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Abstract	

Frequent	 experience	with	 regularities	 in	 our	 environment	 allows	 us	 to	 use	 predictive	

information	to	guide	our	decision	process.	However,	contingencies	in	our	environment	

are	 not	 always	 explicitly	 present	 and	 sometimes	 need	 to	 be	 inferred.	 Heretofore,	 it	

remained	 unknown	 how	 predictive	 information	 guides	 decision-making	when	 explicit	

knowledge	is	absent	and	how	the	brain	shapes	such	implicit	inferences.		In	the	present	

experiment,	participants	performed	a	discrimination	task	in	which	a	target	stimulus	was	

preceded	 by	 a	 predictive	 cue.	 Critically,	 participants	 had	 no	 explicit	 knowledge	 that	

some	of	 the	 cues	 signaled	an	upcoming	 target,	 allowing	us	 to	 investigate	how	 implicit	

inferences	 emerge	 and	 guide	 decision-making.	 Despite	 unawareness	 of	 the	 cue-target	

contingencies,	 participants	 were	 able	 to	 use	 implicit	 information	 to	 improve	

performance.	Concurrent	EEG	recordings	demonstrate	that	implicit	inferences	rely	upon	

interactions	 between	 internally	 and	 externally	 oriented	 networks,	 whereby	 anterior	

prefrontal	regions	inhibit	right	parietal	cortex	under	internal	implicit	control.	

	

Significance	

Regularities	 in	 our	 environment	 can	 guide	 our	 behavior	 providing	 information	 about	

upcoming	 events.	 Interestingly,	 such	 predictive	 information	 does	 not	 need	 to	 be	

explicitly	represented	in	order	to	effectively	guide	our	decision	process.	Here,	we	show	

how	 the	 brain	 engages	 in	 such	 real-world	 ‘data	 mining’	 and	 how	 implicit	 inferences	

emerge.	 We	 employed	 a	 contingency	 cueing	 task	 and	 demonstrate	 that	 implicit	

inferences	 influenced	 responses	 to	 subsequent	 targets	 despite	 a	 lack	 of	 awareness	 of	

cue-target	 contingencies.	 Further,	 we	 show	 that	 these	 implicit	 inferences	 emerge	

through	interactions	between	internally-	and	externally-oriented	neural	networks.	The	

current	 results	 highlight	 the	 importance	 of	 the	 anterior	 prefrontal	 cortex	 in	

transforming	external	events	into	predictive	internalized	models	of	the	world.	
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Introduction	

Frequent	exposure	to	regularities	in	our	environment	allows	us	to	exploit	consistencies	

to	 anticipate	 upcoming	 events.	 For	 instance,	 when	 strolling	 in	 an	 unfamiliar	

supermarket	 in	 search	 of	 a	 favorite	 chocolate	 bar,	 one	 typically	 does	 not	 pay	 much	

attention	when	passing	by	the	detergents,	but	when	the	cookies	come	in	sight,	attention	

starts	 to	 focus.	 Without	 being	 explicitly	 told	 where	 to	 look	 for	 the	 product,	 the	

attentional	 system	 is	 able	 to	 use	 prior	 information	 (i.e.,	 experience	with	 supermarket	

layouts)	 and	 current	 sensory	 input	 to	 aid	 in	 the	 quest	 for	 chocolate.	 This	 example	

demonstrates	that,	in	addition	to	externally	observable	information,	internally	oriented	

processes	 (e.g.,	 memory,	 prospection)	 play	 a	 crucial	 role	 in	 efficiently	 guiding	 our	

behavior	in	everyday	settings.		

	 In	 order	 to	 understand	 decision-making	 in	 terms	 of	 network	 dynamics,	 it	 is	

essential	to	understand	the	mechanisms	by	which	information	is	routed	between	brain	

regions.	 It	has	been	proposed	that	alpha	activity	serves	as	a	mechanism	that	gates	 the	

flow	 of	 information	 to	 relevant	 brain	 regions	 through	 inhibition	 (Vissers,	 2018;	 Van	

Diepen	 et	 al.,	 2015;	 Matthewson	 et	 al.,	 2011;	 Matthewson	 et	 al.,	 2009;	 Jensen	 &	

Mazaheri,	 2010;	 Klimesch	 et	 al.,	 2007;	 Fu	 et	 al.,	 2001).	 Alpha	 effects	 are	 typically	

measured	 after	 explicitly	 instructing	 participants	 about	 cues	 predicting	 a	 subsequent	

stimulus	or	indicating	the	location	of	an	upcoming	target	(Foxe	&	Snyder,	2011;	Worden	

et	 al.,	 2000),	 thereby	 mainly	 probing	 networks	 associated	 with	 external	 information	

processing	(i.e.,	the	dorsal	attention	network).	In	many	cases,	however,	we	learn	to	use	

predictive	information	in	our	environment	in	an	implicit	manner	(Chun,	2000;	Goldfarb	

et	al.,	2016),	without	the	need	of	explicit	knowledge	about	existing	stimulus	associations	

(Cleeremans	et	al.,	1998;	Cleeremans	&	Jiménez,	2002;	Frensch	&	Rünger,	2003;	Wokke	

et	 al.,	 2017).	 In	 such	 settings,	 internally	 oriented	 networks	 play	 an	 important	 role	 in	

formulating	and	testing	of	 internally	generated	hypotheses	(Christoff	&	Gabrieli,	2000)	

and	comparing	past	and	current	sensory	inputs	(Wilson	et	al.,	2014).	To	date	it	remains	

unclear	 how	 predictive	 information	 from	 our	 environment	 guides	 decision-making	

when	 explicit	 instructions	 are	 absent.	 Further,	 it	 is	 unknown	 how	 internally	 and	

externally	oriented	networks	contribute	to	implicit	inferences.		

	 In	the	present	study,	we	investigated	how	implicit	contingencies	guide	decision-

making.	 Participants	 performed	 an	 orientation	 discrimination	 task	 in	 which	 a	 target	

stimulus	was	preceded	by	a	predictive	cue.	Critically,	participants	were	not	 instructed	

and	 had	 no	 explicit	 knowledge	 that	 some	 of	 the	 cues	 signaled	 an	 upcoming	 target.	

Therefore,	the	information	content	of	the	cues	was	not	 ‘directly	observable’	(Wilson	et	

al,	 2014;	 Schuck	 et	 al.,	 2016)	 and	 required	 information	 from	 previous	 trials	 (i.e.,	
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frequent	 exposure	 to	 cue-target	 pairings).	 During	 the	 task	 we	 recorded	

electroencephalographic	 (EEG)	 signals	 allowing	 us	 to	 measure	 whether	 implicit	 cues	

were	able	 to	 influence	behavioral	 responses,	modulate	alpha	activity,	and	affect	 target	

processing,	despite	the	fact	that	subjects	were	not	explicitly	aware	of	the	meaning	of	the	

cues.		

	
Results	

Behavioral	results	

To	determine	whether	participants	were	able	to	use	implicit	information	to	guide	their	

behavior,	we	 compared	 reaction	 time	differences	 and	differences	 in	 task	performance	

(d’)	 between	 implicitly	 (validly)	 cued	 and	 implicitly	 (invalidly)	 non-cued	 targets	 (see	

Figure	1).	We	expected	differences	to	occur	specifically	in	the	last	half	of	the	experiment	

when	cue-target	context	had	been	established	(i.e.,	after	extensive	exposure	to	pairings	

of	target	cue	with	the	presentation	of	a	target	stimulus).	Therefore,	we	split	the	data	into	

the	first	and	second	halves	of	the	experiment	(Figure	2).	Further,	we	assessed	whether	

metacognitive	performance	(meta	d’	and	metacognitive	efficiency)	was	affected	by	 the	

implicit	 cues.	 For	 task	performance	 there	was	a	 significant	main	effect	of	 first/second	

half	 (block)	 of	 the	 experiment	 (F(1,15)=	 8.75,	 p=	 0.010).	 For	 both	 RT	 and	 task	

performance,	there	was	a	significant	interaction	effect	between	block	and	cue	type	(RT:	

F(1,15)=	5.17	,	p=	0.038;	d’:	F(1,15)=	14.43,	p=	0.002).	These	interactions	reflect	differences	

in	RT	and	performance	that	change	over	the	course	of	the	experiment	depending	on	the	

cue	type	that	preceded	a	target.	To	investigate	these	interactions	further,	we	compared	

cued	targets	vs.	non-cued	targets	for	each	half	of	the	experiment	separately	using	paired	

t-tests	 (two-tailed).	 As	 expected,	 there	 were	 no	 differences	 in	 the	 first	 half	 of	 the	

experiment	 for	both	RT	 (t(15)=	0.058	 ,	p=	0.955,	BF10=0.256)	 and	performance	 (t(15)=	 -

0.23	 ,	p=	 0.821,	 BF10=0.262).	 In	 contrast,	 for	 the	 second	 half	 of	 the	 experiment,	 there	

were	significant	differences	in	RT	and	performance	depending	on	cue	type	(RT:	t(15)=	-

3.144	 ,	p=	0.007,	BF10=7.639;	d’:	 t(15)=	 -3.058,	p=	0.008,	BF10=6.596;	 	 (Figure	2).	These	

results	demonstrate	that	participants	 learned	to	use	the	cues	to	 increase	the	efficiency	

of	 their	performance	despite	not	having	any	explicit	knowledge	about	 the	presence	of	

cues.	 There	 was	 no	 difference	 in	 metacognitive	 performance	 between	 cued	 and	 non-

cued	targets	(meta	d’:	t(15)=	1.041	,	p=	0.317;	meta	efficiency:	:	t(15)=	0.077	,	p=	0.940).	

	 We	repeated	the	same	analyses	for	the	second	session,	in	which	participants	had	

explicit	 knowledge	 about	 the	 information	 conveyed	 by	 the	 cues.	 Importantly,	 we	

observed	 a	 significant	 main	 effect	 of	 cue	 for	 both	 RT	 (F(1,15)=	 8.76,	 p=	 0.010)	 and	

performance	 (F(1,15)=	 12.57,	 p=	 0.003).	 In	 addition,	 we	 also	 observed	 a	 block	 x	 cue	
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interaction	for	RT	(F(1,15)=	5.37,	p=	0.035).	Reaction	times	were	only	significantly	faster	

for	cued	targets	in	the	second	half	of	the	experiment	(RT	first	half:	t(15)=	-1.74,	p=	0.103,	

BF10=0.872;	RT	second	half:		t(15)=	3.57	,	p=	0.003,	BF10=15.889),	while	performance	was	

better	in	both	the	first	and	second	halves	of	the	experiment	for	cued	targets	compared	

to	non-cued	targets	(d’	first	half:	t(15)=	2.50	,	p=	0.025,	BF10=2.628;	d’	second	half:		t(15)=	

2.77,	p=	0.014,	BF10=4.052).		

	

EEG	results	

To	determine	whether	alpha	activity	was	 influenced	when	 implicit	 information	guided	

behavior,	we	compared	alpha	power	changes	in	a	400	ms	time	window	after	cue	offset	

(before	 earliest	 target	 onset)	 between	 trials	 in	 which	 an	 implicit	 target	 cue	 and	 an	

implicit	non-target	cue	was	presented.		

	 We	observed	a	significant	interaction	(F(4,60)=	4.60,	p=	0.003)	between	cue	type	

(target/non-target)	and	channel	 location	(O2,	P4,	C3,	F4	and	Fp2,	see	methods).	These	

results	demonstrate	that	depending	on	electrode	location,	there	is	a	difference	in	alpha	

power	 between	 the	 two	 cues.	 There	 was	 lower	 alpha	 power	 over	 Fp2	 (t(15)=	 -2.65,	 p	

=0.018,	 BF10=3.346)	 for	 target	 cues	 compared	 to	 non-target	 cues.	 In	 contrast,	 we	

observed	a	smaller	alpha	decrease	in	P4	for	a	target	cue	compared	to	a	non-target	cue	

(t(15)=	 2.65,	 p=0.018,	 BF10=3.334;	 Figure	 3b-c).	 When	 examining	 both	 cue	 types	

separately,	we	observed	significant	decreases	of	 alpha	power	 compared	 to	baseline	 in	

P4	after	both	target	and	non-target	cue	presentation,	while	observing	a	significant	alpha	

decrease	 in	 Fp2	 exclusively	 when	 a	 target	 cue	 was	 presented	 (ts<-2.50,	 ps<0.025,	

BF10>2.73).	 For	 C3,	 O2,	 and	 F4,	 we	 observed	 no	 differences	 between	 cue	 types	 (all	

ts<0.972,	 all	 ps>0.346).	 These	 results	 demonstrate	 that	 although	 alpha	 decreased	

significantly	after	both	a	target	cue	and	non-target	cue	in	P4,	there	was	less	decrease	of	

alpha	in	right	parietal	regions	when	a	target	cue	was	presented	compared	to	non-target	

cue	presentation.	In	contrast,	there	was	a	significant	alpha	power	decrease	in	the	right	

anterior	frontal	region	exclusively	after	a	target	cue	was	presented	(Figure	3c).		

To	examine	this	effect	further	and	test	whether	the	observed	cue	type	effects	in	

P4	and	Fp2	related	to	 implicit	 learning	of	cue-target	contingencies	and	the	build-up	of	

task	context,	we	investigated	whether	alpha	power	differences	between	cue	types	could	

be	observed	 in	the	first	half	of	 the	experiment.	No	differences	were	observed	in	either	

P4	 or	 Fp2	 between	 the	 two	 cue	 types	 (ts<0.339,	 all	ps>0.744),	 see	 Figure	 3c	 (dashed	

lines).	 For	 both	 cue	 types	 we	 observed	 decreased	 alpha	 compared	 to	 baseline	 in	 P4	

(target	 cue:	 t(15)=	 -3.31,	 p	 =0.005,	 BF10=16.296;	 non-target	 cue:	 t(15)=	 -3.59,	 p	 =0.003,	
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BF10=10.097).	 However,	 no	 alpha	 changes	 were	 found	 in	 Fp2	 for	 both	 cue	 types	

(ts<0.53,	all	ps>0.607).		

Next,	we	explored	data	 from	 the	explicit	 cueing	 condition	 to	 further	 scrutinize	

the	 alpha	 power	 effects	 we	 found	 in	 the	 implicit	 condition.	 In	 the	 explicit	 condition,	

attention	 could	 be	 externally	 oriented.	 Therefore,	 we	 expected	 to	 find	 typical	 alpha	

power	effects	(i.e.,	an	alpha	power	decrease	in	P4	after	target	cueing,	see	Heilman	&	Van	

Den	Abell,	1980;	Sacchet	et	al.,	2015;	Zago	et	al.,	2016;	Lobier	et	al.,	2018)	in	the	explicit	

cueing	condition.	We	investigated	alpha	activity	changes	(compared	to	baseline)	in	the	

explicit	condition	only	in	P4	and	Fp2	for	both	target	and	non-target	cues.	We	observed	a	

significant	decrease	of	alpha	power	compared	to	baseline	in	P4	exclusively	after	target	

cue	presentation	 (t(15)=	 -4.01,	p	 =0.001,	BF10=33.236;	 for	non-target	 cue:	 t(15)=	 -2.00,	p	

=0.063,	 BF10=1.335).	 No	 significant	 alpha	 changes	were	 observed	 in	 Fp2	 for	 both	 cue	

types	(ts<1.68,	ps>0.113,	BF10<0.881).			

	 To	 examine	 interactions	 between	 different	 cortical	 regions,	 we	 assessed	

measures	 of	 interregional	 functional	 connectivity	 (alpha	 phase	 synchrony)	 by	

calculating	 intersite	phase	clustering	(ISPC)	between	 ‘seed’	P4	and	O2,	C3,	F4	and	Fp2	

(see	methods).	There	was	a	significant	main	effect	of	channel	 location	(F(4,45)=	4.89,	p=	

0.005)	and	a	 	marginally	significant	interaction	between	cue	type	and	channel	 location	

(F(4,45)=	2.39,	p=	0.081).	We	observed	increased	alpha-band	synchronization	between	P4	

and	 Fp2	 (t(15)=	 3.08,	 p=0.008,	 BF10=6.892)	 after	 a	 target	 cue	 was	 presented	 in	

comparison	to	a	non-target	cue,	see	Figure	4	(we	plotted	 ISPC	differences	between	P4	

and	 all	 other	 electrodes	 for	 illustration	 purposes,	 while	 only	 statistically	 testing	 ISPC	

changes	between	P4	and	O2,	C3,	F4,	 and	FP2).	We	observed	no	 significant	differences	

between	P4	and	the	other	electrodes	(all	ts<1.31,	all	ps>0.208).	

	 To	determine	how	neural	measures	relate	to	behavior,	we	correlated	RT	and	d‘	

differences	 to	 cued	 and	non-cued	 targets	with	 alpha	power	decreases	 after	 target	 cue	

offset	for	P4	and	Fp2	and	parietal-anterior	frontal	functional	connectivity	changes	after	

target	cue	presentation.	We	observed	a	significant	correlation	between	parietal-anterior	

frontal	ISPC	change	and	the	RT	effect	(r=	0.769,	n=16,	R2=	0.59,	FDR<0.05,	BF10=78.73;	

see	 Figure	 5).	We	 did	 not	 find	 any	 significant	 correlations	 that	 survived	 the	multiple	

comparisons	correction	between	RTs	and	alpha	power	changes	or	between	d’	and	ISPC	

change	 (all	 rs<0.335,	 FDR>0.05).	 These	 findings	 demonstrate	 a	 strong	 link	 between	

enhanced	 alpha	phase	 synchrony	between	P4	 and	 FP2	 and	 the	 speeding	 of	 responses	

due	to	implicitly	learning	of	cues	predicting	an	upcoming	target	stimulus.	

	 Finally,	 we	 investigated	 whether	 neural	 signals	 related	 to	 target	 processing	

differentiated	depending	on	preceding	cue	 type	 (target	vs.	non-target	 cue)	 in	both	 the	
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implicit	 and	 explicit	 conditions	 (see	 methods).	 We	 examined	 whether	 we	 could	 find	

differences	 in	 P3a	 and	P3b	ERP	 components	 associated	with	 ‘context	 updating’	 of	 the	

stimulus	environment	(Donchin,	1981;	Polich	&	Kok,	1995),	and	linked	to	differences	in	

access	 awareness	 (Naccache	 et	 al.,	 2016).	We	 observed	 a	 significant	 cue	 (target/non-

target	cue)	x	ERP	type	(P3a/P3b)	x	session	(implicit/explicit)	 interaction	(F(1,13)=	8.95,	

p=	 0.010).	 Interestingly,	 in	 the	 implicit	 condition	 we	 found	 an	 increased	 P3a	when	 a	

target	was	preceded	by	a	non-target	cue	compared	to	when	a	target	was	preceded	by	a	

target	 cue	 (t(13)=	 3.61,	p=0.003,	 BF10=14.627),	 see	 Figure	 6a.	 In	 contrast,	we	 found	 an	

increased	P3b	in	the	explicit	condition	when	a	target	was	preceded	by	a	non-target	cue	

compared	 to	 when	 a	 target	 was	 preceded	 by	 a	 target	 cue	 (t(13)=	 3.22,	 p=0.007,	

BF10=7.902),	 see	 Figure	 6d.	 These	 results	 seem	 to	 corroborate	 previous	 findings	

demonstrating	 the	 influence	 of	 contextual	 processes	 on	 the	 P3,	 where	 P3	 activity	 is	

modulated	when	the	model	or	context	of	a	stimulus	environment	needs	to	be	updated	

(Donchin,	1981;	Donchin	and	Coles,	1988;	Polich	&	Kok,	1995;	Silverstein	et	al.,	2015;	

Todorovic	 et	 al.,	 2011;	 Seppänen	et	 al.,	 2012;	Bang	&	Rahnev,	 2017;	Diaz-Brage	 et	 al.,	

2018).		

	

Discussion	

In	everyday	life,	we	are	able	to	use	predictive	information	in	our	environment	to	guide	

our	behavior.	However,	sometimes	information	is	not	readily	available	and	needs	to	be	

inferred	 (O’Doherty	 et	 al.,	 2001;	Wilson	 et	 al.,	 2014).	 In	 such	 cases,	 it	 is	 necessary	 to	

compare	 past	 and	 current	 sensory	 inputs	 and	 use	 prior	 experience	 to	 select	 relevant	

information	to	anticipate	upcoming	events	(Chun	et	al.,	2011;	Wilson	&	Niv,	2012).	

	 In	 this	 experiment,	 implicit	 cues	 were	 used	 to	 investigate	 how	 unconscious	

contingencies	may	be	able	 to	 control	our	decision	process.	 Specifically,	we	 focused	on	

whether	implicit	cueing	was	able	to	affect	behavioral	responses	in	a	discrimination	task	

and	 modulate	 oscillatory	 neural	 activity	 in	 the	 alpha	 frequency	 range.	 Results	

demonstrate	 that	 participants	were	 able	 to	 use	 implicit	 cues	 to	 improve	 performance	

and	speed	up	responses	(Figure	2;	Chang	et	al.,	2015;	Pinto	et	al.,	2015;	Stein	&	Peelen,	

2015;	Meijs	et	al.,	2018).	We	observed	a	specific	decrease	of	right	anterior	frontal	alpha	

power	 when	 a	 target	 stimulus	 was	 implicitly	 cued	 (Figure	 3c),	 whereas	 alpha	 power	

decrease	 over	 right	 parietal	 cortex	 diminished	 after	 the	 presentation	 of	 an	 implicit	

target	 cue.	 These	 findings	 corroborate	 previous	 findings	 demonstrating	 that	 anterior	

frontal	cortex	becomes	recruited	when	information	needs	to	be	inferred	(Wilson	et	al.,	

2014;	Shucks	et	al.,	2017;	Christoff	&	Gabrieli,	2000).	Furthermore,	 it	has	been	shown	

that	 alpha	 power	 increases	 in	 parietal	 cortex	 when	 attention	 becomes	 internally	
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oriented	 (Ray	 &	 Cole,	 1985;	 Schupp,	 1994;	 Cooper	 et	 al.,	 2003).	 Interestingly,	 we	

observed	a	specific	increase	in	functional	connectivity	(alpha	phase	synchrony)	between	

right	 parietal	 and	 right	 anterior	 frontal	 regions	 when	 implicit	 information	 was	 used	

(Figure	4).	 	This	change	in	functional	connectivity	in	response	to	an	implicit	target	cue	

correlated	strongly	with	behavioral	effects	(Figure	5).	Finally,	ERP	differences	(Figure	6)	

between	 cued	 and	 non-cued	 targets	 showed	 that	 cued	 targets	 were	 implicitly	

anticipated	(Summerfield	et	al.,	2008;	Todorovic	et	al.,	2011;	Chennu	et	al.,	2013).	Figure	

7	 summarizes	 these	 results	 and	 provides	 a	 schematic	 of	 the	 mechanisms	 mediating	

implicit	inferences.	

	

Alpha	oscillations	and	gating	

Alpha	 activity	 has	 long	 been	 considered	 a	marker	 for	 increased	 inhibition	 (Lopes	 Da	

Silva,	1991).	Recently,	it	has	been	put	forward	that	alpha	oscillations	play	a	key	role	in	

the	gating	of	the	flow	of	 information	by	suppressing	processing	of	 information	in	task-

irrelevant	networks	(Mathewson	et	al.,	2014;	Jensen	&	Mazehari,	2010;	Klimesch	et	al.,	

2007).	It	has	been	demonstrated	that	a	shift	of	attention	to	either	the	left	or	right	visual	

hemifield	decreases	alpha	in	the	contralateral	hemisphere,	while	increasing	alpha	in	the	

ipsilateral	 hemisphere	 (Sauseng	 et	 al.,	 2005;	 Thut	 et	 al.,	 2006;	 Worden	 et	 al.,	 2000).		

Furthermore,	 recent	 studies	 have	 shown	 that	 alpha	 power	 increases	 in	 the	 dorsal	

stream	when	a	task	relies	on	ventral	stream	processing	(Jokish	and	Jensen,	2007;	Wokke	

et	al.,	2014).	In	the	present	study,	we	observed	a	smaller	decrease	of	parietal	alpha	after	

presentation	 of	 a	 target	 cue	 when	 participants	 became	 sensitive	 to	 implicit	 cueing	

(Figure	3).	 It	has	been	previously	shown	that	alpha	 in	parietal	regions	 increases	when	

attention	 becomes	 internally	 directed,	 suggesting	 the	 necessity	 of	 active	 inhibition	 of	

external	 sensory	 input	 for	 internally	 driven	 mental	 operations	 (Ray	 &	 Cole,	 1985;	

Schupp,	 1994;	 Cooper	 et	 al.,	 2003).	 Further,	 Sestieri	 et	 al.	 (2010)	 observed	 functional	

competition	between	internally	(memory)	and	externally	(perception)	driven	processes,	

where	parietal	cortex	operated	 in	a	push-pull	manner	depending	on	the	task	engaging	

either	internally	(search	in	memory)	or	externally	(search	in	the	environment)	oriented	

networks.	 Here,	 enhanced	 internally	 driven	 processes	 could	 dampen	 typical	 parietal	

alpha	power	decreases	due	to	 functional	competition	(Fox	et	al.,	2005).	This	push-pull	

hypothesis	 seems	 to	 be	 supported	 by	 the	 recruitment	 of	 anterior	 frontal	 regions,	

strongly	associated	with	 the	evaluation	of	 internally	generated	 information	 (Shucks	et	

al.,	2017;	Christoff	&	Gabrieli,	2000;	Dixon	et	al.,	2018).	Further,	 a	 seemingly	opposite	

pattern	 was	 observed	 in	 the	 explicit	 condition,	 when	 attention	 could	 be	 externally	

oriented	(see	Figure	3a	and	Figure	7).	
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	 Lesions	 to	 orbitofrontal	 cortex	 have	 been	 shown	 to	 induce	 a	 state	 in	 which	

subjects	 become	 solemnly	 dependent	 on	 information	 from	 the	 outside	 world	 that	 is	

directly	 observable	 (utilization	 behavior,	 see	 Lhermitte,	 1983;	 Brazzeli	 et	 al.,	 1998;	

Besnard	et	al.,	2010),	while	internal	models	and	information	about	context	are	no	longer	

accessible	(similar	effects	have	also	been	observed	in	reversal	learning	tasks,	see	Dias	et	

al,	1998	and	Wilson	et	al.,	2014).	These	findings	have	been	associated	with	a	disrupted	

balance	 in	 network	 functioning,	 where	 orbitofrontal	 damage	 results	 in	 a	 disinhibited	

state	of	parietal	cortex	 (Lhermitte	et	al.,	1986).	 Interestingly,	 the	current	results	show	

increased	 functional	 connectivity	 between	 parietal	 and	 orbitofrontal	 regions,	

exclusively	in	the	implicit	condition	(Figures	3	&	4).	Measures	of	functional	connectivity	

provide	 us	 with	 information	 about	 formation	 and	 functional	 integration	 of	 networks,	

working	either	in	concert	or	in	a	push-pull	fashion	(Wokke	et	al.,	2015;	Srinivasan	et	al.,	

2007;	 Fox	 et	 al.,	 2005).	 In	 the	 last	 decades,	 competing	 network	 dynamics	 have	 been	

demonstrated	 by	 opposed	 activity	 levels	 in	 intrinsic	 ‘outward	 oriented’	 networks	 and	

the	‘internally	oriented’	default-mode	network	on	a	variety	of	tasks	(Raichle	et	al.,	2001;	

Fox	et	al.,	2005;	Weissman	et	al.,	2006;	Kelly	et	al.,	2008;	Hampson	et	al.,	2010;	Wokke	et	

al.,	 2015).	As	depicted	 in	Figure	7,	our	 results	 indicate	a	 similar	dynamic	of	 internally	

and	 outward	 oriented	 network	 activity	 when	 participants	 learn	 to	 use	 implicit	

information.	 Further,	 the	 strength	 of	 the	 functional	 connectivity	 change	 between	

parietal	 and	 anterior/orbitofrontal	 cortex	 strongly	 correlated	 with	 the	 behavioral	 RT	

effect.	However,	we	did	not	find	a	significant	correlation	between	the	behavioral	effect	

and	 alpha	 power	 in	 either	 parietal	 or	 anterior/orbitofrontal	 regions.	 These	 findings	

indicate	that	specifically	the	orchestration	of	activity	in	internally	(anterior	frontal)	and	

externally	 (parietal)	 oriented	 networks	 could	 be	 fundamental	 for	 situations	 when	

information	needs	to	be	inferred.		 	

	

Orbitofrontal	cortex	and	inferential	decision-making	

Activity	 in	 the	 orbitofrontal	 cortex	 (Brodmann	 areas	 10,	 11	 and	 47)	 has	 been	

consistently	 associated	 with	 support	 of	 adaptive	 decision-making	 by	 uncovering	

predictive	 values	 associated	 with	 stimuli	 in	 our	 environment	 (Walton	 et	 al.,	 2010;	

Boorman	 et	 al.,	 2016).	 The	 connectivity	 between	 orbitofrontal	 cortex	 and	 sensory,	

frontal,	 striatal,	 and	 hippocampal	 regions	 makes	 this	 region	 highly	 suited	 for	 the	

generation	and	testing	of	hypotheses	(Frey	&	Petrides	et	al.,	2002;	Bar	et	al.,	2006)	and	

for	providing	predictions	about	specific	outcomes	associated	with	stimuli	(Rudebeck	&	

Murray,	2014;	Goldfard	et	 al.,	 2016).	Recently,	 the	 above-described	observations	have	

been	captured	in	a	 ‘state-space’	model	in	which	the	orbitofrontal	cortex	plays	a	crucial	
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role.	This	state-space	 theory	of	orbitofrontal	cortex	(Gershman	&	Niv,	2010;	Wilson	et	

al.,	 2014;	 Schuck	 et	 al.,	 2016;	 Schuck	 et	 al.,	 2017)	 focuses	 on	 the	 context	 in	 which	

decisions	are	being	made	and	what	the	decision-making	agent	considers	‘the	state	of	the	

world’	at	the	moment	of	the	decision	(Schuck	et	al.,	2017).	Such	states	can	be	connected	

to	 external	 information	 (e.g.,	 explicit	 cues)	 or	 they	 can	 contain	 internally	 generated	

information,	which	 cannot	 be	 directly	 obtained	 from	 the	 immediate	 environment	 and	

has	 to	 be	 inferred	 (e.g.,	 implicit	 cues	 or	 task	 context).	 Specifically,	 the	 orbitofrontal	

cortex	 seems	 critical	 for	 the	 representation	 of	 states	 that	 include	 such	 partially	

observable	 information	 (Brown	 et	 al.,	 2010;	Wilson	 et	 al.,	 2014).	 Our	 current	 results	

suggests	 that	 anterior	 frontal	 cortex	 becomes	 recruited	 when	 ‘hidden’	 information	 is	

available	 that	 can	 help	 optimize	 the	 decision	 process.	 The	 present	 findings	 are	

contributing	 to	 a	 growing	 amount	 of	 evidence	 demonstrating	 the	 critical	 role	

orbitofrontal	 cortex	plays	 in	using	 information	 in	 the	 environment	 that	 is	not	directly	

observable.	

	 	

P3a/P3b:	Prediction	and	access	consciousness		

To	further	examine	the	consequences	of	implicit	cueing,	we	investigated	how	cued	and	

non-cued	target	stimuli	influenced	P3a/P3b	activity.	A	rich	literature	describes	the	role	

of	the	P3	in	context	updating,	(Donchin,	1981),	in	which	a	current	stimulus	is	compared	

with	 a	 preceding	 stimulus	 in	 working	 memory	 (Donchin,	 1981;	 Donchin	 and	 Coles,	

1988;	Polich	&	Kok,	1995;	Silverstein	et	al.,	2015).	We	therefore	compared	P3a	and	P3b	

responses	 to	 cued	 and	 non-cued	 targets.	 These	 P3	 components	 have	 been	 frequently	

studied	using	‘oddball’	designs,	linking	the	P3	to	updating	of	stimulus	context	(Donchin,	

1981;	 Summerfield	 et	 al.,	 2008;	 Todorovic	 et	 al.,	 2011;	 Chennu	 et	 al.,	 2013).	

Interestingly,	we	observed	an	enhanced	P3a	when	a	target	stimulus	was	preceded	by	a	

non-target	 cue	 in	 the	 implicit	 condition,	 whereas	 we	 found	 an	 increased	 P3b	 in	 the	

explicit	condition.		

It	 has	 been	 suggested	 that	 the	 P3a	 component	 relies	 more	 on	 automatic	

(unconscious)	processes	(Muller-Gas	et	al.,	2007),	whereas	the	P3b	component	is	linked	

to	access	consciousness	(Faugeras	et	al.,	2012;	Naccache	et	al.,	2016,	but	see	Silverstein	

et	al.,	2015).	These	findings	are	in	line	with	a	recent	study	investigating	the	relationship	

between	 top-down	 expectations	 and	 access	 consciousness	 (Meijs	 et	 al.,	 2018).	 In	 that	

study,	the	authors	observed	that	access	awareness	of	a	predictive	stimulus	is	necessary	

to	actively	use	top-down	predictions	for	subsequent	target	processing	(in	an	attentional	

blink	design	where	T1	predicted	T2).	The	present	results	and	the	findings	from	Meijs	et	

al.	(2018)	indicate	that	a	predictive	stimulus	needs	to	be	perceptually	processed	all	the	
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way	 up	 to	 the	 level	 of	 access	 awareness	 to	 be	 effective,	 but	 that	 the	 meaning	 of	 the	

stimulus	 (i.e.,	 that	 the	 stimulus	 is	 in	 fact	 predictive)	 can	 still	 remain	 inaccessible	 for	

introspection	 without	 discarding	 its	 functionality.	 Further,	 Meijs	 et	 al.	 (2018)	

demonstrated	that	prediction	errors	could	be	triggered	outside	of	conscious	awareness.		

In	the	current	study,	we	observed	related	effects	by	observing	a	P3a	difference	between	

cued	and	non-cued	targets	in	the	implicit	condition,	while	we	found	a	P3b	difference	in	

the	 explicit	 condition	 that	 was	 not	 present	 in	 the	 implicit	 condition.	 These	 findings	

suggest	that	unconscious/implicit	‘context	updating’	effects	proceed	more	automatically	

than	in	its	conscious/explicit	form	(Faugeras	et	al.,	2012;	Naccache	et	al.,	2016).		

	 Previous	 work	 suggests	 that	 unconscious/automatic	 elicited	 responses	 are	

relatively	 short-lived	 while	 conscious	 detection	 results	 in	 more	 long-term	 behavioral	

adaptations	(Cohen	et	al.,	2009;	Van	Gaal	et	al.,	2012),	although	it	remains	debated	what	

the	consequences	of	such	differences	exactly	are.	It	would	be	interesting	to	investigate	

how	long-lived	the	observed	effects	of	implicit	learning	are	(e.g.,	by	testing	participants	

on	multiple	occasions	in	the	implicit	condition	to	examine	the	longevity	of	the	effect	of	

implicit	 learning).	 In	the	present	study,	we	also	did	not	focus	on	how	or	when	implicit	

control	of	attention	became	accessible	for	introspection.	It	would	be	very	fascinating	to	

investigate	how	the	use	of	implicit	information	progresses	towards	explicit	knowledge,	

and	observe	whether	such	a	transition	would	proceed	in	a	gradual	or	in	an	all-or-none	

manner	 (Sergent	 et	 al.,	 2004;	Windey	 et	 al.,	 2015;	 King	 et	 al.,	 2016).	 It	 could	 be	 that	

hypotheses	 about	 implicit	 information	 gradually	 become	 strong	 enough,	 reaching	

increasingly	 higher	 signal-to-noise	 levels,	 resulting	 in	 stable	 (neural)	 representations		

(Schurger	 et	 al.,	 2010)	and	updating	of	 internal	predictive	models	of	 the	environment	

(O’Reilly	 et	 al.,	 2013).	 Such	 internalization	of	 stimulus-outcome	events	 (Buzsáki	 et	 al.,	

2014;	 Wokke	 et	 al.,	 2017;	 Cleeremans,	 2011)	 could	 pave	 the	 way	 for	 implicit	

information	to	become	accessible	for	introspection.		

	

Conclusion	

In	 daily	 life,	 our	 decisions	 are	 frequently	 guided	 by	 regularities	 in	 our	 environment.	

However,	 such	contingencies	are	not	always	explicitly	present	and	sometimes	need	 to	

be	 inferred.	 Using	 contingency	 cueing,	 we	 show	 that	 implicit	 inferences	 influenced	

responses	to	subsequent	targets	despite	a	lack	of	awareness	of	cue-target	contingencies.	

These	implicit	inferences	emerge	through	changes	in	internally-	and	externally-oriented	

neural	networks.	The	current	results	demonstrate	that	anterior	prefrontal	cortex	plays	

an	 important	 role	 in	 the	 transformation	of	 externally	 driven	 stimulus-outcome	events	

into	predictive	internalized	models	of	the	world.	
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Materials	and	Methods	

Participants	

Seventeen	participants	(9	females,	mean	age=	25.4,	SD=	6.3)	took	part	in	this	study	for	

financial	compensations.		All	participants	had	normal	or	corrected-to-normal	vision	and	

were	 naïve	 to	 the	 purpose	 of	 the	 experiment.	 All	 procedures	 complied	 with	

international	 and	 institutional	 guidelines	 and	 were	 approved	 by	 the	 Institutional	

Review	Board	of	The	City	University	of	New	York.	Prior	to	the	experiment,	participants	

were	instructed	on	the	task,	after	which	all	participants	provided	their	written	informed	

consent.	

	

	

Task	design	

Stimuli	were	presented	 full	 screen	 (1024	x	768	pixels)	on	a	17-in.	CRT	monitor	 (Sony	

Trinitron	Multiscan	220GS)	with	a	refresh	rate	set	at	100	Hz.	The	monitor	was	placed	at	

a	 distance	 of	 ~57	 cm	 in	 front	 of	 each	 participant.	 Each	 trial	 started	 with	 a	 centrally	

presented	fixation	cross	that	was	presented	for	1455,	1685,	or	1915	ms,	after	which	the	

cue	was	presented	for	750	ms.	The	cue	consisted	of	four	configurations	of	four	L-shaped	

figures	(Figure	1b)	presented	in	each	quadrant	of	the	screen.	After	presentation	of	the	

cue,	a	blank	screen	was	presented	for	400,	800,	1200	or	1600	ms,	after	which	a	target	or	

another	blank	 screen	was	presented	 for	100	ms.	 Participants	were	 instructed	 to	 keep	

their	eyes	open	and	to	minimize	blinks	from	cue	onset	until	they	gave	their	response	to	

the	target	or	the	end	of	the	trial	(see	Figure	1a).	A	target	stimulus	consisted	of	a	slightly	

left	or	right	tilted	vertical	Gabor	patch	(see	Figure	1).	We	tilted	the	Gabor	between	1-3°	

to	 ensure	 that	 performance	was	 kept	 below	 ceiling	 and	 above	 chance	 (~80%	 correct	

during	practice	trials,	see	below).	After	target	presentation,	participants	had	to	indicate	

as	 quickly	 as	 possible	 the	 orientation	 of	 the	 Gabor	 (left	 or	 right)	 by	 pressing	 a	

corresponding	 left	 or	 right	 response	 button.	 Next,	 participants	 provided	 their	

confidence	about	their	decision,	on	a	scale	ranging	from	1	to	4	by	pressing	one	of	 four	

buttons.	 Participants	 were	 instructed	 to	 assign	 a	 low	 value	 to	 a	 decision	 that	 was	

accompanied	by	low	confidence	in	being	correct	and	a	high	value	when	they	were	very	

confident	about	being	correct.	Participants	were	encouraged	to	make	use	of	 the	whole	

scale.	On	 trials	when	no	 target	was	presented,	 the	participants	were	 instructed	not	 to	

respond	and	wait	for	the	onset	of	the	next	trial	(2	sec).		We	customized	two	(computer)	
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mice	 in	 order	 to	 create	 four	 response	 buttons	 that	 registered	 responses	 through	 a	

Teensy	LC	board	at	microsecond	temporal	resolution.	

	 A	 target	 cue	 (Figure	 1b)	 always	 predicted	 an	 upcoming	 target	 (100%	 valid),	

whereas	a	non-target	cue	was	followed	by	a	target	on	one-third	of	the	trials	or	no	target	

on	 two-thirds	 of	 the	 trials).	 The	 upper	 right	 and	 lower	 left	 configuration	 of	 the	 cues	

determined	 cue	 type.	 Participants	 performed	 two	 separate	 sessions	 at	

least/approximately	one	week	apart.	Crucially,	in	the	first	session	participants	were	not	

instructed	about	the	types	of	cues	signaling	target	stimuli	or	about	the	general	purpose	

of	 the	 cue	 stimuli	 in	 the	 experiment.	 The	 cue	 parameters	were	 based	 on	 data	 from	 a	

pilot	study	(n=60,	spread	over	5	different	sessions)	and	were	set	such	that	participants	

were	 able	 to	 learn	 the	 contingencies	 between	 cue	 and	 target	without	 gaining	 explicit	

knowledge	about	the	meaning	of	the	cue	stimuli	(i.e.,	explicitly	recognize	them	as	being	

cues).	 In	 the	 second	 session	we	explicitly	 instructed	participants	 about	 the	 identity	of	

the	cues,	explaining	to	the	participants	that	the	upper	right	and	lower	left	configuration	

of	each	cue	was	predictive	of	trial	type	and	which	cue	was	most	likely	to	be	followed	by	

a	blank.		

In	 both	 sessions,	 participants	 started	 with	 120	 trials	 of	 practice	 to	 get	

accustomed	 to	 the	 task.	 At	 the	 end	 of	 the	 first	 session,	 we	 determined	 whether	

participants	gained	explicit	knowledge	about	the	nature	of	the	cue	stimuli.	In	four	steps	

we	probed	participants’	knowledge	about	the	cues.	First,	we	asked	participants	whether	

they	noticed	anything	about	the	stimuli	appearing	in	the	experiment.	Second,	we	asked	

whether	they	noticed	if	 the	stimulus	with	the	L	shaped	figures	had	any	purpose	 in	the	

experiment.	Next,	we	asked	whether	they	noticed	if	specific	configurations	of	L	shapes	

signaled	an	upcoming	target	or	whether	configurations	of	specific	L	shapes	were	more	

related	to	the	appearance	of	a	blank.	Finally,	we	showed	participants	the	cues	and	tested	

if	 they	 could	 tell	 the	 difference	 between	 the	 cues	 and	 their	 relation	 to	 target	

presentation.	Of	all	seventeen	participants,	only	one	noticed	a	relationship	between	the	

cues	and	 the	appearance	of	a	 target	stimulus.	For	 the	other	sixteen	participants,	 there	

was	 no	 explicit	 knowledge	 of	 the	 presence	 of	 cues	 on	 any	 of	 the	 above-described	

questions	 (cf.	Chun	&	 Jiang,	2003;	Geyer	et	al.,	2012;	Goujon	et	al.,	2013).	All	analyses	

were	based	on	these	sixteen	participants.					

In	 each	 session,	we	presented	720	 trials	 equally	divided	over	6	blocks.	Within	

each	block,	48	(validly)	cued	 target	 trials,	24	(invalidly)	non-cued	 target	 trials,	and	48	

(validly)	cued	blank		trials	were	presented	in	pseudo-random	order.	Participants	took	a	

10-minute	break	after	completing	three	blocks.	Each	session	lasted	approximately	two	

hours.		
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Behavioral	analyses	

To	 assess	whether	 response	 times,	 target	 discrimination	 accuracy,	 and	metacognitive	

judgments	 differed	 depending	 on	 implicit	 cue	 type,	we	 calculated	 reaction	 times,	 task	

performance	(d’,	see	Macmillan	&	Creelman,	2004),	metacognitive	sensitivity	(meta-d’),	

and	 metacognitive	 efficiency	 (meta-d’	 –	 d’,	 Maniscalco	 &	 Lau,	 2012;	 Fleming	 &	 Lau,	

2014).	 Because	 first-order	 task	 performance	 is	 known	 to	 influence	 metacognitive	

sensitivity	 (Fleming	 &	 Lau,	 2014),	 it	 is	 necessary	 to	 assess	 metacognitive	 sensitivity	

relative	to	different	levels	of	first-order	task	performance	(metacognitive	efficiency).	We	

performed	 three	 seperate	 2	 (first	 and	 second	 half	 of	 the	 experiment)	 x	 2	 (target	 and	

non-target	 cue)	 repeated	measures	 ANOVAs	 on	 reaction	 times,	 performance	 (d’),	 and	

second-order	 task	performance	 (meta-d’).	Unfortunately,	 confidence	 judgments	of	 two	

participants	 were	 not	 registered	 due	 to	 a	 technical	 error,	 basing	 the	 second-order	

performance	analyses	on	14	participants.	All	behavioral	analyses	were	performed	using	

Matlab	(Matlab	12.1,	The	MathWorks	Inc.),	type	2	SDT	scripts	(Maniscalco	&	Lau,	2012)	

and	SPSS	(IBM	SPSS	Statistics,	22.0).	

	

EEG	measurements	and	analyses	

EEG	was	recorded	and	sampled	at	1000	Hz	using	a	32-channel	Easy	Cap	system	(Easy	

Cap	–	Munich).	Two	additional	electrodes	were	placed	on	the	outer	eye	canthi	to	record	

eye	blinks.	Electrode	impedance	was	kept	below	20	kΩ.	Offline,	the	data	was	high-pass	

(0.5	 HZ)	 and	 low-pass	 (40	 HZ)	 filtered	 and	 then	 re-referenced	 to	 the	 left	 and	 right	

mastoid.	The	data	was	epoched	-0.7	to	+	1.7	sec	around	cue	onset.	These	time	windows	

avoided	 edge	 artifacts	 resulting	 from	 time–frequency	 decomposition	 (see	 below).	We	

removed	 trials	containing	 irregularities	due	 to	eye	blinks	or	other	artifacts	by	visually	

inspecting	 all	 trials.	 To	 increase	 spatial	 specificity	 and	 to	 filter	 out	 deep	 sources	 we	

converted	the	data	to	spline	Laplacian	signals	(Perrin	et	al.,	1989;	Cohen	2015).		

	 As	we	expected	to	measure	implicit	contingency	effects	in	the	second	half	of	the	

experiment,	the	last	70	target	cue	with	target	and	last	70	non-target	cue	without	target	

trials	 were	 selected	 after	 artifact	 rejection	 for	 all	 analyses.	 We	 decomposed	 the	 cue-

locked,	 epoched	 EEG	 time	 series	 for	 these	 trials	 into	 their	 time–frequency	

representations	by	convolving	them	with	a	set	of	Morlet	wavelets	(frequencies	ranging	

from	1	to	30	Hz	 in	1	Hz	steps).	Complex	wavelets	were	created	by	multiplying	perfect	

sine	waves	with	a	Gaussian.	The	range	of	the	width	of	the	Gaussian	was	set	between	4	

and	 10	 in	 40	 logarithmically	 scaled	 steps,	 in	 order	 to	 have	 a	 good	 trade-off	 between	

temporal	 and	 frequency	 resolution	 for	 each	 frequency.	 We	 applied	 the	 fast	 Fourier	
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transform	to	the	EEG	data	and	the	Morlet	wavelets,	after	which	these	were	multiplied	in	

the	 frequency	 domain.	 Next,	 the	 inverse	 FFT	 was	 applied,	 allowing	 us	 to	 define	 an	

estimate	 of	 frequency-specific	 power	 at	 each	 time	 point	 and	 an	 estimate	 of	 the	

frequency-specific	phase	at	each	time	from	the	resulting	complex	signal	(Van	Driel	et	al.,	

2015).	We	normalized	the	data	(dB	Power	tf	=	10	*	Log10[Power	tf	/	Baseline	Power	f	])	

using	an	interval	of	–300	to	0	ms	relative	to	cue	onset	as	baseline.	For	our	hypothesis,	

we	specifically	 focused	on	signals	 in	 the	alpha	 frequency	band	between	cue	offset	and	

earliest	 target	 onset	 (i.e.,	 a	 time	 window	 of	 0-400	 ms	 after	 cue	 offset).	 To	 limit	 the	

amount	 of	 comparisons	 we	 preselected	 electrodes	 for	 our	 analyses	 in	 the	 implicit	

condition	 based	 on	 an	 independent	 dataset	 (EEG	 data	 from	 the	 explicit	 condition).	

Electrodes	O2,	 P4,	 C3,	 F4	 and	Fp2	were	 selected	based	on	differences	 in	 alpha	power	

between	 trials	 containing	 a	 target	 cue	 vs.	 trials	 containing	 a	 non-target	 cue	 in	 the	

explicit	condition	(Figure	3a).		

	 To	 further	 examine	 the	 way	 information	 might	 be	 gated	 via	 alpha	 oscillatory	

mechanisms,	we	assessed	measures	of	interregional	functional	connectivity	in	the	alpha	

range.	 Consistencies	 of	 the	 difference	 of	 time–frequency	 phase	 values	 between	 two	

channels	 in	 the	 alpha	 band	 across	 trials	 were	 computed	 (Intersite	 Phase	 Clustering	

(ISPC),	see	Siegel	et	al.,	2012;	Cohen,	2014).	We	chose	P4	as	our	‘seed’	electrode	based	

on	previous	studies	demonstrating	the	involvement	of	right	parietal	cortex	in	attention	

and	alpha	oscillations	(Behrman	et	al.,	2004;	Bareham	et	al.,	2018;	Thut	et	al.,	2011).	We	

used	the	same preprocessing steps as	described above for	the	time-frequency	analyses	and	

a	baseline	period	of	-300-0	ms	before	cue	onset	for	both	cue	types.		

	 We	performed	a	5	 (channel	 location)	 x	2	 (target	 and	non-target	 cue)	 repeated	

measures	ANOVA	on	mean	alpha	power	changes	and	a	4	(channel	 location)	x	2	(target	

and	non-target	cue)	repeated	measures	ANOVA	on	mean	ISPC	changes.		

	 Finally,	 we	 were	 interested	 whether	 implicit	 information	 influenced	 neural	

signals	related	 to	 target	processing.	Therefore,	we	epoched	 the	EEG	data	 from	-100	 to	

600	ms	 around	 target	 onset,	 using	 the	 same	 preprocessing	 steps	 as	 described	 above.	

Unfortunately,	for	two	participants	there	were	too	many	artifacts	(>	50%	of	trials)	in	the	

epoch	 after	 target	 presentation,	 likely	 because	 of	 the	 long	 interval	 between	 cue	 onset	

and	 response	 in	 which	 we	 instructed	 participants	 not	 to	 blink,	 resulting	 in	 fourteen	

participants	 for	 our	 target	 ERP	 analyses.	We	 focused	 on	 the	P3a	 and	P3b	 component,	

which	 have	 been	 shown	 to	 be	 highly	 associated	with	 stimulus	 environment	 updating	

processes	 (i.e.,	 comparing	 present	 and	 previous	 stimuli	 in	 working	 memory)	 and	

differences	in	levels	of	access	consciousness,	respectively	(Donchin,	1981;	Polich	&	Kok,	

1995;	Sergent	et	al.,	2005;	Muller-Gas	et	al.,	2007;	Naccache	et	al.,	2016;	Wokke	et	al.,	
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2016).	In	light	of	findings	demonstrating	that	the	P3b	indexes	different	levels	of	access	

consciousness,	 we	 tested	 ERP	 differences	 in	 both	 the	 implicit	 as	 well	 as	 the	 explicit	

condition.	 For	 the	 P3a	 component	 we	 selected	 Cz	 between	 250-400	 ms,	 while	 we	

selected	Pz	between	350-500	ms	after	target	onset	for	P3b	comparison	(Polich,	2007).	

	 All	 signal-processing	 steps	 were	 completed	 using	 EEGlab	 (Delorme	 &	Makeig,	

2004)	 and	 X	 code	 (Cohen,	 2014)	 in	 Matlab	 (Matlab	 12.1,	 The	 MathWorks	 Inc.),	 and	

statistical	 analyses	were	 performed	 using	Matlab	 (Matlab	 12.1,	 The	MathWorks	 Inc.),	

JASP	(Version	0.8.6)	and	SPSS	(IBM	SPSS,	Version	20.0).	

	

	

	
Figure	 1.	 a)	Participants	 had	 to	 respond	 as	 quickly	 as	 possible	 to	 a	 slightly	 right	 or	 left	 tilted	

vertical	 Gabor	 stimulus.	 Prior	 to	 target	 presentation	 a	 cue	 signaled	 either	 an	 upcoming	 target	

(100%	 validity)	 or	 a	 blank	 (66%	 validity).	 Participants	 were	 unaware	 of	 the	 relationship	

between	the	cue	stimulus	and	target	presentation	during	the	experiment.	b)	Cues	were	made	up	

of	configurations	of	L-like	shapes.	The	upper	left	and	lower	right	configurations	determined	the	

identity	of	the	cue	(target	or	non-target	cue).		
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Figure	 2.	 a)	 Participants	 responded	 faster	 (a)	 and	 performed	 better	 (b)	 when	 a	 target	 was	

preceded	by	 a	 target	 cue	 than	when	preceded	by	 a	 non-target	 cue.	 Bars	 are	means	+/-	within	

subject	SEM.		
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Figure	3	a)	Electrodes	with	alpha	activity	differences	between	cue	types	in	the	explicit	condition	

were	used	for	further	analyses	(left).	Topographic	plot	of	alpha	activity	differences	between	cue	

types	 in	 the	 cue-target	 interval	 in	 the	 implicit	 condition	 (right).	 b)	 Time-frequency	 plot	 of	

electrodes	P4	and	Fp2	of	differences	between	cue	types.	c)	We	observed	a	smaller	alpha	power	

decrease	 in	 right	 parietal	 region	 after	 target	 cue	 presentation	 compared	 to	 non-target	 cue	

presentation.	 In	 contrast,	 alpha	 power	 decreased	 in	 right	 orbitofrontal	 regions	 exclusively	 in	

response	to	a	target	cue.	The	dashed	lines	represent	the	mean	values	observed	in	the	first	half	of	

the	experiment.		Bars	represent	means	+/-	within	subject	SEM.	
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Figure	 4	 a)	We	 observed	 significantly	 larger	 alpha	 phase	 synchrony	 between	 P4	 and	 Fp2	 for	

target	 cues	 in	 the	cue-target	 interval.	We	plotted	 the	period	 from	cue	onset	 to	 target	onset	 for	

illustration	purposes,	while	 only	 comparing	mean	 ISPC	 changes	 in	 the	 interval	 after	 cue	 offset	

(shaded	areas	are	+/-	within	subject	SEM).	b)	Topographic	plot	of	mean	ISPC	changes	in	the	cue-

target	interval	(target	vs.	non-target	cue)	using	P4	as	the	‘seed’	electrode.	

	

	
Figure	5	a)	RT	decreases	are	highly	correlated	with	functional	connectivity	changes	between	P4	

and	Fp2.	b)	 Sequential	analysis	of	 the	Bayesian	correlation	pairs	 illustrates	 the	strength	of	 the	

effect	and	the	amount	of	participants	included.		
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Figure	 6	 ERPs	 to	 targets	 on	 trials	 preceded	 by	 a	 target	 cue	 resulted	 in	 a	 smaller	 P3a	 in	 the	

implicit	condition	(a)	and	a	smaller	P3b	in	the	explicit	condition	(d).	Shaded	areas	are	+/-	within	

subject	SEM.	

	

	
Figure	7	Implicit	inferences	(top)	engage	internally	oriented	networks,	enhancing	processing	via	

anterior	 prefrontal	 regions.	 Competitive	 network	 dynamics	 result	 in	 decreased	 externally	

oriented	 network	 activity,	 where	 alpha	 activity	 serves	 as	 a	 mechanism	 to	 gate	 the	 flow	 of	

information	 within	 specific	 networks.	 Explicit	 instructed	 inference	 (bottom)	 results	 in	 an	

opposite	pattern,	whereby	externally	oriented	networks	are	engaged.		
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