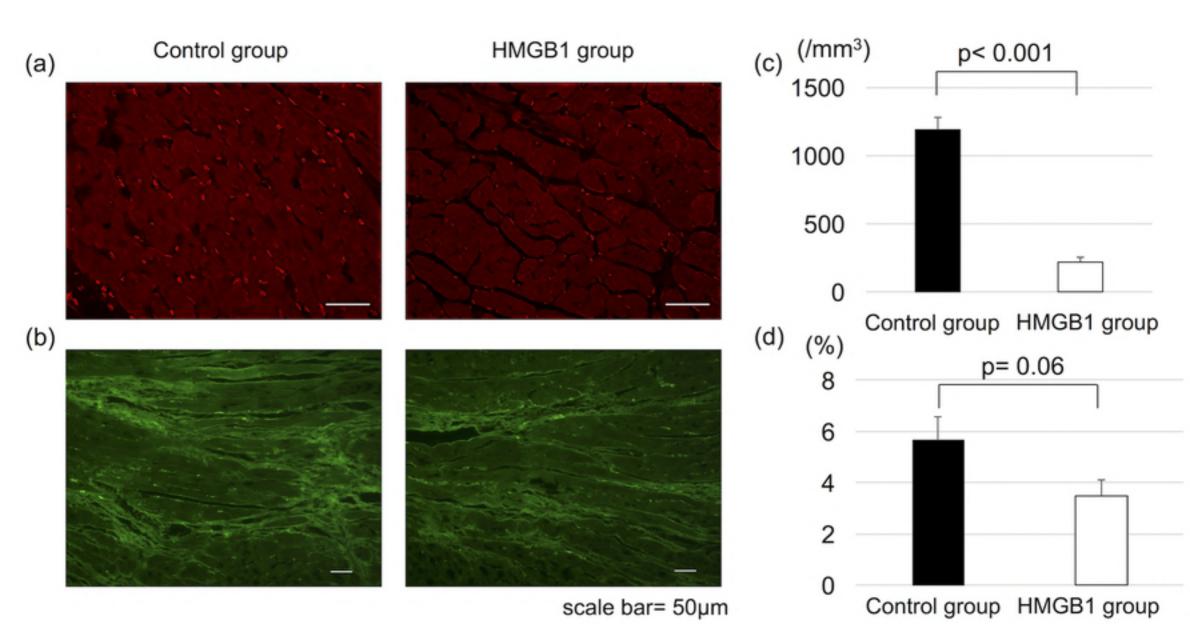

scale bar= 50µm


HMGB1 group

Control group

scale bar= 50µm


scale bar= 50µm



Control group

HMGB1 group

