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Abstract 13 
 14 
Many complex biological systems such as metabolic networks can be divided into functional 15 
and organizational subunits, called modules, which provide the flexibility to assemble novel 16 
multi-functional hierarchies by a mix and match of simpler components. Here we show that 17 
polysaccharide-degrading microbial communities in the ocean can also assemble in a modular 18 
fashion. Using synthetic particles made of a variety of polysaccharides commonly found in the 19 
ocean, we showed that the particle colonization dynamics of natural bacterioplankton 20 
assemblages can be understood as the aggregation of species modules of two main types: a first 21 
module type made of narrow niche-range primary degraders, whose dynamics are controlled 22 
by particle polysaccharide composition, and a second module type containing broad niche-23 
range, substrate-independent taxa whose dynamics are controlled by interspecific interactions, 24 
in particular cross-feeding via organic acids, amino acids and other metabolic byproducts. As a 25 
consequence of this modular logic, communities can be predicted to assemble by a sum of 26 
substrate-specific primary degrader modules, one for each complex polysaccharide in the 27 
particle, connected to a single broad-niche range consumer module. We validate this model by 28 
showing that a linear combination of the communities on single-polysaccharide particles 29 
accurately predicts community composition on mixed-polysaccharide particles. Our results 30 
suggest thus that the assembly of heterotrophic communities that degrade complex organic 31 
materials follow simple design principles that can be exploited to engineer heterotrophic 32 
microbiomes. 33 

 34 

Many biological and technological systems are built by the integration of relatively 35 

autonomous parts, or modules, which can be rearranged to create larger multi-functional 36 

hierarchies1,2. Multi-domain proteins, regulatory networks or metabolic networks, to name a 37 

few, evolve in a modular fashion through the mix and match of simpler functional components, 38 

such as protein domains or metabolic pathways, that when combined form systems with more 39 

diverse functional repertoires3. In bacteria and archaea, for instance, new transcription factor 40 

proteins evolve by fusion of pre-existing signal-sensing protein domains, which monitor the 41 

intracellular environment, and DNA-binding protein domains, which modulate gene 42 

expression, enabling the rapid discovery of novel input-output pairs4. Likewise, bacteria and 43 

archaea can acquire new catabolic pathways via horizontal gene transfer from distant 44 

organisms and integrate them into a core network of metabolic reactions that generate energy 45 
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and biomass precursors5. This ability to combine functional components or to plug them into 46 

existing infrastructures without disrupting their structure and function, is a key advantage of a 47 

modular design that enables the discovery of new functions by aggregating simpler 48 

components6.  49 

Much like metabolic and gene networks, microbial communities might be 50 

conceptualized as interconnected systems, whereby populations of microbes interact via direct 51 

chemical communication, metabolic crossfeeding, etc. But while intracellular networks 52 

assemble via evolutionary processes, communities of microbes assemble and disassemble in 53 

ecological timescales via dispersal, colonization and growth7. Despite the frequent assembly 54 

and disassembly of microbial communities in variable environmental conditions, it is not well 55 

understood if communities can preserve a core structure across environments, modified only 56 

by the gain or loss of a few functional modules, or if instead, communities experience extensive 57 

species turnover due to a lack of modular organization. While the latter scenario has 58 

traditionally attracted strong interest as it can lead to alternative community states8, the potential 59 

for modular assembly in microbial communities has not been explored.  60 

Addressing this important problem requires us to start by defining what we here will 61 

call an assembly module for an ecological community. By extension of the notion of an 62 

evolutionary module as used in the context of genome or metabolic network evolution9, we 63 

define an ecological assembly module as a group of taxa with similar dynamics and function, 64 

which can be integrated into various communities and perform a given metabolic process with 65 

minimal disturbance to the structure of the system. Although the term “module” has been 66 

applied in ecology to describe cohorts of species with dense patterns of interconnectivity in 67 

pairwise species interaction networks10, such a definition is independent of dynamics, and as 68 

such it need not relate to assembly modules as defined here, which in principle can be made of 69 

loosely connected species with similar function and dynamics.  70 

In this study, we aim to establish whether the microbial communities that assemble on 71 

micro-scale particles of organic matter in the ocean do so in a modular fashion. In the ocean, 72 

much like in animal guts, heterotrophic microbes break down biopolymer particles, releasing 73 

and recycling bioavailable nutrients11. At the micro-scale, the decomposition of these complex 74 

carbohydrates depends on the assembly of communities on particles surfaces, which act as 75 

resources and community scaffolds12,13. Previous studies have shown that cross-feeding, in 76 

which an organism’s metabolic byproduct is the primary substrate of another organism, plays 77 

an important role in structuring communities on particles14. In this sense, particle-attached 78 

communities can be considered as self-organized metabolic collectives, where a number of 79 
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species that co-colonize in an ordered fashion consume a primary resource, the particle 80 

biopolymer, and recycle byproducts through a series of trophic interactions. 81 

To measure the potential for modular community assembly on particles, we performed 82 

controlled assembly experiments where communities are allowed to self-organize on particle 83 

surfaces, starting from the same species pool and in otherwise identical abiotic conditions, but 84 

changing the primary polysaccharide that makes the particle. This setup allows us to study how 85 

communities reorganize their structure as a function of perturbations in the initial substrate fed 86 

to the system, and to ask whether such reorganization reveals the presence of assembly modules. 87 

To implement these controlled community assembly experiments, we used model marine 88 

particles containing paramagnetic cores, ranging from 50 to 200 µm in diameter (Figure S1). 89 

Our particles were composed of one of four carbohydrates abundant in marine environments: 90 

chitin, alginate, agarose and carrageenan (Figure 1A), as well as combinations of these 91 

substrates. Chitin is frequently found in the shells of crustaceans such as copepods as well as 92 

on the membranes of diatoms15,16. Alginate is a structural component of the cell walls of brown 93 

algae, whereas agarose and carrageenan are enriched in seaweeds17. Particles of the different 94 

substrate types were incubated in natural seawater to perform community-capture experiments, 95 

where particles act as micro-scale community scaffolds that can be magnetically pulled down 96 

for genomic analysis or cultivation13. 97 

 98 

Results   99 

Previous work with chitin model particles has shown that community assembly proceeds in a 100 

reproducible succession, whereby early colonizers degrade chitin and facilitate the invasion of 101 

secondary consumers that lack enzymes required to hydrolyze chitin14. Across the four single-102 

substrate particle types, we found that in all cases community assembly proceeded via rapid 103 

successional dynamics, indicating that the type assembly dynamics are not dependent on initial 104 

substrate. To characterize these dynamics, we collected ~1000 particles at each of twelve time 105 

points, from 0 to 204 hours, and sequenced their surface-attached communities using 16S rRNA 106 

gene amplicon sequencing (Methods). With this data we calculated Amplicon sequence 107 

Variants (ASVs) using the DADA2 pipeline18, identified the most abundant ASVs – comprising 108 

at least 1% of sequenced reads for at least one time point – and ordered them by the time at 109 

which they reached their maximum abundance within the communities (Figure 1B). On all four 110 

particle types tested, most of taxa present at high abundance in the first 12 hours decline 111 

substantially in abundance by 72-96 hours, indicating a remarkably similar rapid community 112 

turnover. 113 
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 114 

 115 
 116 
Figure 1. Rapid successional dynamics on four different marine polysaccharides. A) Paramagnetic 117 
hydrogel beads made of agarose, alginate, chitin, or carrageenan are incubated in natural, unfiltered 118 
coastal seawater. Upper panels are phase contrast images of the particles (with magnetite cores in black).  119 
Lower panels are fluorescence microscopy images of particles stained with Syto9 after 136 hours of 120 
incubation, revealing dense microbial communities on particle surfaces.  Scale bar corresponds to 100 121 
µm. B) Successional dynamics on each particle type. Taxa (rows) correspond to Amplicon Sequence 122 
Variants (ASVs) and are ordered by time at which they attain their maximum abundance. The data 123 
correspond to the relative frequencies of each taxon normalized by rows.  Only ASVs whose maximum 124 
relative frequency is >1% are shown. 125 

 126 

Despite the overall similarity in colonization dynamics across particle types, the 127 

abundance and dynamics of individual ASVs on different particle types was not necessarily 128 

conserved. To quantify differences in ASV abundance across particle types, we calculated a 129 

“niche breadth” index for the ASVs. To this end, for each ASV, 𝑖, and each particle type, 𝑗, we 130 
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computed the geometric mean frequency over time, 𝑓$% , renormalized the mean frequencies so 131 

∑ 𝑓$%% = 1 and calculated the entropy of the mean ASV abundance over particle types, -132 

∑ 𝑓$%% 𝑙𝑜𝑔,(𝑓$%) (Methods). The entropy represents an index that described how uniformly the 133 

ASV was distributed over the four substrates.	ASVs that appeared only on one particle type had 134 

a niche breadth score = 0, whereas ASVs that were equally prevalent across all particle types 135 

(𝑓$% = 0.25	∀𝑗) had a niche breadth score index of 2. 136 

We found that within particle-associated communities the distribution of the niche 137 

breadth indexes was bimodal (top histogram in Figure 2A). Using a Gaussian mixture model to 138 

cluster ASVs by distribution mode (Methods), we found that 36% of the ASVs grouped into a 139 

cluster of narrow-range taxa (niche breadth score < 0.18) and 42% into a cluster of broad-range 140 

taxa (niche breadth score	> 1.52). Moreover, an unsupervised hierarchical clustering of ASVs 141 

based on their temporal dynamics across particle types allowed us to further partition narrow-142 

range taxa by the substrate they appeared on (heat map in Figure 2A). The best partitioning of 143 

the data divides ASVs into five natural blocks, one for the broad-range taxon set and one block 144 

of narrow-range taxa for each of the four particle types (Methods). The broad-range block 145 

encompassed organisms that were not only highly prevalent across all particle types, but whose 146 

dynamics were highly correlated across substrates (average Spearman correlation = 0.54 across 147 

four particle types, Figures S2-S3). On average, these broad-range taxa increased in frequency 148 

towards later time points, causing community composition across particle types to first diverge 149 

due to the colonization of narrow-range species (reaching maximum divergence at ~24h) before 150 

converging to a set of broad-range taxa (Figure S4, S5). Overall, the comparison of the assembly 151 

dynamics across particle types shows that community assembly on particles can be coarse-152 

grained in terms of blocks of species with correlated dynamics, representing putative assembly 153 

modules, which are either highly specific or unspecific to the primary polysaccharide that feeds 154 

the community.  155 

 156 
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 157 
Figure 2. Unsupervised detection of narrow-range and broad-range taxa.  A. Clustering of taxa by 158 
occurrence across four particle types. The data show that taxa can be divided in a large cluster of broad-159 
range taxa and smaller clusters of narrow-range taxa. The niche breadth score (gray bars) shows that the 160 
distribution of niche breadths is bimodal (see histogram on top). B-C) Dynamics of broad-range ASVs 161 
(B), four cases, and narrow-range ASVs (C), one case for each substrate. The position of these specific 162 
ASVs are marked with an asterisk (*) in the heat map in A. The color of the asterisk corresponds to the 163 
color coding of substrates (legend in panel A), with the broad-range ASVs colored in gray. Figures S2 164 
and S3 show the dynamics of all broad-range and narrow-range taxa, respectively.  D) Phylogenetic 165 
distribution of narrow- and broad-range taxa. Phylogenetic clusters marked with numbers correspond to 166 
the largest monophyletic clades, defined at the class level for groups 1,2 and 3, and at the genus level 167 
for groups 4-10, all of which fall within the γ-proteobacteria class. In red are those monophyletic clades 168 
with a high incidence of narrow-range taxa (>50%). Tree rooted with Sulfolobus as outgroup (not 169 
shown). Red arrow points to the position of psychB3M02, the alginate degrader mentioned in the main 170 
text. Panel on the right shows the taxonomic description of the clades and the distribution of ASVs 171 
across each of the four narrow-range clusters with colored bar plots.  172 
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 173 

A phylogeny of the ASVs showed that narrow- and broad-range blocks were associated 174 

with distinct taxonomic groups and distinct metabolic potentials. Narrow-range blocks mapped 175 

primarily to four taxonomic groups: the family Flavobacteriaceae, which contributed to most 176 

chitin-associated ASVs, the genera Sacharophagus and its close relatives (e.g. Terednibacter), 177 

contributing most carrageenan-associated ASVs, Psychromonas, with virtually all ASVs in the 178 

alginate block, and Thalassotalea, contributing most carrageenan-associated ASVs (Figure 2D, 179 

clades 2,7,8 and 9).  Marine bacteria of the class Flavobacteriia and the genus Sacharophagus 180 

are among the most well-known degraders of polysaccharides in the ocean19–22, suggesting that 181 

these narrow-range taxa are specialized primary degraders. To gain further insight into the 182 

genomic and metabolic differences between narrow and broad-range taxa that could explain 183 

their dynamics, we cultured 874 bacterial isolates from particles and sequenced their 16S rRNA 184 

V4 region (Methods and SOM). Out of these, 247 isolates had a 100% identity match to 12 185 

broad-range ASVs. Only 2, however, mapped to 2 narrow-range ASVs (SOM). We focused our 186 

efforts on one of these narrow-range isolates, which we named psychB3M02, and belonged to 187 

the genus Psychromonas in the alginate-specific block (marked with a red arrow in Figure 2D). 188 

In agreement with its specific association with alginate particles, psychB3M02 was able to grow 189 

on alginate as sole carbon source (Figure 3A). Moreover, HMM-based searches of glycosyl 190 

hydrolase (GH) and polysaccharide lyase (PL) families against its genome identified multiple 191 

copies of alginate lyases (PL7, 8 copies), and oligoalginate lyases (PL15, PL17, 4 copies), but 192 

found no other genes coding secreted enzymes for degrading other marine polysaccharides such 193 

as chitin (GH18, GH19, GH20) or agarose (GH16) (Table S1). The absence of other 194 

polysaccharide degrading enzymes suggests that psychB3M02 has a specialized role as a 195 

primary degrader of alginate, in agreement with its narrow niche range. 196 

By contrast, none of three isolates of the Rhodobacteraceae (α-proteobacteria), a clade 197 

exclusively found in the broad-range block (Figure 2D, clade 1), encoded genes to produce 198 

hydrolytic enzymes (Table S1). Two members of this clade, however, a Loktanella, 199 

lotkaD2R18, and a Ruegeria, ruegeA3M17, had the machinery to import and utilize 200 

oligosaccharides of alginate and chitin, respectively, suggesting a potential role as ‘free-riders’. 201 

By contrast, the third organism, phaeoC3M10, classified as a Phaeobacter, had no genes to 202 

convert cytoplasmic intermediates into central metabolic substrates, indicating that this strain 203 

cannot harvest oligosaccharides and instead relies on metabolic intermediates released by other 204 

members of the community. To experimentally assess the potential for facilitation between 205 

narrow- and broad-range taxa, we collected spent media from psychB3M02 grown to peak cell 206 
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density on alginate as the sole carbon source and asked whether this media would support 207 

growth of a panel of five broad range taxa that were unable to degrade and grow on alginate by 208 

themselves. We tested the three Rhodobacteraceae discussed above plus a Marinobacter and a 209 

Vibrio (Fig. 3A). In accordance with our expectation, all five broad-range taxa were able to 210 

grow on the spent media, even without supplementing it with additional nutrients (Figure 3A). 211 

This confirms that in an environment where alginate is the sole carbon source, narrow-range 212 

alginate degraders can facilitate the growth of broad-range, non-degrading taxa. 213 

To learn more about the exact mechanisms of facilitation and its apparent non-specific 214 

nature, we performed a targeted metabolomic analysis23 of psychB3M02’s spent media before 215 

and after growth of non-degrading broad range taxa (Methods), which showed that non-216 

degraders support their growth by taking up multiple small metabolic byproducts. For this 217 

analysis, we picked two non-degrading strains whose genomes suggested divergent metabolic 218 

capabilities: the Loktanella lotkaD2R18 and the Marinobacter marinF3R11. We identified 219 

compounds that were produced by psychB3M02 and consumed by one of the non-degraders in 220 

at least two out of three replicates. Out of 82 possible compounds, we detected 11 compounds 221 

that fulfilled this criterion: these included six amino acids (Figure 3B), the amino acid precursor 222 

3-methyl-2-oxopentanoic acid, TCA cycle intermediates malate and succinate, nucleosides and 223 

nucleotides (Tables S2-S4). This general consumption of multiple metabolic intermediates was 224 

observed for both marinF3R11 and lotkaD2R18. Some metabolites that could support growth 225 

of non-degraders were also released to the medium by non-degraders (Figure 3B). In particular, 226 

marinF3R11 secreted citrate, consistent with the prediction that this organism uses a reductive 227 

TCA cycle (Table S1). Overall, these data suggest that simultaneous utilization of a variety of 228 

metabolic intermediates is a robust ecological strategy for broad-range organisms, which could 229 

enable their growth in a manner that is not specific to the carbohydrate fed to the community. 230 

 231 
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 232 
Figure 3. Facilitation of the broad-range module is generic and mediated by multiple amino acid 233 
and organic acid excretions. A). Growth curves of a narrow-range degrader, psychB3M02, and 5 234 
broad-range non-degraders on alginate (left) and on spent media of psychB3M02. B) Model of 235 
possible cross-feeding pathways inferred from full genomes of psychB3M02, lotkaD2R18 and 236 
marinF3R11, as well as from targeted metabolomics data (Tables S2-S4). 237 

 238 

Having identified five distinct functional components, one for each primary substrate 239 

and one for the group of cross-feeding broad-range taxa, as well as their mechanism of 240 

interaction, we asked whether communities capable of degrading multiple polysaccharides 241 

could be assembled in modular fashion, that is, by a simple aggregation of polysaccharide-242 

specific modules. If this were the case, we would expect that the composition and dynamics of 243 

a community of higher complexity, capable of degrading multiple primary substrates, should 244 

be well approximated by a simple linear combination of the components we have identified. To 245 

test this hypothesis, we examined community assembly dynamics on particles made of substrate 246 
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mixtures and compared these dynamics to the one observed on the corresponding single 247 

substrate particles. In particular, we tested two mixed particle types: agarose-alginate and 248 

agarose-carrageenan (50% of each substrate by mass), which were incubated in the same 249 

seawater and conditions used for single substrate particles. 250 

Consistent with the notion of community assembly by aggregation of polysaccharide-251 

specific modules, a simple linear combination of the species abundances on each single 252 

substrate accurately predicted the composition of communities assembled on mixed particles 253 

(Figure 4A). To quantify this, we fitted the vector of ASV geometric mean frequencies on the 254 

mixed particles with a linear combination of the vectors of the corresponding single substrate 255 

particles (SOM). The best fitting linear model for the agarose-alginate mixture, 256 

𝐴𝑆𝑉88888888⃗ :;:<=>?@:A;$B:C? = 	𝛼	𝐴𝑆𝑉888888888⃗:;:<=>? +	𝛽𝐴𝑆𝑉88888888⃗ :A;$B:C? , had an R2 of 0.84, and the 257 

corresponding model for agarose-carrageenan an R2 of 0.74, showing that a linear combination 258 

had high-predictive power (Figure 4A). To rule out the possibility that the result was driven by 259 

broad-range taxa, we calculated the Spearman correlation coefficient between model and data 260 

only for the relevant narrow-range ASVs, finding values of 0.75 and 0.83 for the agarose-261 

alginate and agarose-carrageenan communities, respectively, showing that the results hold for 262 

narrow-range taxa alone. Furthermore, we also fitted a model with an explicit interaction term 263 

to test if this would improve the results. We found that for the agarose-alginate such a nonlinear 264 

model had an inferior goodness-of-fit compared to the simple linear combination (SOM). In the 265 

case of agarose-carrageenan particles, the nonlinear model (nlm) improves the fit relative to the 266 

linear model (lm), but only marginally (R2 = 0.76 vs 0.74 in the lm) and the model is only 267 

weakly nonlinear (nlm ~ lm0.98) (SOM). This analysis was based only on the average abundance 268 

of the ASV over time, however, when we considered their dynamics we found these were also 269 

highly correlated between single and mixed particles, in a manner consistent with a model of 270 

community assembly by simple linear aggregation of ecological modules (Figure 4BC). Across 271 

all alginate, agarose and carrageenan narrow range ASVs, the median Spearman correlation 272 

between the single- and mixed-substrate time dynamics ranges between 0.65 and 0.96 (Table 273 

S5). Overall, these results show that there is minimal interference between narrow-range 274 

modules, such that a linear combination model provides a good prediction of the assembly of 275 

the community on mixed substrate particles. This lack of interference, combined with the ability 276 

of broad-range modules to “plug-in” to narrow-range ones in a substrate independent manner, 277 

leads to the modular assembly of polysaccharide-degrading communities with a larger 278 

repertoire of metabolic functions (Figure 4D) 279 

 280 
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 281 
Figure 4. Communities assemble by linear combination of modules. A) ASV frequencies in mixed 282 
particles plotted in log-log scale against the predicted ASV frequencies, based on a linear combination 283 
of single substrate vectors. The fitted coefficients are α = 0.67, β = 0.40 for agarose-alginate and α = 284 
0.89, β = 0.11 for agarose-carrageenan. B-C). Similar ASV trajectories in mixed vs. single substrate 285 
particles for agarose (B) and alginate (C) specific ASVs. Solid lines depict trajectories in single substrate 286 
particles and dashed lines in mixed particles. The median Spearman correlation between the dynamics 287 
of agarose-specific ASVs on single and mixed substrate particles is 0.86 (B), and for the alginate-288 
specific ASVs 0.96 (C) (Table S5). D) Model of modular assembly, which mirrors the structure of 289 
metabolic pathways. Peripheral, narrow-range modules perform the degradation of complex 290 
biopolymers, whereas the core, broad-range module processes simple metabolic intermediates. 291 
 292 

In this study, we have shown that, despite the myriad species present in polysaccharide 293 

degrading communities, these systems can be coarse-grained into functional components, 294 

which assemble modularly into a variety of arrangements giving rise to communities of 295 

different functional complexity. Modules are divided into two classes, those encompassing 296 

species capable of breaking down polymers and those that encompass species that can live off 297 

metabolic byproducts. This subdivision mirrors the modular organization of metabolic 298 

pathways, in which sets of genes coding for hydrolytic enzymes, transporters, etc. can be 299 

horizontally acquired by an organism and integrated into its metabolic network as long as the 300 

products of the metabolic conversions performed by the integrated module are compatible with 301 
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core metabolic pathways, such as glycolysis5. In this way, simple metabolic byproducts act as 302 

a common interface for pathways to interact, enabling organisms to acquire a variety of 303 

degradation modules, and to quickly modify their resource utilization profile5,24. Similarly, our 304 

data suggests that ecological modules of particle degrading bacteria interact with modules of 305 

byproduct consumers through multiple central metabolites, which form a common interface 306 

that might allow consumers to grow regardless of the initial polysaccharide fed to the 307 

community (Figure 4D). Interestingly, modules can have characteristic phylogenetic 308 

distributions, with taxa such the genus Psychromonas or the family Flavobacteriaceae being 309 

strongly associated with specific substrates. However, these associations between taxonomy 310 

and function need not necessarily be stable, as members of these taxonomic groups have been 311 

found that are specialized to degrade different polysaccharides25. In sum, our work suggests 312 

that modularity could play an important role in the assembly of natural microbial communities, 313 

and that it is a property that can emerge from the underlying metabolic organization of the 314 

community members. Future work should seek to validate this principle across more functional 315 

dimensions and to explore its applicability in the design of synthetic consortia. 316 

 317 
Methods 318 

Sampling and incubation  319 

Coastal ocean surface water samples were collected in 2015 from Canoe Beach, Nahant, 320 

Massachusetts, USA; 42° 25'11.5''N, 70° 54'26.0''W. For each particle type, we set up triplicate 321 

800 ml seawater incubations with model particles, using 1L wide-mouth Nalgene bottles. 322 

Particles, which had been stored in artificial sea water (Sigma, #S9883) with 20 % ethanol, 323 

were washed twice with artificial seawater to remove the ethanol and inoculated at a 324 

concentration of 100 particles per mL. Bottles were rotated overhead at room temperature and 325 

a speed of 7.5 rpm for 10 days. At t = 0, 12, 24, 36, 48, 60, 72, 108, 132, 156, 180, 204 hours, 326 

10 mL (~1000 particles) were sampled from each replicate incubation and particles collected 327 

by magnetic separation for DNA sequencing and isolation. 328 

16S amplicon data analysis 329 

16SrRNA sequencing libraries were prepared in house according as in 14 to the protocol 330 

described in the SOM. Sequencing was done at the BioMicroCenter at MIT. To identify 331 

Amplicon Sequence Variants (ASVs) from the 16SrRNA amplicon reads, we used the DADA2 332 

pipeline26.  We developed a pipeline based on the DADA2 developers' ["Big Data: Paired-end" 333 

workflow] (http://benjjneb.github.io/dada2/bigdata_paired.html ), which has been deposited in 334 

a public repository on [Github](https://github.mit.edu/josephe/dada2_pipeline).  Briefly, a 335 

parametric error model is learned from the sequencing data, using a subset of two million reads 336 
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drawn randomly from all those sequenced.  Then, this error model is used to "denoise" samples 337 

by identifying erroneous sequence variants and combining them with the sequence variant from 338 

which they most likely originated. All other read processing steps -- including merging paired-339 

end reads, trimming primer sequences, and dereplicating reads -- were performed with functions 340 

from the R Bioconductor "dada2" package.  341 

For our analysis, we focused on the abundant ASVs, defined as those with a frequency 342 

> 1% in at least one sample across all samples, including replicates, time points and single 343 

substrate particle types. The resulting 107 ASVs were used throughout our analysis. Replicates 344 

were combined by calculating the weighted average frequency for every ASV, using the read 345 

counts of that sample as weights. We smoothed the data with a running median filter, window 346 

size = 3 and renormalized to work with mean frequencies. 347 

Niche breadth index 348 

To study the prevalence of each ASV across different particle types, we devise a niche breadth 349 

index. We calculated the geometric mean frequency ASV on a particle type, 𝑓$% =350 

	𝑒HIJKLMNO(C)PQ, where 𝑓$%(𝑡) is the frequency of ASV i at time t on particle type j. We added 351 

pseudo counts (10@S	)	to 𝑓$%(𝑡)  to account for zeroes. With the normalized geometric mean 352 

frequencies,	𝑔$% = 		
MNO
∑ MNO

	 we calculated a niche breadth index over j using the 353 

entropy:	−∑𝑔$log	(𝑔$). We use the R function Mclust to group our ASVs into three optimal 354 

groups according to their niche breadth index. The niche breadth index cutoff values for the 355 

groups are < 0.18 and > 1.52. The three resulting groups have 38, 24 and 45 members, 356 

respectively. 357 

Hierarchical clustering of ASV trajectories 358 

We cluster the most abundant ASVs based on their log-transformed frequencies across all time-359 

points and all particle types. We used the R function hclust with the clustering method 'ward.D' 360 

and Euclidean distances. To evaluate the best cutoff for our hierarchical clustering, we cut the 361 

tree generated by 'hclust' into 2-15 groups using the 'cutree' function in R. We used use the 362 

silhouette function from the R package ‘cluster’ to evaluate the clusters generated. Our analysis 363 

shows that 5 clusters are the optimal partitioning of our data.  364 

Phylogenetic tree of ASVs 365 

To create a phylogenetic tree of the top 1% ASVs, we first aligned the 16S V4V5 sequences on 366 

Silva’s SINA alignment server (http://www.arb-silva.de/aligner/ ) with standard settings, the 367 

option Search and Classify enabled with minimum identity with query sequence = 0.9 and 368 

classification: rdp. After removing non-informative positions from the alignment we used 369 
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FastTree 2.127 with the options -gtr -n) to infer an approximate maximum-likelihood 370 

phylogenetic tree which we upload to iTol28.  371 

Isolation of bacteria attached to particles 372 

After 1.5, 3.5 and 6.5 days of incubation, particles were sampled, separated from the sea water 373 

and washed as described above and split into 1:1, 1:10 and 1:100 dilutions in artificial sea water 374 

(Sigma, #S9883). Dilutions were vortexed for 20 seconds and plated using glass beads (Zymo 375 

#S1001) on 1.5 % agar (BD #214010) plates with (1) Marine Broth 2216 (Difco #279110) or 376 

(2) Tibbles-Rawling minimal media as described in 14 with carbon sources specific for the 377 

particle type: 0.05 % alginate, 0.04 % carrageenan, 0.1 % glucosamine, or plain agar. Following 378 

two days of incubation at room temperature, at least 16 colonies per particle and plate carbon 379 

source type were picked and re-streaked twice on Marine Broth 2216 1.5 % agar plates for 380 

purification. To obtain stocks, purified isolates were grown in deep well plates with liquid 381 

Marine Broth 2216 for 48 hours, shaking at 300 rpm at room temperature. The liquid culture 382 

was frozen at -80 °C for further characterization. Taxonomic classification was done using the 383 

16S rRNA and the RDP database (https://rdp.cme.msu.edu/classifier/classifier.jsp )29.  384 

Crossfeeding experiments 385 

The alginate-degrading strain psychB3M02 was streaked on Marine Broth 2216 1.5% agar 386 

plates and incubated at 25°C. After 48 hours single colonies were picked and grown in liquid 387 

Marine Broth at 25°C. After 48 hours, cells were pelleted and washed with Tibbles-Rawling 388 

minimal media twice. PsychB3M02 cells were then transferred at a starting OD of 0.005 to 389 

Tibbles-Rawling minimal media with 0.15% alginate (Sigma, #A1112) as the sole carbon 390 

source, and incubated in 10 mL volumes at 20°C and with overhead rotation. After 24h, the 391 

spent media was harvested by gently pelleting the cells (3000 rcf for 10 min) and filtering the 392 

supernatant through a 0.2 µm syringe filter. The five alginate non-degraders were pre-grown 393 

and harvested in a similar manner and transferred to fresh raw spent media at a starting OD of 394 

0.005 in 200µl volumes. Growth was measured using OD600 on a Synergy2 microplate reader 395 

(BioTek).  396 

Genome sequencing 397 

For selected isolates from our collection, genomic DNA was extracted from a liquid overnight 398 

culture in Marine Broth 2216 (Difco #279110) using the Agincourt DNA Advance Kit 399 

(Beckman Coulter #A48705).  Genomes were sequenced using the Nextera DNA Library 400 

Preparation Kit (Illumina #FC-121-1031)30.  Sequencing was performed on an Illumina HiSeq 401 

2500 (250x250 bp paired-end reads) at the Whitehead Institute for Biomedical Research (MIT, 402 

Cambridge, MA, U.S.A.).  Genomes were assembled using CLC Genomics Workbench 11 403 
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(Qiagen), curated using CheckM31. Open reading frames were annotated using the RAST 404 

pipeline32 and the CAZY database33, run from the dbCAN2 server34. Sequences were deposited 405 

in project PRJNA478695. 406 

Metabolomics 407 

Metabolomics was performed at the Microbial Biogeochemistry Group at the Woods Hole 408 

Oceanographic Institution. To extract the metabolites from the spent media, the filtrate was 409 

acidified to a pH ~3 using 12 M hydrochloric acid and the extracellular organic compounds 410 

extracted using Bond Elut PPL cartridges (1 g/6 ml sized cartridges, Agilent) following the 411 

protocol of Dittmar et al.35 as modified by Longnecker36. Dissolved organic matter was eluted 412 

from the cartridges using 100% methanol. The resulting organic matter extracts were analyzed 413 

using targeted mass spectrometry. Briefly, the extracts for targeted analysis were re-dissolved 414 

in 95:5 (v/v) water:acetonitrile with deuterated biotin (final concentration 0.05 mg ml-1). 415 

Samples were then analyzed by ultra performance liquid chromatography (Accela Open 416 

Autosampler and Accela 1250 Pump, Thermo Scientific) coupled to a heated electrospray 417 

ionization source (H-ESI) and a triple quadrupole mass spectrometer (TSQ Vantage, Thermo 418 

Scientific) operated under selected reaction monitoring (SRM) mode. Chromatographic 419 

separation was performed on a Waters Acquity HSS T3 column (2.1 × 100 mm, 1.8 µm) 420 

equipped with a Vanguard pre-column and maintained at 40 ºC. The column was eluted with 421 

(A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile at a flow rate of 0.5 mL 422 

min-1. The gradient was programmed as follows: start 1% B for 1 min, ramp to 15% B from 1-423 

3 min, ramp to 50% from 3-6 min, ramp to 95% B from 6-9 min, hold until 10 min, ramp to 1% 424 

from 10-10.2 min, and a final hold at 1% B (total gradient time 12 min). Separate autosampler 425 

injections of 5 µL each were made for positive and negative ion modes.  426 

The samples were analyzed in a random order with a pooled sample run after every six 427 

samples. The mass spectrometer was operated in selected reaction monitoring (SRM) mode; 428 

optimal SRM parameters (s-lens, collision energy) for each target compound were optimized 429 

individually using an authentic standard37. Two SRM transitions per compound were monitored 430 

for quantification and confirmation. Eight-point external calibration curves based on peak area 431 

were generated for each compound. The resulting data were converted to mzML files using the 432 

msConvert tool38 and processed with MAVEN39. 433 
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