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Abstract

Motivation: Unsupervised clustering is important in disease subtyping, among having other
genomic applications. As genomic data has become more multifaceted, how to cluster across
data sources for more precise subtyping is an ever more important area of research. Many of
the methods proposed so far, including iCluster and Cluster of Cluster Assignments, make an
unreasonble assumption of a common clustering across all data sources, and those that do not
are fewer and tend to be computationally intensive.
Results: We propose a Bayesian parametric model for integrative, unsupervised clustering
across data sources. In our two-way latent structure model, samples are clustered in relation to
each specific data source, distinguishing it from methods like Cluster of Cluster Assignments
and iCluster, but cluster labels have across-dataset meaning, allowing cluster information to
be shared between data sources. A common scaling across data sources is not required, and
inference is obtained by a Gibbs Sampler, which we improve to better cope with sparsity of
unoccupied clusters and speed of convergence. Posterior interpretation allows for inference
on common clusterings occuring among subsets of data sources. An interesting statistical
formulation of the model results in sampling from closed-form posteriors despite incorporation
of a complex latent structure. We fit the model with Gaussian and more general densities,
which influences the degree of across-dataset cluster label sharing. Uniquely among integrative
clustering models, our formulation makes no nestedness assumptions of samples across data
sources so that a sample missing data from one genomic source can be clustered according to
its existing data sources.

We apply our model to a Norwegian breast cancer cohort of ductal carcinoma in-situ and
invasive tumors, comprised of somatic copy-number alteration, methylation and expression
datasets. We find enrichment in the Her2 subtype and ductal carcinoma among those obser-
vations exhibiting greater cluster correspondence across expression and CNA data. In general,
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there are few pan-genomic clusterings, suggesting that models assuming a common clustering
across genomic data sources might yield misleading results.
Implementation and Availability: The model is implemented in an R package called twl
(”two-way latent”), available on CRAN. Data for analysis is available within the R package.
Contact: david.swanson@medisin.uio.no
Supplementary Material: Appendices are available online and include additional Breast
Cancer subtyping analysis, comparison with leading integrative clustering methods, fully gen-
eral statistical formulation and justification of the sampling algorithm, and description of
improvements of the Gibbs sampler.

1 Introduction

Interest in integrative genomic analysis has grown in recent years as the ability to measure a
range of genomic features at reasonable cost has increased [Cava et al., 2015, Huang et al., 2012,
Zhang et al., 2012, Speicher and Pfeifer, 2015, Kristensen et al., 2014]. Integrating different
genomic data sources is motivated by understanding the data at the level of biological systems,
rather than discrete spaces to only be understood in isolation of one another [Ali et al., 2014,
Curtis et al., 2012, Kristensen et al., 2014, Myhre et al., 2013, Reiss et al., 2006]. It is apparent
that the study of functional genomics benefits from acknowledgement of this interplay between
data layers [Sun et al., 2018].

Clustering algorithms have an important role to play in integrative genomics. One example is
that disease subtypes often manifest themselves as distinct clusters in one or multiple datasets
[Sørlie et al., 2001, 2003, Koboldt et al., 2012]. As awareness of tumor heterogeneity and
grows and data granularity improves, one might also begin using these methods to understand
the genomic landscape within tumor [Wang et al., 2014, Yap et al., 2012, Park et al., 2010].
Sometimes cluster boundaries are shared across data sources, and sometimes each data source
has distinct sets of clusters [Netanely et al., 2016]. Since many of these subtypes are still
relatively unknown, unsupervised clustering algorithms have a unique role to play in increasing
biological understanding of disease heterogeneity–unsupervised clustering orients itself more
towards discovery than those methods which implicitly encode a priori assumptions with class
labels.

Integrative clustering approaches have taken different tacks both in terms of underlying as-
sumptions of the biological mechanisms and fitting procedures of the algorithms. An important
distinction in the former relates to relative placement of clusters; many models assume that
clusters and their boundaries are held in common across data sources and try to best increase
statistical power for finding these shared boundaries under this assumption [Shen et al., 2009,
2013, Chalise and Fridley, 2017, Chalise et al., 2014, Chen et al., 2008, Mo et al., 2013]. When
common boundaries are assumed, some models additionally assume common scaling across
different datasets, necessitating “pan-normalization” of them [Lock et al., 2013, Hellton and
Thoresen, 2016]. One disadvantage of the assumption is that even when normalization is done
well the discrete nature of the data of certain genomic platforms (eg., methylation data) is in
fact not amenable to direct comparison to that which is continuous (eg, RNAseq data). Other
models make no assumption about relative placement of cluster boundaries across genomic
data sources, but parametrize the model to find common boundaries if they exist [Kirk et al.,
2012, Dunson and Herring, 2005, Lock and Dunson, 2013, Gabasova et al., 2017]. These meth-
ods additionally tend to draw boundaries in a probabilistic way, such that cluster assignment
has a distribution rather than definite label. In some cases, each observation has a single
cluster distribution, rather than the observation-dataset pair.
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Another distinction in integrative clustering algorithms relates to frequentist, Bayesian, and
algorithmic formulations of the models. This distinction has implications on the fitting proce-
dures and their scalability. Frequentist formulations of clustering models have generally been
those that assume common cluster boundaries across data sources [Kormaksson et al., 2012,
Speicher and Pfeifer, 2015, Shen et al., 2009, Mo et al., 2013]. Algorithms with similar aims
that decompose aggregations of data matrices into lower dimension spaces have also been de-
veloped [Chalise and Fridley, 2017, Chalise et al., 2014, Chen et al., 2008]. Mo et al. [2017]. A
Bayesian model makes the common boundary assumption and additionally encodes sparsity
into the model via use of priors on variable inclusion. These models have many attractive
properties including power gains for finding cluster boundaries when they exist. An important
drawback of these models is that due to the iterative nature of model fitting with algorithms
like EM and, in other cases, large matrix inversions often involved, they do not scale well to
thousands of covariates from many different genomic platforms. An additional drawback is
that the number of clusters must generally be specified a priori based on exploratory analysis
or post-fitting checks of model fitness criteria, rendering the fitting process multi-stage (eg,
[Mo et al., 2017]). Bayesian models draw probabilistic cluster boundaries and additionally
tend to benefit from learning the number of clusters [Kirk et al., 2012, Dunson and Herring,
2005, Lock and Dunson, 2013, Gabasova et al., 2017]. While these approaches often sample
closed form conditional posteriors quickly, sometimes iterating involves computationally costly
operations (eg, [Lock and Dunson, 2013]).

We propose a Bayesian, unsupervised, integrative clustering model that attempts to combine
many of the strengths of approaches outlined above. Our model is based on two sets of cluster
assignment variables of each sample in each dataset: the first set follows a priori a multinomial
distribution, for each dataset independently, so that all cluster assignment variables share the
same prior within each dataset; the second set of cluster assignment variables is such that
each such variable has the same (sample dependent) multinomial probability in each datasets.
In this case each sample will have a priori the same probability to be assigned to a cluster
label in all datasets. The intuition behind this construction is that the first construction
allows learning cluster assignments within each dataset, the second follows the sample across
all datasets. By conditioning on coherence of these two assignments, we are able a posteriori
to learn in a natural way within and across datasets. The final cluster assignments depend
on three components: a priori cluster probabilities within-dataset (ie, across observations), a
priori cluster probabilities within-observation (ie, across dataset), and the likelihood model (ie,
how similar the feature vector is to other feature vectors in the same cluster). With appropriate
Dirichlet conjugate priors on cluster probabilities, we obtain conditional posteriors for each
observation-dataset cluster assignment variable. We describe a Gibbs sampler implementation
which performs inference on all parameters.

Our two-way latent structure model (TWL) bears some resemblance to a fully-parametric,
Cluster-of-Cluster Assignments (COCA) approach–cluster parameters are dataset specific (thereby
making no unreasonable assumption of common scaling or centering across disparate genomic
data platforms), but cluster information is shared across data sources [Koboldt et al., 2012,
Hoadley et al., 2014]. Unlike COCA, a cluster posterior for the TWL model exists for each
observation-dataset, though depending on how cluster boundaries align across datasets, this
cluster posterior may be dataset-invariant. Our method is not a two step approach, where
uncertainty of the first step is ignored, but produces a coherent posterior uncertainty quantifi-
cation.

Our model is more flexible than many integrative clustering models in that we do not assume
that the same samples are measured in the different datasets (nestedness of observations across
data sources). Our literature review of data integration methods suggests this is a unique

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/387076doi: bioRxiv preprint 

https://doi.org/10.1101/387076


feature of our model. The special case of no common samples across data sources simplifies
to fitting independent models on each dataset independently. An additional benefit of the
model’s formulation is run-time that scales linearly in the number of features. We also learn
the number of clusters. One can influence the amount datasets share information through
manipulation of hyperparameters as we demonstrate in simulation.

We propose ways to post-process the estimated posterior probabilities for discovering clustering
within datasets and identifying that subset of samples whose cluster assignments may span
across all datasets. This last metric allows us to examine enrichment in clinical annotation
of those samples with greater pan-dataset cluster assignment correspondence. Though we call
this “cluster correspondence” because of the context of our model, its calculation is identical
to Kirk et al. [2012]’s “cluster fusing” probabilities.

Our paper is organized as follows: in Section 2 we introduce the model, followed by practical
considerations and modifications of it. In Section 3, we describe post-processing metrics and
simulation studies to develop intuition. We then perform a data analysis of in-situ ductal carci-
noma (DCIS) and invasive (IDC) breast cancer using our TWL model and find 2 copy number
clusters, 7 distinct methylation clusters, and confirm the 5 known breast cancer subtype expres-
sion clusters [Sørlie et al., 2001]. Posterior metrics reveal little correspondence between these
disparate clusterings, suggesting that models assuming common cluster boundaries across our
datasets could be missleading. We also find modest stratification of the DCIS and invasive
samples depending on data source, indicating that the distinction in tumor state may not be
reflected equally in genomic data sources. In the Supplementary Material we include a discus-
sion of our modified Gibbs sampler, comparisons with other, common approaches including
iCluster and COCA [Shen et al., 2009], how we address the challenge of label switching, and
supporting tables and Figures referenced in-text.

2 Methods

2.1 Model

To give context to description of the TWL model, we use language assuming a clinical study
setting where we seek to cluster subjects on whom we have different genomic data sources.
However, the model is equally applicable to a setting in which we seek to cluster genes, on which
we have different genomic data sets. We also assume each genomic data source has a common
set of subjects and no missing values for notational and conceptual clarity, but formulate the
more general model (used for our data analysis), which makes no such assumption, in the
Supplementary Material.

Let Yi,j be a vector of features for observation i and data set j and of dimension dj . So the
jth data source has information on dj features. We assume j ∈ {1, . . . , J}, for a total of J
data sources, and i ∈ {1, . . . , N}. For example, the first data set (j=1) could be the expression
values of d1 genes, and the second data set (j=2), the copy number variation of d2 loci.

Consider viewing the Yi,j vectors of length dj as the atomic units of our model. In doing so,
we can think of the TWL model as having 2 separate axes, rows (each row corresponding to a
sample) and columns (datasets). We work with a different clustering of the samples for each
data set so that every sample is assigned to J clusters. We assume that samples tend to be
grouped in the same cluster in the various data sets so that a certain cluster coordination is
hypothesized across data sets (see Figure 1).
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We start with a model for the clustering within each dataset. The cluster assignment variables
corresponding to the column (ie, data source) models are

C ≡ (C1,1, . . . , Ci,j , . . . , CN,J)

where Cij ∈ {1, 2, . . . ,K} assigns sample i in data set j to one of K clusters, where K is the
fixed upper bound on the number of clusters. We assume a multinomial prior distribution for
the Cij as

C(i,j) ∼Multinom(p
(1)
j , p

(2)
j . . . , p

(K)
j ) ∀ valid (i, j)

The interpretation of p
(k)
j is the probability of a draw of cluster label k in dataset j for sample

i.

We emphasize that though C(i,j) is subscripted by i and j, the multinomial probabilities are
only subscripted by j. Therefore, all observations within dataset j draw from this dataset-
specific jth multinomial model.

Traditionally, within each dataset, we could model the data vectors Yij as a mixture, with one

component per cluster and the vector of probabilities (p
(1)
j , . . . , p

(k)
j , . . . , p

(K)
j ) used as mixing

parameters. Assuming a parametric model f(·) for the density of Yij , with a cluster dependent

parameter θ
(k)
j , this model would be written as Yij ∝

∑K
k=1 p

(k)
j f(Yij |θ(k)j ).

However, we want to allow and favor alignment in cluster assignments across datasets. For
this purpose we propose a new mixture model with different mixing parameters. This is the
intuition: in order to help maintain the samples into the same clusters across data sets, we use

a second vector of parameters, (ρ
(1)
i , . . . , ρ

(k)
i , . . . , ρ

(K)
i ), which follow the sample i in all data

sets. Cluster assignment of a sample in each data set is therefore influenced by both the pj and
the ρi parameters. This second parameter ρi helps align clusters across datasets because it is
the same in each data set. We will combine these two models and use as mixing parameters

p
(k)
j and ρ

(k)
j to assign sample i to cluster k in dataset j, as in Yij ∝

∑K
k=1 ρ

(k)
i p

(k)
j f(Yij |θ(k)j ).

More formally, we now introduce a second set of cluster assignment variables parametrized
by these ρ parameters just introduced, which are R ≡ (R1,1, . . . , Ri,j , . . . , RN,J), where Rij ∈
{1, 2, . . . ,K} assigns sample i in data set j to one of K clusters. We assume a multinomial
prior distribution for the cluster assignment variables Rij corresponding to rows (samples)

R(i,j) ∼Multinom(ρ
(1)
i , ρ

(2)
i , . . . , ρ

(K)
i ) ∀ valid (i, j),

with K the upper bound on the number of clusters. Note that though R is subscripted by i
and j, the parameters are only subsrcipted by i, the sample id. We can loosely think of the
cluster models on the i’s, cutting across datasets, as models on the rows of the aggregated data
sources if we arranged them next to one another (see Figure 1 as an example). The cluster
models for R influence cluster alignment along that axis and, in doing so, giving across-dataset
meaning to cluster labels. This occurs despite cluster density parameters not being directly
informed by observations of the same cluster label in different data sets.

It is because cluster labels for the ith row of dataset j, which we denote with Ri,j and
Ci,j , must agree to produce a coherent and well-defined clustering of samples within each
dataset that we condition our model on their equivalence; ie, we condition our likelihood
on Ri,j=Ci,j for all valid (i, j) pairs. Simultaneous use of multinomial models along samples
(or “rows”) and within dataset (or “columns”), the resultant necessary conditioning event of
C=R for cluster coherence within each cluster, and the subsequent inferential procedure, are
the methodological novelties of the TWL model. This framework results in a joint posterior
cluster distribution whose interpretation has granularity at the level of a sample-dataset, rather

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/387076doi: bioRxiv preprint 

https://doi.org/10.1101/387076


than just sample. We advocate for this more rich and descriptive, if complex, interpretation
in Section 3 below.

Figure 1: Diagram of progressively misaligned clusters simulation that results in the half-matrix cluster probabilities
shown in Table 1. The five long rectangles represent the five generated datasets, each with 200 observations, 10
features, and 10 equally-sized clusters within. Only the first and last few of the 10 clusters can be depicted with boxes
in each data set, and the parameters associated with the boxes are those indexing the multivariate normal distributions
from which observations in each cluster are sampled. The Σ variance parameters are identical.

Conditional on C=R, and on the dataset- and cluster-specific density parameters θ
(k)
j intro-

duced below, Yij follows a typical Gaussian mixture model, with cluster probabilities being
normalized products of row and column model specific cluster probabilities. For f(·) the
Gaussian density, the mixture model is

Yij | (C=R), θ
(k)
j ∼ κ

∑
k

p
(k)
j ρ

(k)
i · f(Yij | θ(k)j )

with κ the normalizing constant.

We need to specify the prior model further. The prior probabilities for pj and ρi are

pj ∼ Dirichlet(β1, . . . , βK) ∀ j and ρi ∼ Dirichlet(α1, . . . , αK) ∀ i

respectively, with hyperparameters αi and βj constant in i and j, for which hyperpriors could
further be assumed. Instead we choose αi as a function of the average number of data sets per
sample (or simply number of data sets if all samples are present in all data sets and unique
within them), and βj as a function of the average number samples within each data set (or
simply the number of unique sample ids if again all samples are present in all data sets and
unique within them). As a result, we have α ≡ α1 = α2 = · · · = αK and β ≡ β1 = β2 = · · · =
βK .

Define the Gaussian cluster density parameters specific to dataset j and cluster k with θ
(k)
j ≡

(µ
(k)
j , τ

(k)
j ), where µ

(k)
j is the mean vector of dimension dj . We assume a priori independence

for elements of vector Yi,j so that precision parameter τ
(k)
j is also of dimension dj . The

assumption increases computation efficiency significantly, and filtering correlated, redundant
features before analysis makes the assumption reasonable. We generalize beyond the Gaussian
likelihood in Section S1.1.2.

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/387076doi: bioRxiv preprint 

https://doi.org/10.1101/387076


We place a Gaussian prior on µ
(k)
j with mean and precision parameters µ0,j and ψ0,j , respec-

tively. We take an Empirical Bayes approach to choosing these hyperparameters, setting µ0,j
to the mean of Y·,j (ie, dataset j), and the corresponding precision parameter to

ψ0,j =

(
1

2
·
σ
2(j)
G

N/20
· 15

)−1
for all j, where σ2G,j is a vector of variances of the features of Y·,j . Setting ψ0,j in this way

makes the assumption that if half of marginal variation in data set j, σ2G,j , is attributable
within-cluster and the size of clusters are 1/20 of the total sample size, N , then there will
be 1/15 cluster mean shrinkage to the global mean under such circumstances. If one fits the
model with an upper bound of more than 20 clusters, this will result in greater mean shrinkage
earlier in the MCMC chain since the chain begins with random cluster assignment. If in truth
there are fewer than 20 clusters in the data, it will result in less shrinkage of the respective
cluster means once convergence has occurred.

Such a prior also serves a practical purpose: without it, small clusters, especially those with one
observation, will be resistant to becoming unoccupied since the mean parameter µk,j will tend
to be close or identical to the corresponding (few) observation(s) and thus inflate the likelihood.
This is even more true if additionally cluster variance parameters τk,j ’s were cluster-specific,
as estimated Gaussian densities will diverge to infinity. By shrinking µk,j to a global mean,
especially when the cluster size is small, the posterior of C, R | p,ρ,C=R will exhibit greater
cluster sparsity.

With this same goal of convergence, we assumed a common variance parameter τj(k) = τj
across clusters and one that is considered fixed. Doing so leads to more efficient estimation in
the parameter. While the variance across clusters within dataset may not always be constant,
since the model has no effective upper bound on the number of clusters, the posterior tends to
favor the partition of more heterogeneous clusters into smaller, more homogeneous ones. This
characteristic is likely helpful for interpretation.

The full conditional posterior for C (which we only consider since we condition on C=R), is

Cij |Yij ,C = R, ρi, pj , µ
(·)
j , τj ∼Multinom

(
p
(1)
j ρ

(1)
i ·f(Yij |µ(1)j , τj), . . . , p

(K)
j ρ

(K)
i ·f(Yij |µ(K)

j , τj)
)

(1)

The full conditional posterior for µ
(k)
j is

µ
(k)
j

∣∣Y·,j,µ0,j , τ̂j ,ψ0,j = N

(
µk,j

∣∣∣ [N τ̂j · Ȳ·,j +ψ0,j ·µ0,j
]
·
[
ψ0,j +N τ̂j

]−1
,

[
ψ0,j +N τ̂j

]−1)
where τ̂j is estimated from the data according to an empirical Bayes approach, assuming

τ j ≡ τ (1)j = · · · = τ
(k)
j = · · · = τ

(K)
j .

The full conditional posteriors for pj and ρi are, respectively,

pj |C· j , α ∼ Dirichlet
(

(p
(1)
j )α+

∑
i|j I(Ci,j=1), (p

(2)
j )α+

∑
i|j I(Ci,j=2), . . . , (p

(K)
j )α+

∑
i|j I(Ci,j=K)

)
and

ρi|Ri · , β ∼ Dirichlet
(

(ρ
(1)
i )β+

∑
j|i I(Ri,j=1), (ρ

(2)
i )β+

∑
j|i I(Ri,j=2), . . . , (ρ

(K)
i )β+

∑
j|i I(Ri,j=K)

)
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We write the posterior of ρi with Rij to emphasize ρi’s connection to the “row” multinomial
models. However, since Cij = Rij for all (i, j) by assumption, using Cij instead is an identical
formulation. Additionally, we use the notation i | j and j | i to denote valid values of i and j
within strata of j and i, respectively. We use this notation despite assuming a common set of
subject ids for all datasets in this simpler formulation of the TWL model to emphasize that
no such assumption is necessary.

We report the general model in the Supplementary Material which assumes dataset-specific
sets of sample ids, along with modifications of our Gibbs sampler and generalization of the
density function beyond the Gaussian case.

2.1.1 Hyperparameter tuning

Choice of α and β can be a function of the total number of samples N and number of datasets
D, respectively, and the specified maximum number of clusters. If we consider α, increasing
its value dilutes the effect of cluster distribution on the posterior of pj, and subsequently
C·j , by increasing the unnormalized probabilities of all labels equally. Similar reasoning holds
for β and its effect on ρi and Ri·. The special case of β → ∞ results in a lack of cluster
information sharing across datasets, effectively fitting independent Gaussian mixture models
on each dataset. By choosing α and β so that the proportions N ·K/α and D ·K/β are constant
in applying the TWL model in different settings, one additionally keeps their influence on the
model posterior constant. We discuss choice of α and β more in the supplementary materials.

3 Results

3.1 Simulation

We generated several different data sets to demonstrate different properties of the TWL model.
First, we generated 2 different data sets with nested cluster patterns across data sets (See
Figures 2 and 3). Second, to demonstrate how common cluster sharing across data sets can
be used to learn structure of cluster patterns in the data sets, we generated “progressively
misaligned” clusters, whose diagram can be seen in Figure 1. These simulations illustrate
how cluster assignment in one data set influences that in other ones, depending on alignment
pattern. They also resemble real genomic data sets whose cluster patterns are not often
perfectly aligned across genomic datasets and which exhibit nestedness patterns to some degree
[Netanely et al., 2016]. For example, for RNAseq and CNA tumor data on a common set
of subjects, clusters defined solely by RNAseq and solely by CNAs would likely not align.
Additionally, within, say, a CNA cluster, there very well may be multiple RNAseq clusters.
Ability to find such structure is an emphasis of our model.
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Figure 2: Diagram of nested clusters simulation. The five long rectangles represent datasets, each with 200 obser-
vations and 10 features, and boxes within them the unique clusters composing the datasets. The parameters in each
box index the multivariate normal distributions used to generate samples in each cluster. As one moves from left to
right along datasets, one new cluster is added relative to the previous dataset by halving the bottommost cluster in
that dataset. The Σ variance parameters are equivalent.

Figure 3: Diagram of a clusterings in the nested clusters simulation. The five long rectangles represent datasets,
each with 200 observations and 10 features, and boxes within them the unique clusters composing the datasets. The
parameters in each box index the multivariate normal distributions used to generate samples in each cluster. As one
moves from left to right along datasets, one new cluster is added relative to the previous dataset. The Σ variance
parameters are equivalent.

3.1.1 First nested scenario

We see in Figure 2 our first nested data scenario, a collection of five data sets. Each data sets
consists of 200 observations, each with 10 features. In each of the five data sets, observations
in blocks denoted in the figure are drawn from the same multivariate normal distribution.
The multivariate normal distributions corresponding to the different blocks have the same
covariance matrix but different means. Means were generated randomly with each sampled
element in the mean vector having a standard deviation of 1.4. The standard deviation of
observations from respective means was 1 in all 10 feature dimensions, with features generated
independently. We make this independence assumption in simulation and later analysis to
significantly increase computational efficiency. The assumption is valid in analysis if data is
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processed so that highly correlated features are excluded. Moving from left to right over the 5
data sets in Figure 2, the number of clusters varies from 2 to 6, with each additional cluster in
the next data set resulting from splitting the bottom cluster in the previous data set in half and
introducing slight misalignment. Such a telescoping pattern helps us understand how well our
model identifies the small clusters in the right-most data sets and how common cluster labels
are shared across data sets. There is a trade-off between fitting larger, “umbrella” clusters,
with a single cluster label, and using multiple, different labels for the “enclosed” clusters in
successive data sets because of information sharing across them all. Analyzing how our model
resolves these trade-offs yields information on relative signal clarity and size of clusters, and
their alignments.

3.1.2 Second nested scenario

Figure 3 shows our second nested data scenario with five data sets, each 200 observations by 10
features. Now all clusters added in subsequent data sets are of the same size. Such a pattern
allows us to again examine the effect of nested clusters in posterior cluster labels, but no one
cluster becomes especially small in the furthest right data sets, unlike the first nested scenario.

3.1.3 Progressively misaligned scenario

Figure 1 shows a set of five data sets of the same dimension as those above exhibiting no nest-
edness in its cluster patterns. In this scenario, however, clusters are progressively misaligned.
The first data set consists of 10 clusters each consisting of 20 observations. The next data set
to the right also has 10 clusters, though those clusters are misaligned by 2 observations (10% of
the size of each cluster). The next data set to the right again has 10 clusters, again misaligned
by 2 observations as compared to the second data set. This pattern continues until the 5th
dataset is almost entirely misaligned as compared to the first data sets, by 8 observations total.
Data sets were generated in this way in order to examine how posterior cluster labels are held
in common in less (e.g., the third and fourth data sets) and more (the first and fifth data sets)
cluster-misaligned datasets.

3.2 Posterior interpretation

Unlike many other integrative clustering models, the TWL model yields cluster assignments
for each sample in each dataset. One can therefore examine for each observation a measure of
cluster membership across datasets, which we call “cluster correspondence”. We propose this
measure and four related metrics to understand clustering patterns in our data sets.

Metric 1 (“Within”): This metric looks at cluster co-assignment of observations, within
datasets. We calculated the matrix of elements

P (Cij = Ci∗j) ∀ pairs i, i∗ with i 6= i∗, ∀ j

which we estimate by the proportion of samples in our chain after burn-in where observations i
and i∗ have a common cluster label. These proportions result in J symmetric N ×N matrices.
Figures 4 and 5 show two examples of heatmaps of such output matrices.
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4 (e) Dataset 5

Figure 4: Metric 1 for the 5 datasets from the first nested cluster simulation, whose diagram is Figure 2. The
heatmap depiction of the metric makes clear that simulated clusterings are generally identified with high fidelity.
The last clusters in (a) and (c) are not identified as clearly, likely related to fracturing of clusters in adjacent
datasets.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4 (e) Dataset 5

Figure 5: Metric 1 for the 5 datasets from the second nested cluster simulation, whose diagram is Figure 3. The
heatmap depiction of the diagnostic shows that there is some difficulty identifying the largest clusters in (a) and
(b), and the bottommost cluster in (e). At least in the case of the large clusters, this is likely due to cluster division
in adjacent datasets per the simulation.

Metric 2 (“Between”): This metric looks at cluster assignment between datasets, within
observations. We calculate the matrix of

P (Cij = Cij∗) ∀ pairs j, j∗ with j 6= j∗, ∀ i

There are N such matrices, one for each observation, each of dimension J × J with J ∗ (J −
1) unique elements. If we consider the more general TWL model where samples are not
assumed nested across datasets, some elements in a subset of these matrices may be NA if
the corresponding observation does not have data on both data sources associated with that
element. The interpretation of an element of a particular matrix is the proportion of common
cluster assignments for that pair of data sets for that observation.

Hierarchical clustering: We perform hierarchical clustering on each of the N ×N matrices
from Metric 1. The recommended workflow is to first examine heatmaps of the matrices
generated in Metric 1, determine the number of clusters, and then cut the dendrogram at the
appropriate place to generate that number of clusters and make a determination of cluster
membership if that is needed and desired. We make additional suggestions about this post-
processing analysis in Section 3.

Between-dataset cluster correspondence: Consider the N matrices from Metric 2: we
can average element-wise over all such N matrices. The interpretation of entry (j, j∗) in
the resulting symmetric J × J matrix with elements in [0, 1] is the degree to which cluster
boundaries are similar in datasets j and j∗. Higher numbers indicate more similar boundaries.
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The best example of the use of this measure is for the misaligned cluster simulation (see Figure
1) and demonstrates that the more clusters do not align, the lower are elements in the matrix.
Indeed, we observe a decreasing cascade of proportion of common clusters for more “distal”
datasets, as the misalignments in datasets increases.

Sample-specific cluster correspondence: Consider again the N matrices from Metric 2:
we can average over the J(J − 1) unique elements in each matrix, resulting in a length N
vector. The interpretation of the entry corresponding to observation i in the vector, between
0 and 1, is the degree to which cluster membership is similar across the J datasets for that
observation, what we call sample-specific “cluster correspondence”. A higher number indicates
greater common cluster membership across datasets for the observation. One can also calculate
cluster correspondence just for subsets of datasets for more specific hypotheses.

3.3 Simulation Results

We show the PSMs for our 2 nestedness simulations in Figures 4 and 5. The figures reveal
that the TWL model can identify the clusters with a high degree of fidelity. As one might
expect from the telescoping nested scenario, the cluster labels in the lowermost block from
the first dataset in that simulation scenario are not as stable as the uppermost block, due
to the “splintering” of clusters in subsequent datasets and across-dataset influence of cluster
membership. One can see a similar phenomenon in the smaller cluster blocks of (c), (d), and
(e), and also the larger blocks of Figure 5 (a) and (b) – while their outline and therefore
recognition is clear, common labelling of those observations is not as stable, as should be.

We developed the misaligned cluster simulation in part to examine between-dataset cluster
correspondence, which is shown in Table 1 for two different values of the α hyperparameter.
In both (a) and (b), we see decreasing values in across-dataset cluster correspondence as one
moves away from the diagonal, in a Toeplitz or auto-regressive pattern as one would expect.
We also see the influence of α on this measure and again recommend some normalization of
that parameter with respect to the total number of dataset used in analysis.

Table 1: Tables of the between-dataset cluster correspondence for the misaligned cluster simulation, shown in Figure
1, for different values of α. In either table, entry j, j∗ is the average cluster overlap of datasets j and j∗. One expects
more cluster overlap when clusters align to a greater degree, as they do in adjacent datasets according to Figure 1.
For either value of α, as one moves further from the diagonal, one notices a cascading decrease in common clusters
across data sets as expected. One also observes larger numbers in b) as compared to a), due to the influence of higher
values of α diluting the cluster label information sharing across datasets.

a) Using α = 4.5 for the misaligned cluster
simulation.

dat1 dat2 dat3 dat4 dat5

dat1 1.000 0.392 0.364 0.230 0.201
dat2 0.392 1.000 0.461 0.272 0.230
dat3 0.364 0.461 1.000 0.314 0.299
dat4 0.230 0.272 0.314 1.000 0.247
dat5 0.201 0.230 0.299 0.247 1.000

b) Using α = 0.4 for the misaligned cluster
simulation.

dat1 dat2 dat3 dat4 dat5

dat1 1.000 0.744 0.690 0.643 0.565
dat2 0.744 1.000 0.773 0.717 0.640
dat3 0.690 0.773 1.000 0.838 0.745
dat4 0.643 0.717 0.838 1.000 0.869
dat5 0.565 0.640 0.745 0.869 1.000

We developed the nestedness cluster simulation in part to examine sample-specific cluster
correspondence, shown in Figure 6. The horizontal bar chart in (a) is the observation specific
cluster correspondence. We observe greater cluster correspondence in observations belonging
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to clusters in the first dataset that are not split in subsequent data sets. The lowermost
observations, whose cluster membership in the left-most datasets are split frequently into
smaller clusters in subsequent right-most datasets, have much smaller cluster correspondence
measures.

(a) Sample-specific cluster correspondence
values, plotted as bars in this horizontal
plot. This plot roughly aligns with the clus-
ter boundary diagram in (b)

(b) Cluster boundary diagram as in Fig-
ure 2, inserted here to show alignment
with sample-specific cluster correspondence
plotted as a horizontal barplot in (a)

Figure 6: Sample-specific cluster correspondence for the telescoping nestedness simulation

We also calculated the sample-specific cluster correspondence on the misaligned cluster sce-
nario, shown in Figure 7. We observe greater cluster correspondence in those observations
whose own row is less likely to be crossed by a cluster boundary in one of the datasets. Since
this feature varies by observation and all clusters in all datasets are the same size, one observes
growing and shrinking peaks of the cluster correspondence measure as one moves down the
horizontal barplot (Figure 7 (a)).
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(a) Sample-specific cluster correspondence
values, plotted as bars in this horizontal
plot. This plot roughly aligns with the clus-
ter boundary diagram in (b)

(b) Cluster boundary diagram as in Fig-
ure 1, inserted here to show alignment
with sample-specific cluster correspondence
plotted as a horizontal barplot in (a)

Figure 7: Sample-specific cluster correspondence for the misaligned cluster simulation

3.4 Breast cancer subtyping in DCIS and IDC tumors

3.4.1 Preprocessing

We performed an analysis of ductal carcinoma in-situ and invasive breast cancer tumors com-
prising all intrinsic subtypes coming from a cohort of Norwegian and Italian women. The
cohort includes 370 women, 57 in the DCIS tumor state, and 313 IDC, and the data has been
described in greater detail elsewhere [Lesurf et al., 2017, Muggerud et al., 2010]. We used Ag-
ilent 60K microarrays to measure gene expression on 370 observations and 21887 genes from
this cohort. Quantile normalization was performed, and probes collapsed over genes by mean
value [Amaratunga and Cabrera, 2001].

We used the Illumina 450K array to measure methylation of CpG sites on 314 of the 370
women, normalized according to the method described in Touleimat and Tost [2012]. We set
as missing probes whose detection values had p-values above 0.05. Probes targeting a given
CpG were all removed if more than 25% of probes were denoted as missing and performed
imputation on those remaining with k-nearest neighbors. Probes were grouped by gene with
flanking regions of 50kb, and we collapsed the data to gene-level granularity by using the score
according to the first principal component [Wilhelm-Benartzi et al., 2013].

We had copy number alteration data on 338 observations and 19089 genes, the women being a
subset of the 370 on whom we had expression data and not a superset of those on whom we had
methylation data. We used the SNP 6.0 array and GC-content corrected raw log ratio values.
Segmentation was performed using the PCF algorithm in the R package copynumber [Nilsen
et al., 2012]. We collapsed to gene-level data by determining which copy number segment
overlapped the gene most.
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3.4.2 Analysis

We performed TWL analysis in the statistical programming language R [R Core Team, 2017].
We ran our Gibbs Sampler for 4000 iterations for different feature draws from the approxi-
mately 20000 genes available, in order to investigate reproducibility. Our datasets consisted
of approximately 1790 of the same genes from all genomic data sources. We used α = 0.4
and β = 7 as hyperparameters. We ran also parallel, independent chains on identical draws
to assess convergence and Monte Carlo error. Convergence of cluster membership occurred
relatively early, though we considered the first 2000 iterations burn-in.

PSMs and corresponding heatmaps were generated to give Figure 8. We performed hierar-
chical clustering analysis on these heatmaps, manually inspected the tree, and cut it at a
height so that approximately 95% of the samples had been grouped with at least one other
observation (Figure S1). Of those which had been grouped, we gave an identifying label to
the M largest clusters (where M was 5, 2 or 3, and 7, based on inspection of the expression,
CNA, and methylation heatmaps, respectively), and the rest grouped into a more heteroge-
neous cluster we called “unknown”. The idea behind such a procedure was to label those
observations clearly belonging together in the same cluster as such, and to keep those more
heterogeneous observations in their own separate group to not dilute signal clarity. One can
use different thresholds for M and the tree height depending on proportion of observations
falling into a clear cluster. For example, the PSM for CNA suggests that there is a greater
proportion of observations with unknown cluster membership, and so we used a dendrogram
height translating to approximately 90% of samples already grouped with at least one other
observation.

(a) Expression dataset (b) CNA dataset (c) Methylation dataset

Figure 8: Metric 1 for our breast cancer analysis. There is a high degree of alignment between the known
breast cancer subtypes and those clusters shown in (a). CNAs (b) and Methylation (c) reveal 2 and 7 distinct
clusters, respectively. Encoded in our model is cross-dataset cluster assignment influence, though in this
analysis interestingly there is relatively little correspondence across datasets. The figures are annotated
intrinsic subtype, DCIS/invasive tumor state, and sample-specific cluster correspondence (negative values
indicate missing values in the sample in some sources). We also include results from the iCluster and
COCA analyses, described in the Supplementary Material.

We calculated the between-dataset cluster correspondence on two different feature draws from
our datasets (Table 2), indicative of cluster boundary alignment between data sources as a
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whole, and found little suggestion of significant boundary overlap in both cases. This stands
in contrast to scenarios like our simulations (e.g., Figure 2). Despite the different draws from
the data, there was stability in estimation of the measure.

Table 2: The between-dataset cluster correspondence from our breast cancer data analysis. Subfigures (a) and (b)
come from two MCMC chains. The interpretation of an element in either table is the average cluster overlap in
the corresponding pair of datasets. We note that there is similar cluster overlap between all pairwise comparisons of
genomic platforms.

a)

Expr CN Methyl

Expr 1.000 0.158 0.193
CN 0.158 1.000 0.218

Methyl 0.193 0.218 1.000

b)

Expr CN Methyl

Expr 1.000 0.152 0.209
CN 0.152 1.000 0.144

Methyl 0.209 0.144 1.000

We found considerable stability in clustering between parallel MCMC chains (Tables S2 and
S3), and relatively high stability in cluster assignment (Tables 3 and S1). In the case of either
draw from the data, cross tabulations of at least expression-based cluster membership and
breast cancer intrinsic subtypes (PAM50) showed that misclassification, where it occurred,
mainly was between more closely related subtypes (e.g., Luminal A and Luminal B, see Table
S4, [Sørlie et al., 2003, Parker et al., 2009]). While there is some correspondence between
CNA or methylation clusters and subtypes, it is not as strong (Table S5). The observations
assigned to the “unknown” cluster were relatively evenly spread over the different subtypes,
reflective of their heterogeneity. An exception to that pattern was the Basal subtype, which
was disproportionately represented among the unknown cluster label for CNAs (Table S12 and
Figure S1b). Most Basal samples could not be categorized into a CNA cluster.

Table 3: Post-processed cluster labels for different feature draws from the expression dataset.

clust 1 clust 2 clust 3 clust 4 clust 5 clust unknown Sum

clust 1 2 52 0 6 10 15 85
clust 2 0 0 0 0 0 25 25
clust 3 4 0 0 102 7 4 117
clust 4 0 1 36 1 6 0 44
clust 5 24 9 3 1 15 2 54

clust unknown 3 2 2 4 13 21 45
Sum 33 64 41 114 51 67 370

We discuss the results of the iCluster and COCA analyses in the Supplementary Material,
but have included annotation from these analyses in Figure 8. We say briefly that because
both methods assume common cluster boundaries across all data sources, the degree to which
consensus clusters reflect those of the particular data source varies considerably.

In general cross tabulations of DCIS and Invasive tumor state with posterior cluster labels
from the different data sources was not as compelling as that for expression and intrinsic
subtypes. An important exception however was a relatively small expression cluster that
contained many of the DCIS samples (Table S13). We additionally found that nearly all
DCIS tumors were contained by the large CNA cluster identified in our analysis (Table S9).
The second, smaller cluster identified in the CNA analysis contained almost entirely invasive
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tumors. There was a similar finding in the methylation dataset where DCIS tumors were
significantly overrepresented in one of the clusters, though a small one in this case.

Because our between-dataset cluster correspondence measure suggested relatively little clus-
ter overlap between datasets on the whole, sample-specific cluster correspondence becomes
more interesting: subsets of samples with greater correspondence can be enriched for clinical
annotation. We calculated sample-specific cluster correspondence on expression and CNAs
and examined the 50 observations with the largest such cluster correspondence. We observed
enrichment in the Her2 subtype and DCIS tumor state as compared to the marginal distri-
bution of these variables. These features were observed across parallel MCMC chains and
different draws from the data and so appear as robust findings (see Tables S7 and S10). We
found similar enrichment in those posterior cluster labels that roughly correspond to the Her2
subtype and DCIS, which may be considered proxies for these types. In either case, there is
an important caveat in that both Her2 and its proxy cluster label, and DCIS and its proxy
cluster label, are almost entirely contained in the very large CNA cluster one sees in Figure 8b.
Thus, this enrichment may be an inevitable result of that cluster’s size and a large proportion
of observations with those annotations falling within it. However, the normal subtype is also
almost entirely found in this large CNA cluster, but we observe no such enrichment in it when
looking at expression-CNA cluster correspondence (Table S12). The finding should therefore
be considered with caution, though not discounted.

We observe a lack of cluster correspondence between CNA and methylation clusters among
the Basal subtype in particular, across parallel MCMC chains and draws from the data (Table
S11). The interpretation of this phenomenon is difficult, in part because of the Basal subtype’s
aforementioned presence in the large CNA cluster. One hypothesis is that the alignment of
the Basal observations between the expression-methylation and expression-CNA pairs is higher
than under the null hypothesis of independent clusterings on each dataset, but on disjoint sets
of Basal observations, pushing the alignment for CNA-methylation low, as observed. However
examination of the data suggests that this hypothesis likely does not fully explain the lack of
CNA-methylation correspondence observed in the Basal subtype. Another unexpected feature
of the Basal subtype was its presence in primarily only 2 methylation clusters (Figure S1c).

When looking at pan-genomic cluster correspondence (that measure shown for our simulations
in Figures 6a and 7a), we observed no enrichment in subtypes or tumor state. Since we observe
enrichment for specific pairs of data sources, the lack of cluster correspondence on all three is
either because the enrichment we do see does not carry over to the excluded source, or that
there is some bias in types of samples on whom certain data platforms could be measured.

4 Discussion

We developed an innovative integrative clustering model called TWL in which we envisioned
the existence of multinomial models on clusters along both the “column” (or dataset) and
“row” (or observation) of the aggregated datasets. For model coherence, we conditioned on
the event that these two otherwise disparate sets of clusterings were equal to one another,
resulting in closed form posteriors. The model shares cluster assignment information across
datasets, giving across-dataset meaning to the labels, though fits cluster parameters within-
dataset. The model learns the total number of clusters with the analyst specifying an upper
bound, and posteriors exist on the level of the sample-dataset pair, rather than only on sample
which leads to a loss of information. Run time of cluster estimation scales linearly in the total
number of covariates in the datasets being integrated.
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We argue that forcing a clustering on samples, invariant to data source, seriously oversimplifies
diseases subtyping. In our analysis each observation appears best characterized by its full set
of clusters, one for each data set. Subtyping appears more precise and potentially more useful
for treatment and prognoses by duly recognizing this complexity. Our approach is flexible, in
the sense that if a single cluster assignment would emerge from the integrative clustering, it
would appear in the TWL model, which however is able to capture deviations from it. Our
analysis on the breast cancer data shows clearly that a single, unique clustering of all patients
cannot account for pan-genomic sample heterogeneity and can therefore be misleading. We
believe that a TWL analysis of breast cancer patients would be the best starting point to study
precision treatments.

Our integrative clustering data analysis is unique in that it includes 57 women with ductal
carcinoma in-situ, in addition to 313 women with invasive breast cancer. The Cancer Genome
Atlas exclusively includes invasive tumors, and so our dataset and unsupervised TWL analysis
is positioned to characterize the genomics of DCIS and invasive cancers in a way that is
impossible in the well-analyzed TCGA samples. We leverage our integrative clustering analysis
to better understand breast cancer subtypes in both DCIS and invasive breast cancer cases.

The TWL model is built to achieve robust and stable results. Because of the dimensionality
of the genomic datasets, we proposed a modified likelihood with lower bounding tail values
of the Gaussian model, thus coarsening the data, to achieve greater mixing in the MCMC.
We experimented with simulated annealing [Kirkpatrick et al., 1983], but found convergence
improved under our alternative approach. Our Gibbs sampler was additionally modified to
avoid excessive sampling of clusters close to the global mean of features in each dataset. Our
ability to clearly find 5 distinct expression clusters, which align to a high degree with the
known breast cancer subtypes, without specification of the number of clusters and across
parallel chains and draws from the data serves as validation of our model fitting procedure on
this dataset. We additionally found 2 distinct CNA clusters and 7 methylation clusters, and a
relative lack of “cluster correspondence” across datasets as judged by our proposed measure.

We did not observe a high degree of pan-genomic cluster correspondence, and primarily found
modest enrichment in the Her2 subtype and DCIS tumor state in those samples with greater
expression-CNA cluster correspondence. There are different reasons we may not have seen
significant pan-genomic cluster correspondence. According to the analysis of Sun et al. [2018],
tumor purity and cell type composition confound the relationship between expression and
methylation genomic data sources, and we are unable to control for these factors in our analysis.
Sun et al. [2018] also finds that CNAs affect expression and methylation independently. If
this is the case, one would expect weaker expression-methylation associations, and stronger
associations between the expression-CNA and CNA-methylation pairs.

Myhre et al. [2013] performs a similar analysis to examine correspondence across genomic
platforms, calculating Spearman correlation on gene-annotated expression, copy number, and
proteomic probes both within subtypes and also marginally. Direct comparison with their
results is difficult however, as they do not perform a genome-wide analysis, but examine the
PI3K/Akt pathway. They do observe variation by subtype in the degree of correlation between
measures on different platforms for specific genes. However, examination of all genes in the
pathway does not reveal broad trends of greater correlation in one subtype over another on a
specific pair of data sources. In particular, the Her2 subtype does not seem to exhibit greater
expression-CNA Spearman correlation for the genes interrogated than the other subtypes.

We found that nearly all DCIS tumors inhabit the large CNA cluster identified in our analysis
in a robust fashion. There were similar and perhaps more significant findings in the expression
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dataset, where one cluster seemed to contain most DCIS observations (see Table S13). The
large CNA cluster also contained a large proportion of invasive tumors, however, and the
second cluster in the CNA analysis contained almost entirely invasive tumors. The finding
of a single CNA cluster for all DCIS and some IDC seems to stand in contrast to findings
of Lesurf et al. [2016], who did not identify genomic loci that consistently separated the two
tumor states. The difference could result from the accumulation of small differences between
the two tumor states. This in turn could lead to the fairly characteristic differences one sees
in the two CNA clusters in our analysis and to which other methods are not sensitive. Also
unclear was why we observed so little CNA cluster homogeneity in the Basal intrinsic subtype
so that most of its samples had the “unknown” cluster classification. The finding suggests that
nearly all Basal samples are unlike one another and unlike any other subtype with respect to
CNAs.

It may not be surprising that we observe relatively little commonality between expression and
methylation clusterings. Moarii et al. [2015] finds that the correlations that do exist in breast
and other cancers are in certain, tissue-specific sets of genes. While their analysis only includes
invasive tumors from TCGA, genome-wide analysis therefore may very well not detect such a
specific subset. We also may not expect a lot a correlation between expression clusters and
those of CNAs, manifested either through posterior cross-tabulations of cluster labels from
those data sources or the more global measure of between-dataset cluster correspondence.
Indeed, when Curtis et al. [2012] integrates the two sources of information, they find CNAs
stratify subtypes in some cases and also group subsets from disparate ones together, resulting
in 10 total integrated clusters.

The volume of genomic data will only increase, and integrative clustering models have an
important role to play in giving insight into underlying biology. The TWL model, because of
its scalability and flexibility, can aid in this understanding.

5 Data Availability

Data is available within our published R package on CRAN as “twl” [R Core Team, 2017].
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Supplemental Materials: TWL model
David Swanson, Tonje Lien, Helga Bergholtz, Therese Sørlie, Arnoldo Frigessi

S1.1 Gibbs Sampler implementation

S1.1.1 Tilting the log likelihood for unoccupied clusters

We begin now to describe aspects of the Gibbs Sampler implementation of our model. There
was practical use for choosing default values of the log-likelihood for unoccupied clusters or
those with only 1 observation. The suggested priors on the cluster means and the use of global
variance parameters lead to full conditionals for moves to unoccupied clusters. However such a
model favors observations whose feature vectors are close to the mean feature vector across all
samples to be sampled into unoccupied clusters. Samples more distant from the mean feature
vector across all samples are less likely to be sampled into unoccupied clusters, and when such
samples are, the prior on the cluster mean parameters will exert relatively greater influence on
the resulting posterior. As a result, sampling still more distant samples into the unoccupied
cluster is rendered less likely.

We calculate what the log-likelihood of the Gaussian mixture model would be if in truth
samples were generated from M clusters, but we performed random cluster assignment of them.
That is, they are assigned a label not corresponding to the one from which they come, but
any random integer in {1, . . . ,M}, and cluster mean and variance parameters are calculated
assuming that random cluster assignment. One can think of this random assignment as that
which would be “observed” in the absence of any information or as a first guess in an iterative
or sampling fitting procedure. Suppose the marginal variance (i.e., the vector of variances
of features across all samples in a data set irrespective of cluster assignment) is σ2 and the
assumed within-cluster and between-cluster variances are c·σ2 and (1−c)·σ2 for some c ∈ (0, 1).
(One must choose c, and 0.5 is suggested as a conservative choice. In practice, the calculated
log likelihood is relatively insensitive to choice of c.)

Consider Efµ2 [Efµ1 [Eg[log h(X)|µ1, µ2]|µ1]] where µ1 and µ2 are treated as random variables
and represent the mean values at which the Gaussian mixture model likelihood is evaluated
(i.e., where cluster-specific mean parameters assume the random cluster assignment) and from
which the observation is generated (i.e., the mean parameter of the true cluster), respectively.
This is ∫ (∫ (∫

log(h(x)) g(x) dx

)
fµ1(µ1) dµ1

)
fµ2(µ2) dµ2

where h is a Gaussian pdf used to evaluate our samples with randomly assigned cluster labels.
It is indexed by mean parameter µ2 and variance σ2. The Gaussian density g is the sample’s
true density, and fµ1 , and fµ2 are also Gaussian pdfs for the means of g and h, respectively. So
informally, we are evaluating the log likelihood with h, which corresponds to the random (or
“observed”) cluster assignment, according to the density of the truth, g, where what determines
truth is the indexing of these densities by µ1 or µ2. Additionally, g, fµ1 , and fµ2 are all indexed
by variance parameter σ2 and by mean parameters µ1, 0, and 0, respectively (the 0’s chosen
arbitrarily since the result holds so long as these numbers are equal). So h = h(·|µ2, c · σ2),
g = g(·|µ1, c · σ2), fµ1 = fµ1(·| 0, (1− c) · σ2), and fµ2 = fµ2(·| 0, (1− c) · σ2). We expand the
expression above to

=

∫ (∫ (∫
−1/2 · logC − (x− µ2)2

2 · c σ2
g(x) dx

)
fµ1(µ1) dµ1

)
fµ2(µ2) dµ2
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where C = 2πσ2, then have

= −1/2 · logC − 1/2(c)−
∫ (∫

(µ1 − µ2)2

2 · c σ2
fµ1(µ1) dµ1

)
fµ2(µ2) dµ2

= −1/2 · logC − 1/2(c)−
∫ (∫ (

µ21
2 · c σ2

+
µ22

2 · c σ2

)
fµ1(µ1) dµ1

)
fµ2(µ2) dµ2

= −1/2 · logC − 1/2 · (c+ 2 (1− c))

This formula has been confirmed in simulation. We choose c = 0.5 though note that since logC
dominates the expression, choice of c is not critical. While ad hoc, we found that using this
formula for the default likelihood effectively allows for the repopulation of clusters once having
become unoccupied, maintains cluster sparsity, and does not favor repopulating unoccupied
clusters with observations closer to the global mean.

S1.1.2 Modified densities

Sampling from the conditional posterior for Cij shown in Eqn. (1) will sometimes be dominated
by one of the three terms of each normalized multinomial category. This is especially true
for the likelihood model–the higher the dimension of the data, the more peaked one cluster
likelihood score will tend to be relative to all others. And since the Gaussian model has thin
tails, the corresponding log likelihood can become very small without lower bound for many
clusters. This is unlike the priors on pj and ρi, which effectively have thick “tails” because
of hyperparameters α and β giving non-trivial probability mass to sampling even unoccupied
clusters. As a result, even in settings where clusterings in other datasets are similar, the model
will not tend to sample similar cluster labels across them. Instead, when sampling the posterior
one will quickly find and stay near local maxima, and there will be little or no mixing of cluster
assignments as the high-dimensional likelihood model renders the probability of sampling most
cluster labels zero.

Since a primary feature of our model is the way in which cluster assignment information is
shared across datasets and posterior assessment of across-dataset “cluster correspondence”,
this characteristic renders the basic model of little practical use. We can address this concern
by choosing to lower bound the likelihood model, effectively censoring values that fall below
the threshold to that value. One can choose the threshold as a function of the ceiling on the
number of clusters (ie, K), and the minimum cluster label mixing desired per MCMC sample.

One can also interpret this strategy as a question of data granularity. If an observation Yij is

beyond some distance from cluster center µ
(k)
j , we set the value to what the density evaluates

to at that distance. This approach is more helpful for achieving adequate cluster label mixing
than use of thick-tailed densities, which again get stuck in local maxima, but only after a
slightly larger number of iterations. Indeed, when notions of distance between cluster centers
is only significant up to some threshold, use of modified densities is fitting. It is important to
notice that use of such densities does not dull posterior peaks, whose functional form remains
unaffected by lower bounding the tails. Our data analysis in Section 3 demonstrates that
clusters still remain highly visible with use of these modified densities. One can also simply
run an MCMC longer and examine statistical significance in a PSM if there is concern about
slightly less visible clusters. We also experimented with simulated annealing to address the
problem of the likelihood dominating posterior sampling, but found more robust results using
modified densities.
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S1.2 Comparison with Cluster of Cluster Assignments and iClus-
ter data integreation methods

To compare our TWL model with those assuming a set of common boundaries across all data
types, we fit iCluster and COCA models on our data Shen et al. [2009], Curtis et al. [2012].
We fit the iCluster model with a total of 10 clusters in keeping with previously used number
of subtypes in breast cancer based on multitype data (Hoadley et al. [2014]). Examination
of BIC additionally suggested this was an adequate number of clusters to represent the data.
Consistent with previous use of the COCA procedure, we first performed non-negative matrix
factorization (NMF) on each data type and chose the number of clusters in each one suggested
by our heatmaps (5,2, and 7 for Expression, CN, and Methylation, respectively). We then
used the weighting matrices from NMF as indicator matrices for subtype and specified a total
of 12 consensus clusters using the ConsensusClusterPlus package in R R Core Team [2017].
Because both iCluster and COCA require all datatypes for each sample, contrary to TWL, we
could only analyze 299 of our total of 370 samples.

iCluster and COCA clusterings are shown in Figures 8a, 8b, and 8c as “barcode” annotation
beneath the PSM heatmaps. Colors in the barcodes map to arbitrary cluster labels and were
chosen to maximize color contrast in the annotation. Patients missing at least one datatype and
therefore lacking a consensus cluster are denoted with black. Since the output of both methods
is a single, consensus cluster, the different barcodes under each datatype are reorderings of the
consensus cluster based on sample ordering of the heatmap.

We see considerable agreement between iCluster and COCA labels and clear association with
certain heatmap clusters: the enrichment in iCluster and COCA cluster labels under the
methylation heatmap clusters and the Basal expression heatmap cluster (denoted by red in the
“subtyp” barcode annotation) are particularly striking. However, for other expression clusters
and particularly the CNA datatype as a whole, the consensus clusterings of iCluster and COCA
show little consistency with datatype clusters as revealed in the heatmaps. This phenomenon
likely results from the models’ attempts to find consistency across datatype clusterings while
there is little. For COCA in particular, its greater association with the methylation heatmap
clustering may come in part from the larger number of clusters in that datatype and resultant
greater influence on the consensus clustering. Ultimately there seems to be much loss of
datatype-specific clustering information by fitting a single consensus cluster for each sample.

S1.2.1 Label switching

Label switching due to posterior symmetry in label permutations is not a concern in our model
[Rodŕıguez and Walker, 2014]. Cluster label is never of direct importance in post-processing
our posterior – we only examine pair-wise common cluster assignment of observations, gener-
ating a dataset-specific N × N indicator matrix for each iteration in the MCMC chain after
convergence, called posterior similarity matrix (PSM) [Fritsch and Ickstadt, 2009]. A “1” in the
(v, t)− th element of the indicator matrix associated with dataset j and iteration m indicates
observations v and t in dataset j have a common cluster assignment, say “12”, for iteration
m. We can additionally average over all iterations for each dataset to generate a correlation
matrix and use either hierarchical clustering or graphical lasso to define definite, fixed clusters,
if one wants [Bien and Tibshirani, 2011, Ward, 1963]. In practice, we have used hierarchical
clustering for computational ease and subsequent flexibility of defining the number of clusters
by simply “cutting” the dendrogram at different heights. We describe these post-processes
more in Section 3.2.

We also recommend viewing the correlation matrix associated with each data set as a final

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/387076doi: bioRxiv preprint 

https://doi.org/10.1101/387076


product – the information loss associated with thresholding for definite cluster assignment can
negatively impact more subtle conclusions from analysis. Ambiguity in cluster assignment
made evident in the matrix is relevant information, and alignment or its lack with clusters
found in other datasets can be unstable when thresholding rules are used to define object-
dataset cluster membership.

S1.3 The General Two-Way Latent Structure Model

Here we present our model in the important situation where samples have measurements only
in some of the data sets. Aij is the subject id associated with row i in dataset j. It is only
annotation, or metadata, and serves as the index to which we apply multinomial models across
datasets, within sample. If all data sources have identical sets of sample ids, the notion of Aij
is unnecessary and could be reduced to i since rows in each data set could be associated with
the same sample if ordered properly. It is because we seek to fit our model in settings where
some subjects only have a subset of data sources that we introduce Aij notation. We assume
Aij ∈ {id1, . . . , idn, . . . , idN}, the superset of ids over all datasets

Let j be the dataset index, and we assume j ∈ {1, . . . , J}, for a total of J data sources.

Yi,j is a vector of features for id Aij and data set j and of dimension dj . Not all sample-dataset
pairs (Aij , j) need exist if a certain data source is not available for sample idn. Assume that
the cardinality of the ids in data set j is Nj . So ∀ j, Nj ≤ N , N again the size of the superset
of ids. Dataset j therefore consists of Nj observation vectors YAij ,j of length dj .

Let Y be the set of all observation vectors {Yi,j} for all valid pairs of (i, j)

We seek to sample from the posterior:

P (µ, τ ,p,ρ,R,C |Y,C == R)

where we now explain τ , p, ρ, R, C

Column (ie, data source) clusterings are defined with the random vector

C ≡ (C1,1, . . . , Ci,j , . . . , CN,J)

where J again is the total number of data sets, and

C(i,j) ∼Multinom(p
(1)
j , p

(2)
j . . . , p

(K)
j ) ∀ valid (i, j)

where K is the fixed upper bound on the number of clusters. The interpretation of pkj is the
probability of a draw of cluster label k in dataset j. So the 1, 2, . . . ,K in parentheses here are
superscripts, not exponents, and similarly for the model on the Ri,j ’s below.

We emphasize that though C is subscripted by i and j, the parameters are only subscripted by
j. Therefore, all observations within dataset j draw from this dataset-specific jth multinomial
model. We can loosely think of the cluster models on the j’s as models on the Columns of the
aggregated datasets if we arranged them next to one another.

Row (ie, sample id) clusterings are defined with the random vector

R ≡ (R1,1, . . . , Ri,j , . . . , RN,J)

Assuming that Aij = idn, we have

R(i,j) ∼Multinom(ρ
(1)
idn
, ρ

(2)
idn

. . . , ρ
(K)
idn

) ∀ valid (i, j)
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with K the upper bound on the number of clusters. Note that though R is subscripted by i
and j, the parameters are only subsripted by idn, subject id annotation. We can loosely think
of the cluster models on the idn’s as models on the Rows of the aggregated data sources if we
arranged them next to one another.

The model for pj is

pj ∼ Dirichlet(β1, . . . , βK) ∀ j

And for ρidn ,
ρidn ∼ Dirichlet(α1, . . . , αK) ∀ idn

with hyperparameters α and β constant across idn’s and j’s, respectively. α should likely be
chosen as a function of the average number of data sets per id (or simply number of data sets if
all ids are present in all data sets and unique within them), and β as a function of the average
number unique ids within each data set (or simply number of unique ids if again all ids are
present in all data sets and unique within them). As a result, and as follows, we have

α ≡ α1 = α2 = · · · = αK

and

β ≡ β1 = β2 = · · · = βK

The parameters of the normal densities are defined with:

µ ≡ (µ1,1 . . . µK,1, . . . . . . , µ1,j . . . µK,j , . . . . . . , µ1,J . . . µK,J)

where µk,j is the mean vector and of dimension dj , dj again the number of features in data
source j.

τ ≡ (τ1,1 . . . τK,1, . . . . . . , τ1,j . . . τK,j , . . . . . . , τ1,J . . . τK,J)

where τk,j is the precision vector and of dimension dj . Independence is assumed for components
of vector Yi,j and as a result information of its precision matrix is contained in a dj dimensional
vecor. The assumption increases computation efficiency, and filtering highly correlated features
makes the assumption reasonable.

C = R is shorthand notation for the event ∪{i,j}Ci,j = Ri,j ; i.e., for all valid pairs of (i, j),
Ci,j = Ri,j is true.

We factorize the posterior to the following and consider each factor in turn in the next sections.

P (µ, τ ,p,ρ,R,C |Y,C = R) ∝

P (Y | µ, τ ,p,ρ,R,C,C = R) · P (µ, τ |p,ρ,R,C,C = R)

·P (C,R | p,ρ,C = R) · P (p,ρ |C = R)
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S1.4 Considering Y

In the expressions below we have define k∗ ≡ Ci,j and use k∗ for cleaner notation to avoid
double subscripting. It functions as shorthand for subscripting according to the Ci,j cluster
label. We use {i, j} to denote the set of valid (i, j) pairs.

P (Y | µ, τ ,p,ρ,R,C,C = R)

=
∏
{i,j}

P (Yi,j | µ, τ ,p,ρ,R,C,C = R)

=
∏
{i,j}

P (Yi,j | µk∗,j , τk∗,j , Ci,j , Ri,j , Ci,j = Ri,j) =
∏
{i,j}

P (Yi,j | µk∗,j , τk∗,j , Ci,j)

=
∏
{i,j}

P (Yi,j | µk∗,j , τk∗,j) =
∏
{i,j}

N(Yi,j | µk∗,j , τk∗,j)

where N(·) is used to denote the Gaussian density here and below. Each (i, j) term in this last
expression can be written as

∏K
k=1N(Yi,j | µk,j , τk,j)I(k=Ci,j). For the purpose of combining

terms when calculating posteriors on the Ci,j ’s, we write the likelihood as

=
∏
{i,j}

K∏
k=1

N(Yi,j | µk,j , τk,j)I(k=Ci,j)

Notice we arbitrarily dropped the Ri,j because it contains redundant information on Ci,j . The
choice is not entirely arbitrary however because Ci,j can be considered in some sense “more
primary” for notation since µ and τ posteriors are sampled based only on within dataset (or
loosely, column) cluster assignment. This is also evident in our choice of µ and τ subscripts.

S1.5 Considering C, R

Now consider
P (C,R | p,ρ,C = R)

=
∏
{i,j}

P (Ci,j , Ri,j | p,ρ,C = R) =
∏
{i,j}

P (Ci,j | p,ρ,C = R)

=
∏
{i,j}

(
p
(Ci,j)
j · ρ(Ci,j)Aij

/
(∑

k

p
(k)
j · ρ

(k)
Aij

))
where again we drop Ri.j to emphasize that it contains redundant information. The Ci,j ’s and
k’s in this expression are superscripts for the cluster label and not exponents.
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S1.6 Considering µ, τ ,ψ

We now examine the term

P (µ, τ |p,ρ,R,C,C = R)

=
∏
k

∏
j

P (µk,j , τk,j |p,ρ,R,C,C = R)

=
∏
k

∏
j

N(µk,j | τ̂k,j , µ0,j , ψ0,j)

=
∏
k

∏
j

N(µk,j | τ̂k,j , µ0.j , ψ0,j)

The mean and precision of µk,j are µ0,j and ψ0.j , respectively, where we set µ0,j to the global
mean vector of Y·,j , which is data set j. We set the corresponding precision parameter

ψ0,j =

(
1

2
·
σ2G,j
n/20

· 15

)−1
for all j, where σ2G,j is a vector of variances of the features of Y·,j . Setting ψ0,j in this way

makes the assumption that half of global variation in data set j, σ2G,j , is attributable within-
cluster, that the size of clusters will be 1/20 of the total sample size, n, and that there should
be 1/15 cluster mean shrinkage to the global mean under such circumstances. If the analyst
fits the model with an upper bound of more than 20 clusters, this will result in greater mean
shrinkage earlier in the MCMC chain since the chain begins with random cluster assignment.
If in truth there are fewer than 20 clusters in the data, will result in less shrinkage of the
respective cluster means once convergence has occurred.

Such a prior also serves a practical purpose: without it, small clusters, especially those with one
observation, will be resistant to becoming unoccupied since the mean parameter, µk,j , will tend
to be close or identical to the corresponding observation(s) and thus inflate the likelihood. This
is more true if additionally cluster variance parameters, τk,j ’s, are cluster-specific, as estimated
normal densities will diverge to infinity. By shrinking µk,j to a global mean, especially when
the cluster size is smaller, the posterior of

P (C,R | p,ρ,C == R) = P (C | p,ρ,C == R)

will exhibit greater cluster sparsity.

Assuming a common variance parameter across clusters similarly keeps likelihoods from di-
verging and allows for more efficient estimation in the parameter. While addressing such a
concern with a prior on the variance is also a reasonable choice, we found greater statisti-
cal efficiency and convergence by considering it fixed and common across all clusters. The
parameter is estimated wth maximum likelihood. While the assumption of common cluster
variance across clusters is unlikely to hold exactly, new clusters will form when a single one is
too heterogeneous to be consistent with the common variance parameter.

Combining these priors with the likelihood given above, we can calculate posteriors for µ and
estimate τ1,j = τ2,j = · · · = τk,j = · · · = τK,j ∀ k via maximum likelihood, which we will
denote τ̂·,j . So τ̂·,j is a vector of length the number of features of data set j invariant to
cluster label, and which is specific to each data set j.

Because of conjugacy relationships, the posterior for µk,j is then
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P (µk,j
∣∣Y·,j,µ0,j , τ̂·,j ,ψ0,j) = N

(
µk,j

∣∣∣ [n τ̂·,j ·Ȳ·,j+ψ0,j ·µ0,j
]
·
[
ψ0,j+n τ̂·,j

]−1
,

[
ψ0,j+n τ̂·,j

]−1)

parametrized as the mean and variance, not precision. The mean is seen to be a weighted
average of the sample mean of the cluster and the prior, according to the respective precision
parameters. Likewise, the variance is the inverse of the sum of the precision parameters. Both
formula are familiar posterior parameters when using normal-normal conjugacy with variance
(1/τ) considered fixed.

S1.7 Considering p,ρ

Lastly, we consider

P (p,ρ |C = R)

=
∏
i

∏
j

P (pj , ρAij |C = R) ∝ P (C = R | pj , ρAij ) ·
∏
i

∏
j

P (pj , ρAij )

=
(∏
{i,j}

∑
k

p(k)j · ρ(k)Aij

)
·
(∏

i

∏
j

(
p
(1)
j p

(2)
j p

(3)
j . . . p

(K)
j

)α · (ρ(1)Aij ρ(2)Aij . . . ρ(K)
Aij

)β
)

where 1, 2, . . . , k, . . . ,K denotes superscripts, not exponents, and we make use of identical
hyperparameters across the prior cluster probabilities of α and β by taking each one as an
exponent outside the respective parentheses.

We can collect terms for

P (C,R | p,ρ,C = R) · P (p,ρ |C = R)

and obtain

∝
(∏
{i,j}

p
(Ci,j)
j · ρ(Ci,j)Aij

/
(∑

k

p
(k)
j · ρ

(k)
Aij

))
·

(∏
{i,j}

∑
k

p(k)j · ρ(k)Aij

)
·
(∏

i

∏
j

(
p
(1)
j p

(2)
j p

(3)
j . . . p

(K)
j

)α · (ρ(1)Aij ρ(2)Aij . . . ρ(K)
Aij

)β
)

=
(∏
{i,j}

p
(Ci,j)
j · ρ(Ci,j)Aij

)
·
(∏

i

∏
j

(
p
(1)
j p

(2)
j p

(3)
j . . . p

(K)
j

)α · (ρ(1)Aij ρ(2)Aij . . . ρ(K)
Aij

)β
)

=
∏
j

∏
i|j

(
(p

(1)
j )α+

∑
i|j I(Ci,j=1) · (p(2)j )α+

∑
i|j I(Ci,j=2) . . . (p

(K)
j )α+

∑
i|j I(Ci,j=K)

)
·

(
(ρ

(1)
Aij

)β+
∑
j|i I(Ri,j=1) · (ρ(2)Aij )

β+
∑
j|i I(Ri,j=2) . . . (ρ

(K)
Aij

)β+
∑
j|i I(Ri,j=K)

)
where we use the notation i | j and j | i to denote valid values of i and j within strata of j and
i, respectively.
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S1.7.1 Cluster posteriors

Using Ci,j = Ri,j in the previous expression and incorporating it with the likelihood, we have

=
∏
j

∏
i|j

(
(p

(1)
j )α+

∑
i|j I(Ci,j=1) · (p(2)j )α+

∑
i|j I(Ci,j=2) . . . (p

(K)
j )α+

∑
i|j I(Ci,j=K)

)
·

(
(ρ

(1)
Aij

)β+
∑
j|i I(Ci,j=1) · (ρ(2)Aij )

β+
∑
j|i I(Ci,j=2) . . . (ρ

(K)
Aij

)β+
∑
j|i I(Ci,j=K)

)
(
N(Yi,j | µk,j , τk,j)I(Ci,j=1)·N(Yi,j | µk,j , τk,j)I(Ci,j=2) · · ·N(Yi,j | µk,j , τk,j)I(Ci,j=K)

which admits the kernel of a multinomial probability mass function in Ci,j .

S1.8 Supplementary Figures

(a) Expression dataset (b) CNA dataset (c) Methylation dataset

Figure S1: Post-processed hierarchical clustering for our breast cancer analysis. Hierarchical clusters generally align
well with the clearly identifiable clusters in Figure 8

Table S1: Post-processed cluster labels for different feature draws from the expression dataset.
We see an even higher degree of stability in methylation cluster labels across feature draws.

clus 1 clus 2 clus 3 clus 4 clus 5 clus 6 clus 7 clus 8 clus unknown Sum
clus 1 0 16 13 0 0 0 0 0 0 29
clus 2 2 0 1 0 0 1 0 34 0 38
clus 3 0 0 0 54 0 0 0 3 0 57
clus 4 0 0 0 6 0 0 19 2 0 27
clus 5 6 0 0 3 0 0 1 0 3 13
clus 6 13 0 0 0 0 0 0 0 0 13
clus 7 9 0 0 1 0 3 7 2 0 22
clus 8 0 0 0 0 8 45 0 0 1 54

clus unknown 0 0 1 10 7 5 6 11 21 61
Sum 30 16 15 74 15 54 33 52 25 314
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Table S2: Post-processed cluster labels from parallel MCMC chains for the expression dataset.
Since cluster labels are arbitrary, one could permute them so that the largest cells would fall
along the diagonal. We see stability in cluster labels, indicating model convergence.

clus 1 clus 2 clus 3 clus 4 clus 5 clus unknown Sum

clus 1 0 0 37 1 11 1 50
clus 2 29 1 1 1 9 1 42
clus 3 2 57 1 0 2 5 67
clus 4 0 0 0 0 0 28 28
clus 5 0 4 0 109 28 17 158

clus unknown 2 2 2 3 1 15 25
Sum 33 64 41 114 51 67 370

Table S3: Post-processed cluster labels from parallel MCMC chains for the methylation dataset.
Since cluster labels are arbitrary, one could permute them so that the largest cells would
fall along the diagonal. We see a high degree of stability in cluster labels, indicating model
convergence.

clus 1 clus 2 clus 3 clus 4 clus 5 clus 6 clus 7 clus 8 clus unknown Sum

clus 1 0 0 0 0 0 0 32 1 5 38
clus 2 26 0 0 2 0 0 0 0 1 29
clus 3 1 0 0 72 0 0 0 9 0 82
clus 4 2 0 0 0 0 1 0 34 0 37
clus 5 0 0 0 0 2 49 0 0 1 52
clus 6 0 0 15 0 0 2 0 0 0 17
clus 7 0 15 0 0 0 0 0 0 0 15

clus unknown 1 1 0 0 13 2 1 8 18 44
Sum 30 16 15 74 15 54 33 52 25 314

Table S4: Post-processed cluster labels for the expression dataset tabulated against breast
cancer subtypes. There is considerable association between the two sets of labels. Those
observations with the more heterogeneous label (“clus unknown”) on the expression data source
are more diffusely distributed across the subtypes than those with a clear cluster label.

Basal Her2 LumA LumB Normal Sum

clus 4 27 0 0 0 0 27
clus 2 4 23 0 1 4 32
clus 5 4 7 72 62 7 152
clus 1 0 7 20 11 7 45
clus 3 2 2 37 1 23 65

clus unknown 11 8 9 13 8 49
Sum 48 47 138 88 49 370
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Table S5: Post-processed cluster labels for the methylation dataset tabulated against breast
cancer subtypes. There is some association between the two sets of labels. There seems to
be greater alignment between subtype and expression label than methylation label, which is
expected since intrinsic subtype is defined with expression profiles.

clus 1 clus 2 clus 3 clus 4 clus 5 clus 6 clus 7 clus unknown Sum

LumB 13 16 22 3 4 2 3 12 75
Her2 12 3 4 1 12 4 2 5 43

Normal 2 1 3 5 12 7 1 3 34
Basal 1 1 1 1 16 4 0 17 41
LumA 10 8 52 27 8 0 9 7 121
Sum 38 29 82 37 52 17 15 44 314

Table S6: We order observations according to sample-specific cluster correspondence and find enrichment in the
invasive tumor state among those observations with greater expression-methylation cluster label sharing for different
feature draws from the data (shown in (a) and (b)). The result suggests that there may be some degree of pan-genomic
features acting in concert for tumors in a more advanced state.

a)

DCIS IDC

Most clust corresp samps 0.024 0.976
Least clust corresp samps 0.048 0.952
Marginal distribution 0.154 0.846

b)

DCIS IDC

Most clust corresp samps 0.048 0.952
Least clust corresp samps 0.048 0.952
Marginal distribution 0.154 0.846

Table S7: We order observations according to sample-specific cluster correspondence, and confirm using different
feature draws enrichment in the HER2 intrinsic subtype among those observations with greater expression-CNA
correspondence.

a)

Basal Her2 LumA LumB Normal
Most clust

corresp samps
0.100 0.350 0.250 0.125 0.175

Least clust
corresp samps

0.075 0.100 0.350 0.200 0.275

Marginal
distribution

0.130 0.127 0.373 0.238 0.132

b)

Basal Her2 LumA LumB Normal
Most clust

corresp samps
0.100 0.425 0.075 0.250 0.150

Least clust
corresp samps

0.075 0.125 0.350 0.200 0.250

Marginal
distribution

0.130 0.127 0.373 0.238 0.132

Table S8: We order observations according to sample-specific cluster correspondence, and find that there is slight
enrichment in the HER2 subtype (a) and the LumA subtype (b) among those observations with greater cluster label
sharing across the CNA-methylation and expression-methylation pairings, respectively. The result suggests that there
is some degree of pan-genomic features acting in greater concert for tumors of the HER2 and LumA intrinsic subtypes.

a) CNA-methylation pairing

Basal Her2 LumA LumB Normal
Most clust

corresp samps
0.000 0.267 0.400 0.267 0.067

Least clust
corresp samps

0.333 0.133 0.267 0.200 0.067

Marginal
distribution

0.130 0.127 0.373 0.238 0.132

b) Expression-methylation pairing

Basal Her2 LumA LumB Normal
Most clust

corresp samps
0.017 0.033 0.617 0.283 0.050

Least clust
corresp samps

0.117 0.067 0.350 0.217 0.250

Marginal
distribution

0.130 0.127 0.373 0.238 0.132

Table S9: Ductal carcinoma is almost entirely found in the large CNA cluster across feature draws from the data
(shown in (a) and (b)).

a)

clus 1 clus 2 clus 3 clus 4 clus unknown Sum
DCIS 3 42 0 0 3 48
IDC 62 160 2 2 64 290
Sum 65 202 2 2 67 338

b)

clus 1 clus 2 clus 3 clus unknown Sum
DCIS 3 1 40 4 48
IDC 63 24 129 74 290
Sum 66 25 169 78 338
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Table S10: We order observations according to sample-specific cluster correspondence and confirm using different
feature draws enrichment in the DCIS tumor state among those observations with greater cluster label sharing across
the expression-CNA pairing. The result suggests that there is some degree of expression-CNA features acting in
greater concert for tumors that have not yet become invasive.

a)

DCIS IDC

Most clust corresp samps 0.350 0.650
Least clust corresp samps 0.250 0.750
Marginal distribution 0.154 0.846

b)

DCIS IDC

Most clust corresp samps 0.425 0.575
Least clust corresp samps 0.275 0.725
Marginal distribution 0.154 0.846

Table S11: There is a lack of the Basal intrinsic subtype among those observations with greater CNA-methylation
sample-specific cluster correspondence across feature draws.

a)

Basal Her2 LumA LumB Normal
Most clust

corresp samps
0.048 0.190 0.238 0.357 0.167

Least clust
corresp samps

0.167 0.048 0.310 0.310 0.167

Marginal
distribution

0.130 0.127 0.373 0.238 0.132

b)

Basal Her2 LumA LumB Normal
Most clust

corresp samps
0.024 0.214 0.286 0.381 0.095

Least clust
corresp samps

0.167 0.048 0.310 0.310 0.167

Marginal
distribution

0.130 0.127 0.373 0.238 0.132

Table S12: Cross tabulation of intrinsic subtype and CNA clusters.

clus 1 clus 2 clus 3 clus unknown Sum

LumB 17 15 22 27 81
Her2 5 5 22 11 43
Normal 3 1 35 1 40
Basal 1 1 17 26 45
LumA 40 3 73 13 129
Sum 66 25 169 78 338

Table S13: Cross tabulation of model defined expression subtype and tumor state. We observe
significant enrichment in the DCIS tumor state in model defined cluster 1.

clus 1 clus 2 clus 3 clus 4 clus 5 clus unknown Sum

DCIS 22 8 4 19 2 2 57
IDC 11 56 37 95 49 65 313
Sum 33 64 41 114 51 67 370
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