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Title 

bin3C : Exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes 

(MAGs) 

Abstract 

Most microbes inhabiting the planet cannot be easily grown in the lab. Metagenomic techniques 

provide a means to study these organisms, and recent advances in the field have enabled the 

resolution of individual genomes from metagenomes, so-called Metagenome Assembled 

Genomes (MAGs). In addition to expanding the catalog of known microbial diversity, the 

systematic retrieval of MAGs stands as a tenable divide and conquer reduction of metagenome 

analysis to the simpler problem of single genome analysis. Many leading approaches to MAG 

retrieval depend upon time-series or transect data, whose effectiveness is a function of 

community complexity, target abundance and depth of sequencing. Without the need for 

time-series data, promising alternative methods are based upon the high-throughput sequencing 

technique called Hi-C.  

 

The Hi-C technique produces read-pairs which capture in-vivo DNA-DNA proximity interactions 

(contacts). The physical structure of the community modulates the signal derived from these 

interactions and a hierarchy of interaction rates exists (Intra-chromosomal > Inter-chromosomal 

> Inter-cellular). 
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We describe an unsupervised method that exploits the hierarchical nature of Hi-C interaction 

rates to resolve MAGs from a single time-point. As a quantitative demonstration, next, we 

validate the method against the ground truth of a simulated human faecal microbiome. Lastly, we 

directly compare our method against a recently announced proprietary service ProxiMeta, which 

also performs MAG retrieval using Hi-C data. 

 

bin3C has been implemented as a simple open-source pipeline and makes use of the unsupervised 

community detection algorithm Infomap (https://github.com/cerebis/bin3C). 

Keywords 

Metagenomics, Hi-C, clustering, next generation sequencing, metagenome-assembled genome 
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Background 

 

The number of microbial organisms which can be readily investigated using culture-based 

techniques is relatively small in proportion to the Earth’s apparent total diversity [1, 2] . Although 

concerted efforts have found the individual conditions necessary to cultivate a relatively small 

number of species in the laboratory [3–5] , scaling-up this discovery process to the remaining 

majority is daunting, if not intractable. 

 

Beyond the issue of cultivation, an environmental population can possess at once phenotypic 

microdiversity and within that group large differences in gene content. With as little as 40% of 

genes shared within a species [6] , this accessory genome is thought to contribute significantly to 

the dynamics of microbial adaptation in the environment [7–9] . Phylogenetic marker surveys 

(16S amplicon sequencing), while still informative, stand essentially as a proxy for broader 

discovery processes of the genomic landscape, should they exist. The systematic extraction of 

entire genomes from an environment will enable a more thorough determination of the 

constituent species core and accessory gene content (pangenome). The extracted pangenome and 

community profile will enable investigation of the functional basis of species fitness and niche 

partitioning within an environment, and further longitudinal experiments will permit studying the 

dynamics. 
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Metagenomics offers a direct culture-independent sampling approach as a means to study the 

unculturable majority. Recent advances in this field have begun to make possible the systematic 

resolution of genomes from metagenomes; so-called Metagenome Assembled Genomes (MAGs). 

Tools designed to assess the quality of retrieved MAGs [10, 11]  have brought with them 

suggestions for categorical quality rankings (table 1). Marking an increasing acceptance, the 

Genomic Standards Consortium (GSC) recently introduced standardised reporting criteria (table 

2) for the submission of MAGs to public archives [12] , and as of mid-2018 there are more than 

5200 MAGs registered in the Genomes Online (GOLD) database [13] . As retrieval 

methodologies improve and new complex environments are studied, the registration rate of new 

MAGs is expected to eventually exceed that of culture-based studies [12] .  

 

Rank Completeness (%) Rank Contamination (%) 

Near  ≥ 90 Low ≤ 5 

Substantial   ≥ 70 to < 90 Medium > 5 to ≤ 10 

Moderate ≥ 50 to < 70 High > 10 to ≤ 15 

Partial < 50 Very high > 15 

Table 1. A proposed standard for reporting the quality of retrieved MAGs which uses only 

estimates of completeness and contamination [10] . Completeness and contamination are 

independently ranked and are intended to be used in conjunction, e.g. “nearly complete and low 

contamination”.  
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Rank Assembly Quality Criteria 

Finished Single, validated contiguous sequence per replicon without gaps or 
ambiguities, with consensus error rate or equivalent >Q50. 

 Completeness and 
Contamination (%) 

Additionally 

High-quality draft > 90, < 5 Presence of 23S, 16S and 5S and ≥ 18 
tRNAs. 

Medium-quality 
draft 

≥ 50, < 10  

Low-quality draft < 50, < 10  

Table 2. A small component of the reporting details for MAGs as proposed by the Genomic 

Standards Consortium include ranks of quality [12] . The "finished" rank is left to future 

advances, while lower ranks are achievable now by Hi-C based genome binning methods. The 

additional criterion of rRNA genes makes the "high-quality" rank challenging to achieve with 

current methods. 

 

Most current approaches to the accurate retrieval of MAGs (also called genome binning or 

clustering) depend on longitudinal or transect data series, operating either directly on WGS 

sequencing reads (LSA) [14]  or on assembly contigs (CONCOCT, GroopM, metaBAT, 

MaxBin2, Cocacola) [15–19] . The need for multiple samples can, however, pose a barrier both in 

terms of cost of sequencing and the logistics of obtaining multiple samples as, for instance, with 

clinical studies. As an alternative single-sample approach, Hi-C (a high throughput sequencing 
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technique which captures in-vivo DNA-DNA proximity) can provide significant resolving power 

from a single time-point when combined with conventional shotgun sequencing. 

 

The first step of the Hi-C library preparation protocol is to crosslink proteins bound to DNA in 

vivo using formalin fixation. Next, cells are lysed and the DNA-protein complexes are digested 

with a restriction enzyme to create free ends in the bound DNA strands. The free ends are then 

biotin labelled and filled to make blunt ends. Next is the important proximity-ligation step, where 

blunt ends are ligated under dilute conditions. This situation permits ligation to occur 

preferentially among DNA strands bound in the same protein complex, that is to say, DNA 

fragments which were in close proximity in vivo at the time of crosslinking. Crosslinking is then 

reversed, the DNA is purified and a biotin pull-down step employed to enrich for proximity 

junction containing products. Lastly, an Illumina-compatible paired-end sequencing library is 

constructed. After sequencing, each end of a proximity-ligation containing read-pair is composed 

of DNA from two potentially different intra-chromosomal, inter-chromosomal or even 

inter-cellular loci. 

 

As a high-throughput sequencing adaptation of the original 3C (chromosome conformation 

capture) protocol, Hi-C was originally conceived as a means to determine, at once, the 

3-dimensional structure of the whole human genome [20] . The richness of information captured 

in Hi-C experiments is such that the technique has subsequently been applied to a wide range of 

problems in genomics, such as: genome reassembly [21] , haplotype reconstruction [22, 23] , 

assembly clustering [24] , centromere prediction [25] . The potential of Hi-C (and other 3C 
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methods) as a means to cluster or deconvolute metagenomes into genome bins has been 

demonstrated on simulated communities [26–28]  and real microbiomes [29, 30] . 

 

Most recently, commercial Hi-C products ranging from library preparation kits through to 

analysis services [30, 31]  have been announced. These products aim to lessen the experimental 

challenge in library preparation for non-specialist laboratories, while also raising the quality of 

data produced. In particular, one recently introduced commercial offering is a proprietary 

metagenome genome binning service called ProxiMeta, which was demonstrated on a real human 

gut microbiome, yielding state of the art results [30] . 

 

Here we describe a new open software tool bin3C which can retrieve MAGs from metagenomes, 

by combining conventional metagenome shotgun and Hi-C sequencing data. Using a simulated 

human faecal microbiome, we externally validate the binning performance of bin3C in terms of 

adjusted mutual information, and B3 Precision and Recall against a ground truth. Finally, for a 

real microbiome from human faeces, we compare the retrieval performance of bin3C against that 

published for the ProxiMeta service [30] . 
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Method 

Simulated Community 

To test the performance of our tool on the task of genome binning, we designed a simulated 

human gut microbiome from 63 high-quality draft or better bacterial genomes randomly chosen 

from the Genome Taxonomy Database (GTDB) [32] . Candidate genomes were required to 

possess an isolation source of faeces or feces, while not specifying a host other than human. To 

include only higher quality drafts, the associated metadata of each was used to impose the 

following criteria: contig count <= 200, CheckM completeness >98%, MIMAG quality rank of 

"High" or better and lastly a total gap length < 500 bp. For these metadata based criteria, there 

were 223 candidate genomes. 

 

In addition to the metadata based criteria, FastANI (v1.0) [33]  was used to calculate pairwise 

average nucleotide identity (ANI) between the 223 candidate genome sequences. As we desired a 

diversity of species and mostly unambiguous ground truth, a maximum pairwise ANI of 96% was 

imposed on the final set of genomes. This constraint controlled for the over-representation of 

some species within the GTDB. Additionally, when two or more genomes have high sequence 

identity, the assignment process becomes more difficult and error-prone as it challenges both the 

assembler [34]  and creates ambiguity when assigning assembly contigs back to source genomes. 

 

9 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/388355doi: bioRxiv preprint 

https://paperpile.com/c/dfw8rH/kjlQU
https://paperpile.com/c/dfw8rH/FuyIS
https://paperpile.com/c/dfw8rH/JsWVu
https://doi.org/10.1101/388355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

The resulting 63 selected genomes had an ANI range of 74.8% to 95.8% (median: 77.1%) and 

GC content range of 28.3% to 73.8% (median: 44.1%) (figure 1) (table S1). A long-tailed 

community abundance profile was modelled using a Generalized Pareto distribution (parameters: 

shape=20, scale=31, location=0) (figure S2), where there was approximately a 50:1 reduction in 

abundance from most to least abundant. Lastly, before read simulation, genomes in multiple 

contigs were converted to a closed circular form by concatenation, thereby simplifying 

downstream interpretation. 

 

Figure 1. Taxonomic distribution at the order rank of 63 selected bacterial genomes used in the 

simulated community. The number of each order is a product of the taxonomic distribution of 

genomes existing in the GTDB, while the constraint that no two genomes be more similar than 

96% ANI restricts the over-representation of deeply sequenced species.  

10 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/388355doi: bioRxiv preprint 

https://doi.org/10.1101/388355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Read-set generation 

To explore how increasing depth of coverage affects bin3C’s ability to correctly retrieve MAGs, 

Hi-C read-sets were generated over a range of depths while keeping shotgun coverage constant. 

Hi-C depth was parameterised simply by the total number of pairs generated, while shotgun depth 

was parameterised by the depth of the most abundant community member. 

 

From this definition, an initial read-set with high depth of coverage was produced with 250x 

shotgun and 200 million Hi-C pairs. The shotgun dataset at this depth constituted 18.2M pairs. 

 

Shotgun reads were generated using the metagenomic shotgun simulator MetaART which wraps 

the short-read simulator art_illumina (v2.5.1) [35, 36]  (options: -M 100 -S 12345 -l 150 -m 350 -s 

20 -z 1). 

 

Hi-C reads were generated in two equal parts from two different 4-cutter restriction enzymes 

(NEB names: MluCI and Sau3AI) using Sim3C [36]  (options: -e ${enzyme} -m hic -r 12345 -l 

150 --insert-sd 20 --insert-mean 350 --insert-min 150 --linear --simple-reads). Two enzymes were 

used to mimic the library construction of the real data-set we also analyzed. Repositories 

containing Sim3C and MetaART can be found at https://github.com/cerebis/sim3C and 

https://github.com/cerebis/meta-sweeper respectively. 
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From the initial read-set, a parameter sweep was produced by serially downsampling the initial 

read-set by factors of 2 using BBTools (v37.25) [37] . The initial Hi-C read-set was reduced 4 

times for a total of 5 different depths or 200M, 100M, 50M, 25M, 12.5M pairs (command: 

reformat.sh sampleseed=12345 samplerate=${d}). In terms of the community genomes, depth of 

coverage for the subsampling with the greatest reduction factor ranged from 3.5x to 171x for 

Hi-C. 

Ground Truth Inference 

For the task of the whole-community genome binning, a ground truth was constructed by aligning 

scaffolds resulting from the SPAdes assembly to the “closed” reference genomes using LAST 

(v941) (Kiełbasa et al. 2011). From the LAST alignments, overlapping source assignment was 

determined using a methodology we have described previously [34]  and implemented as the 

program alignmentToTruth.py (see availability section). An overlapping (soft) ground truth better 

reflects the possibility of co-assembly of sufficiently similar regions among reference genomes 

and the tendency that these regions cause breakpoints in assembly algorithms, leading to highly 

connected assembly fragments which belong equally well to more than one source. 

Performance Metrics 

To validate genome binning, we employed two extrinsic measures; adjusted mutual information 

(AMI) (sklearn v0.19.2) and weighted Bcubed (B3). AMI is a normalized variant of mutual 

information which corrects for the tendency that the number of agreements between clusters by 

random chance tends to increase with increasing problem size [38] . Weighted B3 is a soft 
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extrinsic metric which, analogous to the F-measure, is the harmonic mean of the B3 formulation 

of Precision and Recall. Here, precision is a measure of cluster homogeneity (like with like), 

while recall is a measure of the cluster completeness. The B3 measure handles overlapping (soft) 

clusters and better satisfies the constraints that an ideal metric should possess; i.e. homogeneity, 

completeness, rag-bag and size vs quantity when compared to other metrics. Weighted B3 extends 

the definition to allow the objects under study to have variable values, for which contig length is 

a natural choice with genome binning problems [34, 39, 40] . 

 

In employing two measures, we seek to gain confidence in their agreement while also obtaining 

the additional insight afforded by the separate facets B3 Precision and Recall. 

Real Microbiome 

To demonstrate bin3C on real data and make a direct comparison to the proprietary Hi-C based 

genome binning service (ProxiMeta), we obtained the publicly available high-quality combined 

whole-metagenome shotgun and Hi-C sequencing data-set used in the previous study  [30] . The 

data-set derives from the microbiome of a human gut (BioProject: PRJNA413092, Acc: 

SRR6131122, SRR6131123 and SRR6131124). 

 

For this data-set, two separate Hi-C libraries (SRR6131122, SRR6131124) were created using 

two different 4-cutter restriction enzymes (MluCI and Sau3AI respectively). In using two 

enzymes, the recognition sites were chosen to be complementary in terms of GC content. When 

the libraries were subsequently combined during the generation of the contact map, site 
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complementarity provided a higher and more uniform site density over a wider range of target 

sequence. We conjecture that for metagenome deconvolution, site complementarity is particularly 

helpful in obtaining a consistent signal from all community members, while higher site density 

improves recovery of smaller assembly fragments. 

 

All read-sets were obtained from an Illumina HiSeq X Ten at 150 bp. After clean-up (described 

below), the shotgun read-set (SRR6131123) consisted of 248.8 million paired-end reads, while 

the two Hi-C libraries consisted of 43.7 million (SRR6131122) and 40.8 million (SRR6131124) 

paired-end reads. 

Initial Processing 

Read clean-up is occasionally overlooked in the pursuit of completing the early stages of 

genomic analysis. This initial processing step is however essential for optimal shotgun assembly 

and particularly for Hi-C read mapping where remnants of adapter sequence, PhiX or other 

contaminants can be a significant noise source.  

 

A standard cleaning procedure was applied to all WGS and Hi-C read-sets using bbduk from the 

BBTools suite (v37.25) [37] , where each was screened for PhiX and Illumina adapter remnants 

by reference and by kmer  (options: k=23 hdist=1 mink=11 ktrim=r tpe tbo), quality trimmed 

(options: ftm=5 qtrim=r trimq=10). For Hi-C read-sets, only paired reads are kept to expedite 

later stages of analysis. Shotgun assemblies for both simulated and read read-sets (table 3) were 

14 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/388355doi: bioRxiv preprint 

https://paperpile.com/c/dfw8rH/fO70R
https://doi.org/10.1101/388355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

produced using SPAdes (v.3.11.1) [41]  in metagenomic mode with a maximum kmer size of 61 

(options: --meta -k 21,33,55,61). 

  

Data Set N50 L50 Contigs  
≥ 1kbp  

Total 
Contigs 

Scaffold
s 
≥ 1kbp 

Total 
Scaffold
s  

Total extent 
(bp) 

Real human gut 56,282 1277 97,760 670,379 95,521 652,723 719,550,669 

Simulated 
human gut 

29,009 1170 24,324 116,696 23,364 41,704 240,133,820 

Table 3. Assembly statistics for real and simulated human gut microbiomes. 

Hi-C Read Mapping 

As bin3C is not aimed at assembly correction, we opted to use assembly scaffolds rather than 

contigs as the target for genome binning, electing to trust any groupings of contigs into scaffolds 

done by SPAdes. 

 

Both simulated and real Hi-C reads were mapped to their respective scaffolds using BWA MEM 

(v0.7.17-r1188) [42] . During mapping with BWA MEM, read pairing and mate-pair rescue 

functions were disabled and primary alignments forced to be the alignment with lowest read 

coordinate (5’ end) (options: -5SP). This latter option is a recent introduction to BWA at the 

request of the Hi-C bioinformatics community. The resulting BAM files were subsequently 

processed using samtools (v1.9) [43]  to remove unmapped reads, supplementary and secondary 

alignments (exclude filter: -F 0x904), then sorted by name and merged. 
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Contact Map Generation 

The large number of contigs (>500,000) typically returned from metagenomic shotgun 

assemblies for non-trivial communities is a potential algorithmic scaling problem. At the same 

time, biologically important contigs can be on the order of 1000 bp or smaller, challenging the 

effective analysis of metagenomic datasets from both sides.  

 

A Hi-C analysis, when conducted in the presence of experimental biases, involves the 

observation of proximity-ligation events, which in turn rely on the occurrence of restriction sites. 

The signal we desire to exploit is therefore not smoothly and uniformly distributed between and 

across all contigs. As a counting experiment, the shortest contigs can be problematic as they tend 

to possess a weaker signal with higher variance; as a result, they can have a deleterious effect on 

normalisation and clustering if included. Therefore, bin3C imposes constraints on minimum 

acceptable length (default: 1000 bp) and minimum acceptable raw signal (default: 5 non-self 

observations) for contig inclusion. Any contig which fails to meet these criteria is excluded from 

the clustering analysis. 

 

With this in mind, bin3C constructs a contact map from the Hi-C read-pairs. As in previous work 

[26] , the bins pertain to whole contigs and capture global interactions, which work effectively to 

cluster a metagenome into genome bins. In doing so, we make the implicit assumption that 

assembly contigs contain few misassemblies that would confound or otherwise invalidate the 

process of partitioning a metagenome into genome bins.  
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bin3C can also optionally construct a contact map binned on windows of genomic extent. These 

maps are not used in the analysis per se but can be used to plot visual representation of the result 

in the form of a heatmap (figure S3). 

Bias Removal 

The observed interaction counts within raw Hi-C contact maps contain experimental biases, due 

in part to factors such as mappability of reads, enzyme digestion efficiency, in vivo 

conformational constraints on accessibility, and restriction site density. In order to apply Hi-C 

data to genome binning, a uniform signal over all DNA molecules would be ideal, free of any 

bias introduced by the factors mentioned above. Correcting for these biases is an important step 

in our analysis, which is done using a two-stage process. First, for each enzyme used in library 

preparation, the number of enzymatic cut sites are tallied for each contig. Next, each pairwise raw 

Hi-C interaction count c ij  between contigs i  and j  is divided by the product of the number of cut 

sites found for each contig ni, n j. This first correction is then followed by general bistochastic 

matrix balancing using the Knight-Ruiz algorithm [44] . 

Genome binning 

After bias removal, the wc-contact map (whole contig) is transformed to a graph where nodes are 

contigs and edge weights are normalized interaction strength between contigs i and j . It has been 

shown that DNA-DNA interactions between loci within a single physical cell (intra-cellular 

proximity interactions) occur an order of magnitude more frequently than interactions between 
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cells (inter-cellular) [26]  and, in practice, the signal from inter-cellular interactions is on par with 

experimental noise. The wc-graph derived from a microbial metagenome is then of low density 

(far from fully connected), being composed of tightly interacting groups (highly modular) 

representing intra-cellular interactions and against a much weaker background of experimental 

noise. Graphs with these characteristics are particularly well suited to unsupervised cluster 

analysis, also known as community detection. 

 

Unsupervised clustering of the wc-graph has previously been demonstrated using Markov 

clustering [26, 45]  and the Louvain method [28, 46] . In a thorough investigation using ground 

truth validation, we previously found neither method to be sufficiently efficacious in general 

practice [34] . Despite the high signal to noise from recent advances in library preparation 

methods, accurate and precise clustering of the wc-graph remains a challenge. This is because 

resolving all of the structural detail (all of the communities) becomes an increasingly fine-grained 

task as graphs grow in size and number of communities. Clustering algorithms can, in turn, 

possess a resolution limit if a scale exists below which they cannot recover finer detail. As it 

happens, modularity-based methods such as Louvain have been identified as possessing such a 

limit [47] . For Hi-C based microbiome studies, the complexity of the community and the 

experiment are sufficient to introduce significant structural variance within the wc-graph. A wide 

variation such aspects as in the size of clusters and weight of intra-cluster edges relative to the 

whole graph make a complete reconstruction difficult for algorithms with limited resolution.  
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The state of unsupervised clustering algorithms has however been advancing. Benchmarking 

standards have made thorough extrinsic validation of new methods commonplace [48] , and 

comparative studies have demonstrated the capability of available methods [49] . Infomap is 

another clustering algorithm, which like Markov clustering is based upon flow [50, 51] . Rather 

than considering the connectivity of groups of nodes versus the whole, flow models consider the 

tendency for random walks to persist in some regions of the graph longer than others. 

Considering the dynamics rather than the structure of a graph, flow models can be less 

susceptible to resolution limits as graph size increases [52] . Additionally, the reasonable 

time-complexity and the ability to accurately resolve clusters without parameter tuning makes 

Infomap well suited to a discovery science where unsupervised learning is required. 

 

We have therefore employed Infomap (v0.19.25) to cluster the wc-graph into genome bins 

(options: -u -z -i link-list -N 10). Genome bins greater than a user-controlled minimum extent 

(measured in base-pairs) are subsequently written out as multi-FASTA in descending cluster size. 

A per-bin statistics report is generated detailing bin extent, size, GC content, N50, and read depth 

statistics. By default, a whole sample contact map plot is produced for qualitative assessment. 

 

In the following analyses, we have imposed a 50 kbp minimum extent on genome bins, partly for 

the sake of figure clarity and as a practical working limit for prokaryotic MAG retrieval. That is 

to say, being less than half the minimum length of the shortest known bacterial genome [53], it is 

unlikely that this threshold would exclude a candidate of moderate or better completeness. If a 

user is in doubt or has another objective in mind, the constraint can be removed.  
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Results 

Simulated Community Analysis 

We validated the quality of bin3C solutions as Hi-C depth of coverage was swept from 12.5M to 

200M pairs on an assembly (figure 2). A sharp gain in AMI, B3 Recall and B3 F-score was 

evident as Hi-C coverage rose from 12.5M to 100M pairs, while the gain between 100M and 

200M pairs was less pronounced. Accompanying the upward trend for these first three measures 

was an inverse but relatively small change in B3 Precision. In terms of AMI, the highest scoring 

solution of 0.848 was at the greatest simulated depth of 200M pairs. Concomitantly this solution 

had B3 Precision, Recall and F-scores of 0.909, 0.839 and 0.873 respectively. For this highest 

depth sample, 22,279 contigs passed the bin3C filtering criteria and represented 95.4% of all 

assembly contigs over 1000 bp. There were 62 genome bins with an extent greater than 50 kbp, 

with total extent 229,473,556 bp. This was 95.6% of the extent of the entire shotgun assembly, 

which itself was 91.1% of the extent of the set of reference genomes. The remaining small 

clusters of less than 50 kb extent totalled 1,413,596 bp or 0.6% of the assembly extent (table 3), 

while unanalyzed contigs below 1000 bp represented 8,103,486 bp or 3.4%. 

 

As a soft clustering measure, B3 can consider overlaps both within predicted clusters and the 

ground truth. Regions of shared sequence within our simulated community meant that for 4.4% 

of assembly contigs the assignment in the ground truth was ambiguous, being shared by two or 

more source genomes. Meanwhile, bin3C solutions are hard clusters placing contigs in only one 
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genome bin. Even without mistakes, this leaves a small but unbridgeable gap between the ground 

truth and the best possible bin3C solution. Due to this, when overlap exists in the ground truth, 

the maximum achievable B 3 Precision and Recall will be less than unity. Conversely, AMI is a 

hard clustering measure that requires assigning each of these shared contigs in the ground truth to 

a single source genome through a coin-toss process. It remains, however, that when bin3C selects 

a bin for such contigs, either source would be equally valid. For this reason, AMI scores are also 

unlikely to achieve unity in the presence of overlapping genomes. 

 

Despite these technicalities, a quantitative assessment of overall completeness and contamination 

is robustly inferred using B 3 Recall and Precision, as they consider contig assignments for the 

entirety of the metagenomic assembly. This is in contrast to marker gene based measures of 

completeness and contamination, where only those contigs containing marker genes contribute to 

the score. The overall completeness of bin3C solutions, as inferred using B3 Recall, rose 

monotonically from 0.189 to 0.839 as Hi-C depth of coverage was increased from 12.5M to 

200M pairs. At the same time, the overall contamination, as inferred using B3 Precision, dropped 

slightly from 0.977 to 0.909. Thus bin3C responded positively to increased depth of Hi-C 

coverage while maintaining an overall low degree of contamination. 

 

We validated our simulation sweep using the marker gene tool CheckM [10] . CheckM estimated 

that bin3C retrieved 33 nearly complete MAGs using 12.5M Hi-C pairs, while 39 nearly 

complete were retrieved using 200M pairs (figure 3). For the deepest run with the most retrieved 

MAGs, genome bins deemed nearly complete had a total extent which ranged from 1.56 Mbp to 
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6.97 Mbp, shotgun depth of coverage from 3.34x to 161.2x, N50 from 5797 bp to 2.24 Mbp, GC 

content from 28.0% to 73.9% and number of contigs from 4 to 787 (figure S4) (table S5). 

 

Broadening the count to include MAGs of all three ranks: moderate, substantial and nearly (table 

1); 37 were retrieved at 12.5M Hi-C pairs, which increased to 48 when using 200M Hi-C pairs. 

The small increase in the number of retrieved MAGs for the relatively large increase in Hi-C 

depth of coverage may seem perplexing, particularly in the face of a large change in the extrinsic 

validation measures AMI, B3 Recall and F-score. To explain this, we referred to the cluster 

reports provided by bin3C, where we found that the average number of contigs in nearly 

complete MAGs increased from 94 at 12.5M pairs to 179 at 200M pairs. Thus, although marker 

gene associated contigs are efficiently found at lower Hi-C depth of coverage, obtaining a more 

complete representation of each MAG can require significantly more depth. 

 

With respect to contamination as inferred by marker genes, CheckM estimated a low median 

contamination rate of 1.08% across all genome bins with completeness greater than 70%. 

CheckM, however, also identified four bins where contamination was estimated to be higher than 

10% and for which marker gene counting suggested that two genomes had merged into a single 

bin. We interrogated the ground truth to determine the heritage of these bins and found that each 

was a composite of two source genomes, whose pairwise ANI values ranged from 93.1% to 

95.8%. Each pair shared an average of 131 contigs within the ground truth with an average 

Jaccard index of 0.19, which was significant when compared against the community-wide 

average Jaccard of 6.5x10-4. Thus, a few members of the simulated community possessed 
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sufficiently similar or shared sequence to produce co-assembled contigs. Although the 

co-assembled contigs were short, with a median length of 2011 bp, the degree of overlap within 

each pair was enough to produce single clusters for sufficiently deep Hi-C coverage. Reference 

genomes corresponding to two of these merged bins fall within the definition of intraspecies, with 

pairwise ANI values of 95.80% and 95.85% respectively. The reference genomes involved with 

remaining two bins are close to this threshold, with ANI values of 93.1% and 93.5%. From this, 

we would concede that although bin3C is precise, it is not capable of resolving strains.  
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Figure 2. Validation of bin3C solutions using extrinsic measures and a ground truth. bin3C was 

run against five simulated experiments, with increasing Hi-C depth of coverage while keeping 

shotgun coverage fixed. With diminishing returns from 100M to 200M pairs, the highest depth of 

coverage produced the best scoring genome binning solution, with an AMI 0.849 and B3 

Precision, Recall and F-score of 0.909, 0.839 and 0.873 respectively. 
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Figure 3. For the simulated community, CheckM was used to validate MAGs retrieved using 

bin3C for increasing depth of Hi-C coverage. The red dashed line indicates the total number of 

reference genomes used in constructing the simulated community. The step with the highest 

depth and consequently highest B3 Recall retrieved 39 nearly, 4 substantially and 5 moderately 

complete MAGs. Nearly complete MAG retrieval at 100M pairs was equal to that of 200M, with 

3 substantially and 5 moderately complete MAGs. 
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Library Recommendations 

The time, effort and cost of producing a combined shotgun and Hi-C metagenomic dataset should 

be rewarded with good results. As bin3C is reliant on both the quality and quantity of data 

supplied, we felt it important to highlight two factors beyond Hi-C depth of coverage which can 

influence results. 

 

Shotgun sequencing data forms the basis on which Hi-C associations are made and therefore, the 

more thoroughly a community is sampled, the better. To demonstrate how this affects bin3C, we 

reduced the shotgun depth of coverage of our simulated community by half (to 125x) and 

reassembled the metagenome. Basic assembly statistics for this half-depth assembly were N50 

6289 bp and L50 4353. There were 43,712 contigs longer than 1000 bp with an extent of 

187,388,993 bp and overall, there were 113,754 contigs with the total extent of 222,522,774 bp. 

This contrasts to the full-depth (250x) assembly, which had N50 30,402 bp and L50 1105, with 

23,364 contigs over 1000 bp with an extent of 232,030,334 bp, and 41,704 total contigs with an 

extent of 240,133,820 bp. Clearly, the reduction in shotgun depth has resulted in a more 

fragmented assembly. In particular, the decrease in depth has lead to a 45 Mbp drop in total 

extent for contigs longer than 1000 bp. This large proportional shift of assembly extent to 

fragments smaller than 1000 bp is significant as we have found that this length is an effective 

working limit within bin3C. 
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We then analysed the resulting contigs with bin3C over the same range of Hi-C depth of 

coverage as before. Comparison of the AMI validation scores using the half and full depth 

assemblies (figure 4) shows that, for the more deeply sampled community, bin3C’s 

reconstruction of the community greatly improved. CheckM estimation of completeness and 

contamination followed a similar trend (figure S6), where the best result at half depth produced 

25 nearly, 4 substantially and 6 moderately complete MAGs, compared against 39 nearly, 4 

substantially and 5 moderately complete at full depth. 

 

A recent trend in the preparation of metagenomic Hi-C libraries involves employing two different 

restriction enzymes during the digestion step [30] . The enzymes are chosen to have different GC 

biases at their restriction sites. For a microbial community with a diversity of species and 

consequently a wide range of GC content, the intent of this strategy is more uniform digestion of 

the extracted DNA, and therefore coverage of Hi-C reads across the metagenome. With wider 

and more uniform coverage, so the logic goes, should come improved results when performing 

Hi-C based genome binning. 

 

As our work already involved simulating a two-enzyme library, as used in recent real 

experiments [30] , we elected to repurpose this data to ascertain what gain was had in using two 

enzymes rather than one alone. The two enzymes used in our simulated libraries are Sau3AI and 

MluCI. While the Sau3AI restriction site ^GATC is GC balanced, the ^AATT restriction site of 

MluCI is AT-rich. For our simulated community, source genomes ranged in GC content from 

28.3% to 73.8% and their abundances were randomly distributed. For Sau3AI, these extremes of 
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GC content translated to expected cut-site frequencies of 1 in every 338 bp at 28.3% and 1 in 

every 427 bp at 73.8%. For the less balanced MluCI, the expected cut-site frequencies were 

instead 1 in every 61 bp at 28.3% and 1 in every 3396 bp at 73.8%. Thus, relative to a naive 

4-cutter frequency of 1 in every 256 bp, while the predicted density of sites from Sau3AI is not 

ideal at either extreme, the site density of MluCI will be very high in the low GC range but very 

sparse at the high GC range. 

 

For the simulated community full depth assembly, we used bin3C to analyze three Hi-C 

scenarios: two single enzyme libraries generated using either Sau3AI or MluCI, and a 

two-enzyme library using Sau3AI and MluCI together. The performance of bin3C was then 

assessed against the libraries at equal Hi-C depth of coverage using our ground truth. In terms of 

AMI, the performance of bin3C for the single enzyme libraries was less than that of the combined 

Sau3AI+MluCI library (figure 5). Although the gain was small at lower depth, the advantage of a 

two enzyme model grew as depth increased, where at 100M Hi-C pairs the AMI scores were 

MluCI: 0.63, Sau3AI: 0.71 and Sau3AI+MluCI: 0.78. 
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Figure 4. Adjusted mutual information (AMI) scores for bin3C solutions at two different shotgun 

depths of coverage. For our simulated community, shotgun libraries generated at 125x and 250x 

coverage demonstrate that although the depth of Hi-C coverage is crucial, so too is the depth of 

shotgun sequencing. 
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Figure 5. For a simulated community whose GC content varied between 28.3/% to 73.8%, bin3C 

retrieval performance improved when simulated reads were generated as if from a library 

prepared using a two enzyme digestion model (Sau3AI+MluCI), rather than if the library was 

prepared using either enzyme in isolation. 
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 Real Microbiome Analysis 

We analyzed the real human gut microbiome (table 3) with bin3C using the same parameters as 

with the simulated community along with a randomly generated seed (options: --min-map 60 

--min-len 1000 --min-signal 5 -e Sau3AI -e MluCI --seed 9878132). Executed on a 2.6GHz Intel 

Xeon E5-2697, contact map generation required 586 MB of memory and 15m26s of CPU time, 

while the clustering stage required 11.6 GB of memory and 9m06s of CPU time. Of the 95,521 

contigs longer than 1000 bp, 29,653 had sufficient signal to be included in clustering. The total 

extent of contigs greater than 1000 bp was 517,309,710 bp for the whole assembly, while those 

with sufficient Hi-C observations totalled 339,181,288 bp or 65.6% of all those in the assembly. 

 

Clustering the contact map into genome bins, bin3C identified 296 genome bins with extents 

longer than 50 kbp and 2013 longer than 10 kbp. The 296 clusters longer than 50 kbp had a total 

extent of 290,643,239 bp, representing 40.4% of the total extent of the assembly, while clusters 

longer than 10 kbp totalled 324,223,887 bp in extent or 45.1% of the assembly. For clusters 

greater than 50 kb, shotgun depth of coverage ranged from 3.4x to 498x, N50 ranged from 3119 

bp to 297,079 bp, GC content from 28.2% to 65.0%, total extent from 50,315 bp to 5,460,325 bp 

and number of contigs from 1 to 495 (table S7). 

 

We analyzed these 296 genome bins using CheckM (figure 6) [10] . For the proposed MAG 

ranking standard based on only measures of completeness and contamination (table 1), bin3C 

retrieved 55 nearly, 29 substantially and 12 moderately complete MAGs. In terms of total extent, 
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MAGs ranked as nearly complete ranged from 1.68 Mbp to 4.97 Mbp, while for the substantially 

complete ranged from 1.56 Mbp to 5.46 Mbp and moderately complete ranged from 1.22 Mbp to 

3.40 Mbp (table S8). In terms of shotgun coverage, MAGs ranked as nearly complete ranged 

from 5.9x to 447.5x, substantially from 4.3x to 416.4x and moderately from 3.7x to 83.4x. 

 

Using the more detailed ranking instead from the recently proposed extension to MIxS (table 2) 

[12] , the bin3C solution represented 17 high quality, 78 medium quality and 105 low-quality 

MAGs. For the high-quality MAGs, shotgun coverage ranged from 10.7x to 447.5x, extent from 

1.86 Mbp to 4.10 Mbp (table S9). 
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Figure 6. bin3C retrieved MAGs from a real human gut microbiome, ordered by descending 

estimate of completeness (black circles). Plotted along with completeness is estimated 

contamination (gold circles). The y-axis grid lines pertain to thresholds used in quality 

assessment standards: completeness of 50%, 70% and 90% and contamination of 5%, 10% and 

15%. Although there is a sharp fall-off in completeness after roughly 75 MAGs, estimated 

contamination remains consistently low. 

 

 

  

33 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/388355doi: bioRxiv preprint 

https://doi.org/10.1101/388355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Comparison to previous work 

The real microbiome we analyzed with bin3C was first described in a previous study to 

demonstrate a metagenomic Hi-C analysis service called ProxiMeta [30] . ProxiMeta is the only 

other complete solution for Hi-C based metagenome deconvolution with which to compare 

bin3C. As ProxiMeta is a proprietary service rather than open source software, the comparison 

was made by reanalysis of the same dataset as used in their work (Bioproject: PRJNA413092). 

As their study included a comparison to the conventional metagenomic binner MaxBin (v2.2.4) 

[54] , which was one of the best performing MAG retrieval tools evaluated in the first CAMI 

challenge [55] , we have included those results here as well. It should be noted that although 

MaxBin 2 is capable of multi-sample analysis, all software was run against a single shotgun 

sequencing sample. We have compared the CheckM validation of bin3C results to the CheckM 

validation of ProxiMeta and MaxBin as provided in their supplementary data [56] . 

 

Regarding the simple ranking standard (table 1), it was reported that ProxiMeta retrieved 35 

nearly, 29 substantially and 13 moderately complete MAGs, while MaxBin retrieved 20 nearly, 

22 substantially and 17 moderately complete MAGs. On the same metagenomic Hi-C dataset, we 

found that bin3C retrieved 55 nearly, 29 substantially and 12 moderately complete MAGs (figure 

7A). Against MaxBin, bin3C retrieved fewer moderately complete MAGs but otherwise bettered 

its performance. Against ProxiMeta, bin3C had equivalent performance for the substantially and 

moderately complete ranks, while retrieving 20 additional nearly complete genomes, representing 

an improvement of 57%. 
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In terms of the more complex MIMAG standard (table 2), it was reported that ProxiMeta 

retrieved 10 high and 65 medium quality MAGs, while MaxBin retrieved 5 high and 44 medium 

quality MAGs. The bin3C solution retrieved 17 high and 78 medium quality MAGs, which 

against ProxiMeta represents 70% improvement in high-quality MAG retrieval from the same 

sample (figure 7B). 

 

It was demonstrated previously that ProxiMeta possessed a higher binning precision than MaxBin 

and resulted in a much lower rate of contamination [30] . We have found that the precision of 

bin3C improves on the mark set by ProxiMeta. bin3C's gains, when retrieving MAGs in the 

highest quality ranks, are mainly due to the rejection of fewer bins for excessive contamination. 

For all genome bins over 1 Mbp in extent, bin3C had a median contamination rate of 0.8%, while 

for ProxiMeta median contamination was 3.5% and MaxBin this was 9.5%. 
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Figure 7. In comparison to existing conventional and Hi-C based single-sample metagenome 

binning tools, bin3C performs well. When compared by ranking standards, based either on 

measures of completeness and contamination only (A) [10]  or the recent GSC MIMAG reporting 

standard (B) [12] , bin3C retrieves a higher or equivalent number of MAGs in each category. The 

apparent stringency of the MIMAG high quality is primarily due to the requirement that 5S, 16S 

and 23S rRNA genes be present. 
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Discussion 

We have introduced bin3C, an openly implemented and generic algorithm which reproducibly 

and effectively retrieves MAGs on both simulated and real metagenomic data.  

 

To demonstrate this, we assessed bin3C’s retrieval performance on a simulated human gut 

microbiome, by way of a ground truth and the extrinsic validation measures of AMI, as well as 

B3 Precision, Recall and F-score (figure 2). bin3C proved to be consistently precise over a wide 

range of Hi-C depth of coverage, while recall and the overall quality of solutions improved 

substantially as more Hi-C data was included. Although a high shotgun depth of coverage is not 

necessary to obtain low contamination MAGs, greater depth of shotgun sequencing has a strongly 

positive influence on the recall and overall completeness of MAG retrieval (figure 4).  

 

Hi-C MAGs have a characteristically low rate of contamination by foreign genomic content [30] . 

On a real human gut microbiome, we have shown that bin3C achieves a lower estimated rate of 

contamination than both the conventional metagenome binner MaxBin [54]  and the recently 

introduced commercial Hi-C analysis service ProxiMeta [30] . For all bins over 1 Mbp as 

determined by each approach, bin3C’s median contamination rate was 0.8%, while MaxBin was 

9.5% and ProxiMeta was 3.5%.  

 

This low contamination rate is a primary reason why bin3C attained the most complete retrieval 

of MAGs from the real human gut dataset when compared to MaxBin and ProxiMeta (figure 6). 
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Retrieving 20 more nearly complete MAGs than ProxiMeta, bin3C achieved a gain of 57% on 

this previous best result (figure 7A). For the stringent GSC MIMAG high-quality ranking, bin3C 

retrieved 17 MAGs from the gut microbiome, a gain of 70% against the previous best result 

(figure 7B).  

 

For best results, we recommend that Hi-C metagenomic libraries be constructed using a two 

enzyme digestion model. 

Limitations and future work 

The ground truth as determined in our work is imperfect, notably when a simulated community 

possesses multiple strains of a single species. The plethora of extrinsic validation measures from 

which to choose also have their limitations and differences [39, 40, 49] . Though we chose 

measures which we felt best suited our problem space, these are not in widespread use. Different 

measures can have significantly different opinions on the agreement between a ground truth and a 

given solution. Those with the lowest scoring results are not always the most readily chosen for 

publication. 

 

The use of non-trivial simulated microbial communities makes determining ground truth and 

measuring accuracy difficult, and yet these are a crucial element of the development process if 

the resulting methods are to be robust in real experimental use. Under such circumstances, we 

work from the premise that achieving close to unity on strong validation measures is unlikely to 

be possible. In our work here, bin3C demonstrated a B3 Precision varying between 0.909 and 
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0.977, while in work pertaining to metagenome binning with multiple samples, precision values 

as high as 0.998 were reported using a different formulation of the measure [17] . In practical 

terms by using CheckM as an operational measure of precision, bin3C achieved a much lower 

rate of MAG contamination on real data than has previously been reported. 

 

Though marker gene based validation with tools such as CheckM or BUSCO [10, 11]  are of great 

value and easily applied to our work, as validators, their perception is limited only to those 

sequences which contain marker genes. Ideally, metagenome binning approaches should aim to 

gather together all the sequence fragments pertaining to a given genome and not only those which 

contained marker genes. The generalizability of an approach is not assured when the validation 

measure used in development is systematically insensitive to some aspect of the problem. 

Therefore, we believe refining the ground truth determination process, to be independent of 

community complexity, is warranted and would be a useful contribution. 

 

Although bin3C can analyze sequences shorter than 1000 bp, it is our experience that allowing 

them into the analysis does not lead to improvements in MAG retrieval. We believe the weaker 

signal and higher variance in the raw observations for Hi-C contacts involving shorter sequences 

is to blame. A weakness here is relying on the final assembly contigs or scaffolds as the subject 

of read mapping, where the ends of sequences interrupt alignment. In future work, we believe 

aligning Hi-C reads to an assembly graph has the potential to achieve better results. 
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Against the simulated community, the performance of bin3C as indicated by the validation scores 

AMI and B 3 Recall, suggests that further gains in retrieval completeness are possible (figure 2). 

In particular, strains of the same species can fail to be resolved into separate bins. Improving the 

resolving power of bin3C or the addition of a post hoc  reconciliation process to separate these 

merged bins would be worthwhile. 

List of abbreviations 

● AMI - adjusted mutual information 

● ANI - average nucleotide identity 

● GOLD - Genomes Online Database 

● GSC - Genomic Standards Consortium 

● GTDB - Genome Taxonomy Database 

● MAG - metagenome-assembled genome 

● MIMAG - Minimum information about a metagenome-assembled genome 

● MIxS - Minimum information about “some” sequence 

● 3C - chromosome conformation capture 
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● Repository:  https://github.com/cerebis/bin3C 

● O/S: Linux 

● Language: Python 2.7, C/C++ 

● License: GNU Affero General Public License v3.  

● DOI of manuscript version: 10.5281/zenodo.1341423.  

 

Simulators for metagenomic shotgun and Hi-C reads are available at Sim3C repository URL: 

https://github.com/cerebis/sim3C  with the assigned DOI: 10.5281/zenodo.1035049. The Ground 

truth calculator and shotgun simulator are available at https://github.com/cerebis/meta-sweeper 

with assigned DOI: 10.5281/zenodo.1341441. Simulated datasets used in this study are available 

at the assigned DOI: 10.5281/zenodo.1342169. The real human gut microbiome used in this 

study was downloaded from the NCBI Sequence Read Archive 

( http://www.ncbi.nlm.nih.gov/sra) under the accession numbers: shotgun read-set SRR6131123, 

Hi-C libraries SRR6131122 and SRR6131124 [30] . Supporting material from a previous study 

used in comparison is available at the assigned DOI: 10.1101/198713. 
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