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Abstract

Genome-wide loss-of-function screens using the CRISPR/Cas9 system allow the efficient discovery of
cancer cell vulnerabilities. While several studies have focused on correcting for DNA cleavage toxicity
biases associated with copy number alterations, the effects of sgRNAs co-targeting multiple genomic loci
in CRISPR screens have not been discussed yet. In this work, we analyze CRISPR essentiality screen
data from 391 cancer cell lines to characterize biases induced by multi-target sgRNAs. We investigate two
types of multi-targets: on-targets predicted through perfect sequence complementarity, and off-targets
predicted through sequence complementarity with up to two nucleotide mismatches. We found that the
number of on-targets and off-targets both increase sgRNA activity in a cell line-specific manner, and
that existing additive models of gene knockout effects fail at capturing genetic interactions that may
occur between co-targeted genes. We use synthetic lethality between paralog genes to show that genetic
interactions can introduce biases in essentiality scores estimated from multi-target sgRNAs. We further
show that single-mismatch tolerant sgRNAs can confound the analysis of gene essentiality and lead to
incorrect co-essentiality functional networks.

Keywords: CRISPR/Cas9, functional genomics, gene essentiality, cancer vulnerability, synthetic lethal-
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1 Introduction

A central goal of functional genomics is to understand the complex relationship between the genotype and the
phenotype of a given organism. Genome-scale forward genetic screens are powerful and unbiased experiments
that help identify gene function and relationships between gene disruption and disease. In such screens, gene
perturbations such as mutation or expression dysregulation are first introduced in cells or organisms, then
phenotypes of interest in the cell or organism population are identified, and finally selected phenotypes are
linked back to gene perturbations to establish causality. Genome-wide pooled screens exploiting the RNA
interference (RNAi) pathway have significantly helped with identifying and prioritizing therapeutic targets
in cancer and other diseases; several loss-of-function genome-wide RNAi screens across dozens of cancer cell
lines have been conducted to study cancer genetic vulnerabilities as well as identify genes that are essential
across cell lines [Tsherniak et al., 2017, Cowley et al., 2014, McDonald III et al., 2017, Nijhawan et al.,
2012]. However, the analysis and interpretation of results obtained from RNAi screens can be confounded
by ubiquitous off-target effects and incomplete knockdown.
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The discovery of the CRISPR/Cas9 genome editing system and its application to functional screens have
revolutionized the field by minimizing many of the challenges and limitations observed in RNAi screens
[Shalem et al., 2015]. Following their previous effort in identifying cancer vulnerabilities using RNAi pooled
screens [Tsherniak et al., 2017], the Broad Institute has been performing genome-wide pooled CRISPR knock-
out screens across several hundreds of genomically characterized cancer cell lines [Meyers et al., 2017] using
the Avana guide library [Doench et al., 2016]. The screening effort using both RNAi and CRISPR technologies
is referred to as Project Achilles. To date, CRISPR screening data from 391 cell lines have been released
and are available to download from the Project Achilles portal (https://portals.broadinstitute.org/
achilles).

Early on, it was observed that variation in genomic copy number (CN) was impacting growth measurements
in loss-of-function CRISPR screens in a gene-independent manner [Wang et al., 2015, Aguirre et al., 2016,
Munoz et al., 2016]. Specifically, guides targeting amplified regions create a large number of DNA double-
strand breaks (DSBs) resulting in a loss of cell viability, often referred to as “cleavage toxicity”. If not taken
into account, gene-independent CN effects can lead to an increased number of false positives. In Meyers
et al. [2017], the authors propose to delineate gene-knockout effects from CN effects in the Achilles dataset
by concurrently modeling both effects in a linear regression framework; the algorithm is called CERES. In
particular, the CN effects are captured in a cell-specific manner using linear splines, allowing for cell line-
specific amplifications and deletions. A CN-adjusted essentiality score (CERES score) is estimated for each
single-guide RNA (sgRNA) and for each cell line. Among others, CERES scores can be further analyzed to
discover cancer vulnerabilities and gene essentiality.

Designing sgRNAs that uniquely map to the genome can be challenging, especially for genes sharing high
homology with other genomic loci, either in coding or non-coding regions. In the Avana library, a number
of sgRNAs are annotated to target multiple genes through perfect sequence complementarity between the
sgRNA’s protospacer sequence and genomic DNA – we refer to such guides as “multi-target” guides. The
CERES model attempts to account for multi-target effects by modeling the log-fold change (LFC) of a
multi-target guide as a linear combination of knockout effects from the set of genes targeted by the guide;
the model assumes that gene knockout effects are additive. For instance, for a guide targeting two genes,
this assumes that the phenotypic effects of a double knockout is the sum of the individual gene knockout
phenotypic effects. As a limitation, genetic interactions such as synergy, synthetic lethality, genetic buffering,
and epistasis, cannot be appropriately captured by such a model. Additionally, while the CERES model
attempts to account for multi-target effects, off-target effects caused by mismatch tolerance between the
sgRNA’s protospacer sequence and genomic DNA have not been considered in the Achilles dataset.

In this work, we investigate the impact of multi-target effects on estimating cancer cell dependencies, as well
as the impact of off-target effects caused by mismatch tolerance in sgRNA-DNA binding. We take advantage
of the Achilles CRISPR screening data, by far the most comprehensive CRISPR screening effort to date,
to generalize our findings across cell lines and sgRNAs. First, we show that the number of on-targets of
a particular sgRNA can dramatically increase the sgRNA essentiality score in a non-additive fashion. To
illustrate this, we consider guides in the Avana library that co-target paralogs MYL12A and MYL12B, and
show that an additive model cannot capture the synthetic lethal interaction observed in a subset of cell lines
in which the redundant third paralog MYL9 is not expressed. We also show that off-target effects caused
by single-mismatch sgRNA-DNA alignments can cause spurious associations between cell lineage and gene
knockout. As an example, we found that several cell lines are unexpectedly reported as being dependent
on SOX9 despite the observation that SOX9 is not expressed in these cell lines. We present evidence that
off-target effects caused by single-mismatch tolerance are likely responsible for these inconsistent results. We
provide gene-level summaries of on-target and off-target alignments in the Avana library to help flag and
interpret genes with unexpected essentiality scores.
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2 Material and Methods

2.1 Datasets

Achilles CRISPR: From the Achilles data portal (https://portals.broadinstitute.org/achilles), we
downloaded CERES scores for 391 cell lines across 17,655 genes (file: gene effect.csv). We also downloaded
guide-level log-fold changes (logfold change.csv); processing of these data is further discussed below.

Achilles RNAi: From the Achilles data portal (https://portals.broadinstitute.org/achilles), we
downloaded gene-level DEMETER scores for 501 cell lines across 17,098 genes
(file: ExpandedGeneZSolsCleaned.csv).

CCLE datasets: From the Cancer Cell Line Encyclopedia (CCLE) portal (https://portals.broadinstitute.
org/ccle), we downloaded rpkm-level RNA-Seq data (file: CCLE RNAseq 081117.rpkm.gct) and gene-level
relative copy number data (file: CCLE copynumber byGene 2013-12-03.txt). We applied the transformation
log2(rpkm + 1) to the RNA-Seq data.

2.2 sgRNA sequence alignments

For alignment, we considered the 72,787 guides in the Avana library for which LFCs were available in the
portal. We used bowtie (v.1.2.2, [Langmead et al., 2009]) to align guide sequences to the Human genome
assembly GRCh38, allowing up to 2 mismatches between the reference sequence (DNA) and the sgRNA’s
protospacer sequence (bowtie with options -v 2 -k 10000). Using the R package BSgenome [Pagès, 2016]
we filtered out alignments that did not have the canonical NGG PAM site, for a final total of 235,133 valid
alignments. Using the comprehensive gene annotation from GENCODE v28 [Harrow et al., 2012], we added
a gene and exon annotation for all alignments. Sequence alignments are provided in Supplementary File 1.

2.3 Processing of guide-level log-fold changes

We obtained guide-level raw LFCs from the Achilles portal (logfold change.csv). As detailed in Meyers
et al. [2017], fold changes were first calculated by dividing sample read counts by their representation in the
starting plasmid DNA library (pDNA). As in Meyers et al. [2017], we normalized LFCs for each cell line
replicate by centering the distribution using the median LFC value, and then dividing by the median absolute
deviation (MAD). Since we are interested in visualizing and analyzing LFCs, we further scaled LFCs by the
absolute average LFC value across cell lines for guides targeting essential genes (212 genes total, [Hart
et al., 2014]), such that a value of -1 roughly indicates essentiality. We then averaged normalized LFCs
across replicates by taking the mean. For each cell line separately, we corrected LFCs for gene copy number
alteration using relative copy numbers provided by CCLE using the methodology described in Meyers et al.
[2017].

2.4 List of paralog gene pairs

We downloaded human gene paralog pairs from the Protein ANalysis THrough Evolutionary Relation-
ships (PANTHER) database [Mi et al., 2016] using the file ftp://ftp.pantherdb.org/ortholog/13.1/

RefGenomeOrthologs.tar.gz. Paralogs, defined as genes that diverged via a duplication event, were pre-
dicted using phylogenetic trees of protein-coding genes across 104 organisms. We only considered genes
screened in the Achilles dataset, resulting in 74,070 paralog pairs.
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3 Results

3.1 The impact of multiple on-target alignments on sgRNA depletion

We investigated the effects of multiple on-target alignments by looking at the relationship between sgRNA
alignments and LFCs. We note that negative LFCs indicate a decrease in cell proliferation, and therefore
larger negative LFCs indicate greater gene essentiality. For our analyses, we also corrected LFCs for copy
number variation using the methodology described in Meyers et al. [2017]. In Figure 1a, we present the
counts of guides stratified by the number of targets; the counts decay exponentially as the number of perfect
alignments increases. 68,742 guides align uniquely to one target only, and 3,959 guides align to more than
one target (multi-target guides), resulting in 2023 genes that are targeted by at least one multi-target
guide. Interestingly, 86 sgRNAs intended to target genes did not align to any genomic location in GRCh38.
The median LFC for these guides is positive (Figure 1b) and correlates with the 995 non-targeting control
(NTC) guides included in the Avana library (r = 0.69), suggesting indeed that many of the DNA sequences
corresponding to those 86 sgRNA sequences are likely to be absent in the genome.

To study the impact of multiple alignments on guide essentiality scores, we averaged LFCs across cell lines
to get guide-specific average essentiality scores. We restricted our analysis to guides with no single-mismatch
alignments to prevent confounding with off-target effects; off-target effects caused by mismatch tolerance are
further discussed below. In Figure 1b, we report the distributions of the average LFCs as a function of the
number of perfect alignments. The median LFC significantly decreases as a function of number of perfect
alignments (p < 2.2 x 10−16, Jonckheere trend test [Jonckheere, 1954, Terpstra, 1952]). This is concordant
with the hypothesis that a guide mapping to several DNA targets will introduce multiple DSBs and therefore
will result in more cleavage toxicity, similar to the effect of copy number [Meyers et al., 2017]. The CERES
algorithm described in Meyers et al. [2017] attempts to account for these multi-target effects by explicitly
modeling multi-target gene knockouts in an additive fashion. Despite this implementation, we observed that
the number of perfect alignments also affects the median CERES score (p < 2.2 x 10−16, Jonckheere trend
test, Figure 1c).

We also found that cleavage toxicity induced by multi-target guides is cell line-specific, similar to the CN
toxicity described in Meyers et al. [2017]; for instance, the on-target toxicity is quite profound for the breast
cancer HMC-1-8 cell line (Figure 1d), whereas there is minimal to no effect in the lymphoma cell line SR-
786 (Figure 1e). For both cell lines, the fitted curves were estimated using second-degree polynomials (see
Methods). Fitted curves for all cell lines are presented in Figure 1f.

3.2 Guides co-targeting coding regions are enriched for paralogs

Next, we sought to understand whether or not the increased lethality associated with multi-target guides
is attributable to cleavage toxicity only, or can also be a consequence of genetic interactions within the set
of co-targeted genes. We focused on the 2628 guides in the Avana library that target exactly two genomic
loci with perfect complementarity; we refer to these guides as “double-target” guides. A double-target guide
can either target (a) one coding region and one non-coding region, or (b) two coding regions. For (a), the
combined knockout effect is expected to be the sum of the gene-specific knockout effect and the cleavage
toxicity effect induced by introducing DSBs at two genomic loci. For (b), the combined knockout effect is
expected to be the sum of the double-gene knockout effect, with possibly a genetic interaction effect, and
the cleavage toxicity effect induced by introducing DSBs at two genomic loci.

Using annotated exons from GENCODE (comprehensive gene annotation, human v28), we found that 2503
(95.2%) of the double-target guides have both targets located in coding regions. Since the annotated exons
represent only 4.5% of the mappable genome, this represents a significant enrichment (exact binomial test,
p < 2.2 x 10−16). We studied the effects of coding vs non-coding targets by averaging LFCs across cell
lines for double-target guides. We excluded guides with single-mismatch off-targets, resulting in 1734 and 85
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Figure 1. The impact of multiple on-targets on sgRNA log-fold changes (a) Guide numbers as a
function of the number of perfect alignments (on-target alignments). (b) Guide-level log-fold changes
(LFCs) averaged across cell lines as a function of the number of on-targets. The number of on-targets was
calculated as the number of perfect alignments between the reference genome and the 20-nt protospacer;
we excluded guides with single-mismatch alignments to prevent the confounding effect of single-mismatch
off-targets. (c) Combined effect of multiple on-targets on the CERES score. For each gene, we calculated
the maximum number of targeted loci (x-axis) as the maximum number of perfect alignments for a guide
designed to target that gene in the Avana library. (d-e) Effects of multiple on-target alignments on LFCs
in the breast cancer cell line HMC-1-8 and in the lymphoma cell line SR-786. The solid lines represent
second-degree polynomial fits (see Methods). (f) Fitted on-target activity score as a function of the
number of on-target alignments; each fitted line is a separate cell line.

guides for coding and non-coding region secondary targets, respectively. The average LFCs are presented in
Supplementary Figure S1. For both sets of guides, the median LFC is comparable and below 0 as a result
of cleavage toxicity induced by introducing DSBs at two genomic loci. However, the number of guides with
high activity (guides with LFC ≤ −0.5) is significantly higher for the set of guides targeting two coding
regions (OR = 4.32, p = 0.00094, Fisher’s exact test) than for the set of guides targeting only one coding
region. This suggest that a guide disrupting two genes is likely to be more lethal than a guide targeting one
coding region and one non-coding region.
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For guides targeting two coding regions in the Avana library, we asked whether or not the two targets are
related in terms of sequence similarity using gene paralogy as a proxy for gene similarity. Among the 2503
guides, 297 (11.9%) guides have their pair of targets annotated as being paralogs using the PANTHER
database [Mi et al., 2016] (see Methods). In comparison, the 74,070 pairs of paralog genes annotated in the
PANTHER database represent only ∼0.02% of all possible pairs of genes screened in the Avana library. This
significant enrichment for paralog genes (exact binomial test, p < 2.2 x 10−16) confirms that co-targeted
genes often share high homology.

3.3 The interplay between multi-target guides and synthetic lethality: MYL12A,
MYL12B and MYL9

In Meyers et al. [2017], guide-level LFCs are modeled as a combination of multiple on-target gene knockout
effects. The model makes the assumption that gene knockout effects are additive: the growth phenotype
resulting from double mutant cells is the same as the sum of the single-mutant growth phenotypes. While
this assumption is likely valid for pairs of genes/loci with no genetic interaction, such as DSB effects in
non-coding regions, this can lead to erroneous estimates of gene essentiality in case of synergistic or epistatic
genetic interactions. Many pairs of paralogous genes are functionally, or at least partially, redundant, and
synergistic effects have been observed for such pairs [Pérez-Pérez et al., 2009]. We therefore expected some
of the sgRNAs co-targeting paralog genes to violate the additivity assumption and result in biased estimates
of gene essentiality.

As an example, synthetic lethality, in which deficiencies in two (or more) genes is lethal while deficiency
in either one is not, is a genetic interaction that cannot be captured through additive models. The myosin
light chain 12A (MYL12A) and myosin light chain 12B (MYL12B) genes, two paralogous genes that are
part of the myosin II complex, are both targeted by unique and common guides in the Avana library (see
Figure 2a and Supplementary Table S1). Guides A1 and A2 map uniquely to MYL12A while guides B1 and
B2 map uniquely to MYL12B. Guides B3 and B4 map to MYL12B, but also to the processed pseudogenes
MYL12BP1 and MYL8P. Finally, guide AB1 maps to both MYL12A and MYL12B (two genes), while AB2
maps to MYL12A and MYL12B in addition to MYL12AP1, MYL12BP1, MYL12BP2 and MYL8P (six
genes/pseudogenes).

CN-corrected LFCs for these 8 guides are presented in Figure 2b. The LFC distributions for the isoform-
specific guides (A1, A2, B1, B2 and B3) are approximately centered around 0. The guide targeting two
pseudogenes (B4) appears to be more active; this is consistent with the toxicity effect observed in Figure 1b for
guides targeting 3 loci. Interestingly, for guides targeting both MYL12A and MYL12B, the LFCs are shifted
downwards with more variability, indicating that these two guides targeting both isoforms are substantially
more toxic. For both guides, it appears that a subset of cells lines have a depletion score comparable to
that of an essential gene (around -1). This suggests that the double knockout of MYL12A and MYL12B is
potentially lethal for a subset of cell lines, suggesting context-dependent synthetic lethality between the two
paralogs.

Using our estimation of cell-specific cleavage toxicity induced by multiple on-target alignments presented in
Figure 1f, we can adjust LFCs for global on-target toxicity; adjusted LFCs are presented in Figure 2d. The
scores within a guide category (A,B or AB) tend to be more similar after adjustment. It is also clear that
additive on-target activity is not sufficient to fully explain greater activity of guides AB1 and AB2. This
suggests that an additive model without genetic interaction does not capture the underlying biology and
leads to erroneous estimates.

To formally test for a genetic interaction between MYL12A and MYL12B, we model the LFC yi for guide i
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with the linear model

yi =


βA if sgRNA targets MYL12A only

βB if sgRNA targets MYL12B only

βAB if sgRNA targets both MYL12A and MYL12B

and test whether or not βA + βB = βAB . Using all cell lines to estimate the parameters, we obtained the
isoform-specific knockout effects β̂A = 0.06 (p = 3.13 x 10−7) and β̂B = 0.07 (p < 2.2 x 10−16), and the

digenic knockout effect β̂AB = −0.19 (p < 2.2 x 10−16). From the theory of linear modeling, we can obtain
a t-statistic and its associated p-value to test the additivity hypothesis βA + βB − βAB = 0. We obtained
a significant test (p < 2.2 x 10−16) and conclude that the additivity hypothesis does not hold, therefore
confirming a synergistic effect between MYL12A and MYL12B.

To investigate in which genomic context the genetic interaction between MYL12A and MYL12B appears to
be maximal, we looked at the correlation between LFCs for Guides AB1 and AB2 and gene expression of
23,241 genes obtained from CCLE (see Methods). MYL9 was the top correlate for both guides (Guide AB1:
r = 0.534, p < 2.2 x 10−16; Guide AB2: r = 0.377, p = 1.6 x 10−13; see Figure 2c). None of the guides were
associated with either MYL12A and MYL12B expression. This suggests that the pair of paralogs is more
essential to cell survival in the absence of MYL9 expression. Interestingly, both MYL12A and MYL12B
are non-muscle regulatory light chains (RLCs) that are highly homologous to the RLC MYL9. The murine
orthologs (Myl12a, Myl12b and Myl9 ) have been shown to be required to maintain the stability of myosin II
and cellular integrity, and double knockdown of Myl12a/Myl12b using siRNA showed major alterations in
cell structure that were not recapitulated by isoform-specific knockdowns [Park et al., 2011].

3.4 Additive models can lead to gene essentiality scores highly dependent on
guide design

Besides the problem of genetic interactions, the use of additive models to estimate gene knockout effects
from multi-target guides can lead to further problems. We present in this section two guide designs that are
part of the Avana library that lead to CERES scores that need to be interpreted with caution because of a
violation of the additivity assumption.

In Figure 3a, we illustrate the guide design for the Avana guides targeting the two genes TMED7 or TICAM2
as well as the readthrough TMED7-TICAM2. Guides 1-4 target both TMED7 and TMED7-TICAM2, Guides
5-7 target both TICAM2 and TMED7-TICAM2, while Guide 8 targets only TICAM2. Using the additive
model posited in the CERES algorithm, gene scores for TMED7, TICAM2 and TMED7-TICAM2 can be
solved using ordinary least squares (OLS). We note that in the CERES model, two additional guide-specific
parameters are included in the model to capture a guide-specific activity score and offset; an iterative least
squares approach is used to iteratively solve for guide-specific parameters and gene essentiality scores. These
two location-scale parameters do not alter the interpretation of the gene essentiality scores derived from the
additive model. Consequently, we omit them here for simplicity in order to focus on the guide-specific test
of genetic interaction. For a specific cell line, let y1, y2, . . . , y8 denote the CN-corrected LFCs for Guides 1-8
respectively using the guide notation presented in Figure 3a. An additive model for the gene essentiality
scores βTMED7, βTICAM2 and βFusion can be represented using the following system of linear equations:
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Figure 2. The interplay between multiple alignments and synthetic lethality in the Avana
library (a) Genomic mapping of the Avana guides targeting MYL12A and MYL12B. Guides A1 and A2
map uniquely to MYL12A and guides B1 and B2 map uniquely to MYL12B. Guides B3 and B4 map to
MYL12B, but also to additional non-functional pseudogenes. Guides AB1 and AB2 map to both MYL12A
and MYL12B. (b) Copy number-corrected LFCs for guides mapping to either MYL12A or MYL12B, or to
both, in the Avana library, across 391 cell lines; each dot represents a cell line. (c) Relationship between
guide-specific log-fold changes and MYL9 expression for the two guides mapping to both MYL12A and
MYL12B. (d) Same as (b), but after adjusting for cell-specific cleavage toxicity induced by multiple
on-target alignments.
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y1 = βTMED7 + βFusion

y2 = βTMED7 + βFusion

y3 = βTMED7 + βFusion

y4 = βTMED7 + βFusion

y5 = βTICAM2 + βFusion

y6 = βTICAM2 + βFusion

y7 = βTICAM2 + βFusion

y8 = βTICAM2

The OLS estimates for gene essentiality scores can be written as

β̂TICAM2 = y8

β̂Fusion =
y5 + y6 + y7

3
− β̂TICAM2

β̂TMED7 =
y1 + y2 + y3 + y4

4
− β̂Fusion.

The gene essentiality score for TICAM2 depends entirely on the LFC of one guide (Guide 8) and is therefore
highly sensitive to outliers and off-target effects. The essentiality scores for both TMED7 and TMED7-
TICAM2 depend on that of β̂TICAM2, making the scores inter-dependent and creating a correlation struc-
ture highly dependent on guide design, and not necessarily representative of true on-target effects. In the
Achilles dataset, we found that the CERES scores for these three genes are highly correlated with each other
(Figure 3c) and consistent with the linear dependencies introduced by the OLS solution shown in Figure 3b
and discussed above. To examine whether or not the CERES estimates for these three genes are biased,
we studied the DEMETER scores from the Achilles RNAi dataset [Tsherniak et al., 2017], presented in
Figure 3d. Interestingly, the sign of the correlations between the three genes are reversed, and the three
genes are broadly estimated as being non-essential genes (DEMETER score ≥ −2). This disagrees with the
CERES scores of TMED7 and TICAM2, which are centered at -1 and therefore are comparable to CERES
scores of essential genes.

The influence of guide design on correlations between essentiality scores is not limited to the triplet TMED7 /
TICAM2 /TMED7-TICAM2. The Avana library targets 36 readthrough genes, and all of them are targeted
by guides that are not unique to the readthrough but also target the pairs of individual genes. The cor-
relations of the CERES scores between two genes composing a readthrough have a distribution with two
modes bounded away from 0 (Supplementary Figure S2, red line) which behave differently than pairs of
genes chosen at random (grey line). This suggests that the guide design introduces spurious correlations
between gene essentiality scores for most genes targeted in a readthrough.

Spurious correlations can also happen with pairs of genes targeted by multi-target guides, such as the pair
EIF3C /EIF3CL. These two highly homologous genes are part of the eukaryotic translation initiation factor
3 complex (eIF3) and therefore are expected to be essential for cell growth. In the Avana library, five guides
target both EIF3C and EIF3CL, and one additional guide targets EIF3CL only. All six guides have LFCs
centered around -1, indicating gene essentiality, yet the mean CERES scores for EIF3CL and EIF3C are
respectively -1.15 and 0.20, suggesting that EIF3CL is broadly essential and EIF3C broadly non-essential.
This contradicts the findings of Hart et al. [2014], which report EIF3C as a pan-cancer essential gene. This
is a consequence of the knockout additivity assumption; the fact that the LFCs for the 5 guides targeting
both paralogs is similar to the LFC of the guide targeting only EIF3CL leads to an estimate of the EIF3C
CERES score close to 0. However, assuming both genes are broadly essential, it seems equally plausible
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Figure 3. Analysis of the genetic knockout additivity constraints for TMED7, TICAM2 and
the TMED7-TICAM2 readthrough. (a) Design for guides targeting TMED7, TICAM2 and the
readthrough TMED7-TICAM2 in the Avana library. (b) Cell line-specific gene score solutions for an
additive model using the Avana guides targeting TMED7, TICAM2 and the readthrough
TMED7-TICAM2. yi denotes the LFC for guide i and βFusion denotes the gene score for the readthrough
TMED7-TICAM2. Explicit solutions are derived using ordinary least squares (OLS). (c) Pairwise
scatterplots for the CERES scores for TMED7, TICAM2 and the readthrough TMED7-TICAM2. (d)
Pairwise scatterplots for the DEMETER scores (RNAi) for TMED7, TICAM2 and the readthrough
TMED7-TICAM2.
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that the double knockout does not make the cells die more in comparison to single knockout, especially
since the single knockouts already induces a strong cell killing. The similar yet non-redundant function of
the two genes violates the additivity assumption and leads to an incorrect estimate of the gene essentiality
score for EIF3C. These two examples suggest that multi-targeting can lead to guide design-dependent co-
dependencies and misleading biases that have to be interpreted with caution in downstream applications
such as identifying gene networks and cancer cell dependencies.

3.5 The impact of mismatch tolerance on sgRNA depletion

Figure 4. The impact of off-targets on sgRNA log-fold changes (a) Guide counts as a function of
the number of single-mismatch alignments. (b) Combined effect of multiple perfect alignments (on-targets)
and single-mismatch (1-mm) alignments on LFCs. (c) Fitted off-target effects caused by single-mismatch
alignments. Each fitted line is a separate cell line. (d) Relationship between cell line-specific on-target
toxicity and cell line-specific off-target toxicity. On-target and off-target toxicity were measured as the
average LFC for guides with 4 perfect alignments and 4 single-mismatch alignments, respectively. (e)
Relationship between on-target toxicity and Cas9 activity score.

We now focus on characterizing off-target effects caused by mismatch tolerance between the sgRNA’s pro-
tospacer sequence and the genomic DNA. In Figure 4a, we plot the guide counts distribution as a function
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of the number of single-mismatch alignments; a single-mismatch alignment is defined as a one-nucleotide
mismatch in the sgRNA-DNA pairing. To delineate cleavage toxicity caused by multiple-target alignments
(on-target effects) from off-target effects due to mismatch tolerance, we stratified guides by the number of
single-mismatch alignments and the number of perfect alignments (Figure 4b). For a fixed number of perfect
alignments, additional single-mismatch alignments significantly decrease LFCs (multiple linear regression, p
< 2.2 x 10−16). This confirms that in addition to perfect alignments, single-mismatch off-targets contribute
independently and additively to the decrease of cell viability. Similar to the cleavage toxicity associated
with multiple-target guides, we found that off-target toxicity is also cell line-specific (Figure 4c). Moreover,
cell line-specific off-target toxicity correlates with cell line-specific on-target toxicity (r = 0.69, p < 2.2 x
10−16); we used the fitted on-target and off-target effects for 4 perfect and single-mismatch alignments, re-
spectively, as measures of on-target and off-target toxicity. The correlation suggests that both on-target and
off-target cleavage toxicity are related effects that show specificity for cell lines but not guides, since the sets
of guides used to estimate both effects are broadly different (see Methods). Furthermore, cleavage toxicity
anti-correlates with the cell line-specific Cas9 activity score described in Aguirre et al. [2016] (r = −0.48,
p < 2.2 x 10−16, Figure 4e), and strongly anti-correlates with the median LFC for non-targeting controls
(r = 0.67, p < 2.2 x 10−16).

We also studied the relationship between mismatch position in the protospacer and mismatch tolerance across
cell lines. To prevent the number of alignments from confounding the analysis, we only considered guides
with one perfect alignment and one single-mismatch alignment. In Figure 5a, we show the distributions of
the LFCs as a function of single-mismatch position within the protospacer. The effect of a single mismatch
is more pronounced for mismatches far away from the PAM site (PAM-distal region) as opposed to PAM-
proximal nucleotides, sometimes referred to as the seed region. Mismatch tolerance appears to be maximal
at the 20th position. This suggests that guides should be carefully designed to avoid mismatch at that
position.

We extended our analysis to double-mismatch (sgRNA-DNA mismatch at two nucleotides) tolerance. Be-
cause the number of all possible combinations of two-nucleotide mismatches in the 20-nt protospacer is large
compared to the number of available guides with mismatches in the Avana library, we confined our analysis
to pairs of mismatches for which the two discordant bases are located within a specified distance from the
PAM site. The distributions of guide depletion are shown in Figure 5b. Again, to prevent the number of
alignments from confounding the analysis, we only considered guides with one double-mismatch alignment.
One can observe an apparent off-target effect for a double mismatch that occurs at the two most PAM-distal
positions. To illustrate the impact of double mismatch on guide essentiality, we consider guides targeting the
gene CYFIP1. The LFCs across cell lines are illustrated in Figure 5c. All four guides have only CYFIP1 as
an on-target alignment, and do not have any single-mismatch alignments. Guide 1 has one double-mismatch
alignment (positions 3 and 12); guides 2 and 3 do not have any double-mismatch alignment. Guide 4 aligns
to 10 different genomic loci with a double-mismatch at positions 19 and 20, resulting in a substantial decrease
in the LFC. This biases the CERES score for CYFIP1 towards essentiality (CERES score of −0.41), while
excluding guide 4 results in a score centered around 0 (non-essentiality).

3.6 Mismatch-tolerant guides can confound phenotypes: SOX9 and SOX10

The CERES model does not account for off-target effects caused by single-mismatch and double-mismatch
tolerance, and this can lead to erroneous conclusions when both on- and off-targets are part of the same
gene family, for instance genes within the SOX family. Importantly, we found that among the 4705 genes
that have at least one guide with a single-mismatch alignment, 3197 (68%) such genes have at least one
single-mismatch alignment located in the exon of another gene. This increases the likelihood of false positive
effects caused by single-mismatch alignments. The consequences are potentially variable across cell lines and
may depend on which alternative family member is affected, and whether it is expressed or not in a given
subset of cell lines. We illustrate this by analyzing the CERES score and guide LFCs for the SOX9 gene
encoding the transcription factor SOX-9.
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Figure 5. Position-specific mismatch tolerance of the protospacer (a) Effect of a single mismatch
between sgRNA protospacer and target DNA as a function of position within the protospacer. The PAM
site starts at position 0. (b) Effect of a double mismatch between protospacer and reference genome as a
function of the most PAM-proximal mismatch position. (c) Log-fold changes across cell lines for the 4
guides targeting CYFIP1. The protospacer of Guide 4 aligns to 10 genomic loci when allowing a mismatch
at both position 20 and position 19.

By looking at the relationship between the CERES score for SOX9 and its expression (Figure 6a), we
noticed quite a few cell lines with very low expression of SOX9 that exhibit a clear and contradictory
dependency on SOX9 (CERES score close to -1); most of these cell lines are melanoma cell lines. While
all of the protospacer sequences for the guides targeting SOX9 match perfectly to only SOX9, an analysis
of single-mismatch alignments revealed that 3 out of 4 such guides also align to SOX10. By plotting the
SOX9 CERES score against SOX10 expression, it becomes clear that SOX9 -dependent cell lines with low
expression of SOX9 are those that highly express SOX10. ((Figure 6b).

Analyzing guide-level LFCs reveal that indeed, for a guide with a single-mismatch alignment to SOX10
(Guide 1), there is a strong dropout in cell lines highly expressing SOX10 (Figure 6b). Conversely, based
on a guide with no single-mismatch alignment to SOX10 (Guide 2), cell lines expressing SOX10 are not
dependent on SOX9 (Figure 6c).

Without analyzing single-mismatch alignments, one would have erroneously concluded that most of the
melanoma cell lines in the Achilles dataset have a SOX9, rather than a SOX10, dependency. This illustrates
how single-mismatch off-target effects can confound the analysis of cancer vulnerabilities, and also how it
can be challenging to detect those off-target effects when they occur only in a small subset of cell lines, such
as the melanoma cell lines in this case.

Recently, a coessentiality network has been derived from correlating fitness profiles across CRISPR knockout
screens datasets, with the Achilles dataset being the most represented dataset [Kim et al., 2018]. The
authors found a coessentiality network cluster that is highly specific to BRAF -mutated melanoma cell lines
and contains elements of the MAP kinase pathway (MAP2K1, MAPK1 and DUSP4 ) as well as SOX9 and
SOX10. Using the CERES scores from the Achilles dataset, we were able to recreate the cluster entirely by
taking the 9 top genes correlated with the BRAF CERES score: BRAF, MITF, MAPK1, PEA15, NFATC2,
ZEB21, DUSP4, SOX9, SOX10 (Figure 6d). The correlation between the CERES score for BRAF and the
CERES score for SOX9 is high (r = 0.42). We recalculated an essentiality score for SOX9 after removing
guides with 1-mismatch alignment to SOX10. As a result, SOX9 no longer associates with the BRAF cluster
(Figure 6e).

This is not an isolated case. By looking at the correlation between the CERES score and self-expression of

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/387258doi: bioRxiv preprint 

https://doi.org/10.1101/387258


Figure 6. The confounding effect of single-mismatch sgRNA-DNA tolerance (a) On the left:
CERES score for SOX9 plotted against SOX9 expression; each dot is a cell line, and skin cell lines are
plotted in red. On the right: CERES score for SOX9 plotted against SOX10 expression. (b) Same as (a),
but with the CN-corrected log-fold change for a guide targeting SOX9 with a single-mismatch alignment to
SOX10. (c) Same as (b), but for a guide without a single-mismatch alignment to SOX10. (d)
BRAF -associated coessentiality cluster using between-gene CERES Pearson correlations. A correlation
cutoff of r = 0.35 was chosen to draw edges. Edges associated with SOX9 (orange) disappear when not
including SOX9 -targeting guides with 1-mismatch to SOX10. (e) Pearson correlations between the SOX9
CERES score and genes that are part of BRAF -associated cluster, before and after removal of guides with
1-mismatch SOX10 off-target effects.
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the gene, we found that many of the top anti-correlated genes, which are overrepresented by transcription
and lineage factors, have guides with single-mismatch alignments to an alternative member within their gene
family: GATA2 /GATA3, SOX1 /SOX2, DOCK10/DOCK11, UBB/UBC, PAX3 /PAX7, TEAD2 /TEAD3,
to name a few. We provide a table of the top 200 self-anti-correlated genes together with on-target and
off-target alignments in the Supplementary File 2.

4 Discussion

In this work, we first analyzed cleavage toxicity associated with guides targeting more than one genomic locus
with complete complementarity. Using LFCs from the Achilles dataset, across 342 cell lines and more than
75k sgRNAs (Avana library), we found that guide depletion increases as a function of the number of targeted
loci in the genome. We observed this not only for perfect alignments between the sgRNA protospacer and
genomic DNA, but also for single-mismatch tolerant alignments to a lesser extent. A single-mismatch that
occurs in the 10 most PAM-distal nucleotides results in more severe toxicity, and a double-mismatch that
occurs only in the 2 most PAM-distal protospacer positions results in greater toxicity. These biases have
been reported before [Chen et al., 2018, Doench et al., 2016, 2014, Hsu et al., 2013, Xu et al., 2015, Fu et al.,
2013, Anderson et al., 2015, Morgens et al., 2017, Tsai et al., 2015, Tsai and Joung, 2016, O’Geen et al.,
2015, Lin et al., 2014, Kim et al., 2016, 2015], but were only estimated using a few cell lines. Here, we could
robustly estimate these effects across hundreds of cell lines, and found that cleavage toxicity associated with
promiscuous guides substantially depends on the cell line model, similar to the copy number bias detailed in
Meyers et al. [2017]. The large number of cell lines and targeted genes made it possible to robustly generalize
our findings across lineages and genetic contexts, despite the low number of guides per gene (average of 4
guides per gene in the Avana library).

The CERES algorithm presented in Meyers et al. [2017] implements a cell line-specific CN correction of the
depletion scores, but also attempts to correct for multiple on-target effects by decomposing guide-specific
LFCs as a sum of knockout effects. While this is valid for genes and genomic targets that do not interact with
each other, such as DSBs introduced in non-coding DNA, the strict phenotypic additivity assumption often
does not hold because of more complex genetic interactions. Two knockouts are considered to be strictly
additive if the effect of the digenic knockout is the sum of the effects of the single knockout; strict additivity
of cell fitness effects is rare, with most genes exhibiting some level of positive and negative genetic interaction
which is substantially more frequent among essential genes [Costanzo et al., 2016]. Genetic interaction effects
are also enhanced for guides targeting highly homologous genes that are more likely to function together in
the same biological process or have some level of functional redundancy.

Synthetic lethality, for instance, is a type of genetic interaction in which double mutant cells do not survive,
while single mutant cells continue to proliferate, perhaps at a slower rate. Pairs of synthetically lethal
genes have been utilized to identify therapeutic targets: BRG1-BRM : [Hoffman et al., 2014, Januario et al.,
2017] , ENO1-ENO2 [Muller et al., 2012], ME2-ME3 [Dey et al., 2017], TP53-POLR2A [Liu et al., 2015]
BRCA1/2-PARP[Farmer et al., 2005]. Using guides targeting both MYL12A and MYL12B, two regulatory
light chains (RLCs) essential to the Myosin II complex, we showed that there exists a subset of cell lines
for which the pair of RLCs is synthetically lethal, violating the assumption of additivity and culminating in
biased CERES scores for both MYL12A and MYL12B.

We also showed that the additive model can create false inter-dependencies between genes in the presence
of multi-target guides. Indeed, in the presence of a non-linear effect between a multigenic knockout and
individual knockouts, the estimated gene knockout effects are markedly correlated with each other in patterns
determined by the library guide design used in the experiment. We used the CERES scores estimated for
TICAM2, TMED7 and the readthrough TMED7-TICAM2 to illustrate misleading CERES score correlations
that are dependent on the single guide targeting TICAM2 only.

Orthogonal to the problem of modeling multiple on-target knockout effects using an additive model, we
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also found that a single-mismatch in sgRNA-DNA alignments can confound phenotypic readouts because of
off-target effects. We found that according to the CERES score, the transcription factor SOX9 is essential in
melanoma cell lines, despite the fact these cell lines lack expression of SOX9 but highly express SOX10. We
showed this was apparently caused by guides with a single-mismatch alignment to SOX10, causing off-target
effects that confound the growth phenotype for SOX9 non-expressing cell lines. Downstream consequences
of such confounding was exemplified in a recent publication [Kim et al., 2018], in which the authors inferred
a coessentiality network using the Achilles dataset and reported that SOX9 is part of a gene cluster highly
specific to BRAF -mutated melanoma cell lines. We showed that removing single-mismatch tolerant guides
from the analysis removes SOX9 membership in the cluster.

These observations suggest that multi-target guides as well as mismatch-tolerant guides can lead to false
positives and biased essentiality scores. When interpreting essentiality score for a given gene, one should also
investigate guide-level LFCs to detect abnormalities, such as guides with multiple on-target and off-target
single-mismatch alignments. We provide in the Supplementary material a gene-level table summarizing the
number of on-target and off-target alignments for the Avana library to help readers with flagging potentially
problematic genes.

Similar to the CN correction algorithm implemented in Meyers et al. [2017], one could attempt to system-
atically correct for multi-target and off-target toxicity by removing the observed effects for each cell line
separately. However, because of genetic interactions, correcting depletion scores for multi-target guides is
not straightforward. As opposed to cleavage toxicity induced by differential CN, the increased activity ob-
served in multi-target guides depends on the set of targeted genes; these genes can interact with each other
in a cell line-specific manner, excluding the possibility of fitting a global genetic interaction correction model
across cell lines. An alternative solution is to remove guides that do not map uniquely to the genome when
calculating a gene-level essentiality score; 383 genes would have to be excluded in the Avana library because
of the absence of uniquely-targeting guides for these genes. On the other hand, multi-target guides could be
still further analyzed separately, since such guides can be informative about multigenic knockout, such as
co-targeting known paralogs. These guides should be annotated separately, and may potentially be further
utilized to help design a library of guides co-targeting paralogs.
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Supplementary Tables and Figures

Protospacer Chr Pos Gene Symbol
Guide A1 GCATCTAGATACTCATCAGT chr18 3253899 MYL12A
Guide A2 GTCAAACATAGCAAACACAT chr18 3253305 MYL12A
Guide B1 CCATGATGAATGAGGCCCCA chr18 3277282 MYL12B
Guide B2 GGTGAAATTGATGGGCCCTG chr18 3277300 MYL12B
Guide B3 GTCAAACATGGCAAACACAT chr18 3272959 MYL12B

chr15 42571987 MYL12BP1
Guide B4 AATCTGTGACTGGTCAAACA chr18 3272971 MYL12B

chr15 42571999 MYL12BP1
chr6 33339049 MYL8P

Guide AB1 CATTGGATGTTGCACGCTGA chr18 3253288 MYL12A
chr18 3272942 MYL12B

Guide AB2 ACAGATTCAGGAGTTCAAAG chr18 3253330 MYL12A
chr18 3272984 MYL12B
chr8 93849646 MYL12AP1
chr15 42572012 MYL12BP1
chr4 184299541 MYL12BP2
chr6 33339062 MYL8P
chr17 54703021 RP11-372K20.1

Supplementary Table S1. Genomic alignments for MYL12A and MYL12B guides in the Avana library.
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Supplementary Figure S1. Log-fold changes for double-target guides. Log-fold changes
averaged across cell lines for guides mapping to two genomic loci (double-target guides). They grey dots
represent double-guides for which only one of the two targets is located in a coding region, and they red
dots represent double-target guides for which both targets are located in coding regions.
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Supplementary Figure S2. The effect of multi-target guides in readthrough genes The Avana
library contains 33 pairs of genes that can form a readthrough gene. The multi-target guides used to knock
out individual genes as well as and the gene readthrough create inter-dependencies in the CERES scores.
Red line: density of the pairwise correlations between the CERES score of genes for which their
readthrough is also targeted. Grey line: pairwise correlations of random pairs of genes.
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