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ABSTRACT 

Artificial neural network models have long proven useful for understanding healthy, 

disordered, and developing cognition, but this work has often proceeded with little connection to 

functional brain imaging. We consider how analysis of functional brain imaging data is best 

approached if the representational assumptions embodied by neural networks are valid. Using a 

simple model to generate synthetic data, we show that four contemporary methods each have 

critical and complementary blind-spots for detecting distributed signal. The pattern suggests a 

new approach based on structured sparsity that, in simulation, retains the strengths of each 

method while avoiding its weaknesses. When applied to functional magnetic resonance imaging 

data the new approach reveals extensive distributed signal missed by the other methods, 

suggesting radically different conclusions about how brains encode cognitive information in the 

well-studied domain of visual face perception. 
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Scientists interested in understanding how minds emerge from brains have increasingly 

embraced a network-based view: cognition arises from the propagation of activity amongst 

distributed neural populations interacting via weighted connections in complex brain networks1,2. 

Information is encoded, not in the mean activation of local neural populations considered 

independently, but in the similarity structure of activity patterns distributed over many 

potentially distal populations3,4. This raises a statistical challenge for functional brain imaging, 

where various technologies yield thousands of neurophysiological measurements per second: 

cognitive structure must be encoded jointly over some subset of these measurements, but the 

number of possible subsets is prohibitively large. How can the theorist find those that encode 

structure of interest? We propose an answer motivated by neural network models of cognition5 

and show that, when applied to data from functional magnetic resonance imaging (fMRI), the 

new approach can lead to dramatically different conclusions about the neural bases of cognition 

even in well-studied domains. 

Neural network models (see SI-NN) propose that cognitive representations are patterns of 

activity distributed over neural populations or units, with each unit potentially contributing to 

many representations and each representation encoded over many units (Fig. 1A)5,6. The patterns 

arise as units communicate their activity through weighted connections that determine the effect 

of a sending unit on a receiving unit. Pools of similarly-connected units together function as a 

representational ensemble that encodes a particular kind of cognitive structure (phonological, 

semantic, visual, etc). Network topography is initially specified but learning shapes the 

connection weight values that generate patterns over ensembles. Cognitive processing arises 

from the propagation of activity through the network, typically from perceptual stimulation in a 
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particular task and environmental context. Behaviors are the motor outputs eventually generated 

by such updating. 

Such models have long proven useful for understanding the neural bases of healthy7, 

disordered8–11, and developing12,13 cognition, but until recently10,14–16 this research advanced with 

little connection to brain imaging. The reason is simple—the models suggest that information 

can be encoded and distributed in ways that pose significant challenges to statistical analysis of 

brain imaging data (Fig. 1). Specifically: 

1. Unit activations may not be independently interpretable. Because information resides 

in activation patterns computed across units in a representational ensemble, a single unit’s 

activation profile may mislead when considered in isolation (Fig 1B). Independent analysis 

of each population (e.g. single voxels) may therefore obscure the information encoded in 

distributed patterns. 

2. Neighboring units need not encode the same information in the same way. Because 

representational structure inheres in pattern similarities over an ensemble, adjacent units in 

the ensemble need not respond to stimuli in similar ways—they may contribute to different 

components of the structure, or may encode a given component through either increased or 

decreased activation. Thus approaches that spatially average data within subject may destroy 

signal (Fig 1B bottom left). 

3. Single units can vary arbitrarily in their responses even when ensembles encode the 

same structure. Many different weight configurations can compute the same input/output 

mapping for a given network. The configuration acquired through learning depends on 

factors that vary across individuals, such as the initial weight configuration or the 

idiosyncrasies of experience. Thus a particular unit in a given model can, across different 
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training runs in the exact same environment, exhibit essentially arbitrary responses to inputs, 

even if the patterns of activation generated across unit subsets always express the same 

structure. Approaches that average voxel/region responses across subjects at a given 

anatomical location may therefore destroy signal (Fig 1B bottom middle and right). 

4. Representational ensembles need not be anatomically contiguous. Depictions of 

network models portray representational ensembles as occupying a single contiguous “layer,” 

inviting a correspondence with cortical regions (Fig 1A). Yet units with similar connectivity 

will function as a representational ensemble—responding to the same inputs and contributing 

to the same outputs—even if situated in different cortical regions or intermingled with 

differently-connected units (Fig 1C). Thus approaches that analyze different anatomical 

regions independently can fail to uncover important signal. 

5. Fine connectivity varies across individuals. While neural network models initially 

specify coarse connectivity, the values ultimately taken by individual weights are seeded 

randomly then tuned by learning, similar to real brains where region-to-region connectivity is 

initially specified but finer patterns are more variable and plastic. Consequently precise unit-

to-unit alignment may be impossible even if the neural populations contributing to some 

representation reside in roughly similar locations across individuals (Fig 1C)—in which case 

cross-subject averaging of neural responses can destroy signal even with sophisticated 

alignment techniques. 

To understand whether and how contemporary methods overcome these challenges, we 

first describe a simulated functional imaging study using a simple neural network to generate 

model data, which we then analyze with four different statistical methods. Each discerns some 

model signal but also has critical blind spots. The contrasting patterns suggest a new approach 
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based on structured sparsity17 that preserves the strengths of other methods while avoiding their 

weaknesses. We develop this approach, then compare it to the others when applied to real fMRI 

data to discover neural signal that discriminates visually-presented faces from other visual 

stimuli. Each method again yields different results, but the new approach resolves seeming 

discrepancies amongst the others while simultaneously suggesting radically different conclusions 

about how neural systems encode representations in this well-studied domain. 

Results 

Simulation study. The model (Fig 2A) is an auto-encoder: it learns to reproduce input 

patterns across output units. The patterns come from two domains, A and B, corresponding to 

some cognitive distinction of interest (e.g. faces vs places, animals vs artifacts, etc). Each 

domain exemplar generates a unique pattern of input/output activations. Systematic input/output 

(SIO) units each independently adopt a noisy but consistent code, with some slightly more active 

on average for A items and others for B items. Arbitrary input-output (AIO) units have equal 

probability of activation regardless of domain. Activation propagates from input to output via 

two hidden layers. The systematic hidden (SH) units connect only systematic I/O units, while the 

arbitrary hidden (AH) units receive connections from arbitrary inputs and send connections to 

both systematic and arbitrary outputs. This architecture promotes a division of labor across the 

hidden units: SH units encode distributed representations that strongly express domain structure, 

while AH units encode the idiosyncratic differences existing amongst domain exemplars. The 

model also contains irrelevant units unconnected to the network and taking on low random 

values. 

Blue shading in Figure 2A shows units treated as anatomically contiguous. I/O units of a 

given type (A, B, arbitrary) were always anatomically grouped in the same way across model 
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individuals within a single contiguous region. For the hidden and irrelevant units we considered 

two spatial layouts. When localized, units of a given type (SH, AH, irrelevant) were anatomically 

grouped in the same way across model individuals within a single contiguous region, just like 

I/O units. When dispersed, the model retained the same connectivity but the hidden units were 

spatially arranged in four anatomically distal “regions”—three containing a mix of SH, AH, and 

irrelevant units and the fourth containing only irrelevant units—to capture the possibility that 

distal units can function together as a representational ensemble. Within each region, unit 

locations were shuffled for each model subject, capturing the possibility that fine-grained 

localization can vary across individuals. These different configurations did not affect model 

training or behavior, but represent different assumptions about the spatial locations of the signals 

measured in a simulated MRI study. 

Simulated data were generated by training a model on 72 item, then computing the 

response of each unit to each input pattern and perturbing this with noise sampled independently 

for each unit. Each unit activation was taken as a model analog of the peak BOLD signal 

generated by a single stimulus at a single voxel in a single individual. To simulate 10 individuals 

in a brain imaging study we trained and tested the model 10 times with different initial weights. 

We then applied four different statistical methods to find units that differentiate A from B items: 

univariate contrast (UC), searchlight multivariate pattern classification (sMVPC), and whole-

brain logistic regression regularized with the L2 (ridge) or L1 (LASSO) norm (see SI-

Approaches). We measured how well each method discriminates informative from non-

informative units amongst all I/O units and amongst all hidden/irrelevant units. We also 

considered how well each method uncovers the domain code: which units are more active for A, 

which for B, and which adopt a heterogeneous code. Figure 2 shows the results.  
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Univariate contrast spatially smooths data, then identifies voxels whose mean activation 

across individuals at a given spatial location reliably differs for A vs B items.18,19 This approach 

identified the SIO units and accurately specified their coding direction, but failed to identify the 

SH units in either spatial layout. 

Searchlight MVPC generates information maps by evaluating pattern classifiers in their 

ability to discriminate A from B items from the activation patterns generated by each item across 

voxels20. The approach avoids model over-fitting by applying the classifier only to voxels within 

a searchlight of fixed anatomical radius centered on a particular voxel. A separate classifier is 

evaluated for each voxel in each subject without spatial smoothing or cross-subject averaging. 

Cross-validation accuracy is stored at the voxel location in each subject; cross-subject univariate 

tests then identify anatomical clusters where accuracy is reliably higher than chance. The 

resulting maps indicate regions where the categorical distinction of interest is locally decodable 

on average across subjects within the radius of the searchlight. Figure 2C shows model results 

for the best-performing searchlight size (radius 7) which excelled at discovering localized signal 

in both I/O and hidden units. Smaller searchlights successfully identified SH but not SIO units 

while larger searchlights showed the reverse pattern (see SI-Approaches). Regardless of size, the 

approach failed to discover signal-carrying hidden units when these were spatially dispersed. 

Also, because information maps only indicate classifier accuracy, the approach did not reveal the 

different category codes employed by I/O and hidden units. 

Regularized whole-brain MVPC fits and evaluates a single classifier per subject using all 

voxels and avoids over-fitting through model regularization21 –that is, by finding classifier 

coefficients that jointly minimize both prediction error and some additional penalty. We used 

logistic regression as the classifier and considered two common regularizers: the ridge penalty, 
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which increases with the sum of squared classifier coefficients, and the LASSO penalty, which 

increases with the sum of the absolute value of classifier coefficients. In both cases a classifier 

was fit to minimize:  

(1 − 𝜆𝜆) ∗ 𝑓𝑓(𝛽𝛽) + 𝜆𝜆 ∗ ℎ(𝛽𝛽)  Equation 1. 

…where β is the vector of classifier coefficients (one element for each unit), 𝑓𝑓(𝛽𝛽) is the 

classifier logistic loss, ℎ(𝛽𝛽) is the regularization penalty, and 𝜆𝜆 ∈ [0, 1] is a free parameter tuned 

via cross-validation that determines the relative weighting of the loss vs the regularization 

penalty. 

The ridge classifier showed a mean hold-out accuracy of 60% correct, reliably above 

chance (p < 0.0001), but placed non-zero weights on all units making it difficult to discriminate 

signal-carrying from arbitrary/irrelevant units (see SI-Approaches). The LASSO classifier 

showed equivalently good hold-out accuracy (60%) with a much sparser solution (Fig. 2D). Only 

2 of the 7 SH units and only one of the I/O units were selected more often than expected by 

chance given the base probability of selection in a permutation test, and no false alarms were 

observed. Thus LASSO showed high precision—all selected units carried signal—with a low hit 

rate. 

Regularization with structured sparsity. These results highlight complementary strengths 

and weaknesses across methods. Spatial averaging allows UC to detect the noisy signal in SIO 

units and also reveals the code direction, but only succeeds when units employing the same code 

are consistently localized within a region across subjects—because SH units employ a 

heterogeneous code, they are always missed. When sized appropriately, searchlight can discover 

both kinds of localized signal but misses anatomically dispersed signal and obscures the code 

direction. Regularized whole-brain MVPC can identify spatially dispersed and heterogeneous 
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signal, but ridge regularization selects everything without discrimination while LASSO forces a 

very sparse solution that identifies only a small proportion of signal-carrying units. 

Structured sparsity22–24 provides an avenue for preserving the strengths of each method 

while avoiding its weaknesses. A single classifier is fit using all data from all subjects, but the fit 

is regularized with a penalty that encourages desired sparsity patterns amongst the classifier 

coefficients. Specifically, the solution should reflect the characteristics of neural signal that 

neural network models suggest and that other methods individually exploit. It should (1) clearly 

delineate selected and unselected voxels, (2) allow heterogeneous codes among neighboring 

units within and across individuals, (3) reveal code direction where this is consistent, (4) identify 

distal units that jointly express representational structure, (5) capitalize on shared location across 

subjects where this exists but also (6) tolerate individual variation in signal location. 

The sparse-overlapping-sets (SOS) LASSO is one such function25,26 (see SI-SOS). 

Neighboring voxels within a specified radius are grouped into sets, similar to searchlights. Each 

voxel belongs to several sets and sets overlap in the voxels they contain. Sets then contribute to 

the regularization cost of a single classifier as follows: 

ℎ(𝑆𝑆,𝛽𝛽) =  ∑ �(1 − 𝛼𝛼) ∗ ∑ |𝛽𝛽𝑖𝑖|𝑖𝑖 +  𝛼𝛼 ∗ �∑ 𝛽𝛽𝑖𝑖
2

𝑖𝑖 �𝑆𝑆    Equation 2. 

...where S defines the grouping of voxels into sets, i indexes model coefficients within a 

set, and 𝛼𝛼 ∈ [0, 1] is a free parameter. The total cost is a sum over sets. The cost for each set is 

the proportional weighted sum of two terms: the standard L1 sparsity penalty, and a grouping 

penalty formulated as the root of the sum of squared coefficients. Because this root is taken over 

units within a set, the grouping penalty is smaller when non-zero coefficients occupy the same 

set than when they occupy different sets (see SI-SOS). Thus SOS LASSO encourages sparse 

solutions where selected voxels occupy a small number of sets. The free parameter α controls the 
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relative weighting of the grouping vs sparsity penalties within set—when α=0 the penalty 

reduces to LASSO. This function replaces h(β) in Equation 1, so the full optimization jointly 

minimizes model error and regularization cost with a second free parameter λ controlling their 

respective weighting. 

SOS LASSO fits a single classifier to all data from all subjects simultaneously. Voxels 

from different subjects are projected into a common reference space without interpolation and 

with no cross-subject averaging. Sets are defined for grid points in the space and each 

encompasses all voxels within and across subjects that fall within a specified radius of a grid 

point. The optimization is convex and returns a unique solution for a given pair of 

hyperparameters (α and λ) that are tuned via cross-validation on model hold-out error. The result 

is a classifier coefficient for each voxel in each subject, with the coefficients tending to occupy a 

small number of sets, and thus to lie in roughly similar anatomical locations across subjects. 

Like LASSO, SOS LASSO “sees” all voxels at once and so can exploit structure coded 

across distal regions, while also clearly delineating selected voxels by forcing many coefficients 

to zero. Like searchlight, the code direction can be heterogeneous within region and across 

subjects, but like LASSO each voxel in each subject gets a unique coefficient whose sign 

indicates the code direction. SOS LASSO promotes a similar anatomical distribution of voxels 

across subjects, but the pressure to be similar is balanced with pressure to reduce model 

prediction error and achieve structured sparsity within each subject. Since the strength of the 

grouping penalty is tuned by data, the approach can exploit localization across subjects where 

this exists but can also accommodate cross-subject variability in location. 

The last row of Fig 2D shows the SOS-LASSO solution applied to model data. The 

classifier achieved better hold-out accuracy than LASSO or ridge regression (70% correct) while 
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discovering more than half the SIO units and almost all the SH units in both localized and 

dispersed layouts. The only false alarms were observed amongst arbitrary or irrelevant units that 

were anatomically interspersed with or neighboring the signal-carrying units. The signs of the 

coefficients revealed the consistency and direction of the domain code among identified SIO 

units as well as the heterogeneity of the code in SH units. Thus in simulation, SOS-LASSO 

captures the strengths of each method while largely avoiding their limitations. 

Functional imaging study. The simulations suggest that several contemporary statistical 

methods for functional imaging have blind spots, raising the possibility that prior work may have 

missed important signal even in well-studied domains where multiple different approaches have 

been applied. Study 2 assesses this possibility in the domain of face representation. We applied 

univariate contrast, searchlight MVPC, LASSO, and SOS-LASSO to fMRI data collected in a 

previous unrelated study27 in which 10 participants judged the pleasantness of images depicting 

people (30 items), scenes (30 items), or objects (30 items) while their brains were scanned with 

fMRI. The study employed a slow event-related design that allowed estimation of the peak 

BOLD response to each item at each voxel without time-series deconvolution. We applied each 

method to these data to find voxels that reliably discriminate face (people) from non-face (place 

and object) stimuli. 

Figure 3 shows the neural systems typically thought to support face and place perception 

(downloaded from http://web.mit.edu/bcs/nklab/GSS.shtml) along with the results for the current 

data from each method. Whole-brain univariate contrast revealed significantly reduced mean 

activation for faces in bilateral parahippocampal regions (blue areas p < 0.05 with cluster 

correction), while an ROI analysis found reliably elevated activation for faces in the right 

“fusiform face area” (FFA) only (warm colors, p < 0.05 for mean response across ROI voxels). 
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Searchlight MVPC with a 9mm radius identified a localized signal in regions near the FFA 

bilaterally. LASSO selected a handful of voxels in each subject, concentrated near FFA 
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bilaterally and in right lateral occipito-temporal cortex. The classifier coefficients indicated that 

reduced activity predicted faces in medial ventro-temporal cortex while elevated activity 

predicted faces for lateral ventro-temporal and occipito-temporal regions. Together the three 

approaches suggest somewhat different conclusions about face representation in cortex, each 

having precedent in prior work: the UC result suggests that faces selectively activate the right 

FFA;28 searchlight identifies localized but bilateral signal around the FFA;29 and LASSO reveals 

a nonface-to-face gradient bilaterally in these regions plus a right-lateralized occipital “face” 

region.30 

Results from SOS LASSO differed strikingly. Colored regions in Fig. 3C (bottom) show 

voxels that received non-zero weights on significantly more subjects than expected from a null 

distribution estimated by permutation testing (p < 0.001 corrected; see Methods). Hue again 

indicates the proportion of selected coefficients that were positive across subjects. In addition to 

the canonical face and place systems the results implicate a host of regions spanning anterior 

temporal, frontal, and parietal cortex. 

We assessed the quality of the representations discovered by each method as follows.  

For each subject and method, we trained a (ridge-regularized) logistic classifier to discriminate 

face from non-face stimuli using only the voxels that the method identified as important, then 

compared the classifier cross-validation error (mean of hit and correct rejection rates) across 

methods. All classifiers performed reliably better than chance (50%) but with substantial 

differences among them. Searchlight solutions performed worst (67%); the canonical univariate 

ROIs yielded significantly higher accuracy (76% correct, p < 0.001 vs searchlight); but 

performance for LASSO and SOS LASSO was even better (88% and 87% respectively, p < 

0.001 vs univariate for both) and did not differ significantly from each other. 
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Why do neural representations appear so widely distributed under SOS LASSO? Perhaps 

the neural signal outside canonical areas merely serves to de-noise, interact with, or otherwise 

amplify the signal encoded within the canonical face and place systems (see SI-Denoising).31 We 

assessed this possibility with two additional analyses. First we fit SOS LASSO to two subsets of 

data: voxels lying within the canonical face and place systems (padded by an additional 7mm) or 

voxels lying outside these systems and also not selected by any other method. If the true signal 

lies mainly in the face and place systems, the within-system classifiers should yield higher 

accuracy on held-out items than outside-system classifiers. Instead the reverse result obtained: 

outside-system classifiers showed significantly higher hold-out accuracy (87%) than within-

system classifiers (83%; t(11) = 2.4, p < 0.05), and as well as whole-brain classifiers (87%). 

 

Second, we used SOS LASSO to find voxels that reliably discriminate place from non-

place stimuli. If broadly-distributed regions are selected because they de-noise system-specific 

signal or for some other spurious reason, they should be selected regardless of the category 

decoded. Figure 4 shows this is not the case: the voxels that discriminate place from non-place 

stimuli are anatomically localized and consistent with the canonical view of place representation 

in the brain.32 Together the results suggest that widely distributed regions outside canonical 

systems contain information that helps to discriminate visually-presented faces from non-face 

stimuli. 
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General Discussion 

Using computer simulations we have shown that four contemporary statistical methods 

for brain imaging have significant blind spots remedied by a new approach based on structured 

sparsity, the SOS LASSO. All methods yielded qualitatively different results when applied to 

fMRI data collected while participants judged visual images of faces, places, or objects, but 

solutions from prior approaches were generally consistent with the standard view that face 

representations are encoded within posterior temporal and occipital cortices. The SOS LASSO 

yielded a much more widely distributed solution encompassing anterior temporal, frontal, and 

parietal regions. 

Can we be confident that SOS LASSO has revealed real signal? The result does not 

solely reflect selection of spurious voxels outside canonical systems, since (1) extra-system 

regions were sufficient to discriminate face from non-face stimuli with high accuracy and (2) the 

same approach yielded a more localized solution when seeking signal that discriminates place 

from non-place stimuli. Might it have arisen from idiosyncrasies of the particular stimuli or task 

used in the current study? We cannot rule the possibility out, but the current data were sufficient 

to replicate canonical results using prior methods—only with SOS LASSO was further signal 

revealed. Thus it remains possible that prior work has likewise missed extensive distributed 

signal. 

Many aspects of the SOS LASSO solution accord well with both standard views of face 

and place perception and with the broader literature. Regions where classifier coefficients are 

consistently positive (warm colors in Figure 3) pick out much of the canonical face system and 
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other cortical areas known to support social cognition, including the bilateral temporal poles,33,34 

right orbito-frontal cortex,35,36 and superior medial-frontal cortex.37 Regions where coefficients 

are reliably negative (cool colors in Figure 3) pick out areas known to encode less socially-

critical information, including scenes (parahippocampal place area)32 and object-directed action 

(dorsal visual stream, left dorsal premotor motor area)38–40. The mixed-direction regions (green 

in Figure 3) suggest that, in addition to these directionally-consistent codes, information about 

the stimulus category can be encoded with distributed patterns in which the direction of the code 

varies within and across individuals. The current results cohere with other recent work 

suggesting that neural representations may be more broadly distributed that heretofore suspected, 

for face perception specifically41,42 and for conceptual structure more generally.43,44 

The pattern of results across methods has two important implications for hypotheses 

about neural representation. First, the out-of-system information detected by SOS LASSO was 

not discovered by even a large searchlight, indicating that it does not reside within local cortical 

regions considered independently. Thus anatomically distal regions can jointly encode 

multivariate representational structure. Second, SOS LASSO assigned consistently positive or 

consistently negative classifier weights in regions where univariate contrast yielded a null result. 

Whereas univariate contrast considers mean activations of each voxel independently, a classifier 

coefficient indicates the voxel’s contribution to the classification decision while taking the 

contributions of other voxels into account. Similar to partial correlation analyses, a voxel’s 

activity may not correlate reliably with stimulus category when considered alone, but may 

correlate with residual variation once the effects of other voxels have been factored in. In that 

case the voxel will receive a weight in the classifier but will not show a significant effect in 

univariate analysis. The contrasting results thus indicate that voxels can contribute to 
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representational structure in a directionally and locationally consistent manner even when they 

do not independently correlate with that structure. 

These observations suggest a new perspective on face representation in the brain. The 

standard view posits “core” and “extended” systems residing within posterior temporal and 

occipital cortices. 45,46 SOS LASSO suggests that, in addition to these regions, face perception 

generates widely-distributed activation patterns across much of the cortex, with anatomically 

distal regions jointly helping to differentiate the representations of visually presented faces from 

other stimuli. Within the full pattern, faces are signaled by elevated activity in social-cognitive 

brain networks, by suppressed activity in networks relevant to navigation and object-directed 

action, and by heterogeneous patterns in parietal and frontal cortices—but because elements of 

the pattern vary in the direction, independence, and localization of their code, previous methods 

each provide only a partial view of the full representation. Their agreement with the standard 

view arises because classic “core” and “extended” face systems comprise parts of the pattern 

where information is encoded efficiently and independently within circumscribed cortical 

regions, often in a directionally-consistent manner localized similarly across subjects. 

Relation to other multivariate brain imaging approaches. We have focused on the 

common experimental design wherein the theorist seeks neural signal that differentiates one 

discrete experimental condition from another. Other designs have other goals and so employ 

other methods—for instance, representational similarity analysis (RSA) seeks voxel sets that 

jointly express a target similarity structure,47 while “generative” approaches seek to predict 

whole-brain images from externally-derived features of the stimulus or experimental condition.48 

Like MVPC, such approaches often adopt techniques that can limit their ability to detect 

network-distributed signal, such as independent consideration of each voxel time-series or of 
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different anatomical regions. Structured sparsity may likewise provide new insights for these 

kinds of problems.49 We also note that SOS-LASSO constitutes just one way of leveraging 

structured sparsity for pattern classification—other groups are pursuing similar ideas,24,50 and 

understanding the relations among these approaches is a central goal for future research. 

Broader implications for cognitive neuroscience. Our aim has been to consider how 

functional imaging results might change when one employs statistical methods capable of 

discovering distributed signal of the kind suggested by neural network models of cognition. We 

chose visual face perception as one extensively-studied domain where both univariate and 

multivariate functional imaging have highlighted fundamental questions about neuro-cognitive 

representation. The contrasting results from SOS-LASSO compared to other methods illustrates 

that such an approach can lead to quite different conclusions even in well-studied domains. Yet 

such a discrepancy is not guaranteed: the decoding of place information with this method yielded 

results highly consistent with canonical views. The current study thus raises the possibility that 

functional imaging has provided an incomplete picture of neuro-cognitive representation across 

domains—but assessing that possibility in any given domain will require further work of this 

kind. 
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Online Methods 

Simulation study.  

Model implementation. Code and documentation for running the simulations and 

subsequent analyses appear at https://github.com/crcox/SOSLassoSimulations. The model shown 

in Figure 2A of the main paper was trained on 72 items sampled from two domains, A and B. 

Each item activated exactly 2 systematic and 2 arbitrary input units, and across items each unit 

was active in exactly 8 items. Half of the systematic units were activated only by items from 

domain A, while the remaining half were activated only by items from domain B. Thus any pair 

of items in the same domain had a small probability of overlapping in some of their systematic 

properties, while items from different domains never overlapped in their systematic properties. 

Arbitrary units were equally likely to be active for items from domain A versus B. 

The model was fit using the Light Efficient Network Simulator 

(https://github.com/crcox/lens) using back-propagation to minimize cross-entropy error. The 

weights were adjusted with a learning rate of 0.1, using momentum (“Doug's” momentum = 0.9) 

and subject to weight decay (decay constant = 0.001). The model was trained 10 times to 

asymptotic performance with very low error over 1000 epochs. Prior to each training run, the 

model was initialized with random weights sampled from a uniform distribution in the range [-

1,1]. These 10 models were used to generate data for 10 model “subjects,” based on the patterns 

of activity elicited by each input over the whole network. Each model was presented with the 72 

input patterns in sequence, and the pattern of activation elicited over the 114 units in the network 

(including the 28 irrelevant units, which always had an activation of zero) was recorded. The 

dataset for each model subject thus consisted of a matrix with 72 rows corresponding to stimulus 

items and 114 columns corresponding to model voxels. Each matrix contained the “true” 

response pattern for each subject to each item. To simulate noise in the measurement of this 

activity, a random value sampled independently from a Gaussian distribution with a mean of 

zero and standard deviation of 1 was added to each cell of the matrix. We take the resulting 

values in each cell of a matrix to be a model analog of the estimated BOLD response to a single 

stimulus at a single voxel in a single subject in an fMRI study.  

To apply different brain-imaging methods to the discovery of structure, it is necessary to 

further stipulate the anatomical locations of the different units the model. In all simulations, input 

units were situated all together, with domain-A units neighboring one another, domain-B units 
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neighboring one another, arbitrary units neighboring one another, and the three units types 

concatenated end-to-end (AH units immediately adjacent to SH units; irrelevant units 

immediately adjacent to AH units). Output units were organized the same way, though outputs 

were assumed to be anatomically distal to inputs. The anatomical arrangement of input and 

output units was identical across model individuals.  

For hidden units, we considered two different anatomical organizations. For anatomically 

localized models, units within a hidden layer (SH, AH, or irrelevant) were treated as anatomical 

neighbors with the unit types again concatenated end to end and localized in the same way across 

model individuals. Consequently, large searchlights or over-zealous smoothing could integrate 

activation from more than one hidden unit type. In the anatomically dispersed condition, hidden 

and irrelevant units were organized into three “regions” each containing a mix of SH, AH and I 

units, plus a fourth region containing only I units. The regions were each treated as anatomically 

distal to one another and to the input and output units. The three regions with mixed unit types 

all contained 7 units total, with 2 or 3 SH units, 2 or 3 AH units, and 2 or 3 I units. All model 

subjects had the same 7 units assigned to a given region, but the spatial ordering of these units 

within region was shuffled at random independently for each. The aim was to generate a scenario 

in which spatially distal units can jointly encode representational structure, with the coarse 

anatomical layout consistent but fine-grained layout variable across individuals.  Note that model 

connectivity, the activation patterns evoked by different inputs, and the ways these patterns were 

distorted by measurement noise were identical for both model layouts—all that differed was the 

spatial locations of the units in each layer. 

Statistical analysis. 

Each analysis ultimately involves computing, for each unit, the probability of the 

observed result under the null hypothesis that the unit does not contribute to differentiating A 

from B items. For fair comparison across methods, we therefore used the same statistical 

threshold for “counting” a unit as significant (p < 0.002 uncorrected). The qualitative pattern of 

results across methods does not vary with this criterion. 

Univariate contrast. The activity at each unit was analyzed for all subjects using a mixed-

effects model that treated subject as a random factor1,2 , stimulus category (A or B) as the sole 

fixed effect, and unit activation as the dependend measure. The model was fit using the fitlme 

function in MATLAB, and the fixed-effect coefficient was tested for significance using the 
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Satterthwaite approximation to the degrees of freedom and a standard F-test, numerator degrees 

of freedom = 1, denominator degrees of freedom = 9. The results are directly analogous to a 

repeated-measures ANOVA. Results were thresholded at uncorrected p < 0.002. The analysis 

was conducted for both the anatomically localized and the dispersed model. In both cases, the 

data were spatially smoothed, taking a weighted average over a three unit window, where the 

center unit was weighted about twice as much as the two flanking units. 

Searchlight MVPC. The searchlight analysis was conducted using the SearchMight 

toolbox3  for MATLAB. Non-contiguous unit groups from Figure 2A in the main paper were 

treated as anatomically separated regions so that a searchlight never encompassed units in 

different regions. This was accomplished by inserting empty units between the layers, and 

providing a mask to SearchMight to omit those units during analysis. Within each searchlight, a 

Gaussian Naive Bayes (GNB) classifier was fit to distinguish between category A and B items. 

Although GNB classifiers are limited in some ways,3 the concerns do not apply to this simple 

and idealized case where noise is truly identically and independently distributed (iid) with 

uniform variance. Classifier performance at each searchlight was estimated through 6-fold cross 

validation. The mean cross-validation accuracy was stored at each searchlight center, and the 

mean accuracy over model subjects was tested for each unit to see if it differed significantly from 

chance. The resulting map of p-values was thresholded at p < 0.002 uncorrected. The analysis 

was performed on both the anatomically localized and the anatomically dispersed arrangements 

of units. The data were not smoothed prior to the searchlight analysis. The analysis was 

performed with small (3 unit), medium (7 unit), and large (14 unit) searchlights; results for 

smaller and larger searchlights are reported in SI-Model. 

LASSO. Logistic LASSO (and ridge regression; see SI-Model) were conducted as special 

cases of the SOS-LASSO optimization code posted at 

https://github.com/crcox/WholeBrain_MVPA/blob/master/src/%40SOSLasso/SOSLasso.m, 

which is part of the broader Wholebrain Imaging with Sparse Correlations (WISC) workflow 

maintained by CRC. Both methods have a free parameter 𝜆𝜆 that controls the importance of the 

regularization penalty relative to the prediction error, leading to greater sparsity in LASSO and 

more severe weight shrinkage in ridge regression. The analysis thus proceeded in two steps: one 

to estimate a useful 𝜆𝜆 for each simulated subject, and a second to fit a model at the estimated 𝜆𝜆 

and evaluate it on a hold-out set. The data for each simulated subject was first divided into 6 
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equal parts, each containing the same number of category A and B items. One part was set aside 

and the remaining 5 were passed to a function that conducted a 5-fold cross validation accuracy 

search across many values of 𝜆𝜆. The parameter search was implemented using hyperband, a state 

of the art search procedure that optimizes use of parallel computing infrastructure when fitting 

complex optimizations4. The function returns the 𝜆𝜆 producing the highest cross-validation 

accuracy, which is subsequently used to fit a model to all 5 parts of the data. The resulting model 

was then assessed on the original hold-out set (the 6th part). This procedure was carried out 

separately for all 10 model subjects, in both localized and anatomically dispersed model variants. 

LASSO provides a straightforward selection criterion: any unit receiving a non-zero 

weight has been “selected” as important for predicting the stimulus class. We conducted a 

permutation test to assess, for each unit, the probability of selection under the null hypothesis of 

no relationships between unit activation and category label. We first estimated the best sparsity 

level 𝜆𝜆 from the unpermuted model data using the procedure just described. For each 

permutation, we randomly shuffled the category labels, then fit a LASSO model at the pre-

specified 𝜆𝜆 and recorded the resulting coefficient on each unit. 1000 permutations were 

conducted. We then estimated the probability of selection for each unit as the number of times 

the unit received a non-zero weight divided by 1000. These probabilities were estimated 

separately for each model subject, then averaged across model subjects at each unit, yielding a 

base probability of selection for each unit. In the non-permuted data, we counted how often a 

given unit received a non-zero weight across the 10 simulated subjects, then used the binomial 

distribution to compute the probability of this outcome given the base probability of selection 

from the permutation testing. For instance, if a unit was selected with probability 0.2 in the 

permutation testing, and was selected in 5 out of 10 simulated subjects in the real (non-permuted) 

data, we computed the likelihood of this outcome under the null hypothesis as the binomial 

probability of achieving 5 or more successes in 10 attempts given a base probability of 0.2 for 

success (p ~= 0.033). This probability was computed for every unit and the results were 

thresholded at p < 0.002 without correction for multiple comparisons. 

SOS LASSO. The SOS LASSO analysis was implemented using custom code built on top 

of MALSAR5 for MATLAB. The data were divided into overlapping groups based on 

“anatomical” proximity. Each set included 7 units (except for the last group in the input and 

output layer, which have 8 rather than having one unit on its own), and the groups did not 
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overlap. The set size was selected to correspond with the number of systematic hidden units, to 

emphasize the difference between the localized and dispersed cases (i.e., group size was optimal 

for the localized condition, and ensured that systematic hidden units were maximally dispersed 

over groups in the dispersed condition). SOS LASSO has two free parameters, one controlling 

sparsity at the set level and one controlling overall sparsity. As in the previous analysis, these 

parameter values  were selected through an internal 5-fold cross-validation process, then a final 

model was trained with the best parameters and tested on a sixth hold-out set.  

To statistically determine which model units were reliably selected we again conducted a 

permutation test. The true category labels were permuted 1000 times and for each permutation 

we fit a SOS LASSO model to all 10 model subjects simultaneously, using hyper-parameters 

chosen from the true data. We then computed, for each unit, the proportion of times it was 

selected across all permutations and all model subjects, taking this as the probability of selection 

under the null hypothesis. The true data were thresholded using the binomial distribution to 

compute, for each unit, the probability of the observed number of selections out of 10 model 

subjects given the null-hypothesis base probability for that unit. We again thresholded this 

probability map at p < 0.002 uncorrected. 

Imaging study. 

Data collection methods. The fMRI dataset was collected and contributed by Lewis-

Peacock and Postle.6 Subjects viewed 90 stimuli from three categories: 30 famous people, 30 

famous locations, and 30 common objects. They then indicated how much they liked the 

celebrity, how much they would like to visit the location, or how often they encountered the 

object in everyday life using a stimulus-response box and a four-point Likert scale. Each 

stimulus was presented one time only, for a total of 90 randomly ordered stimulus presentations. 

Each trial consisted of a cue period (2 s), a stimulus period (5 s), and a judgment period (3 s). 

Each trial was followed by an arithmetic task (16 s) to reduce interference between trials. 

Whole-brain images were acquired with a 3T scanner (Signa VH/I; GE Healthcare). T1- 

weighted images (30 axial slices, 0.9375 x 0.9375 x 4 mm) were acquired for all 10 subjects. 

Functional images were acquired using a gradient-echo, echo-planar sequence [repetition time 

(TR), 2000 ms; echo time, 50 ms] within a 64 x 64 matrix (30 axial slices coplanar with the T1 

acquisition, 3.75 x 3.75 x 4 mm). Six scans were obtained for each subject, each scan lasting 6 

min, 50 s. Each scan was preceded by 20 s of dummy pulses to achieve a steady state of tissue 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/390534doi: bioRxiv preprint 

https://doi.org/10.1101/390534
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running head: Connecting natural and artificial neural networks 33 

magnetization. Preprocessing of the functional data was done with the Analysis of Functional 

NeuroImages (AFNI) software package7 using the following preprocessing steps, in order: 

correction for slice time acquisition and rigid-body realignment to the first volume from the 

experimental task; removal of signal spikes; removal of the mean from each voxel and linear and 

quadratic trends from within each run; and correction for magnetic field inhomogeneities (using 

in-house software). Note that spatial smoothing was not imposed, and the data were not spatially 

transformed into a common atlas space before hypothesis testing. Rather, the data from each 

subject were analyzed in that subject’s un-smoothed, native space, without fitting a GLM to the 

hemodynamic response. Instead, the BOLD response at the 5th TR after stimulus onset was 

selected for analysis, which was selected to be near the anticipated peak of the hemodynamic 

response. 

Statistical analysis. In all analyses the functional data for each subject were first masked 

to exclude voxels outside of cortex (white matter, CSF, cerebellum, thalamus and sub-cortical 

structures, bone, etc). 

Univariate analysis. The functional data for each subject were projected to Talairach 

space using the T1 data with a combination of manual landmark identification (anterior and 

posterior commissures) and automated affine transformation obtained using 3dvolreg in AFNI. 

The spatially normalized response to each stimulus, sampled at the 5th TR after stimulus onset, 

was smoothed with 4 mm FWHM Gaussian kernel. At each voxel we computed the mean 

response for face stimuli and for non-face stimuli and subtracted these (face – nonface). In a 

whole-brain analysis, we computed a t-test on this difference against the null hypothesis of 0, 

and thresholded the resulting map using a cluster-corrected whole-brain threshold of p < 0.05. 

The resulting whole-brain map revealed bilteraral parahippocampal regions that were less active 

for faces than for non-face stimuli, but no regions that were more active for faces. We then 

conducted a region-of-interest analysis directly assessing whether the right fusiform face area 

(rFFA)—the earliest and most consistently reported face-selective area in cortex—was reliably 

more active for face than non-face stimuli. Using the rFFA mask published by Kanwisher’s 

group, we computed the mean difference in response for faces and for non-faces across all rFFA 

voxels in each subject, took the difference, and computed a t-test against the null hypothesis of 0. 

The rFFA was reliably more active for faces with p < 0.03, one-tailed. The same ROI analysis 
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was then conducted for each other face-specific region in the canonical maps, but no other region 

showed a reliable difference in activation for faces versus non-faces. 

Searchlight MVPC. We used SearchMight with a GNB classifier to generate native-space 

information maps for each subject using both a 9 mm and a 15 mm searchlight around each 

voxel. The maps were first normalized to Talairach space using the same procedure described for 

the univariate analysis, and then smoothed with the same 4 mm Gaussian kernel. The 

performance metric for each searchlight (i.e., the value stored at each point in the information 

map) was the difference between the hit rate and the false positive rate, which has an expected 

value of 0 under the null hypothesis. A one-sample, one-tailed t-test against 0 was conducted on 

this metric. P-values were thresholded at p < 0.05 using the same whole-brain cluster-correction 

approach employed with univariate analysis. 

LASSO. The analyses were completed in two rounds of modeling, to support two 

different statistical analyses: one to test the generalization accuracy of the fitted models (the 

performance round), and the other to assess which voxels reliably contribute to that performance 

(the importance mapping round). 

The performance round: Model performance was evaluated independently for each 

subject using cross-validated generalization error. The workflow for evaluating performance 

(Figure SI-1) proceeds as follows. The available examples (i.e., whole-brain maps showing the 

BOLD response generated by each item in the experiment) are split into 10 blocks; these block 

assignments are the same for all analyses reported in this document. Before model fitting, one 

block is set aside as the final holdout set, and model fitting then loops over the remaining nine 

blocks, holding out each one in turn as a test block and using the remaining 8 to “tune” the free 

hyperparameter. Many models are fit using the tuning data and different hyperparameter values 

and each such model is evaluated against the same test block in that loop. This yields a set of 

error values, denoted as 𝐸𝐸𝜆𝜆1 …𝐸𝐸𝜆𝜆𝑛𝑛 in the diagram. The same hyperparameter values are used in 

each iteration of the loop, and the model prediction error associated with a given hyperparameter 

value is estimated as the mean error across all 9 loops. The hyper-parameter value that produces 

the lowest mean error is then used to fit a model to data from all 9 tuning blocks and this model 

is then evaluated on the final holdout set. The whole procedure is repeated 10 times, with each 

block in turn treated as the final holdout set. This yields 10 “final error” values, denoted as 
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𝐸𝐸𝑓𝑓1 …𝐸𝐸𝑓𝑓𝑛𝑛 in the diagram, which are averaged to produce an estimate of the classifier 

performance. This nested cross validation procedure ensures that the final holdout set is 

completely isolated from the hyper-parameter selection and model fitting stages, and also helps 

avoid idiosyncrasies of particular combinations of training and test sets. 

 
Figure SI- 1: Nested cross-validation procedure for assessing model performance. 

The importance mapping round fits a single model for each subject using all data, with 

the aim of then analyzing the model coefficients to determine which voxels are contributing in 

what way to classifier performance. The workflow for importance mapping (Figure SI-2) is 

similar to the prior round except that the outer loop over final holdout sets is eliminated so that a 

single model is fit to each subject using the entire dataset. As for the performance round, 

hyperparameters are tuned with 10-fold cross validation on model hold-out error. The best 

hyperparameters are then used to fit a final model to all data from all subjects. The coefficients 

from this model are then analyzed. 

The motivation for the two steps is as follows. To get an accurate estimate of classifier 

performance, it is important that the final test items are excluded form all model-fitting steps, 

including hyperparameter selection, as done in the performance round. Several folds of 

validation must be conducted to ensure that the performance estimate is not unduly influenced by 

the particular items selected for the hold-out set—but this means that a different model is fit for 

each hold-out fold, and that the best set of hyperparameters may differ across folds. It is then 

unclear which model or hyper-parameter set should be used to interpret coefficients. Thus the 
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performance round is conducted only to assess the expected hold-out error for the classifier. The 

importance mapping round does not provide useful information about expected hold-out error 

but yields a single model with one weight per voxel per subject.  

To interpret these weights, the coordinates associated with each non-zero value were 

warped into Talairach space and the weight values at each point were linearly interpolated onto a 

common 3x3x3 mm grid. These interpolated weights were then smoothed with a 4 mm FWHM 

Gaussian kernel to compensate for imperfect warp alignment in each subject. To determine 

which voxels were selected across participants more often than expected under the null 

hypothesis, we fit 1000 permuted models for each subject, using the same functional data with 

the category labels shuffled randomly, and using the same hyperparameters selected from the 

properly-labeled data. The permutation solutions were projected into Talairach space and 

smoothed in the same way as the real data. For each voxel in each subject we computed the 

probability of selection (non-zero value) from these permutations. This allowed us to assess, for 

each voxel in each subject, its probability of selection using the data-tuned hyperparameters but 

with no systematic relationship between the fMRI data and the target labels. This information 

was used to construct a group-level binomial test at each voxel, where the probability of a voxel 

being selected N times out of 10 was assessed relative to the base rate of selection over the 1,000 

permuted models. Voxels selected 3 or more times were associated with an uncorrected p < 

0.002, and this is the threshold applied to the LASSO solutions.

 
Figure SI- 2: Workflow for the importance-mapping step. 

SOS LASSO.  

As for LASSO, only cortical voxels were modeled, and analyses were completed in two 

phases. The performance phase proceeded with a nested cross-validation procedure exactly as 
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described for LASSO. For the importance-mapping phase, appropriate hyperparameters were 

determined using 10-fold cross validation as with LASSO, and SOS LASSO solutions were then 

fit for 1000 permutations using these hyperparameters, shuffling the category labels in the same 

way for all participants on each permutation. Because the solutions are not independent across 

participants in SOS LASSO, we could not use the binomial approach developed for LASSO. 

Instead we counted, for each permutation, how often each voxel was selected across the 10 

subjects. We then took the maximum of this value across all voxels and permutations—that is, 

the maximum across 1000 permutations * approximately 10,000 voxels. The largest amount of 

overlap observed across subjects in the permuted data was 7—we therefore thresholded the data 

map to show voxels selected in 8 or more of 10 participants. Because this level of overlap was 

never observed in the permuted analyses, we can be confident that the thresholded maps contain 

very few false alarms. To estimate the p-value, consider the number observations that went into 

determining the maximum amount of overlap in the permutation distribution, which is the 

number of voxels in the group map x the number of permutations. For 10,000 voxels, this would 

yield an uncorrected p < 0.0000001, which is lower than Bonferroni corrected p < 0.05 for 

10,000 tests. 

Because the SOS LASSO solutions implicated areas of the brain not often seen in 

analysis of face functional specificity, we performed follow-up analyses in which all voxels 

within the face and place systems published in 8 and padded by 7mm, or identified in any of the 

univariate, searchlight, or LASSO analyses, were excluded from the outset, leaving only the 

unexpected areas. We also ran the analysis only on voxels included within the padded face and 

place systems. Both analyses were conducted exactly as reported for the whole-brain analysis; 

results appear in the main paper text. 

Supplementary Information 

SI-NN: A brief overview of neural network models. Neural network models are 

composed of simple processing units that communicate via weighted synapse-like connections 
9,10. Each unit adopts an activation state, typically varying between 0 and 1, that can be viewed as 

analogous in some respects to the mean firing rate of a population of spiking neurons 

proportional to their maximal rate.11 Units transmit information about their current activation 
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through weighted connections, which can be viewed as capturing the net effect of activity in one 

population of neurons on another. Weights are typically real-valued, with negative numbers 

indicating a net inhibitory effect and positive numbers indicating a net excitatory effect. Each 

unit computes a simple process: it adjusts its current activation state according to the input it 

receives from other units in the networks. Input is usually computed as the inner product of the 

activation across all sending units and the values of the weights projecting from the sending units 

to the receiving units. The unit then converts the net input into a new activation state according 

to a specified transfer function (typically sigmoid, radial basis, or rectified linear). Units are 

conceived as computing inputs and updating activation states in parallel in continuous real time, 

though on serial computers this parallel process is simulated by updating units in discrete steps in 

randomly permuted order. 

Within a network, units are organized into layers that govern the overall connectivity of 

the network: units within a layer tend to receive connections from, and direct connections 

toward, a similar set of units elsewhere in the network. Typically a subset of the units are 

specified to receive inputs directly from sensory systems (or other input systems outside the 

model), and to direct outputs toward motor systems (or other output systems outside the model). 

These unit subsets encode the input provided to the model and the outputs that simulate the 

model response. They are often referred to as visible units, because the theorist directly stipulates 

how different stimulus events and behaviors are represented with patterns of activation over the 

input and output units. Many models also include sets of units whose inputs and outputs are 

directed only to other units contained within the model—they do not receive external inputs from 

or direct outputs toward the model environment. For these hidden units, the theorist does not 

stipulate how different stimulus events or behaviors are to be coded with patterns of activation. 

Instead, the patterns of activation that arise across these units are determined solely by the values 

of the interconnecting weights. Deep neural network models are models with multiple layers of 

hidden units mediating between inputs and outputs. 

The weights connecting units are shaped by learning and experience. Many different 

learning algorithms have been explored in this framework12, but all share the general idea that 

the weights gradually change over time in order to optimize some objective—for instance, 

minimizing the discrepancy between the outputs the model generates and the correct “target” 

outputs—as the network processes information from different stimulus events. Because the 
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weights adapt to experience—that is, the structure of input and output patterns—and because the 

patterns of activation over hidden units depend upon the weight values, neural network models 

effectively acquire learned internal representations: the patterns of activation generated over 

hidden units by a given stimulus after the network has been trained. Neural network models can 

acquire internal representations that may initially seem counter-intuitive but can be shown, 

through computer simulations, to support behaviors documented in the domain of interest. One 

reason deep networks have proven useful in both cognitive science and machine learning is that 

they automatically acquire internal representations that are not intuitive a priori and so are 

difficult for the theorist to program or foresee. 

Because network models abstract the neural processes they aim to uncover, they 

necessarily gloss many aspects of the structure and behavior of real nervous systems. Whereas 

individual neurons exhibit all-or-nothing spiking behavior, network units assume continuous 

activation states. Low-level dynamics such as lateral inhibition, temporal coherence, and local 

extra-cellular conditions are glossed in most connectionist models, while morphological 

differences among neuron types, cytoarchitecture, and other facts about brains are completely 

abstracted away. Network units are instead viewed as capturing, in a comparatively modest 

number of processing elements, the same informational states existing across vast numbers of 

heterogeneous spiking neurons in real nervous systems10,13. The central assumption is that the 

representational content and cognitive functions expressed in the coordinated spiking behaviors 

of hundreds or thousands of neurons behaving at a millisecond timescale can be usefully 

approximated by a much smaller vector of continuous-valued activations changing at a 

considerably slower rate. 

The neural plausibility of network models has sometimes been challenged on these 

grounds, but it is important to note that essentially the same assumption is adopted by fMRI and 

other brain imaging methods. Such methods summarize the dynamical activity over hundreds of 

thousands of neurons behaving at a millisecond timescale with a much smaller vector of real-

valued numbers, each expressing the overall metabolic demands exerted by populations of 

neurons averaged over some much coarser spatial and/or temporal extent14. The effort to relate 

cognitive events to neural activity so measured—that is, functional brain imaging—entails the 

assumption that important informational states over vast sets of rapidly time-varying neurons are 

preserved in smaller, coarser vectors capturing information about mean firing rates in local 
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neural populations. In this sense, there is a natural affinity in the assumptions that neural 

networks and functional brain imaging methods adopt about how information is encoded in 

neural states. 

In the current work, we therefore view the activation of a single unit in a network model 

as capturing the mean neural activity in a population of hundreds of neighboring neurons within 

a small volume of cortex as estimated at a single voxel from BOLD activity in fMRI. In the 

reported simulations we treat the activation of a single model unit by a given input pattern as 

analogous to the evoked response to a single stimulus item estimated at a single voxel in an 

fMRI study in a sparse event related design.15,16  

SI-Approaches. Conceptual overview of the different statistical approaches. 

Each statistical approach we consider deals with the complexities of brain imaging data 

by adopting important assumptions about how cognitive information is encoded in neural 

activity. The assumptions strongly constrain the kinds of signal that the method can discover, but 

these constraints are not always made explicit. This section provides a brief overview of the logic 

underlying each method and explicitly notes its core assumptions, summarized in Table 1.  
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Univariate contrast analysis has long been the standard method for interrogating fMRI data. It 

aims to identify regions of cortex that, across subjects, exhibit systematically different mean 

BOLD responses to two (or more) different kinds of cognitive events. Typically the BOLD 

signal is spatially smoothed: the raw response at each voxel is replaced with a weighted average 

of the responses from anatomically neighboring voxels. The smoothed time-series is then 

modeled independently at each voxel for each subject using a deconvolution procedure. This 

yields a beta coefficient for each experiment condition at each voxel indicating how well the 

measured BOLD signal matches the response expected if the activation of neurons within the 

voxel varies systematically with the experiment condition. The beta coefficients for each subject 

Table 1: Assumptions underlying different statistical approaches to brain imaging 
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are projected into a common anatomical reference space, and univariate statistical tests are 

computed at each voxel independently to assess whether the coefficients differ reliably in the two 

experimental conditions across subjects. Voxels that show significantly different responses 

across subjects are viewed as important for coding the representation of interest.  

A major challenge for the approach lies in establishing a meaningful criterion of 

significance in the context of tens or even hundreds of thousands of individual statistical tests. To 

avoid both false-positives and punishing corrections for multiple comparisons, it is common to 

seek ways of reducing the number of tests performed. Several different methods have been 

employed, but all rely on the idea that the representations of interest can be localized to 

particular cortical regions, and that the responses of voxels within a functional region will be 

largely similar. With these assumptions, the number of tests can be reduced by (1) conducting 

regions-of-interest analyses, where the responses of voxels within a ROI are averaged and the 

test is performed on the result mean response, (2) applying cluster-thresholding, where tests are 

only performed on clusters of n anatomically contiguous voxels all showing a similar response 

across subjects, or (3) applying a topographic control of the false-discovery rate. The univariate 

contrast method thus favors the discovery of clusters of anatomically neighboring voxels located 

in similar regions across individuals and showing similar response profiles across experimental 

conditions. From this brief description we can see that the method relies on five assumptions 

about the nature of the neuro-cognitive representations, summarized in the “univariate” column 

of Table 1. 

Multivariate pattern classification. The remaining methods we consider are all variants of 

multi-voxel pattern classification (MVPC)17. Such approaches reverse the objective underlying 

univariate analyses: rather than using knowledge of the experimental design to explain variance 

in neural activity at individual voxels, MVPC uses the variance of neural activity across many 

voxels to make predictions about the experimental condition to which each trial, stimulus, or 

time point (henceforth, “example”) belongs18. To accomplish this, a classification algorithm is 

applied to a set of training data which include (a) the pattern of estimated activation evoked over 

a set of voxels for each of many examples and (b) a set of labels indicating the experimental 

condition or class associated with each pattern. For instance, in our model experiment, items in 

condition A might be labeled with a 0 while items from domain B are labeled with a 1.  From the 

training data, the algorithm returns a pattern classifier—a statistical model that can be used to 
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predict the label associated with any pattern of activation over voxels. Many different 

classification algorithms exist in the literature; as just one example, a logistic classifier will 

return a set of weights, one for each voxel, such that the estimated voxel activation, multiplied by 

its weight, summed over all voxels, and subject to a transformation function, yields a number 

that indicates the pattern label. In our example, a good logistic classifier should yield a number 

near 1 for all condition A items and near zero for all condition B items. 

Even if there is no real signal at all in the data, it may be possible for a classifier to 

generate correct predictions for all items in the training set, especially when there are many 

predictors. Training set performance thus does not indicate whether the classifier is exploiting 

real signal in the data. Instead, the classifier is typically assessed on a hold-out set: an additional 

set of examples and labels collected in the same experiment but excluded from the training data. 

The classifier learned from the training data is applied to patterns in the hold-out set, and for 

each pattern it generates a “guess” about the associated condition label. The classifier output is 

compared to the true label to get a measure of accuracy. If a model performs above chance at 

classifying the hold-out set, this indicates that it is likely exploiting real information in the data. 

To ensure that the results do not depend upon the particular items chosen for the training and 

hold-out sets, it is common to test a model using n-fold cross-validation. On each “fold” a subset 

of items is chosen for the hold-out set, and different hold-out sets are selected for different folds, 

such that, across folds, all items appear in exactly one hold-out set. Each hold-out set provides a 

measure of model classification accuracy, and this is usually averaged across folds to provide a 

single number indicating how accurately the trained model can classify hold-out patterns. We 

will refer to this number as the cross-validation accuracy of the classifier. 

MVPC algorithms, like univariate analyses, are challenged by the abundance of data 

provided by fMRI, and so must adopt additional assumptions about the nature of the underlying 

signal. In any fMRI study (as in our model) there will always be more predictors (voxels) than 

things predicted (stimulus items or events), producing an over-fitting problem. In such cases, 

there exists no unique solution to the classification problem defined by the training set. Closed-

form analyses are undefined, and other model-estimation procedures will produce a classifier 

that perfectly fits the training data without any guarantee of finding real signal. These problems 

can only be addressed by constraining the analysis based on an underlying hypothesis about how 

signal is truly encoded in the data. As with the univariate method, these constraints 
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systematically affect the results. Each of the remaining methods adopt different constraints to 

solve the over-fitting problem. 

Searchlight MVPC. We begin with the well-known “searchlight” approach19, which was 

formulated specifically to address the challenge of finding distributed representations in brain 

imaging data. The method works as follows. Instead of training a classifier using all predictors at 

once, a separate classifier is trained for every individual voxel location in every individual 

subject. For each location, all voxels within a radius 𝒓𝒓 of the center voxel are included as 

predictors in the classifier. This avoids the over-fitting problem by restricting the number of 

predictors included in any given classifier.  The mean cross-validation accuracy for each 

classifier is stored in the searchlight center voxel, providing an information map for each subject. 

A univariate group-level analysis can be conducted on the information maps, similar in all 

respects to the analysis described in the previous section. Per the univariate assumptions, this 

means that each point in the accuracy map is considered independent of all others. However, 

within each searchlight, the effect of a given unit on the classification can differ depending upon 

the activations of other units in the searchlight, and these units can respond to various stimuli in 

quite different ways. Thus the searchlight method relaxes the assumptions that neural codes are 

consistent within and across individuals and that representational units are independent, but 

retains assumptions about localization of information within and across individuals (see Table 1).  

Regularized logistic regression. Searchlights solve the over-fitting problem by restricting 

the field of view to a small number of contiguous voxels, then fitting many classifiers. An 

alternative is to train a single pattern classifier on all voxels at once. We used logistic regression 

as the classification model as this approach is easily interpretable, powerful, and draws upon 

intuitions formed through experience with linear regression.  

A regression model is composed of a set of weights 𝛽𝛽𝑥𝑥, one for each predictor variable 𝑥𝑥 

plus an additional intercept term, tuned to make accurate predictions about a response variable 𝑦𝑦. 

In logistic MVPC, the predictor variables are the voxels, and the response is a binary variable 

that codes class or condition label. For instance, in a contrast of conditions A and B, A events are 

labeled with 𝑦𝑦 = 1 and B events are labeled with 𝑦𝑦 = 0. To generate a prediction for a given 

item, the logistic regression model takes the weighted sum of the estimated response over voxels 

and passes it through a squashing function bounded at 0 and 1: 
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 (1) 

where: 

 (2) 

which is the model's linear response to a particular pattern of activity. Thus, 𝑓𝑓(𝑧𝑧) is a 

transformation of the weighted sum of predictor values expressing the probability that y=1 given 

the pattern of activity for the 𝑖𝑖𝑡𝑡ℎ item. Fitting a logistic regression model involves finding 

coefficients that minimize the discrepancy between the true labels in 𝑦𝑦 ∈  {0,1} and the 

probabilities assigned by the model. This is typically measured by the logistic loss: 

 
(3) 

where 𝑦𝑦𝚤𝚤�  is −1 when 𝑦𝑦𝑖𝑖 = 0 and +1 when 𝑦𝑦𝑖𝑖 = 1. This loss is minimized when the sign 

of the model's linear response 𝑋𝑋𝑖𝑖𝛽𝛽 is positive for items labeled 𝑦𝑦 = 1 and negative for items 

labeled 𝑦𝑦 = 0. 

The problem is that there are infinitely many solutions that will minimize this loss 

function when there are more predictors than items. One needs a way of deciding which among 

these is most likely to uncover the real signal. Regularized regression provides one way of doing 

this. Such approaches seek to jointly minimize the prediction error plus an additional cost, itself 

a function of the coefficients: 

 
(4) 

The additional penalty or regularizer represented by ℎ(𝛽𝛽) prioritizes some model 

solutions over others, and in this way embodies a hypothesis about the nature of the true 

underlying signal. The constant 𝜆𝜆 is a free parameter that controls the degree to which the two 

terms (prediction error versus minimization of the regularizer) should be weighted in the joint 

optimization. 

In the main text we consider two varieties of regularized logistic regression employed in 

the fMRI literature: LASSO20,21 and ridge regression. 22,23 Though superficially similar, the two 

methods embody different implicit assumptions about the nature of the underlying signal and so 

yield quite different results. In LASSO, the regularizer is the sum of the absolute values of the 

model coefficients: 
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(5) 

For ridge regression, the penalty is the sum of their squared values: 

 
(6) 

In both cases, the optimization is convex: for a given value of 𝜆𝜆, there exists a unique set 

of coefficients that minimize the cost and that can be efficiently discovered by gradient descent. 

Yet the different penalties lead to quite different solutions. To understand why, it is useful to 

consider how they treat sets of predictors that covary together with one another. Imagine four 

voxels whose responses across items are perfectly correlated, and suppose their activations are 

useful in predicting the condition label. In this scenario, there are many different ways of placing 

weights over the four voxels that will all have the same effect on the classifier output. For 

instance, placing a weight of 1 on each voxel will have exactly the same effect as placing a 

weight of 4 on one voxel and a weight of 0 on the other three. Because the voxel activations are 

perfectly correlated, and the classifier operates on a weighted sum over voxel activations, these 

different weight configurations have the same effect on the model output and hence on the 

prediction error. The regularization penalty, however, should prefer some weight configurations 

over others. 

If the data really are perfectly correlated, the LASSO penalty won't be any help: the sum 

of the absolute value of the coefficients is the same for models that place a 1 on each unit versus 

models that put a 4 on one unit and zeroes on the rest. If we imagine, however, that all 

measurements are subject to some independent noise, the scenario is a bit different. In this case, 

one of the 4 units will, just by chance, covary slightly better with the category labels. In this case, 

the classifier can do a slightly better job of minimizing the error term by loading up all of the 

weight on this single voxel. Thus the joint optimization will lead to a solution where just one (or 

perhaps a few) of the redundant voxels are selected.  

Ridge regression behaves very differently. Here the penalty scales exponentially as 

weights increase on a single voxel, but only linearly as weights are added across voxels. Thus the 

penalty is minimized by placing small weights on many voxels. In the preceding example, 

placing a weight of 4 on one unit and 0 on the remaining three leads to a total penalty of 16 over 
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the four units. Placing a weight of 1 on each unit, in contrast, leads to a penalty of 4. Ridge 

regression thus prefers solutions where small weights are “spread out” over redundant predictors. 

In fact, as the weight approaches zero, the ridge penalty becomes vanishingly small, so with a 

finite number of training examples, ridge regression will always place at least a tiny weight on 

every predictor. In real data, of course, voxel states are never perfectly correlated nor perfectly 

informative about the condition label, so the behaviors of the two approaches are less easy to 

intuit. In general, however, it is useful to think of LASSO as minimizing prediction error with 

the fewest possible predictors (i.e., as many zero coefficients as possible), while ridge regression 

can be viewed as “spreading” small weights over all predictors exhibiting any systematic 

relationship with the category labels, without care for the number of predictors. 

Table 1 summarizes the assumptions made by these approaches—all are relaxed relative 

to the univariate and searchlight methods. This does not mean that they are assumption-free. To 

the contrary, each approach entails additional assumptions. LASSO assumes the signal to be 

sparse, in that only a small set of uncorrelated voxels are involved in coding the information of 

interest. In this case, the best approach to finding true signal is to minimize prediction error using 

the smallest number of predictors possible. Ridge regression makes no sparsity assumption, but 

instead assumes that the signal is highly redundant, with many voxels expressing essentially the 

same information. In this case the best approach to finding true signal is to minimize prediction 

error using distributions of weights that are as close to zero as possible, so that all informative 

predictors are included in the solution. 

SI-SOS: The sparse-overlapping-sets (SOS) LASSO.  

The multivariate methods we have considered so far lie at two poles with regard to their 

assumptions. The searchlight method assumes consistent localization of signal within and across 

individuals. Regularized regression discards localization assumptions, allowing for the 

possibility that representations of interest are arbitrarily situated within and across individuals. 

The former assumptions seem too restrictive, the latter too loose. If human beings share the same 

gross neuroanatomical structure, then it seems reasonable to suppose some degree of consistent 

localization within and across individuals. Within individuals we might assume that, if a given 

voxel is important for representation, there is a good chance that some other units in the general 

vicinity are also important. Such an assumption could be adopted without further requiring that 

all neighboring units are important (univariate assumption 1), or that only neighboring units 
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contain sufficient information for the representation (searchlight assumption 1). Likewise we 

might assume that, if a set of voxels contribute to a representation in individual A, then signal-

carrying voxels are likely to be found in the same general anatomical vicinity in individual B. 

Such an assumption could be adopted without requiring that the location of the interesting 

information is very precisely aligned, or that the location contains useful information in all (or in 

the great majority of) individuals (assumption 3 for univariate and searchlight). 

A central contribution of the main paper is to show how these intuitions can be 

formalized in a regularizer that promotes desired sparsity patterns amongst the classifier 

coefficients. The specific approach we describe is the Sparse Overlapping Sets (SOS) LASSO24. 

It adopts a central and intuitive assumption from multi-task learning25: if a set of learning tasks 

are related, then their solutions will also be related. In this case, each “task” is to find the neural 

activation pattern associated with a particular mental state in a single individual. In contrast to 

LASSO, we assume that the solutions across individuals are related: finding useful information 

in one individual gives us clues about where to look in another. The loose assumptions about 

localization within and across individuals can be built into a single optimization function that 

considers all subjects at once. 

To achieve this, the voxels in the datasets from every individual are assigned to sets. 

Within an individual, voxels belonging to a given set are related to one another in some way--for 

instance, if the sets are defined by anatomical proximity, voxels within a set will all be near one 

another. Across individuals sets are aligned, so that voxels in Set 1 for individual 1 are related to 

voxels in Set 1 of individuals 2 through n. If sets are defined by anatomical proximity, then 

voxels in Set 1 will be localized similarly across subjects. The optimization then operates over all 

subject datasets simultaneously, minimizing an objective function that prefers solutions in which 

selected voxels belong to as few sets as possible. The end result is a solution that is unique for 

each dataset (i.e., each individual), but with the selected voxels tending to belong to the same 

sets within and across individuals. 

Before considering the objective function itself, it is useful to consider how voxels are 

assigned to sets. Such assignments are made a priori and can in principle be guided by any 

hypothesis about how voxel sets are best grouped. For instance, sets might be determined by an 

anatomical segmentation, a previous analysis, a literature review, or any other prior knowledge. 

Importantly, however, set assignment can also be done in a relatively theory-neutral way: a 
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volume can be split into a collection of overlapping sets of fixed size and degree of overlap, with 

each voxel belonging to multiple overlapping sets. On this approach, the voxels for each 

individual are first projected into a common anatomical reference space (without blurring). The 

space is divided into a 3-dimensional grid and, for each grid-point, all voxels within radius 𝑟𝑟 are 

assigned to a given set. Each set thus contains a group of voxels in roughly the same anatomical 

location across subjects; each voxel belongs to multiple sets; and the sets overlap in the voxels 

they contain. The sets are analogous to searchlights, but rather than training separate classifiers 

for each set in each subject, a regularized logistic classifier is trained on all the data together. 

Because the optimization prefers solutions in which voxels belong to a small number of sets, 

such an approach will automatically select the particular grouping of voxels within and across 

individuals that best minimizes the objective. But, because the solutions are unique to each 

individual, there is no need for all voxels within a set to be selected or to receive similar 

weightings within or across individuals. 

With that conceptual grounding, we can consider the SOS Lasso regularization penalty: 

ℎ(𝑆𝑆,𝛽𝛽) =  ��(1 − 𝛼𝛼) ∗�|𝛽𝛽𝑖𝑖|
𝑖𝑖

+  𝛼𝛼 ∗ ��𝛽𝛽𝑖𝑖
2

𝑖𝑖

�
𝑆𝑆

 (7) 

The function has two terms,  ∑|𝛽𝛽𝑖𝑖| and �∑𝛽𝛽𝑖𝑖2, which are embedded in a loop that sums 

over sets. The first term is simply the Lasso penalty from Equation 5, computed separately for 

each set and summed over all sets. The second term, which we will refer to as the grouping 

penalty, takes the root of the squared coefficients summed over units within each set. 𝛼𝛼 is a 

mixing parameter that determines the weight given to each of these two terms. When 𝛼𝛼 = 0, the 

set penalty is not applied, and SOS LASSO effectively reduces to LASSO. When 𝛼𝛼 is non-zero, 

however, the penalty behaves differently, preferring solutions where the non-zero coefficients 

(i.e., the selected voxels) all appear in the same overlapping sets—that is, when they tend to be in 

similar anatomical locations. 

To understand how this preference is realized, we can compute the penalty associated 

with two competing solutions in a very simple case. Consider a 1-dimensional brain with 3 

voxels. Voxels 1 and 2 are assigned to Set 1, and voxels 2 and 3 are assigned to Set 2. In the first 

solution, let voxels 1 and 3 be assigned a coefficient of +1, and voxel 2 a value of 0. The set 
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penalty �∑𝛽𝛽𝑠𝑠𝑖𝑖2  evaluates simply to √12 + √12 = 2, because the voxels are in different sets. In a 

second solution, let voxels 1 and 2 be assigned a coefficient of +1 and voxel 3 a value of 0. This 

time, the penalty evaluates to √12 + 12 = √2, because the voxels are in the same set. Because 

the set penalty takes the root of the sum of squares across voxels in the set, the assignment of a 

+1 value to 2 of the 3 voxels produces a larger cost when the coefficients are placed on voxels 

from different sets. 

There is a wrinkle here, of course: voxel 2 also exists in Set 2. If, however, we consider 

the coefficient assigned to voxel 2 as part of Set 2, it “costs” 1 penalty unit. If we consider it as 

part of Set 1 it only costs √2/2 = 0.707 penalty units. In principle the total weight on the voxel 

could be apportioned across its corresponding sets in any manner; however allocation of the 

voxel's weight to an otherwise empty group incurs a greater overall penalty, so the optimization 

ends up placing all of the voxel's weights within sets that also contain other non-zero voxels. In 

this way the optimization “knows” to account for voxel 2 as belonging to Set 1 rather than Set 2, 

and does not redundantly penalize the same weight. The further consequence is that the 

optimization automatically finds sets that contain many signal-carrying voxels if these are 

present in the data. 

Finally, it is important to note that both the grouping penalty and the LASSO penalty 

increase when the magnitude of any weight is increased.  This means that, just as with LASSO, 

solutions that include fewer voxels overall will tend to be preferred. Solutions will be sparse, 

even within groups. Sets are not selected themselves, but rather voxels are selected from within 

sets and it is less costly to select multiple voxels from the same set than from different sets. 

In sum, the optimization prefers solutions that (a) fit the training data, (b) include units 

that are anatomically situated in similar sets, and (c) include a relatively small proportion of the 

units overall.  As with LASSO and ridge regression, there is a tuning parameter that controls the 

weight given to the regularization penalty versus the error term; but there is also a second tuning 

parameter (𝛼𝛼 in the above equation) that controls the relative weighting given to the set penalty 

versus the LASSO penalty.  A mathematical analysis of SOS LASSO and some applications of 

its use were recently described in 26 for linear regression and in 24 for logistic regression. The 

representational assumptions of SOS LASSO are summarized in Table 1. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/390534doi: bioRxiv preprint 

https://doi.org/10.1101/390534
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running head: Connecting natural and artificial neural networks 51 

SI-Model. 

We here report some additional analyses of the simulation results. 

Effects of searchlight size. Figure 2 of the main paper shows simulation results for a 

searchlight spanning 7 units, the best-performing searchlight size. When hidden units were 

localized consistently across model subjects, this approach excelled at discovering them and also 

did well identifying the signal-carrying I/O units. The approach failed to detect dispersed hidden 

signal, however. To assess how well searchlight analysis fares when the searchlight is not 

tailored to the size of the signal-carrying hidden units, we conducted the same analyses with 

smaller (radius 3) and larger (radius 14) searchlights. Figure SI-3 shows the results. Smaller 

searchlights reliably detected the systematic hidden units when they were localized, but missed 

the informative I/O units. The I/O units individually encode the category distinction very weakly, 

so small searchlights do not span enough of them to reliably decode the signal. The larger 

searchlights did a good job discriminating signal-carrying from arbitrary I/O units, but either 

completely missed (in the dispersed case) or seriously mischaracterized the location (in the 

localized case) of signal amongst the hidden units. A large searchlight centered on an 

uninformative unit can still perform well by virtue of including signal-carrying units in its 

periphery, mislocalizing the source of the good performance by storing it at the (uninformative) 

searchlight center. In this case, the searchlight applied to the localized layout ends up identifying 

all the arbitrary hidden units while missing the actual signal-carrying units. As a result of this 

phenomenon, the measure of accuracy—hit rate minus false alarm rate—was worse in the hidden 

units for the larger searchlight size even when hidden units were localized. When dispersed, no 

searchlight was able to discover useful hidden signal. 
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Model results for ridge regularization. Figure 2 in the main paper shows simulation 

results for L1-regularized logistic regression (LASSO). We here report the results for L2 

regularization (ridge regression), which is often the default method for regularizing 

underconstrained regression problems. Like LASSO, ridge regression returns a vector of 

coefficients that indicates how the classifier interprets each unit's activation in generating a 

predicted class label. To understand which units contribute to the representation of interest and 

how these units encode information, the coefficients must be interpreted. Interpretation for ridge 

regression is difficult because the method places a non-zero coefficient on every unit. Intuitively 

it may seem as though signal-carrying units will attract larger weights, but this is not the case: 

weights will be small when a unit carries no useful signal, but also when a unit carries useful 

signal but is highly correlated with many other units. We designated a unit as “selected” by ridge 

regression if its coefficient was in the top quartile by magnitude across all units. Thus the prior 

probability of selection was p = 0.25 by definition in each model subject. For each unit, we then 

assessed whether it was selected more often than expected across model subjects given this base 

probability, with p < 0.002 uncorrected. 

As shown in Figure SI-4, almost no units met this criterion. The same result was also 

observed for more lax selection criteria (e.g., choosing units in the top third or top half of the 
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magnitude distribution). For this reason we did not show ridge regression results in the main 

paper figure, and did not consider ridge regression in the fMRI analysis. 

 
This is not to say that ridge regression can never be of use. To the contrary, for scientists 

who wish to know whether some pre-defined set of voxels contain sufficient information to 

predict information about a stimulus or task, ridge regression can be very effective. The problem 

lies, not in determining whether such information is present in a pre-specified set of voxels, but 

in using the model coefficients to determine which of the voxels are important for the prediction. 

Thus in the main paper, for instance, we use other statistical methods to first identify voxels 

“important” for discriminating face from non-face stimuli, then compare the quality of these 

different solutions by training a ridge-regularized classifier using only the voxels pre-selected by 

a given method and comparing the hold-out accuracy across methods. This use of ridge 

regression allows us to employ the same performance measure when comparing the solutions 

discovered by different methods. 

SI-Imaging.  

This section reports some additional analyses of the functional imaging data. 

Effects of searchlight size. Figure 3 in the main paper shows the result of a 9mm 

searchlight MVPC, which revealed localized signal in the posterior fusiform cortex bilaterally 

when discriminating faces from other stimuli. This solution differed remarkably from the 

extended distributed signal discovered by SOS LASSO. The simulations suggest, however, that 

searchlights can fail to discover noisy signal when they are too small. We therefore conducted 
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the same analysis (discriminating face from non-face stimuli), using a searchlight radius of 

15mm, substantially larger than those typically employed in the literature (either 6mm or 9mm). 

Figure SI-5 shows the result. The larger searchlight revealed more extensive signal extending up 

into right occipital cortex, but this remained localized within the canonical face system. 

 
SI-Denoising: Noise-canceling voxels in whole brain classifiers 

An important general concern for whole-brain multivariate decoding arises from the 

problem of correlated noise across cortex. BOLD estimates across the brain may be 

simultaneously influenced by some external cause unrelated to the stimulus or task of interest, 

such as heartbeats, scanner noise, drift in field strength over time, and other sources.27,28 These 

task-unrelated external influences constitute noise in the context of the analysis, but the noise 

perturbs both signal-carrying and non-signal-carrying voxels in similar ways and so induces 

partial correlations between these. In this scenario a regression model fit to all voxels together 

can improve performance by placing weights on both the signal-carrying and non-signal-carrying 

units. Because the non-signal-carrying voxel activations correlate only with the noise component 

of the signal-carrying activations, opposing weights on these will “cancel out” the noise 

perturbing the true signal, effectively boosting the signal-to-noise ratio on the informative 

voxels. Thus, when noise is correlated across the system, whole-brain classifiers can improve 

performance by placing non-zero weights on voxels that only encode the correlated noise and are 

unrelated to the task. 
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To appreciate this, consider a simple example.  Let 𝑥𝑥∗ be some true signal, 𝑞𝑞∗ be some 

noise source, 𝑦𝑦 = 𝑥𝑥∗, 𝑥𝑥1 = 𝑥𝑥∗ + 𝑞𝑞∗, and 𝑥𝑥2 = 𝑞𝑞∗. Assume that 𝑥𝑥∗ and 𝑞𝑞∗ are normally 

distributed with equal mean and variance and are orthogonal. The regression model 𝑦𝑦~𝛽𝛽𝑥𝑥1 will 

explain about half the variance in 𝑦𝑦; the model 𝑦𝑦~𝛽𝛽𝑥𝑥2 will explain no variance in 𝑦𝑦; the model 

𝑦𝑦~𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 will explain all the variance in 𝑦𝑦, even though 𝑥𝑥2 is orthogonal to 𝑦𝑦. This is 

because the noise 𝑞𝑞∗ is shared between 𝑥𝑥1 and 𝑥𝑥2. The model can use 𝑥𝑥2 to cancel the variance 

associated with 𝑞𝑞∗ in 𝑥𝑥1, improving the overall fit. 

This phenomenon raises the possibility that the highly-distributed signal revealed by SOS 

LASSO outside canonical face and place systems may arise because the classifier places weights 

on many units that do not carry signal but are perturbed by noise correlated with that disturbing 

the true signal encoded within the canonical systems. This concern motivates the two follow-up 

analyses reported in the main text. First, if extra-system voxels only serve to de-noise the true 

signal in canonical systems, decoding accuracy should decline when the canonical voxels are 

removed—yet our decoding accuracy was higher outside the canonical system than within it. 

Second, if the broad selection of voxels arises because of whole-brain correlated noise, then the 

same widespread result should obtain regardless of the classification task (since noise in extra-

system voxels will also correlated with the noise-component of other signal-carrying voxels). 

Yet when classifying place versus face/object, SOS LASSO discovers much more localized 

signal that does not include these regions. Thus, while correlated noise remains a thorny problem 

for statistical inference generally, in the current case empirical assessments can rule out the 

possibility that the interesting results arise from this problem. 
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