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ABSTRACT 29	

Whether a bacterial pathogen establishes an infection and/or evolves antibiotic resistance 30	

depends on successful survival while experiencing stress from for instance the host immune 31	

system and/or antibiotics. Predictions on bacterial survival and adaptive outcomes could thus 32	

have great prognostic value. However, it is unknown what information is required to enable such 33	

predictions. By developing a novel network-based analysis method, a bacterium's phenotypic and 34	

transcriptional response can be objectively quantified in temporal 3D-feature space. The 35	

resulting trajectories can be interpreted as a degree of coordination, where a focused and 36	

coordinated response predicts bacterial survival-success, and a random uncoordinated response 37	

predicts survival-failure. These predictions extend to both antibiotic resistance and in vivo 38	

infection conditions and are applicable to both Gram-positive and Gram-negative bacteria. 39	

Moreover, through experimental evolution we show that the degree of coordination is an 40	

adaptive outcome - an uncoordinated response evolves into a coordinated response when a 41	

bacterium adapts to its environment. Most surprisingly, it turns out that phenotypic and 42	

transcriptional response data, network features and genome plasticity data can be used to train a 43	

machine learning model that is able to predict which genes in the genome will adapt under 44	

nutrient or antibiotic selection. Importantly, this suggests that deterministic factors help drive 45	

adaptation and that evolution is, at least partially, predictable. This work demonstrates that with 46	

the right information predictions on bacterial short-term survival and long-term adaptive 47	

outcomes are feasible, which underscores that personalized infectious disease diagnostics and 48	

treatments are possible, and should be developed.  49	
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INTRODUCTION 50	

The ability to predict whether a bacterial pathogen is successfully establishing an infection, will 51	

adapt to the stress it encounters in the host and/or progress to cause disease could have great 52	

diagnostic value. However, it is unknown whether such predictions are entirely possible and 53	

what information they would require. As a consequence, most diagnostics today come from a 54	

physician’s deductive reasoning, which can lead to sub-optimal antibiotic treatments and may 55	

contribute to the emergence and spread of antibiotic resistance [1, 2]. Alternatively, in cancer 56	

diagnostics transcriptional changes in specific genes of cancerous tissue, in addition to changes 57	

in the host response, are used to provide prognostic information beyond standard clinical 58	

assessment [3-6]. Moreover, integration of systems-level data, machine learning, and various 59	

network/graph-based approaches have been employed to classify cancer subtypes and identify 60	

subtype-specific drug targets, enhancing the diagnostic power of current approaches and leading 61	

to more effective treatment options [7, 8]. With analogy to cancer diagnostics, a systems-wide 62	

understanding of the state of a bacterial infection and how the infection may possibly progress 63	

under pressure of the host-immune system and/or other stresses, could similarly aid in providing 64	

targeted and personalized infectious-disease treatments. 65	

 66	

Our previous work has indicated that advanced infectious-disease prognostics may be possible 67	

by combining bacterial stress-response monitoring with network analyses [9]. A commonly 68	

applied approach for characterizing bacterial stress responses is through RNA-Seq, which 69	

measures genome-wide transcriptional changes upon an environmental perturbation. With the 70	

advent of transposon-insertion sequencing (Tn-Seq), it has now also become relatively easy to 71	

determine, on a genome-wide scale, the phenotypic importance of a gene, i.e. a gene’s 72	

contribution to fitness in a specific environment [10, 11]. Importantly, direct comparisons 73	

between data from these different omics-approaches has shown, contrary to expectations, that 74	

genes that change in transcription are poor indicators of what matters phenotypically. In other 75	

words, phenotypically important and transcriptionally important genes (PIGs and TIGs) rarely 76	

overlap [9, 12-18]. However, when integrated into a network, highly coordinated patterns 77	

between PIGs and TIGs surface when the organism is challenged with an evolutionarily familiar 78	

stress (i.e. one that has been experienced for many generations, e.g. nutrient depletion), while the 79	

response becomes less coordinated when the bacterium is challenged with and responds to a 80	
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relatively new stress (e.g. antibiotics) [9]. This means that the degree of network coordination 81	

between PIGs and TIGs originates from the bacterium’s ‘adaptive past’ and should thus be 82	

indicative of the degree to which the bacterium is adapted to a specific stress and will survive the 83	

challenge (short-term survival outcome). Moreover, since evolution is a continuing process, 84	

survival outcome - influenced by past adaptation - is ultimately related to future adaptive 85	

outcomes; i.e. network coordination is indicative of where and how stress is experienced in the 86	

genome, while selection drives adaptive evolution to resolve this stress. Thus, it may be possible 87	

to predict where in the network innovation (adaptation) is most likely to occur to optimize 88	

network coordination and increase survival success (long-term adaptive outcome). 89	

 90	

Here we develop a novel integrated approach that combines genome-wide profiling, network 91	

analyses and machine learning, which enables predictions on bacterial short-term survival and 92	

long-term adaptive outcomes. As our model system, we use the respiratory pathogen 93	

Streptococcus pneumoniae, which on a yearly basis causes ~1 million fatalities worldwide [19] 94	

and ~4 million disease episodes in the US alone, among which ~40% are caused by strains that 95	

are resistant to at least one antibiotic [20]. To develop this predictive strategy, we first establish 96	

the transcriptionally and phenotypically important genes using temporal RNA-Seq and Tn-Seq 97	

respectively in different S. pneumoniae strains that have different survival outcomes under 98	

nutrient stress conditions and in the presence of antibiotics. By overlaying data onto newly 99	

developed strain-specific networks and applying network analyses, we find that distinct network 100	

patterns emerge that can be depicted as temporal trajectories that move through a specially 101	

constructed feature space. Importantly, these patterns are predictive of whether or not a 102	

bacterium is successfully surviving in its environment. Moreover, we apply the approach to in 103	

vitro and in vivo data from Pseudomonas aeruginosa, highlighting its generalizability and the 104	

possibility to predict bacterial survival-success in the host. Lastly, the development of a support 105	

vector machine (SVM) leads to the ability to predict which genes acquire adaptive mutations 106	

while adapting to nutrient stress or while evolving antibiotic resistance. This study shows that 107	

infectious-disease prognostics is feasible through the implementation of different omics-108	

approaches, network analyses and machine learning, enabling the prediction of whether a 109	

bacterium will survive or not under a given stress and where in the genome it is most likely to 110	

adapt. 111	
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RESULTS AND DISCUSSION 112	

Strain specific metabolic networks are insufficient in defining nutrient dependency or 113	

predicting survival outcomes in three strains of S. pneumoniae. 114	

Streptococcus pneumoniae on average contains 2100 genes and harbors considerable genetic 115	

diversity, with two strains differing on average by 250 genes (presence and absence), and a pan-116	

genome (collection of all genes across all strains) that is approximately double the size of the 117	

genome of any given strain. S. pneumoniae designates ~30% of its genome to metabolic 118	

functions, which enables growth on different carbon sources and in the presence and absence of 119	

different substrates (e.g. amino acids, lipids). This ‘strategy’ all but guarantees the bacterium’s 120	

survival in a variety of host-niches, including the nasopharynx, inner-ear and lungs. Since 121	

different host niches have different nutrient availability [21], nutrient depletion is evolutionarily 122	

an important stress to the obligate non-motile human pathogen S. pneumoniae and has shaped its 123	

genetic composition. We thus reasoned that strain-specific nutrient dependencies must exist and 124	

that such dependencies can be used as a testing-ground to predict whether a strain will survive in 125	

a specific environment and what information is needed to make such predictions. 126	

 127	

Three strains (TIGR4 [T4], Taiwan-19F [19F] and D39) that differ in ~7% of their genetic 128	

content (presence or absence of genes; [9]), were assayed to identify essential nutrients for 129	

growth. Single nutrients were sequentially removed from a chemically defined medium (CDM) 130	

and the effect on the growth rate was calculated. A nutrient is defined as essential if its removal 131	

causes a >70% reduction in the bacterium’s growth rate, and important if the reduction is 132	

between 50-70% (Supplementary Figure 1, detailed explanation of definitions in this study can 133	

be found in Supplementary Information). In total, four amino acids are essential to all three 134	

strains: (L-Arginine, L-Cysteine, L-Histidine, and L-Leucine; Supplementary Figure 1A), while 135	

6 nutrients have strain-specific requirements: 1) three amino acids (Glycine, L-Isoleucine and L-136	

Valine) and the nucleobase uracil are essential to D39; 2) Pantothenate is important to T4; 3) L-137	

Glutamine is important for T4 and D39 (Supplementary Figure 1A). At least two possible 138	

explanations for this strain-specific nutrient dependency are that a strain either lacks certain 139	

genes that are required to synthesize the nutrient or the respective metabolic network is 140	

differentially wired. For instance, a metabolic gene might encode isoforms of an enzyme that 141	

catalyze different reactions in different strains [22]. To determine the origin of the strain-specific 142	
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nutrient dependency we expanded the S. pneumoniae metabolic model we previously built for T4 143	

[9] with two additional strain-specific models for D39 and 19F (Supplementary Figure 2; 144	

Supplementary File 2). The three models are highly conserved, sharing 96% of all metabolic 145	

genes across all strains (i.e. 431 metabolic genes/868 metabolic reactions), however, neither the 146	

presence of strain-specific metabolism genes nor differences in the metabolic network topology 147	

can sufficiently explain the observed strain-specific nutrient requirements.  148	

 149	

Genome-wide profiling reveals distinct transcriptional patterns between a nutrient 150	

dependent strain and an independent strain. 151	

Genomic content and network architecture are thus not enough to consistently predict bacterial 152	

survival and growth in a certain environment. We previously demonstrated that the degree of 153	

network coordination between phenotypic and transcriptional responses distinguishes 154	

evolutionarily familiar stresses from relatively novel ones [9]. Such network patterns could thus 155	

be key to predicting whether a bacterium is successfully surviving in a specific environment.  156	

 157	

To uncover genes that are phenotypically important (PIGs), we performed Tn-Seq on T4 in the 158	

absence of either uracil, L-Valine or Glycine (i.e. nutrients essential for D39 but not T4). Tn-Seq 159	

measures, in a highly quantitative fashion and on a genome-wide scale, which genes and 160	

pathways are important for growth in a specific environment [11, 23]. By comparing fitness in 161	

the presence and absence of a nutrient, genes that are important for T4’s survival in the absence 162	

of the nutrient are identified, which leads to a total of 134 PIGs that contribute to growth of T4 163	

(15 genes for Glycine, 75 genes for uracil, 44 genes for L-Valine). All of these genes have 164	

homologs in D39 and thus do not directly explain the different dependencies between T4 and 165	

D39. Subsequently, we profiled the manner in which T4 and D39 transcriptionally respond to the 166	

absence of the D39-specific essential nutrients. Genome-wide transcriptional responses were 167	

determined by temporal RNA-Seq for T4 (the nutrient-independent strain) and D39 (the nutrient-168	

dependent strain) at 30 and 90 min after nutrient depletion (Supplementary Table 1).  169	

 170	

Three distinct transcriptional patterns emerge that differentiate a nutrient-dependent from an 171	

independent strain: 1) A dependent strain tends to trigger a greater number of expression changes 172	

under nutrient depletion (Supplementary Table 2). For instance, in the absence of L-Valine or 173	
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Glycine, D39 triggers significantly more TIGs than T4 at both the early and the late time points 174	

(two proportion Z-test, p<0.01) (Supplementary Table 2). Additionally, in the absence of uracil, 175	

D39 and T4 trigger similar numbers of TIGs at 30min, however at 90min, the number of TIGs in 176	

T4 decrease (from 22 to 13), while in D39 the number of differentially expressed genes increases 177	

to 857 (nearly 40% of the genome); 2) In each single nutrient-depletion condition, magnitude 178	

distributions of differential expression are significantly wider in D39 than in T4 (Figure 2A, 179	

Kolmogorov-Smirnov test, p<0.01, Supplementary Table 2), indicating that the extent of 180	

genome-wide transcriptional change is much larger in the dependent strain; 3) A functional 181	

distribution analysis of TIGs shows that at 30 and 90 min after the depletion of Glycine or L-182	

Valine, and at 90 min after the depletion of uracil more TIGs per functional tag are differentially 183	

regulated in the dependent strain (Figure 2B; Supplementary File 3). Furthermore, the TIGs are 184	

distributed across more functional categories indicating that nutrient depletion has a greater 185	

impact on most cellular systems of the dependent strain (Figure 2C; Supplementary File 3). If we 186	

directly compare the TIGs of the independent with the dependent strain, it turns out that the T4-187	

TIGs (both early and late) are also TIGs in D39. This suggests that the dependent strain can raise 188	

a similar ‘appropriate response’ as the independent strain to the endured stress. To obtain slightly 189	

higher temporal resolution we additionally profiled 60 min after uracil depletion, which triggers 190	

20 TIGs in D39, the majority of which are involved in uracil uptake (uracil permease SP_1286) 191	

and the metabolic pathway that generates the pyrimidine precursor uridine monophosphate 192	

(UMP) (SP_0701-0702, SP_0963-0964, SP_1275-1278, SP_1288; Supplementary File 3). These 193	

exact uracil-related genes are also up-regulated in T4 and form the majority of T4’s response to 194	

uracil depletion at both early and late time points (Supplementary File 3, Figure 2D). 195	

Importantly, this further shows that D39 is actually able to generate an appropriate 196	

transcriptional response, but only over a limited amount of time. Instead, somewhere between 60 197	

and 90 minutes D39’s response is washed out by a rapidly expanding genome-wide 198	

dysregulation (Figure 2E-F).  199	

 200	

Network analyses of the transcriptional and phenotypic responses can be visualized in a 201	

temporal feature space and define survival as a coordinated response. 202	

To enable detailed network analyses and determine the degree of network coordination, the 203	

strain-specific metabolic network models were converted into genetic networks where each gene 204	
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is represented as a node, and two gene nodes are connected if the proteins encoded by these 205	

genes are involved in the same or in subsequent reactions. Overlaying TIGs and PIGs on the 206	

network shows very little overlap and when genome-wide fitness is plotted against expression 207	

change most genes distribute along the horizontal and vertical axes (Supplementary Figure 3). 208	

This means that genes that change in expression rarely change in fitness, indicating that 209	

transcriptional importance is a poor indicator of what matters phenotypically (Supplementary 210	

Table 2, Supplementary Figure 3), which is consistent with our previous observations [9]. When 211	

the independent and dependent strains’ responses are plotted on a network, visual inspection 212	

suggests that the independent response remains contained to a specific part of the network over 213	

time (Figure 3A), while the dependent strain’s response becomes increasingly scattered across 214	

the entirety of the network (Figure 3B). In order to objectively quantify these responses we 215	

devised three types of measurements that capture the defining network characteristics of a 216	

response:  217	

1) Connectedness (CC): the number of connected components is calculated by removing all 218	

nodes from the network that are neither PIGs nor TIGs. This leaves a collection of sub-networks 219	

(or components) that are separated and unreachable from one another. In a network sense, this 220	

means that information may flow within a component but not between components due to 221	

missing connections. The number of components thus explains the cohesiveness and continuity 222	

of the response. For instance, in the absence of uracil in T4 we observe one large component 223	

which corresponds to the UMP biosynthesis pathway, and several small (single-node) 224	

components (Figure 3C). In contrast, the dependent D39-uracil at 90 min response is defined by 225	

a large number of small components consisting of 1 or 2 genes (Figure 3D), however a large 226	

dominating component consisting of 121 TIGs and PIGs is also observed (Figure 3D). This large 227	

component potentially results from the presence of few highly connected “hub” genes. It is thus 228	

important to evaluate whether the number of connected components formed in an observed 229	

response are significantly different from a random response, which is achieved by permutation 230	

testing (see Methods). 231	

2) Closeness (CN): while a small number of components may indicate that a response is 232	

contained to a few network modules, it is equally important to take into account the relative 233	

position, or closeness, of the components, where highly related (sub)pathways are generally 234	

closer to each other than unrelated pathways. This measure thus explains whether components 235	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/387910doi: bioRxiv preprint 

https://doi.org/10.1101/387910
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 9	

are functionally related and a response is targeted. For instance, out of the 13 components in the 236	

T4 uracil depletion response 12 are only 2-3 edges away from their nearest component (Figure 237	

3E), which is significantly smaller than the distances between randomized responses (obtained 238	

through permutation testing). This indicates that the response, while not fully connected, is 239	

contained and targeted in a relatively small area of the full metabolic network. In contrast, the 240	

distances between the components of the D39-uracil response are not significantly smaller than a 241	

random response (Figure 3F).  242	

3) Representation (RE): while our network is limited to metabolism, the observed TIGs and PIGs 243	

are genome-wide (Figure 2). For instance, D39’s response to Glycine depletion is significantly 244	

connected, however the metabolic portion of the response comprises only ~20% of the full 245	

response. Importantly, since only the part of the response that falls on the network is considered, 246	

the majority of the response in this case is thus ignored. This heavily skewed off-network 247	

response is problematic because while the 20% on-network may give an indication of being 248	

connected and/or close, in reality the true response could be random. This is illustrated with 249	

respect to the earlier observation that even though the dependent strain may trigger an 250	

appropriate transcriptional response that suggests survival-success, when the entire response is 251	

considered it becomes clear that the transcriptional dysregulation is scattered across many other 252	

non-metabolic pathways, processes and genes that are overwhelming the “appropriate response” 253	

(Figure 2). To account for this, the RE is calculated, which defines a response as “metabolically 254	

represented” if a significant proportion of the responsive genes fall on the metabolic network 255	

(see Methods).  256	

Lastly, to incorporate the manner in which the response changes over-time the log-transformed 257	

p-values for CC, CN and RE calculated from each time point are plotted in a feature space, 258	

where each of the three characteristics are placed along separate axes (Figure 3G; Supplementary 259	

Figure 4). In this scheme, the region around the origin (grey box, Figure 3G) represents a 260	

response that is non-significant in terms of CC, CN, and RE.  261	

 262	

For all three depletion conditions (L-Valine, Glycine and uracil), the response of the nutrient-263	

independent strain (T4) tends to move away from the origin over time, and the responses are 264	

characterized by significant CC, CN and/or RE (Figure 3H-J). In contrast, the nutrient-dependent 265	

D39’s responses are mostly confined to the non-significant regions near the origin (Figure 3H-J). 266	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/387910doi: bioRxiv preprint 

https://doi.org/10.1101/387910
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

This is especially well illustrated by the uracil depletion experiment, where T4 and D39 strains 267	

are situated at a very similar location at 30 min (Figure 3J). However, while the independent 268	

strain T4 moves towards a higher CC, CN and RE, D39 moves in the opposite direction and into 269	

the non-significant space. Thus, coordination between the transcriptional and phenotypic 270	

response is maintained and strengthened over time in strains that can tolerate and survive in a 271	

particular environment but weakened in strains that cannot (Figure 3H-J). Importantly, this 272	

trajectory reinforces quantitatively what was suggested by the transcriptional response where 273	

both strains start out in a very similar manner, and while the T4 response remains targeted, the 274	

D39 response ends in uncoordinated dysregulation (Figure 2-uracil depletion). The temporal 275	

trajectory formed by three network parameters (CC, CN, RE) thus characterizes the stress-276	

response of a strain as coordinated or uncoordinated, corresponding to survival success or 277	

failure.  278	

 279	

Experimental evolution of a sensitive strain reverts nutrient dependencies and rewires 280	

stress responses into a coordinated response. 281	

In order to test whether a dependent strain that becomes adapted to the absence of a nutrient (i.e. 282	

it becomes independent) acquires network coordination, two short-term evolution experiments 283	

were designed in which D39 was adapted to grow in the absence of uracil or L-Valine separately. 284	

Four replicate populations were established for each experiment and cultured by serial passaging 285	

in CDM in which either nutrient was decreased by approximately 15% every 3 days until 286	

populations were obtained that are able to robustly grow in the absence of either nutrient (~40 287	

generations each; Supplementary Figure 1C; Figure 4A).  288	

 289	

To determine the adapted strains’ transcriptional response, temporal RNA-Seq was performed on 290	

a uracil-adapted (aD39-uracil) and a L-Valine-adapted strain (aD39-val) in the presence and 291	

absence of the respective nutrient. Similar to the original independent strain T4, the two adapted 292	

D39 strains now exhibit only a small number of differentially expressed genes (Supplementary 293	

Table 2; Supplementary File 3), the magnitude of differential expression has a narrow 294	

distribution, and TIGs in the adapted strains show specific function distributions similar to the 295	

‘original’ independent strain T4 (Figure 4C and Figure 2B). On a network level, coordination 296	

profiles and trajectories arise that are highly similar to T4 (Figure 4D and E). For instance, the 297	
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trajectory of aD39-val tracks along a higher RE and CC, resembling T4 (Figure 4D), and the 298	

trajectory of aD39-uracil moves in the opposite direction of D39 with higher CC, CN and RE 299	

and is almost indistinguishable from T4 (Figure 4E). Our analyses thus show that adaptation to 300	

nutrient depletion stress leads to transcriptional rewiring and that adapted strains gain highly 301	

targeted and coordinated responses, predictive of their ability to survive in an environment. 302	

 303	

Rewiring of genome-wide transcriptional and phenotypic responses to achieve coordination 304	

extends to the evolution of antibiotic resistance.  305	

To test if network trajectories can also predict survival outcomes in a more complex 306	

environment, we extended our approach to the evolution of antibiotic-resistance by challenging 307	

T4 with vancomycin. Vancomycin is often used in treating infections caused by beta lactam-308	

resistant S. pneumoniae especially during sepsis and meningitis [24, 25]. The MIC of T4 is 309	

0.24ug/mL (Supplementary Figure 1C) and in order to obtain a vancomycin-adapted strain a 310	

short-term evolution experiment was performed. Four replicate populations were adapted to 311	

vancomycin for ~70 generations (Supplementary Figure 1C), and an adapted strain (aT4-vanc) 312	

was isolated, which can grow at 1xMIC with a relative fitness of WaT4-vanc = 0.88 compared to the 313	

no drug control (Figure 5A; i.e. a 12% relative growth defect). Fluorescence microscopy on T4 314	

(wild-type) and aT4-vanc reveal significantly longer cell chains for T4 in the absence of 315	

vancomycin (p<0.0001 in t-test; Figure 5B and C). After one-hour exposure to vancomycin 316	

(1xMIC), the wildtype loses the long chain morphology and often exhibits a bulging phenotype 317	

(Figure 5B), which is in agreement with previous reports [26], while aT4-vanc cells under 318	

vancomycin treatment are indistinguishable from untreated cells (Two-sample t-test, p=0.6001 ) 319	

confirming their adapted state. 320	

 321	

The transcriptional response of T4 and aT4-vanc was determined with RNA-Seq at six time 322	

points post-vancomycin treatment (10, 20, 30, 45, 60, and 90 min at 1xMIC). Overall, the 323	

distinct patterns that are observed under nutrient-depletion are observed in the presence of 324	

vancomycin as well: 1) aT4-vanc triggers fewer differential expression than T4 (Supplementary 325	

Table 2); 2) aT4-vanc has significantly narrower magnitude distributions of differential 326	

expression (Figure 5D, Supplementary Table 2; Kolmogorov-Smirnov test, p<0.02); 3) aT4-vanc 327	
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triggers significantly fewer TIGs in most functional tags (Figure 5E and Supplementary Table 2; 328	

p<0.002 with Bonferroni correction for multiple testing).  329	

 330	

To generate the phenotypic response and enable network analyses Tn-Seq was performed in the 331	

presence of vancomycin, which, as expected, reveals little overlap between PIGs and TIGs 332	

(Supplementary Table 2). The CC, CN and RE trajectories for T4 and aT4-vanc at 1xMIC start at 333	

very similar coordinates in the feature space with high RE (Figure 6A). However, T4 rapidly 334	

transitions to a less-represented space, displaying an erratic trajectory that ends in a non-335	

significant and uncoordinated response, indicative of survival-failure. On the other hand, aT4-336	

vanc moves away from the origin, to a state where it is significantly connected, close and 337	

represented over the first 30 minutes. Between 30 and 90 minutes, aT4-vanc then follows an arc 338	

where it gradually becomes less represented, close or connected, and eventually ends just below 339	

the significance threshold for all three characteristics (Figure 6A). Thus, while aT4-vanc can 340	

maintain a highly coordinated response for at least 60 minutes, this coordination is still partially 341	

lost at the 90-minute time point, most likely because aT4-vanc is not fully adapted to 342	

vancomycin, displaying a detectable growth defect in the presence of 1xMIC compared to the no 343	

drug control (Figure 5A). We reasoned that at a higher vancomycin concentration, aT4-vanc 344	

would start to behave more similarly to the sensitive T4 at 1xMIC. When challenged with 345	

1.4xMIC of vancomycin, aT4-vanc initially shows a similar trajectory to 1xMIC (Figure 6A) but 346	

traverses the same arc faster, i.e. at 1xMIC aT4-vanc traverses an arc over 60 minutes whereas at 347	

1.4xMIC the traversal of the same arc is completed in 30-45 minutes. Finally, at 1.4xMIC, 348	

between 45 and 90 minutes, the trajectory stays near the non-significant space. Thus, aT4-vanc at 349	

1.4xMIC displays similarities to both the wild-type and aT4-vanc at 1xMIC where it has a 350	

coordinated response at earlier time points but loses its coordination relatively fast (over fewer 351	

number of line segments) and behaves erratically (similar to T4) at the later time points. This 352	

means that, similar to nutrient-depletion, the direction of the trajectory but also the shape and the 353	

speed at which it moves along a trajectory has predictive value concerning short-term survival 354	

success under antibiotic exposure. 355	

 356	

Network coordination is predictive of survival outcome in other bacterial pathogens. 357	
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In order to determine whether our findings are applicable to other bacterial species, network 358	

analyses were extended to the evolutionarily distant opportunistic pathogen Pseudomonas 359	

aeruginosa [27]. Tn-Seq and RNA-Seq data collected for strain PAO1 tested against 14 360	

antimicrobials [28] and for strain PA14 tested in 2 in vivo wound infections (chronic and acute) 361	

[17] were overlaid onto their respective strain-specific metabolic models [29]. In none of the 14 362	

antimicrobial conditions PA14 elicits a coordinated response, i.e. CC, CN and RE of the PIGs 363	

and TIGs are never significant (Figure 6B). On the other hand, during an infection, the 364	

transcriptional and phenotypic responses of PAO1 are significant in RE on the metabolic 365	

network, and in the case of an acute infection the response is also significant in CN (Figure 6B). 366	

The higher coordination in the acute infection suggests that the pathogen is more likely to 367	

survive in this condition. Indeed, acute burn infections tend to spread and deteriorate rapidly 368	

[30], indicating a more successful outcome (at least with respect to short-term bacterial survival) 369	

for the pathogen P. aeruginosa, and thus suggesting that network analyses can be applied to infer 370	

disease progression, although more time-points would most likely be more informative. 371	

 372	

Integration of machine learning, genome-wide profiles, and network characteristics enables 373	

prediction of adaptive evolution. 374	

Network analyses thus reveal where on the genetic network stress is experienced, while the level 375	

of coordination is indicative of how stress is processed. Importantly, adaptive mutations are 376	

generally localized in genetic regions that resolve (part of) the experienced stress. It may thus be 377	

possible, that with the right information (e.g. where is stress experienced in the genome, how 378	

evolvable is that part of the genome, how is it connected in a network context), we can predict 379	

which parts of the genome are most likely to contribute to adaptive evolution. Since there are no 380	

obvious patterns in our data (e.g. TIGs, PIGs, network connectivity) that are predictive of 381	

adaptation we test this hypothesis by training a support vector machine (SVM) - one of the most 382	

established supervised classifiers in machine learning [31], with the goal to develop a model that 383	

is able to predict which genes will acquire adaptive mutations. 384	

 385	

Adaptive mutations are defined as non-synonymous mutations in coding regions that went to 386	

fixation or reached a frequency > 50% during experimental evolution in the absence of uracil and 387	

L-Valine and in the presence of vancomycin, determined through whole-genome sequencing on 388	
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the adapted populations. In total, four mutations (in three genes) were identified in uracil-adapted 389	

populations, three mutations (in two genes) in L-Valine-adapted populations, and seven 390	

mutations (in five genes) in vancomycin-adapted populations (indicated by radial lines in 391	

lavender in Figure 7A-C). The mutations’ high frequency and condition-specificity are indicative 392	

of their adaptive nature. Furthermore, in the nutrient (uracil and L-Valine) adapted populations 393	

the mutated genes are involved in the metabolic pathways of the depleted nutrient 394	

(Supplementary Table 3). Additionally, in the vancomycin adapted populations, mutated genes 395	

are involved in capsule metabolism (SP_0350/cps4E), cell division/cell-wall synthesis 396	

(SP_1067/ftsW), stringent response (SP_1645/relA), membrane transport (SP_1796), and 397	

carbohydrate metabolism (SP_2107/malM). Although few cases of vancomycin 398	

resistance/tolerance have been reported in S. pneumoniae, the capsule influences sensitivity to 399	

this antibiotic [24, 32, 33], while reduced sensitivity to vancomycin has been reported in relA 400	

mutants of other Gram-Positive cocci, including Enterococcus faecalis [34], vancomycin-401	

resistant E.faecium [35], Staphylococcus aeurus [36], and cell wall modifications (e.g. 402	

thickening) are common features for vancomycin resistance [37, 38].  403	

 404	

Genotypes of the mutated genes were compared to their homologous genes in 371 S. pneumoniae 405	

strains that cover the variation present in the pan-genome [39]. Interestingly, the adaptive 406	

mutations that arose in the nutrient experiments always resulted in the acquisition of the nutrient-407	

insensitive T4 genotype at these loci (Supplementary Table 3), which is also the shared genotype 408	

among the majority of the pan-genome strains, indicative of most strains being tolerant to 409	

nutrient deprivation of uracil and L-Valine. In contrast, adaptation to vancomycin results in the 410	

acquisition of novel genotypes; i.e. none of the 371 strains carry any of the aT4-vanc mutations, 411	

indicative of the fact that very few vancomycin-resistant/tolerant clinical strains have been 412	

reported for S. pneumoniae. Despite this difference between nutrient and antibiotic adaptive 413	

patterns, there are common features to all mutations from all three conditions. For instance, they 414	

appear in highly conserved genes, i.e. core genes with high sequence similarity. Next, adaptation 415	

data was overlaid with genome-wide profiles and sequence conservation data (Figure 7A-C) in 416	

order to visually inspect whether adapted genes overlap with drastic phenotypic changes, 417	

transcriptional changes and/or sequence conservation. For example, carA (SP_1275) is an 418	

adapted gene in the uracil adaptation experiment and it also has both transcriptional and 419	
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phenotypic importance. While this is a suggestive pattern, at a genome-wide level it is hard to 420	

detect such consistent patterns across all three experiments that could be indicative of other 421	

likely candidates for adaptive evolution (Figure 7A-C).  422	

 423	

To generate a classifier that is able to separate adapted genes (AGs) from non-adapted genes by 424	

uncovering hidden patterns in our data, an SVM was built on the Tn-Seq and RNA-Seq profiles, 425	

the network characteristics as well as the species-wide sequence conservation data. Importantly, 426	

the latter datatype is included because sequence conservation is indicative of genomic plasticity, 427	

i.e. it gives insight into the genomic regions that change the most/least and thereby potentially 428	

influences the adaptability of each gene. Subsequently, the SVM was trained on the aggregation 429	

of all adaptation experiments (uracil, L-Valine and vancomycin), with oversampling of the AGs 430	

(see Methods). A total of 1409 data points and 18 features were used, with 10-fold cross-431	

validation and no parameter tuning. In total, 5 out of 6 adapted genes that are on our network are 432	

successfully identified as adapted with 3 false positives and 1 false negative (Supplementary 433	

Table 3). In cases where one class dominates the dataset (e.g. here we have >99% non-AGs) a 434	

high accuracy can even be achieved by a naïve classifier that only selects the more numerous 435	

class. Therefore, the observed accuracy of the classifier (99.69%) is compared to a naïve 436	

classifier, which performs significantly worse (98.91%, Cohen’s kappa=0.7128, p=0). 437	

Furthermore, the sensitivity of the SVM (true positive rate: the proportion of true AGs that are 438	

correctly identified) is 83.33%, the specificity (true negative rate: the proportion of true non-AGs 439	

that are correctly identified) is 99.77% and the classifier achieved an AUROC (Area Under 440	

Receiver Operating Characteristic curve, representing the tradeoff between true positive and 441	

false positive rates) of 0.9978, which significantly outperforms a random classifier 442	

(AUROC=0.5) and thus indicates that AGs are successfully distinguished from non-AGs (Figure 443	

7D). Importantly, this means that adapted genes indeed share certain common features that are 444	

not immediately obvious but can be detected using machine learning. Prior studies of adaptive 445	

evolution focus on interpreting adaptive mutations only after they have been acquired, and these 446	

interpretations are very specific to the selective pressure under which adaptation has happened in 447	

a particular study [40-42]. Instead, the classifier presented here can make a priori predictions on 448	

which genes will adapt under stress/selective pressure, regardless of the nature of this stress. 449	
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Thus, we demonstrate that incorporation of different data-types reveals that deterministic factors 450	

exist that shape adaptive evolution thereby making it predictable. 451	

452	
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CONCLUSIONS 453	

An important goal here is to determine what type of data is needed to predict a bacterium’s 454	

chances of surviving in its environment. We show that a comparison of transcriptional responses 455	

between a stress-sensitive and insensitive strain by itself shows stark differences in the number, 456	

magnitude and functional tags that are involved in responding to the environment, which are 457	

suggestive for their differences in survival-success. The full response thus carries important 458	

information; however, a more granular analysis of the response is no less interesting. For 459	

instance, both T4 and D39 respond very similarly early on to uracil depletion by ‘appropriately’ 460	

upregulating expression of the UMP-pathway, and while T4 maintains a similar response over 461	

time, D39’s response is overwhelmed by genome-wide differential expression, resulting in 462	

chaos. In addition, components of the stringent response (which is not understood in detail in S. 463	

pneumoniae) such as genes involved in purine biosynthesis (SP_0044-0056) are down-regulated 464	

in both T4 and D39 under amino acid depletion (L-Valine and Glycine; Supplementary file 3). 465	

While this shows that particular response mechanisms are activated under stress, it turns out that 466	

this is only a partial view. We show that by extending our focus and by taking the temporal 467	

genome-wide response into account, it is possible to paint a global and detailed picture of how 468	

the organism senses and processes stress. Moreover, we showed previously that it is important to 469	

interrogate a bacterial response at both the transcriptional and phenotypic level to uncover 470	

network patterns [9], and also here we find that PIGs are critical in enhancing our network 471	

coordination analyses, especially when there are a few TIGs (Supplementary File 4). Overall our 472	

strategy demonstrates that by integrating temporal transcriptional and phenotypic changes into 473	

strain-specific networks, distinct patterns emerge that can be depicted as trajectories in feature 474	

space. These temporal trajectories are composed of three types of measurements, Connectedness, 475	

Closeness and Representation (CC, CN, RE) that capture the defining network characteristics of 476	

a response and objectively quantify a strain’s response into a degree of coordination that reflects 477	

survival success. Importantly, we show that the degree of coordination is an evolvable trait; 478	

when strains evolve the ability to grow in the absence of a nutrient, or when antibiotic resistance 479	

emerges, the network is rewired, increasing coordination and unfolding a focused and targeted 480	

response. In other words, selective pressure optimizes a strain’s network coordination, which in 481	

turn increases survival success; explaining why network coordination can be used to predict 482	

short-term survival outcome. Past adaptation and future adaptive outcome are thereby intricately 483	
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linked, leading to the possibility of predicting where innovation (adaptation) in the network is 484	

most likely to occur. Indeed, we show that by developing a support vector machine that 485	

incorporates a wide array of data-types, genes that adapt can be distinguished from those that do 486	

not. This indicates that with the right information, adaptation becomes a predictable process. 487	

 488	

To improve on the short-term survival outcome and long-term adaptive outcome predictions, it is 489	

likely that additional types of data as well as genome-wide networks will be beneficial. For 490	

instance, epistatic and regulatory interactions have been shown to influence adaptive evolution 491	

[43-46]. It is also possible to include information pertaining to the external environment that the 492	

pathogen experiences into a predictive framework. The simultaneous transcriptomic profiling of 493	

the host via dual RNA-Seq [47] and cytokine profiling (e.g. determining the state of the host 494	

response can allow us to infer the magnitude of host-associated stress the pathogen is 495	

experiencing) could also be informative and is something we are currently exploring. Along with 496	

the host-response, the infection-causing pathogen potentially experiences competition or 497	

participates in cooperation with the resident microbiota of the infection site, which can influence 498	

the effectiveness of a given antimicrobial treatment [48]. Therefore, metagenomic profiling of 499	

the microbiota from the site of infection may also aid in predicting the survival of a specific 500	

pathogen.  501	

 502	

To conclude, we demonstrate that network analyses and machine learning make short-term 503	

survival outcome and long-term adaptive outcome predictable. Most importantly, the approach is 504	

generalizable with respect to the applicability to Gram-positive and Gram-negative bacteria, the 505	

emergence of antibiotic resistance, and the applicability to in vivo host infection. Thus, our 506	

approach offers a primary gateway towards the development of highly accurate infectious 507	

disease prognostics.  508	

 509	

  510	
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MATERIALS AND METHODS 511	

Bacterial strains, culture media and growth curve assays 512	

S. pneumoniae strain TIGR4 (T4; NC_003028.3) is a serotype 4 strain originally isolated from a 513	

Norwegian patient [49, 50], Taiwan-19F (19F; NC_012469.1) is a multi-drug resistant strain [51, 514	

52] and D39 (NC_008533) is a commonly used serotype 2 strain originally isolated from a 515	

patient about 90 years ago [53]. All gene numbers refer to the T4 genome. Correspondence 516	

between homologous genes among the three strains and gene function annotations are described 517	

in Supplementary File 3. Unless otherwise specified, S. pneumoniae strains were cultivated in 518	

Todd Hewitt medium with 5% yeast extract (THY) with 5uL/mL oxyrase (Oxyrase, Inc) or on 519	

sheep’s blood agar plates (Northeastern Laboratories) at 37oC with 5% CO2. Tn-Seq and RNA-520	

Seq experiments under nutrient-depletion and vancomycin conditions were performed in 521	

chemically defined medium (CDM; [9]) and semi-defined minimal medium (SDMM; [21]), 522	

respectively. Single strain growth assays were performed at least three times using 96-well plates 523	

by taking OD600 measurements on a Tecan Infinite 200 PRO plate reader. 524	

 525	

Tn-Seq experiments, sample preparation and analysis 526	

Six independent transposon libraries were constructed in T4 using transposon Magellan 6 as 527	

previously described [10, 11, 21]. Tn-Seq experiments under single nutrient depletion conditions 528	

were performed in CDM in the presence or absence of one of the three nutrients: Glycine, uracil 529	

and L-Valine. Vancomycin Tn-Seq experiment were performed in SDMM in the presence or 530	

absence of 0.1ug/mL vancomycin (MP Biomedicals). 531	

 532	

Library preparation, Illumina sequencing, data processing and fitness calculations (Wi; 533	

representing the growth rate) were performed as previously described [10, 11, 21]. Genes with 534	

significant fitness change must satisfy three criteria: 1) Fitness of a gene must be calculated from 535	

at least three insertion mutants in both control and experimental conditions. 2) A gene must have 536	

a fitness difference greater than 15% (|WControl-WExperimental|>0.15). 3) WControl and WExperimental 537	

must significantly differ in a one sample t-test with Bonferroni correction for multiple testing.  538	

 539	

Temporal RNA-Seq sample collection, preparation and analysis 540	
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In nutrient RNA-Seq experiments, T4, D39 and adapted D39 were collected at 30 and 90min 541	

after depletion of D39-essential nutrients (Supplementary Table 1). In vancomycin RNA-Seq 542	

experiment, T4 and adapted T4 were collected at 10, 20, 30, 45, 60 and 90min post-vancomycin 543	

(1x MIC) treatment. Cell pellets were collected by centrifugation at 4000 rpm at 4oC and snap 544	

frozen and stored at -80oC until RNA isolation by RNeasy Mini Kit (Qiagen). 400ng of total 545	

RNA from each sample was used for generating cDNA libraries following the RNAtag-Seq 546	

protocol [54] as previously described [9]. PCR amplified cDNA libraries were sequenced on an 547	

Illumina NextSeq500 generating a high sequencing depth of ~7.5 million reads per sample [55]. 548	

RNA-Seq data was analyzed using an in-house developed analysis pipeline. In brief, raw reads 549	

are demultiplexed by 5’ and 3’ indices [54], trimmed to 59 base pairs, and quality filtered (96% 550	

sequence quality>Q14). Filtered reads are mapped to the corresponding reference genomes using 551	

bowtie2 with the --very-sensitive option (-D 20 –R 3 –N 0 –L 20 –i S, 1, 0.50) [56]. Mapped 552	

reads are aggregated by featureCount and differential expression is calculated with DESeq2 [57, 553	

58]. In each pair-wise differential expression comparison, significant differential expression is 554	

filtered based on two criteria: |log2foldchange| > 1 and adjusted p-value (padj) <0.05. All 555	

differential expression comparisons are made between the presence and absence of the nutrient at 556	

the same time point. 557	

 558	

Experimental evolution and whole-genome sequencing 559	

D39 and T4 were used as parental strains in nutrient-depletion and vancomycin evolution 560	

experiments, respectively. Four replicate populations were grown in fresh CDM with decreasing 561	

concentration of uracil or L-Val for nutrient adaptation populations, or increasing concentration 562	

of vancomycin for antibiotic adaptation populations. Four replicate populations were serial 563	

passaged in CDM as controls for background adaptations in nutrient adaptation experiments. 564	

When populations had adapted a single colony was picked from each experiment, checked for its 565	

adaptive phenotype by growth curve experiments. Genomic DNA was isolated from adapted 566	

populations and single strains using a DNase Blood and Tissue kit (Qiagen), concentrations of 567	

genomic DNA were measured on a Qubit 3.0 fluorometer (Invitrogen) and diluted to 5ng/uL for 568	

library preparation using a Nextera kit (Illumina). Libraries were sequenced on an Illumina 569	

NextSeq500 and reads were mapped to their corresponding reference genomes. Mutations were 570	

identified using the breseq pipeline with polymorphism mode for populations and consensus 571	
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mode for adapted strains [59]. Adaptive mutations in each experiment are determined based on 572	

the following criteria: 1) mutation frequency is greater than 50% in at least one replicate 573	

population, and 2) this mutation is not present in any CDM-background adapted populations and 574	

3) the mutation is a nonsense or missense mutation.  575	

 576	

Determination of relative minimal inhibitory concentration (MIC) by microdilution 577	

1 to 5 x 105 CFU of mid-exponential T4 in 100uL was diluted with 100uL of fresh medium with 578	

vancomycin to achieve a gradient of final concentrations from 0 to 0.5ug/mL in 96-well plates. 579	

Each concentration was tested in triplicates. Growth was monitored on a Tecan Infinite 200 PRO 580	

plate reader at 37oC for 16 hours. MIC is determined as the lowest concentration that abolishes 581	

bacterial growth (Supplementary Figure 1C). 582	

 583	

Fluorescent microscopy  584	

Wild-type and vancomycin adapted T4 were grown to mid-exponential phase. Half of the culture 585	

was left untreated, while the other half was exposed to 0.24ug/mL of vancomycin for 60 minutes. 586	

1x108 CFUs were collected by centrifugation, resuspended in 20uL of PBS and stained with 587	

Syto9 (DNA stain) and FM4-64 (cell membrane stain) for 10 minutes at room temperature. 1uL 588	

of stained cells were imaged on an Olympus IX83 microscope system with an ORCA-Flash4.0 589	

camera (Hamamatsu) and a 60x oil immersion objective. Phase contrast and fluorescence images 590	

through GFP and RFP channels were taken for each sample. Microscopy of each sample was 591	

repeated with at least three technical replicates. Images were modified for publication using Fiji 592	

[60]. Cell numbers per chain was visually quantified based on 1000 S. pneumoniae chains from 593	

each treatment group using at least three technical replicate micrographs. 594	

 595	

Strain-specific metabolic model construction  596	

Thirty-six reactions were manually added to the previously described T4 model [9] using the 597	

COBRA toolbox based on updated information from three databases (NCBI, KEGG and BiGG) 598	

and literature [61, 62]. Metabolite and reaction IDs were cross-referenced to follow the BiGG 599	

naming convention [63]. Gene-reaction associations in the updated T4 metabolic model were 600	

adjusted into three strain-specific models based on the correspondence table (Supplementary 601	
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Table 1). For visualization of the metabolic models, a map of the S. pneumoniae metabolism was 602	

constructed using Escher [64] referencing the KEGG pathway base (Supplementary Figure 2). 603	

 604	

Spectral Clustering of the S. pneumoniae pan-genome 605	

Complete, annotated genomes from 22 reference strains (RefSeq 58) and contigs from 350 606	

clinical strains [39] were assembled for data analysis. The contigs were annotated using the 607	

PATRIC Genome annotation service to identify coding sequences [65]. A total of 820,754 amino 608	

acid sequences from the 372 strains were assembled. In order to reduce redundancy and expedite 609	

clustering, representative sequences were selected using a boundary forest algorithm [66], with 610	

Smith-Waterman distance as the similarity measure. This decreased the number of sequences to 611	

17,000 representatives. Pairwise distances between representatives were computed to generate a 612	

sequence similarity matrix (S). The gaussian kernel of S was thresholded and transformed to an 613	

adjacency matrix. Spectral clustering with normalization of the Laplacian was performed to 614	

generate sequence clusters [67]. Since we had no prior knowledge of what the most appropriate 615	

number of clusters would be, we scanned the range of 1000 to 10,000 clusters, and computed the 616	

sum of squared errors (SSE) on all clusters, for each cluster set. SSE was minimized at 4300 617	

clusters, therefore, we determined this to be the appropriate number of clusters of homologous 618	

genes in the S. pneumoniae pan-genome. Sequences in each gene cluster were aligned using 619	

Clustal Omega [68], and the average pairwise Smith-Waterman distance within each cluster was 620	

computed. In the case of large clusters (containing >50 sequences), 50 random sequences were 621	

selected for pairwise distance calculation. We define gene conservation as -log(mean(distance)) 622	

within a cluster, and count (number of strains that share the gene) of sequences in each cluster.  623	

 624	

Network coordination analysis 625	

We define 3 criteria for metabolic coordination: connectedness (CC), closeness (CN) and 626	

representation (RE) in the metabolic network. Number of connected components (NCC) is used 627	

as the metric for connectedness. For each experiment, connected components were determined 628	

using the components function in the igraph package [69]. Since the expected NCC heavily 629	

depends on the number of nodes selected, and the network architecture, in order to test whether 630	

the observed NCC is significantly lower than expected, we apply permutation testing on random 631	

selection of nodes on the network as follows: In an experiment with M responsive genes on the 632	
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network, we generate 1000 sets of M random genes, and compute the NCC for each permutation. 633	

The empirical one-tailed p-value for this experiment is the proportion of permutations in which 634	

we observed fewer NCC than the responsive genes in the experiment. A response is connected if 635	

the empirical p-value for the NCC permutation testing is <0.01. To determine closeness of 636	

responsive genes, the average length of shortest paths is computed for each pair of genes. Since 637	

biological pathways may appear as long chains with few branches, it is possible to have a 638	

connected component of TIGs and/or PIGs arranged in a line, with a high average pairwise 639	

distance. In order to avoid such skew, we considered any responsive gene pairs that appear in the 640	

same component to be at distance 0 to each other by assigning each edge on the network a 641	

weight of 0 if it connects two responsive genes, and 1 otherwise. If there is no path connecting 642	

the two components, the distance between this pair is replaced by the diameter of the network+1 643	

(i.e. 21 in our network), to avoid infinite values. Similar to connectedness evaluation, 644	

permutation testing is applied to the average network distance. A response is “close” if the 645	

empirical p-value for the distance permutation testing is <0.01. To assess whether TIGs and PIGs 646	

were significantly highly represented in the metabolic network we consider N, the total number 647	

of responsive genes, and M, the subset of N that appear on the network. The probability of 648	

observing M or more genes on the network, given N total responsive genes in the genome 649	

(p(m>M|N)) is computed assuming a hypergeometric distribution. A response is metabolically 650	

well-represented if this probability is <0.01. 651	

 652	

Support Vector Machine Classification of Adapted Genes 653	

A support vector machine (SVM) using a gaussian kernel is trained and cross-validated using the 654	

fitcsvm function in MATLAB to distinguish whether a gene will contain adaptive mutations or 655	

not. The model was trained on network parameters (degree, transitivity, centrality), TnSeq, 656	

RNAseq and sequence conservation (count, or number of occurrences across the pan-genome, 657	

and sequence similarity) of each gene. Data from the dependent (parental) strains from the uracil 658	

(D39), L-Valine (D39) and vancomycin (T4) experiments were assembled into a set of 1283 data 659	

points with 18 features that were standardized. Genes that were not represented on the metabolic 660	

network were excluded. Each observation was then labeled as AG or non-AG. Because the 661	

number of AGs is very small (6 out of 1283), we applied synthetic minority oversampling [70] 662	

until 10% of the observations were AGs. The SVM was trained on a total of 1409 data points 663	
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(1283 experimental and 126 synthetic) using 10-fold cross-validation, and report the average 664	

accuracy, kappa, precision and recall on the 10 cross-validation sets.  665	

 666	

Statistical analysis 667	

Quantification and statistical analysis are described in the above Method Details section, 668	

Supplementary Table2 and in figure legends (Figures 2, 3, 5, S4). 669	

 670	

List of abbreviations 671	

AG: adapted gene 672	

AUROC: area under receiver operating characteristic curve 673	

CC: connectedness  674	

CDM: chemically defined medium 675	

CFU: colony forming unit 676	

CN: closeness 677	

MIC: minimum inhibitory concentration 678	

NCC: number of connected components 679	

PIG: phenotypically important gene 680	

RE: representation 681	

RNA-Seq: RNA-Sequencing 682	

SDMM: semi-defined minimal medium 683	

SSE: sum of squared errors 684	

SVM: support vector machine 685	

TIG: transcriptionally important gene 686	

Tn-Seq: transposon insertion sequencing  687	

UMP: uridine monophosphate 688	
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FIGURE LEGENDS 916	

Figure 1. Study overview. A. Differential survival outcomes under nutrient depletion, antibiotic 917	

exposure and in vivo conditions from Streptococcus pneumoniae and Pseudomonas aeruginosa 918	

are investigated in this study. Experimental evolution is performed on stress-sensitive strains 919	

(red) to achieve adapted strains (blue). B. Temporal RNA-Seq data are collected from the stress-920	

insensitive (green), stress-sensitive and adapted S. pneumoniae strains; Tn-Seq data are collected 921	

from the stress-insensitive strain. RNA-Seq and Tn-Seq data of P. aeruginosa are obtained from 922	

published datasets (Murray et al., 2015, Turner et al., 2014). C. Data obtained from (B.) are 923	

subjected to genome-wide analyses, network coordination analyses and machine learning to 924	

generate predictive patterns of survival outcomes for the stress-sensitive, insensitive and adapted 925	

strains; and adaptive outcomes for the stress-sensitive strains. 926	

 927	

Figure 2. Distinct patterns characterize the transcriptional response of nutrient-dependent 928	

and nutrient-independent strains. A. The magnitude of genome-wide differential expression 929	

shows significantly different distributions between D39 (red) and T4 (green) in the absence of 930	

Glycine (∆Gly), uracil (∆Uracil) or L-Valine (L-Val) at 30min and 90min in a Kolmogorov-931	

Smirnov test. B. D39 triggers significantly more TIGs in each functional tag than T4, compared 932	

in a Z test for two population proportions with Bonferroni correction for multiple testing. C. 933	

Genome-wide functional category distribution of TIGs in D39 and T4 after 90 minutes of uracil 934	

depletion. D. Functional tag distribution of TIGs in D39 after 60 minutes of uracil depletion 935	

resembles T4. Genome-wide differential expression of D39 under uracil depletion shows time-936	

dependent increase in magnitude (E.) and function distribution (F.). For A-B, *: 0.001<p<0.02; 937	

**: 0.0001<p<0.001;  ***: p<0.0001. See in-figure legend for color-coding schemes of 938	

functional tags and categories in B- D, F. 939	

 940	

Figure 3. Network coordination analyses can be visualized in a feature space and define 941	

survival as a coordinated response. PIGs (red), TIGs (green) and PIG/TIG overlaps (blue) 942	

from the uracil depletion experiment (at 90 minutes) are overlaid on the metabolic network for 943	

TIGR4 (A.) and D39 (B.), highlighting differences in network response. Connected components 944	

(CC) formed by PIGs and TIGs and the shortest path distances between CC are calculated for 945	

TIGR4 (C. and E.) and D39 (D. and F.). C-F. Inset histograms show the expected results 946	
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(permutation testing) in comparison with experimental observations (red lines). The p-value is 947	

the proportion of permutations that are more extreme than the observation. G. Example of the 948	

integration of the three-coordination metrics (CC, CN, and RE) for an experiment (blue point) by 949	

plotting the -log(p-value) in a 3-dimensional feature space. The gray box represents the 950	

significance threshold for each p-value. A coordinated response is typically far away from the 951	

origin. H-J. Response trajectories for D39 (red) and T4 (green) from 30 to 90 minutes in the 952	

absence of L-Valine, Glycine or uracil, respectively. In (J.) the D39 trajectory includes the 60-953	

minute time point. For all three graphs the dependent strain D39 remains close to the origin 954	

(uncoordinated response), while the independent strain T4 moves away from the origin 955	

(coordinated response). An alternative visualization of the degree of coordination of each 956	

individual data point can be found in Supplementary Figure 4. 957	

 958	

Figure 4. Experimental evolution revert nutrient dependencies and rewires stress responses 959	

into a coordinated response. A. Adapted D39 strains recover growth in the absence of uracil 960	

(top; aD39-uracil) or L-Valine (bottom; aD39-val). B. Differential expression magnitude 961	

distributions are narrower in aD39-uracil and aD39-val compared to D39 and resemble T4 962	

(Figure 2A). C. Functional tag distribution of TIGs in aD39-uracil and aD39-val at 90min after 963	

uracil or L-Valine depletion are narrower compared to D39 and resemble T4 (Figure 2B). 964	

Network trajectories of aD39-uracil (D. blue) and aD39-val (E. blue) show an increase in 965	

coordination from 30 to 90 minutes that are similar to T4 (D. and E. green) and dissimilar to 966	

wild-type D39 (D. and E. red). 967	

 968	

Figure 5. Adapted S. pneumoniae exhibits reduced sensitivity, changed morphology and a 969	

rewired transcriptional response under vancomycin treatment. Growth phenotypes (A.) and 970	

morphology (B.) of wild-type (WT) and adapted T4 were examined in the absence and presence 971	

of vancomycin (1xMIC) in SDMM. B. Cells were stained with Syto9 (green) and fm464 (red). 972	

White arrowheads highlight bulging cells, typical of vancomycin sensitivity. C. Cell numbers per 973	

chain were quantified from 1000 cell chains, indicating the adapted strain has a shorter chain-974	

length phenotype, comparable to the vancomycin-treated WT. D. Genome-wide differential 975	

expression shows a significantly wider magnitude distribution in WT compared to adapted T4 at 976	

30min post-vancomycin treatment in a Kolmogorov-Smirnov test. E. WT triggers significantly 977	
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more TIGs than adapted T4 in most functional tags in both early and late vancomycin response 978	

in a Z-test for two population proportions with Bonferroni correction for multiple testing in (E.). 979	

n.s.: p>0.02, *:0.001< p<0.02; **:0.0001<p<0.001, ***: p<0.0001 980	

 981	

Figure 6. Network coordination defines antibiotic resistance in S. pneumoniae and 982	

antimicrobial and in vivo responses in P. aeruginosa. A. Temporal network trajectories of the 983	

vancomycin response for vancomycin-sensitive (wild-type T4, blue) and vancomycin-adapted 984	

(aT4-vanc, red) strains profiled at 10, 20, 30, 45, 60 and 90 minutes after 1xMIC vancomycin 985	

treatment. In addition, aT4-vanc is also profiled under 1.4xMIC vancomycin (green). All three 986	

trajectories start at a significantly represented state, however the T4 response quickly becomes 987	

uncoordinated and erratic. In contrast, aT4-vanc demonstrates a gradual trajectory that mainly 988	

moves through significantly coordinated intermediate time points. N.B the speed at which a 989	

trajectory is traversed is determined by the number of line segments, and not by the lengths of 990	

segments, as each line is a separate time point. B. Network coordination analyses extended to P. 991	

aeruginosa distinguishes between uncoordinated responses to antimicrobials (red), and 992	

coordinated responses in in vivo wound infection models (blue).  993	

 994	

Figure 7. Prediction of adaptive evolution through the integration of machine learning, 995	

genome-wide profiles, network characteristics and pan-genome sequence conservation. 996	

Pan-genome-wide sequence conservation, RNA-Seq, Tn-Seq and adaptation data are assembled 997	

for the uracil (A.), L-Valine (B.) and vancomycin (C.) experiments and visualized by circular 998	

plots: 1) Green bar plots represent expression change of parental (the innermost circles) and 999	

adapted strains (outside the orange trace); each circle represents a time-point. 2) The orange 1000	

scatter plot indicates sequence conservation score, while the orange trace is a count of strains that 1001	

share a gene; 3) Red arrows mark essential genes; 4) Red bar plot represents Tn-Seq fitness 1002	

change; 5) Blue scatter plot indicates the mutation frequencies, with adapted genes marked by 1003	

purple arrows and black lines. D. Receiver-operator curve (ROC) for SVM classifier. An SVM is 1004	

trained to distinguish adapted genes from non-adapted genes with high accuracy. Cohen's kappa, 1005	

precision, recall, and AUROC are reported.  1006	

 1007	

Supplementary File 1: Supplementary information 1008	
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 1009	

Supplementary File 2: iSP16 consensus model. 1010	

 1011	

Supplementary File 3: Tn-Seq and temporal RNA-Seq data in this study.  1012	

 1013	

Supplementary File 4: Network analysis with TIGs and PIGs, and only TIGs.  1014	
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