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Abstract  22	
  

Symbiotic bacteria are pervasive in mosquitoes and their presence can influence 23	
  

development, reproduction, and immunity of their host. It is evident that environmental 24	
  

and host genetic factors contribute in shaping the microbiome of mosquitoes, but we 25	
  

have a poor understanding regarding how bacterial genetics affects colonization of the 26	
  

mosquito gut. While CRISPR/Cas9 gene editing is a powerful tool to modify bacterial 27	
  

genomes this approach has yet to be applied to insect symbionts. To demonstrate that 28	
  

gene editing can be completed in non-model bacterial species isolated from insects and 29	
  

to investigate the role of bacterial genes in gut colonization, we mutated the outer 30	
  

membrane protein A (ompA) gene of an Enterobacter symbiont using the CRISPR/Cas9 31	
  

system. The ∆ompA mutant had an impaired ability to form biofilms and poorly infected 32	
  

Ae. aegypti when reared in a mono-association under gnotobiotic conditions. In adults, 33	
  

the mutant had a significantly reduced infection prevalence compared to the wild type or 34	
  

complement strains, while no differences in prevalence were seen in larvae, suggesting 35	
  

bacterial genetic factors are important for adult gut colonization. Integration of genes 36	
  

(antibiotic resistance and fluorescent markers) into the symbiont genome demonstrated 37	
  

this technology can be exploited to develop novel symbiotic control strategies to 38	
  

interfere with arboviral pathogens such Chikungunya, Zika and Yellow fever viruses 39	
  

transmitted by Aedes mosquitoes. Our results shed insights onto the role of ompA gene 40	
  

in host-microbe interactions in Ae. aegypti and confirm that CRISPR/Cas9 gene editing 41	
  

can be employed for genetic manipulation of non-model gut microbes.   42	
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Importance  45	
  

CRISPR/Cas9 gene editing approaches have revolutionized several biological fields, 46	
  

however despite their applicability for altering bacterial genomes, few studies use this 47	
  

technology in microbes that associated with eukaryotic hosts. Here we use this editing 48	
  

approach to knockout a gene encoding a membrane protein in an Enterobacter isolated 49	
  

from Aedes mosquitoes and show this gene is essential for biofilm formation and 50	
  

promotes bacteria colonization of the gut. A reduced bacterial load of the mutant 51	
  

compared to the wild type or complement strains, was seen in both larval and adult 52	
  

mosquitoes, however this was most evident in adults, likely due differences in the mode 53	
  

of acquisition of microbes at each life stage. Our work extends CRISPR/Cas9 genetic 54	
  

manipulation into a new bacterial species, and in conjunction with other studies, 55	
  

suggests that members within Enterobacteriaceae are amenable to genome 56	
  

engineering by this approach. This study will facilitate the development of novel 57	
  

microbial-based approaches to mitigate mosquito-borne disease.  58	
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Introduction. 63	
  

Mosquitoes harbor a community of microbes within their guts. In general, the gut-64	
  

associated microbiome of mosquitoes tends to have low species richness but can differ 65	
  

greatly between individuals and habitats1-8. Importantly, these microbes can modulate 66	
  

many host phenotypes, several of which can influence vectorial capacity9-11. As such, it 67	
  

is imperative that we understand how the microbiome is acquired and maintained within 68	
  

mosquito vectors. While environmental factors unquestionably influences mosquito 69	
  

microbiome composition and abundance2-4,8, and studies are elucidating the role of 70	
  

microbial interactions5,7,12,13 and host genetic factors14-18 in shaping the microbiome, we 71	
  

have a poor understanding regarding bacterial factors that influence colonization of the 72	
  

mosquito gut.  73	
  

 74	
  

In other invertebrates, several bacterial genes have been implicated in gut colonization. 75	
  

For example, a genome wide screen exploiting transposon-sequencing found a suite of 76	
  

genes from the bacterium Snodgrasselia involved in colonization of the honey bee gut19. 77	
  

These bacterial genes were classified into the broad categories of extracellular 78	
  

interactions, metabolism and stress response19. Knock out of a purine biosynthesis 79	
  

gene in Burkholderia impaired biofilm formation and reduced bacterial colonization rates 80	
  

in a bean bug. Biofilm formation was also shown to play a role in virulence of 81	
  

pathogenic Pseudomonas in artificial infections of Drosophila, with strains that lacked 82	
  

the capacity to form biofilms being more virulence to the host, while a hyperbiofilm strain 83	
  

was less virulent than the WT strain20. In other blood feeding invertebrates, bacterial 84	
  

genetics also appears critical for host colonization. Knockout of the type II secretion 85	
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system in Aeromonas veronii reduced infection in Hirudo verbena leeches21. In Tsetse 86	
  

flies, the outer-membrane protein A (ompA) gene of Sodalis glossinidius is essential for 87	
  

symbiotic interactions22. Sodalis mutants lacking the ompA gene poorly colonized the fly 88	
  

gut compared to the wild type (WT) Sodalis22 and the mutant strain also had a reduced 89	
  

capacity to form biofilms23. Heterologous expression of the ompA gene from pathogenic 90	
  

Escherichia coli in Sodalis mutants induced mortality in the fly implicating this gene as a 91	
  

virulence factor in pathogenic bacteria22. Taken together, these studies suggest that 92	
  

bacterial genetic factors are critical for host colonization of invertebrates and that biofilm 93	
  

formation facilitates symbiotic associations in insects.  94	
  

 95	
  

In mosquitoes, few studies have investigated how bacterial genetics affect gut 96	
  

colonization. However, evidence from experimental evolution studies suggests bacterial 97	
  

genetics plays a critical role. In two separate studies, Enterobacter was selected for 98	
  

increased persistence in the gut of Anopheles gambiae mosquitoes, the major malaria 99	
  

vector in sub-Saharan Africa, by repeatedly infecting mosquitoes with strains that 100	
  

persisted in the gut for longer periods of time24,25. Transcriptomics comparisons of 101	
  

effective and ineffective colonizers in liquid media identified 41 genes that were 102	
  

differentially expressed between these two strains25, further implicating the importance 103	
  

of bacterial genetics in mosquito infection, however the role of these genes in 104	
  

colonization of the mosquito gut has not been resolved. In a separate study, in vitro 105	
  

screening of a transposon mutant library of Enterobacter identified a waaL gene mutant 106	
  

that was insensitive to oxidative stress26. The waaL gene encodes an O antigen ligase 107	
  

which is needed for attachment of the O antigen to lipopolysaccharide and the mutant 108	
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was found to have lower rates of colonization of the midguts of Anopheles 109	
  

mosquitoes26.  110	
  

 111	
  

Gene knockouts approaches in bacteria provide compelling evidence of the role of 112	
  

bacterial genes in host-microbe interactions21-23,26-28. In general, most studies use 113	
  

transposon mutagenesis for gene knockout, which requires screening of the mutant 114	
  

library. As in vivo screening is burdensome and in some cases not feasible, a targeted 115	
  

gene knockout approach is highly desirable to investigate the functionality of bacterial 116	
  

genes in host-microbe interactions. In the past few years, the CRISPR/Cas9 gene 117	
  

editing system has been employed to modify bacterial genomes29-31. While much of the 118	
  

work has been done in model bacterial species32-36, editing approaches have expanded 119	
  

into non-model bacterial systems37-42. Despite this expansion, few studies have used 120	
  

this technology in host-associated microbes43. In the vector biology field, gene knockout 121	
  

approaches can be used to interrogate the role of bacterial genes responsible for host-122	
  

microbe interactions, while the ability to integrate genes into the bacterial symbiont 123	
  

genome has great potential for applied paratransgenic control strategies11,44-46. 124	
  

Previously, manipulation of non-model symbionts that associate with insect vectors 125	
  

have has been accomplished by plasmid transformation47-55 or stable transformation of 126	
  

the genome using transposons or integrative plasmids56-61, but the use of CRISPR/Cas9 127	
  

gene editing in symbionts has yet to be accomplished. For paratransgenic strategies, 128	
  

stable site-specific integration of transgenes into the symbiont genome is critical, and as 129	
  

such, the application of CRISPR/Cas9 gene editing technology to non-model bacteria 130	
  

that associate with insect vectors will stimulate research in this field.   131	
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 132	
  

We therefore undertook studies to develop CRISPR/Cas9 genome editing approaches 133	
  

in an Enterobacter species isolated from Aedes aegypti mosquitoes, the major vector of 134	
  

arboviruses such as dengue, Zika and Yellow fever viruses. We used the Scarless Cas9 135	
  

Assisted Recombineering (no-SCAR) method to disrupt the ompA gene of the non-136	
  

model Enterobacter species35. The no-SCAR approach is a single step genome editing 137	
  

system that does not require a selectable marker35. After characterization of the mutant 138	
  

in vitro, we examined the role of the ompA gene in host-microbe interactions by re-139	
  

infecting bacteria into mosquito in a mono-association. To demonstrate that the 140	
  

CRISPR/Cas9 gene-editing system could be useful for applied symbiotic control 141	
  

approaches we inserted genes conferring antibiotic resistance or a fluorescent protein 142	
  

into the bacterial genome and re-infected the altered strains back into mosquitoes. Our 143	
  

result sheds insights into the role of the ompA gene in host-microbe interactions in Ae. 144	
  

aegypti and confirm that CRISPR/Cas9 gene editing can be a powerful tool for genetic 145	
  

manipulation of native gut-associated microbes of mosquitoes.   146	
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Results  147	
  

Enterobacter biofilm formation in Ae. aegypti guts 148	
  

Over the course of conducting mono-axenic infections in Ae. aegypti mosquitoes with 149	
  

an Enterobacter symbiont, we repeatedly observed a conglomeration of bacterial cells 150	
  

in the gut that was indicative of a biofilm (Figure 1). This formation of bacteria has a 151	
  

similar appearance to biofilms observed in the guts of other insects20,23. No bacteria 152	
  

were observed in Ae. aegypti when infections were conducted with E. coli that was not 153	
  

adapted to the mosquito gut environment (Figure 1), although as seen previously, 154	
  

infection with E. coli enabled mosquito development62-64. We therefore sort out to 155	
  

examine the role of bacterial genetics in biofilm formation and host colonization of this 156	
  

gut-associated bacterium of Aedes mosquitoes. While several genes have been 157	
  

implicated in biofilm formation20,23,65, we chose to knockout the ompA gene of 158	
  

Enterobacter given that this gene has been demonstrated to influence biofilm formation 159	
  

and gut colonization of Sodalis22,23, an Enterobacteriaceae symbiont of Tsetse flies, 160	
  

which is phylogenetically related to Enterobacter. The CRISRP/Cas9 genome editing 161	
  

system was employed to edit the symbionts genome.   162	
  

 163	
  

Genome editing in non-model Enterobacter bacteria isolated from mosquitoes.  164	
  

To edit the Enterobacter isolate that resides within the gut of Aedes mosquitoes, we 165	
  

employed the no-SCAR gene editing approach that had been developed in E. coli35. To 166	
  

optimize the approach in our hands, we performed initial experiments in E. coli to delete 167	
  

a ~1 kb region of the ompA gene (Figure 2A). As the no-SCAR approach exploits the λ-168	
  

Red recombineering system to repair double stranded breaks, we supplied cells with a 169	
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double stranded DNA template that had regions of homology flanking the gRNA site 170	
  

(250 bp for each arm). Using this approach, we successfully deleted a 1001 bp 171	
  

fragment of the ompA gene. Of the colonies we screened, we saw an editing at a 172	
  

frequency of 6.25% (N = 48) (Figure 2A). Given our successful editing in E. coli, we 173	
  

employed this technique in the non-model Enterobacter. However, we altered our 174	
  

editing procedure to delete a 598 bp fragment from the Enterobacter ompA gene. This 175	
  

was done to attain a higher frequency of mutants66 and accommodate a different PAM 176	
  

site in the ompA gene of Enterobacter. Using a donor template designed for the 177	
  

Enterobacter ompA gene that had similar length flanking homology arms as the 178	
  

previous experiment done in E. coli, we obtained mutant knockouts at a rate of 32% (N 179	
  

= 50) (Figure 2B). For both bacterial species, Sanger sequencing across the integration 180	
  

site indicated the deletion occurred at the expected loci in the bacterial genome (Figure 181	
  

2C; Supplementary text 1 and 2). 182	
  

 183	
  

Characterization of the Enterobacter ompA mutant. 184	
  

We quantified the growth rates of the ∆ompA mutant in comparison to the WT 185	
  

Enterobacter and the ∆ompA/ompA complement in liquid LB media. We saw no 186	
  

significant difference between the WT, the ∆ompA mutant or the ∆ompA/ompA 187	
  

complement (Figure 3A). To examine the stability of the deletion, we subcultured the 188	
  

∆ompA mutant on LB media for 10 generations and performed PCR to amplify across 189	
  

the deletion. At alternative generations PCR analysis indicated the deletion was present 190	
  

indicating genomic stability at this site (Figure 3B).  191	
  

 192	
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Previously, ompA has been shown to be important in biofilm formation as Sodalis 193	
  

deletion mutants were unable to form biofilms23. As such we characterized in vitro 194	
  

biofilm formation using the crystal violet (CV) biofilm assay. After visual inspection, it 195	
  

was clear the ∆ompA mutant had distinctly less biofilm deposition compared to either 196	
  

the WT or the ∆ompA/ompA complement (Figure 3C), and after quantification and 197	
  

normalization to account for any difference in growth between the strains, biofilm 198	
  

formation was confirmed to be significantly different between the ∆ompA mutant and the 199	
  

WT (Figure 3D; Tukey’s multiple comparisons test, P < 0.0001) or ∆ompA/ompA 200	
  

complement (Tukey’s multiple comparisons test, P < 0.0001), while the was no 201	
  

significant differences between the WT and the ∆ompA/ompA complement (Tukey’s 202	
  

multiple comparisons test P = 0.2).  203	
  

 204	
  

The role of ompA gene in mosquito infection. 205	
  

To examine the importance of the ompA gene on bacterial colonization of mosquitoes, 206	
  

we infected Ae. aegypti mosquitoes in a mono-association under gnotobiotic 207	
  

conditions6. This infection method was used to avoid other gut-associated microbes 208	
  

influencing host colonization rates7 and it also assisted in quantification of introduced 209	
  

bacteria by measuring colony forming units (CFUs). In larvae we saw a significant 210	
  

reduction in bacterial titer in the mutant compared to both the WT (Kruskal-Wallis test; P 211	
  

< 0.01) and the ∆ompA/ompA complement (Kruskal-Wallis test; P < 0.05) (Figure 4A). 212	
  

Similarly, in adults, there was a significant reduction in bacterial infection in the ∆ompA 213	
  

mutant compare to either the WT or ∆ompA/ompA complement (Kruskal-Wallis test; P < 214	
  

0.001) (Figure 4B). While no significant changes were seen in the prevalence of 215	
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infection (number of mosquitoes infected) in the larval stage (Figure 4C, Fisher's exact 216	
  

test; WT compared to ∆ompA P = 0.24 and ∆ompA compared to ∆ompA/ompA P = 217	
  

0.24), in adults, the prevalence of infection was significantly different (Figure 4D, 218	
  

Fisher's exact test; WT compared to ∆ompA P < 0.0001 and ∆ompA compared to 219	
  

∆ompA/ompA P < 0.0001), with only 45% of adults infected by the ∆ompA mutant 220	
  

compared to 95% and 88% by the WT and ∆ompA/ompA complement, respectively. We 221	
  

also examined the growth rates of mosquitoes administered with the WT, ∆ompA 222	
  

mutant and ∆ompA/ompA complement. No significant differences were seen in the time 223	
  

to pupation (Figure 5A) or percentage of first instar larvae that reached adulthood 224	
  

(Figure 5B) between any of the strains. 225	
  

 226	
  

Integration of genes into the Enterobacter chromosome. 227	
  

We undertook experiments to demonstrate the CRISPR/Cas9 gene-editing approaches 228	
  

can be used to integrate genes into the chromosome of non-model bacteria that 229	
  

associate with mosquitoes. We created two independent transgenic strains that had 230	
  

either, a gene encoding mCherry fluorescence or a gene encoding resistance to the 231	
  

antibiotic gentamicin, inserted into the bacterial chromosome. These genes were 232	
  

integrated into the genome using the same gRNA that was used for deletional 233	
  

mutagenesis, and as such, these insertions also disrupted the ompA gene. Sequencing 234	
  

across the integration site indicated the insertion of these genes occurred within the 235	
  

ompA gene and thereby disrupted its function (Figure 6A and 6D). Continual 236	
  

subculturing was undertaken for both strains and molecular analysis indicated the 237	
  

stability of these lines for ten generations (Figure 6B and 6E). To demonstrate the 238	
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integrated genes were functional, we observed expression of mCherry fluorescence and 239	
  

successfully cultured the strain containing gentamicin resistance on plates containing 240	
  

the antibiotic (Figure 6C and 6F). Finally, we infected these transgenic strains into 241	
  

mosquitoes to demonstrate that these strains were able to colonize the mosquito gut 242	
  

and functionality of the integrated gene was confirmed by observing fluorescence or by 243	
  

rearing the Enterobacter ompA::gentamicin strain in mosquitoes administered sugar 244	
  

supplemented with gentamicin. Fluorescent bacteria were observed in the gut of 245	
  

mosquitoes while no signal was seen in controls (WT Enterobacter infected mosquitoes) 246	
  

(Figure 5G). The Enterobacter ompA::gentamicin was successfully rescued from 247	
  

mosquitoes reared on gentamicin and was seen to stably infect mosquitoes over time at 248	
  

a density of 1x104 CFUs/mosquito. Consistent with our previous finding (Figure 4B), the 249	
  

WT bacteria initially infected mosquitoes at higher titers (T test; day 0 P < 0.001). 250	
  

However, at 4 days post infection (dpi), the total bacterial load of culturable microbes in 251	
  

mosquitoes supplemented with WT Enterobacter was significantly reduced when reared 252	
  

on sugar supplemented with antibiotic (T test; day 4 P < 0.05), and no CFUs were 253	
  

recovered after at 6 dpi (T test; day 6 P < 0.001) (Figure 6H).    254	
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Discussion. 255	
  

We harnessed the CRISPR/Cas9 gene editing system to create knockout mutants in an 256	
  

Enterobacter gut symbiont of Ae. aegypti mosquitoes enabling us to examine the role of 257	
  

bacterial genetics, specifically the ompA gene, in biofilm formation and gut colonization. 258	
  

A deletion of the ompA gene of Enterobacter decreased bacterial colonization of the 259	
  

mosquito host at both the larval and adult stages after infection in a mono-association. 260	
  

Strikingly, we found this effect was most pronounced in adult mosquitoes with more 261	
  

than half of the mosquitoes not possessing any culturable mutants, while there was no 262	
  

difference in prevalence of infection between the mutant and WT bacteria in larvae. The 263	
  

reduced prevalence of mutant bacteria in adults likely reflects differences in microbial 264	
  

colonization of each mosquito life stage. Larvae are continually subjected to bacteria in 265	
  

the larval water habitat while adults only have a short time frame to acquire bacteria 266	
  

immediately after eclosion, when they are thought to imbibe a small amount of larval 267	
  

water which seeds the gut with microbiota67. Our data shows greater variation in 268	
  

colonization of the adult stage between the mutant and WT strains, indicating that the 269	
  

ompA gene, and potentially bacterial factors in general, may be critical for colonization 270	
  

of the adult gut. These findings are also consistent with other sequence-based studies, 271	
  

that indicate adult stages have greater variability in species composition of their 272	
  

microbiota, while the microbiome of immature stages reflects the larval water habitat1-8.  273	
  

 274	
  

Overall, our findings are similar to studies done in Tsetse flies whereby an ompA mutant 275	
  

of Sodalis, an Enterobacteriaceae symbiont, has impaired biofilm formation and 276	
  

reduced colonization rates22,23. These studies, in conjunction with our work, suggests 277	
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that the ompA gene is imperative for symbiotic associations within dipterans. It also 278	
  

suggests that biofilm formation may be a strategy employed by bacteria to colonize the 279	
  

gut of insects. In pathogenic infections in mammals, biofilms enable bacteria to colonize 280	
  

new niches, promote infection and are associated with virulence68,69. Although less is 281	
  

known regarding the importance of biofilm formation in insects, in an artificial 282	
  

Pseudomonas-Drosophila infection model, biofilm formation was associated with 283	
  

virulence and host survival20. In a natural symbiotic association between bean bugs and 284	
  

Burkholderia, disruption of a purine biosynthesis gene in the bacterium also reduce 285	
  

biofilm formation and colonization of the insect65. In mosquitoes, gut biofilm formation 286	
  

could also have implications for vector competence as Chromobacterium, which was 287	
  

isolated from Aedes mosquitoes, produced molecules that inhibited dengue virus only 288	
  

when grown in vitro as a biofilm and not when grown in a planktonic state70. However, it 289	
  

is unknown if biofilm formation occurred in vivo70. Our data provide evidence that 290	
  

biofilms occur within the gut of mosquitoes and facilitate host colonization.  291	
  

 292	
  

While we have shown that the ompA gene of Enterobacter is important for host 293	
  

colonization, we see no evidence that deletion of this gene alters mosquito development 294	
  

or growth rates. This is in contrast to the Riptortus-Burkholderia symbiosis whereby 295	
  

mutation of the purT gene in Burkholderia resulted in reduced growth rates and 296	
  

reduction in body weight of the host compared to insects that were infected with the WT 297	
  

bacterium65. The difference in our study to the findings in the Riptortus-Burkholderia 298	
  

symbiosis could be related to different requirements of the bean bug compared to the 299	
  

mosquito host as well as the different genes mutated in the symbionts. Our findings are 300	
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consistent with another study in mosquitoes whereby an ompA mutant of E. coli was 301	
  

reported to not influence growth when a genomic mutant library was screened in Ae. 302	
  

aegypti in a mono-association71. Using a similar gnotobiotic system that exploits the 303	
  

ability to sterilize mosquito eggs and rescue development of the insect by 304	
  

supplementation, several recent reports describe approaches to create bacteria-free 305	
  

mosquitoes62,63. Here, we reared mosquitoes in a mono-association where they were 306	
  

only subjected to Enterobacter. However, more than half the adult mosquitoes 307	
  

inoculated with the ∆ompA mutant were not infected by bacteria, but nevertheless, had 308	
  

similar development and growth rates compared to mosquito possessing WT bacteria. It 309	
  

would be intriguing to determine if these uninfected mosquitoes were bacteria-free. If 310	
  

so, the use of mutant bacteria that rescue development but cannot colonize mosquitoes 311	
  

may provide a simple means to create sterile bacteria-free mosquitoes. 312	
  

 313	
  

CRISPR/Cas9 gene editing has revolutionized genetic approaches in model bacteria32-314	
  

35, and while the use of this approach is expanding to other non-model bacteria37-42, to 315	
  

our knowledge, there are no examples of editing undertaken in symbiotic microbes. 316	
  

Here we demonstrate that editing approaches functional in E. coli can be applied to 317	
  

phylogenetically related symbiotic bacteria that associate within the guts of mosquitoes. 318	
  

Our overall goal was to delete the ompA gene in Enterobacter and therefore we altered 319	
  

our editing strategy when carrying out experiments in the non-model Enterobacter 320	
  

compared to our initial attempts in E. coli, and as such it is difficult to compare rates of 321	
  

editing between bacterial species. Nevertheless, the number of mutant colonies was 322	
  

considerably greater in Enterobacter compared to E. coli indicating the editing approach 323	
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is applicable to this symbiotic Enterobacteriaceae bacterium. Similar to our findings, a 324	
  

two-plasmid CRISPR/Cas9 system, exploiting the use of λ-Red recombineering, 325	
  

developed in E. coli was also functional in the Enterobacteriaceae, Taumella citrea, 326	
  

without the need for modification36. Taken together, these findings suggest that 327	
  

CRISPR/Cas9-based approaches may be applicable to a wide range of 328	
  

Enterobacteriaceae. Similar to the original study in E. coli35, we observed 329	
  

counterselection escapees in our editing experiments. The no-SCAR approach uses a 330	
  

counterselectoin method to edit bacteria and cells that possess both the Cas9 and the 331	
  

gRNA should not be viable as a result of double stranded breaks in their genome. As 332	
  

the genetic basis of counterselection escape remains unclear and our primary objective 333	
  

was to create a mutant strain, we did not pursue the mechanism behind these escapees 334	
  

further.   335	
  

 336	
  

Previous integration attempts in E. coli using the no-SCAR approach inserted a small 337	
  

fragment (80 bp) into the bacterial genome35. It was hypothesized however, that this 338	
  

approach could be used to integrate larger sized fragments over 1 kb into the genome 339	
  

based on the efficiency of integration and counterselection escape rates, although 340	
  

screening would be required35. Here we demonstrate this is indeed feasible as we 341	
  

inserted 1.3 kb and 1.5 kb fragments into the Enterobacter genome, and importantly, 342	
  

these genes, driven by the AmTr promoter72, were functional both in vitro and in vivo. 343	
  

Our work expands the list of bacteria amenable to CRISPR/Cas9 based genome editing 344	
  

approaches and provides an elegant tool to investigate specific bacterial genes that 345	
  

influence host-microbe interactions in mosquito vectors. 346	
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 347	
  

The application of CRISPR/Cas9 genome editing to gut-associated bacteria of 348	
  

mosquitoes has significant applied potential. Paratransgenesis strategies are being 349	
  

evaluated in a range of medical and agricultural systems to mitigate pathogen 350	
  

transmission from insect vectors, however, most approaches engineer symbionts by 351	
  

plasmid transformation47-55 and where genome integration has been accomplished in 352	
  

symbionts56-61, it has been done with technologies that did not allow for site specific 353	
  

integration. Here, we demonstrate site-specific integration of transgenes into the 354	
  

bacterial symbiont genome. Paratransgenic approaches suitable for use in the field will 355	
  

need to stably integrate genes into the bacterial genome in a manner that does not 356	
  

compromise bacterial fitness. As such, the use of CRISPR/Cas9 to engineer specific 357	
  

sites in the bacterial genome, such as intergenic regions within the genome, will 358	
  

undoubtedly be beneficial for these applied approaches.  359	
  

 360	
  

In summary, we have demonstrated that the CRISPR/Cas9 gene editing system can be 361	
  

applied to non-model symbiotic bacteria that associate with eukaryotic hosts to 362	
  

interrogate the role of bacterial genes in host-microbe associations. We created 363	
  

knockout and knockin mutants by deleting and disrupting the ompA gene of 364	
  

Enterobacter. The knockout mutant displayed a reduced ability to form biofilms and 365	
  

colonize the gut of Ae. aegypti mosquitoes in a mono-association, demonstrating 366	
  

bacterial genetic factors are important determinants that influence colonization of 367	
  

mosquito guts. Aedes mosquitoes are becoming powerful systems to investigate the 368	
  

genetics of host-microbe interactions given the scientific community has simple and 369	
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efficient approaches to alter both the microbes (this study) and mosquito host 370	
  

genome73,74 at their disposal, as well as methods to create mono-associated bacterial 371	
  

lines64. Finally, rapid, efficient, and site specific gene editing approaches for gut bacteria 372	
  

that associate with mosquitoes will facilitate the development of novel paratransgenic 373	
  

approaches to control arthropod-borne disease.   374	
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Materials and Methods 375	
  

Bacterial and mosquito strains. E. coli BL21(DE3) (NEB) and an Enterobacter strain 376	
  

previous isolated from a lab-reared colony of Ae. albopictus (Galveston) mosquitoes7 377	
  

were used in this study. Cultures were grown in liquid LB media at 37°C with the 378	
  

appropriate antibiotic unless stated otherwise. Mosquitoes were reared in the UTMB 379	
  

insectary under conventional conditions or in mono-associations (described below).  380	
  

 381	
  

CRISPR gene editing. Editing the ompA gene of E. coli and Enterobacter 382	
  

(Supplementary Table 1) was complete as described in Reisch and Prather35. The 383	
  

photospacer sequence for the ompA gene was designed using the CHOPCHOP75, and 384	
  

cloned into pKDsgRNA-ack plasmid35 directly upstream of gRNA scaffold using 385	
  

REPLACR mutagenesis protocol76 (Supplementary Table 2). The plasmids were 386	
  

acquired from Addgene (Supplementary Table 1; Addgene plasmid 62655 and 62654). 387	
  

The resulting plasmids pKDsgRNA-Ec-ompA and pKDsgRNA-Ent-ompA were Sanger 388	
  

sequenced to confirm insertion of photospacer sequence. These plasmids were then 389	
  

transformed into either E. coli or Enterobacter containing the pCas9-CR4 plasmid. 390	
  

Transformants were selected at 30°C on LB agar plate containing spectinomycin (50 391	
  

µg/mL), chloramphenicol (34 µg/mL), and with or without anhydrotetracycline (aTC) at 392	
  

100ng/mL. Colonies from the –aTC plate were grown overnight in LB broth with the 393	
  

appropriate antibiotic at 30°C. A 1:100 diluted overnight culture was (grown until 0.4 394	
  

OD600) supplemented with 1.2% arabinose to induce the expression of λ-Red 395	
  

recombinase. Cells were then transformed with 1-1.5 µg of double stranded donor DNA 396	
  

that flanked the PAM site for homologous recombination. Donor DNA was created by 397	
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either PCR amplification or by gene synthesis (Genewiz). Regardless of the method of 398	
  

construction, each donor had flanking regions of 250 bp homologous to the target DNA. 399	
  

The resulting colonies were screened for mutations by colony PCR with primers flanking 400	
  

the integration site and positive clones were Sanger sequenced. Positive colonies were 401	
  

grown in LB broth and genomic DNA was isolated. For further validation, the flanking 402	
  

regions of deletion or insertions were amplified and the PCR product Sanger 403	
  

sequenced.  404	
  

 405	
  

Stability of insertion. The stability of the knockout ∆ompA mutant and the knockin 406	
  

ompA::gentamicin and ompA::mCherry strains was assessed in LB medium. The 407	
  

ompA::mCherry and knockout ∆ompA mutant cultures were grown for 10 passages in 408	
  

LB broth. At each passage 40 µl of culture was transferred into 4ml fresh LB medium. 409	
  

The ompA::gentamicin strain was grown with or without gentamicin (50 µg/mL). 410	
  

Genomic DNA was isolated from the 0, 2, 4, 6, 8 and 10th subculture and PCR that 411	
  

amplified across the integration site was performed.  412	
  

 413	
  

Complementation of ompA mutant. Functional rescue of the ompA mutation was 414	
  

achieved by complementing the mutant with the WT gene. The WT ompA gene was 415	
  

amplified from Enterobacter genomic DNA and cloned into the pRAM-mCherry vector7 416	
  

and thereby creating pRAM-mCherry-Ent-OmpA. The Sanger sequence-verified 417	
  

plasmid was transformed into the ∆ompA mutant, thereby generating the ∆ompA/ompA 418	
  

complement strain. Colonies that acquired the plasmid were selected on LB plates 419	
  

containing kanamycin (50 µg/mL).  420	
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 421	
  

In vitro characterization of Enterobacter strains. To assess the impact of the gene 422	
  

deletion on bacterial growth the WT, ∆ompA mutant and ∆ompA/ompA complement 423	
  

were grown in LB broth and the density of bacteria (OD600) was quantified by 424	
  

spectrophotometer. A 1:100 dilution of an overnight culture was inoculated into a 5 ml 425	
  

LB broth in 50 ml tube and incubated at 37°C for 24 hrs. At 2, 4, 6, 8, 10, 12 and 24 426	
  

hours growth was recorded at OD600. The biofilm assay was performed as described 427	
  

previously77,78. Briefly, biofilm formation by Enterobacter strains was quantified on 428	
  

polystyrene microtiter plates after 72 h of incubation at 37°C by CV staining. Three 429	
  

independent experiments were performed, and the data were represented as CV OD570 430	
  

after normalizing by CFUs.  431	
  

 432	
  

Mosquito infections. Mono-association in Ae. aegypti mosquitoes were done using 433	
  

gnotobiotic infection procedure64, with slight modifications7. Briefly, mosquito eggs were 434	
  

sterilized for 5 min in 70% ethanol, 3 min 3% bleach+0.01% Coverage Plus NPD (Steris 435	
  

Corp.), 5 min in 70% ethanol then rinsed three times in sterile water. Eggs were 436	
  

vacuumed hatched for 30-45 min and left overnight at room temperature to hatch any 437	
  

remaining eggs. Exactly twenty L1 larvae were transferred to T175 flask containing 60 438	
  

ml of sterile water and fed on alternative days with 60 µl of fish food (1 µg/µl). Larvae 439	
  

were inoculated with 1x107/ml of either the WT Enterobacter, the ∆ompA mutant or the 440	
  

∆ompA/ompA complement. The WT and ∆ompA strains were transformed with the 441	
  

pRAM-mCherry plasmid that conferred resistance to kanamycin (but did not possess a 442	
  

functional ompA gene). L4 larvae were collected, washed three times with 1X PBS, and 443	
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then homogenized in 500 µl of 1X PBS and 50 µl of homogenate was plated on LB agar 444	
  

containing 50 µg/mL kanamycin. Similarly, adult mosquitoes were collected 3-4 days 445	
  

post emergence and bacterial infection was quantified in the same manner as larvae. In 446	
  

order to assess the growth of the mosquitoes, time to pupation and growth rate were 447	
  

observed. Time to pupation was determined by quantifying the number of pupae each 448	
  

day post hatching, while survival to adulthood was calculated by quantifying the number 449	
  

of L1 larvae that reached adulthood. The experiment was repeated three times.  450	
  

 451	
  

Knock-in mutants were administered to adult Ae. aegypti in a sugar meal. Three to four 452	
  

day old mosquitoes were fed with 1x107 of WT or the ∆ompA::gentamicin strain for 453	
  

three days in 10% sucrose solution. After three days, mosquitoes were either 454	
  

administered sugar supplemented with gentamicin (50 µg/mL) or sugar without 455	
  

antibiotic. CFUs were determined at days 0, 2, 4, and 6 dpi by plating homogenized 456	
  

mosquitoes (N=10) on LB agar. Similarly, the ∆ompA::mCherry and WT Enterobacter 457	
  

were fed to mosquitoes and midguts were dissected to assess the colonization of 458	
  

bacteria in the tissue. For visualization of bacteria, midguts were fixed in 1% 459	
  

paraformaldehyde (PFA) in 1X PBS for 30 minutes and permeabilized with 0.01% Triton 460	
  

X-100 in 1X PBS for 20 min. The tissues were stained with 1:250 diluted Phalloidin 461	
  

(Sigma) for 20 minutes and samples were washed twice with 1X PBS for 10 minutes. 462	
  

Finally, midguts were then stained with 1:500 diluted DAPI (Invitrogen) for 10 min. 463	
  

Samples were transferred to slides and mounted with ProLong™ Gold Antifade 464	
  

(Invitrogen). The slides were observed under Revolve FL (ECHOLAB).  465	
  

 466	
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Figure legends. 481	
  

 482	
  

Figure 1. Midgut infection of Enterobacter and E. coli in mono-associations of 483	
  

Aedes mosquitoes. Enterobacter forms a biofilm in the gut of Aedes aegypti 484	
  

mosquitoes (left) while no bacteria were observed in the gut of mosquitoes reared with 485	
  

E. coli under gnotobiotic conditions (right). Bacteria possessed a plasmid expressing 486	
  

mCherry. Blue – host nuclei. Green – host actin cytoskeleton stained with phalloidin. 487	
  

The scale bar is 70 µm. 488	
  

 489	
  

Figure 2. CRISPR/Cas9 genome editing in bacteria. A schematic of the editing 490	
  

approach and screening of putative mutants in E. coli (A) and Enterobacter (B). A ~1kb 491	
  

fragment of E. coli BL21(DE3) was deleted using no-SCAR protocol. The 250 bp of left 492	
  

arm (LA) and right arm (RA) was assembled to generate 500 bp donor DNA. The 493	
  

transformants were screened via colony PCR with primers binding in regions flanking 494	
  

the deletion. Similar to strategy employed in E. coli, knockout of the ompA gene from 495	
  

Enterobacter isolated from the mosquito gut was created by deleting the 598 bp 496	
  

fragment. The green star indicates the PAM site in the ompA gene. (C) The sequence of 497	
  

the ompA mutation in E. coli and Enterobacter was confirmed by Sanger sequencing. 498	
  

The sequence above the gene within the dotted line has been deleted. The 499	
  

chromatogram shows the 10 bp flanking the deletion.  500	
  

 501	
  

Figure 3. In vitro characterization of the ompA mutation. The Enterobacter ∆ompA 502	
  

mutant had a similar growth rate compared to both the WT and the ∆ompA/ompA 503	
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complement in liquid LB media (A). The stability of mutant was evaluated in vitro by 504	
  

continuous subculturing in LB medium (B). Genomic DNA of alternative subcultures was 505	
  

used as template for PCR using gene specific primers that amplified across the 506	
  

deletion. Two separate gel images were merged to create the figure 2B. Passage 8 was 507	
  

run on a separate gel to passages 0 – 6.  Biofilm formation was assessed using the CV 508	
  

biofilm assay for the WT, ∆ompA mutant and the ∆ompA/ompA complement (C). 509	
  

Quantification of the relative biofilm formation normalized by the number of bacteria per 510	
  

well (D).  511	
  

 512	
  

Figure 4. The ∆ompA mutant poorly infected mosquitoes. Infection of Enterobacter 513	
  

strains (WT, ∆ompA mutant and ∆ompA/ompA complement) reared in a mono-514	
  

association using a gnotobiotic rearing approach for larvae (A) and adults (B). L4 and 3-515	
  

4 days post emergence adults were screened for bacterial load by plating on LB media 516	
  

to quantify the bacteria. The prevalence of infection (number of mosquitoes infected) 517	
  

between the treatments was calculated comparing number of infected to uninfected 518	
  

larvae (C) or adults (D). 519	
  

 520	
  

Figure 5. The ∆ompA mutant does not affect growth rates or development of 521	
  

mosquitoes. The growth rate (time to pupation) (A) and development (percentage of L1 522	
  

larvae to reach adulthood) (B) was observed in mosquitoes infected with Enterobacter 523	
  

strains (WT, ∆ompA mutant and ∆ompA/ompA complement) reared in a mono-524	
  

association. 525	
  

 526	
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Figure 6. Integration of mCherry and gentamicin into the Enterobacter genome. 527	
  

Sanger sequence across the integration site, stability of the inserted gene and in vitro 528	
  

expression of the inserted gene for the ∆ompA::mCherry (A-C) and the ∆ompA:: 529	
  

gentamicin (D-F) strains. The chromatogram shows the sequence spanning the inserted 530	
  

sites. Strains were continually subcultured for 10 passages and PCR was done to 531	
  

examine the stability of the insert (B; ∆ompA::mCherry plus WT; E ∆ompA::gentamicin 532	
  

passaged with (ab+) or without (ab-) gentamicin plus WT). mCherry fluorescence or 533	
  

ability to grow on selective media containing gentamicin confirmed the expression of the 534	
  

transgene in vitro. Mosquitoes were inoculated with the Enterobacter strains to confirm 535	
  

expression of the transgene in vivo. Dissected midgut infected with ∆ompA::mCherry 536	
  

(left) or negative control (right; WT bacteria without expression plasmid) (G). Midguts 537	
  

were stained with phalloidin (green) and DAPI (blue). The scale bar is 30 µM. The WT 538	
  

and ∆ompA::gentamicin Enterobacter strains were fed to adult mosquitoes for 3 days in 539	
  

a sugar meal before gentamicin was administered to mosquitoes in a sugar meal (H). 540	
  

Mosquitoes were collected every second day and CFUs assessed. Pairwise 541	
  

comparisons were conducted at each time point using a T test (* - P < 0.05, *** P < 542	
  

0.001, **** P < 0.0001).  543	
  

  544	
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