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Abstract 

The collection all TFs, target genes and their interactions in an organism form a gene regulatory 
network (GRN), which underly complex patterns of transcription even in unicellular species. 
However, identifying which interactions regulate expression in a specific temporal context 
remains a challenging task. With multiple experimental and computational approaches to 
characterize GRNs, we predicted general and phase-specific cell-cycle expression in 
Saccharomyces cerevisiae using four regulatory data sets: chromatin immunoprecipitation 
(ChIP), TF deletion data (Deletion), protein binding microarrays (PBMs), and position weight 
matrices (PWMs). Our results indicate that the source of regulatory interaction information 
significantly impacts our ability to predict cell-cycle expression where the best model was 
constructed by combining selected TF features from ChIP and Deletion data as well as TF-TF 
interaction features in the form of feed-forward loops.  The TFs that were the best predictors of 
cell-cycle expression were enriched for known cell-cycle regulators but also include regulators 
not implicated in cell-cycle regulation previously. In addition, ChIP and Deletion datasets led to 
the identification different subsets of TFs important for predicting cell-cycle expression. Finally, 
analysis of important TF-TF interaction features suggests that the GRN regulating cell cycle 
expression is highly interconnected and clustered around four groups of genes, two of which 
represent known cell-cycle regulatory complexes, while the other two contain TFs that are not 
known cell-cycle regulators (Ste12-Tex1 and Rap1-Hap1-Msn4), but are nonetheless important 
to regulating the timing of expression. Thus, not only do our models accurately reflect what is 
known about the regulation of the S. cerevisiae cell cycle, they can be used to discover 
regulatory factors which play a role in controlling expression during the cell cycle as well as 
other contexts with discrete temporal patterns of expression.  
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Introduction 

Biological processes, from the replication of single cells (Spellman et al., 1998) to the 
development of multicellular organisms (Tomancak et al., 2002), are dependent on spatially and 
temporally specific patterns of gene expression. A gene’s pattern of expression is defined based 
on the magnitude of expression under a defined set of circumstances, such as a particular 
environment (Zou et al., 2011; Uygun et al., 2017), anatomical structure (Segal et al., 2008; 
Chikina et al., 2009), development process (Busser et al. 2012), diurnal cycle  (Beer and 
Tavazoie, 2004; Panchy et al., 2014) or a combination of the above (Uygun et al., 2017). These 
complex expression patterns are, in a large part, the consequence of regulation during the 
initiation of transcription. Initiation of transcription primarily depends on transcription factors 
(TFs) binding to cis-regulatory elements (CREs), and other co-regulators to further promote or 
repress the recruitment of RNA-Polymerase (Juven-Gershon et al., 2008; Lelli et al., 2012; Spitz 
and Furlong, 2012). This process is influenced by the chromatin state around the promoter and 
CREs (Miller and Widom, 2003; Benveniste et al., 2014; Li et al., 2015a). In this intricate web of 
transcriptional initiation regulatory mechanism, TFs play a central role. In addition to CREs and 
co-regulators, TFs interact with other TFs both cooperatively (Kazemian et al., 2013; Jolma et 
al., 2015) or competitively (Miller and Widom, 2003). In addition, a TF can regulate the 
transcription of other TFs. The sum total of TF-target gene and TF-TF interactions regulating 
transcription in an organism is referred to as a gene regulatory network (GRN) (Macneil and 
Walhout, 2011).  

The connections between components in the GRN are central to the control of gene 
expression. Thus, knowledge of GRN can be used to model gene expression patterns. Without 
including regulatory interaction information, CREs have been used to assign genes in 
Saccharomyces cerevisiae into broad co-expression modules (Chikina et al., 2009), to identify 
enhancer regions involved in myogenesis in Drosophila (Busser et al. 2012), classify whether a 
gene will be stress responsive or not in Arabidopsis thaliana (Zou et al., 2011), and predict the 
timing of diel expression in Chlamydomonas reinhardtii (Panchy et al., 2014). Thus far, these 
studies using CREs to predict expression patterns have had mixed success. Particularly, it 
remains challenging to predict the timing of expression, such as the diel cycle (Panchy et al., 
2014). Beyond using only predicted CREs, inclusion of TF-target interactions has been shown 
to improve the performance of gene expression prediction in spatially specific stress responsive 
transcription (Uygun et al. 2017). It is expected that the inclusion of regulatory interaction data 
will improve the classification of genes expressed in a cyclic, time specific fashion but this 
expectation remains untested. 

The cell cycle of budding yeast, S. cerevisiae (reviewed in Bahler 2005) is an ideal 
system for studying the regulation of cyclic expression patterns. This is because cell cycle gene 
expression has been extensively characterized in S. cerevisiae (Price et al. 1991; Spellman et 
al. 1998). In addition, transcriptional regulation plays a key role in the cell cycle expression 
control (Futcher 2002, Breeden 2003). Furthermore, there are multiple data sets defining TF-
target interactions in S. cerevisiae on a genome-wide scale (Harbison et al. 2004, C. Zhu et al. 
2009, Reimand et al. 2010, de Boer and Hughes 2012). These approaches include in vivo 
binding assays, e.g. Chromatin Immuno-Precipitation (ChIP) (Buck and Lieb, 2004; Furey, 
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2012), in vitro binding assays such as protein binding microarrays (PBM) (Bulyk, 2007; Berger 
and Bulyk, 2009), and comparisons of TF deletion mutants with wildtype controls (Reimand et 
al., 2010). In this study, we address the central question of how well existing TF-target 
interaction data can be used to predict gene expression using machine learning algorithms for 
each cell cycle phase. We also investigated whether performance could be improved by 
including TF-TF interactions in the form of incoherent feedforward loops as model inputs, 
applying feature selection algorithms, and by combining interactions from different datasets in a 
single predictor. Finally, we used the most important TF-TF interactions from our models to 
construct GRNs that reveal networks of TFs with both known and novel interactions central to 
controlling the timing of cell cycle expression. 

Results and Discussion 

Comparing TF-target interactions from multiple regulatory data sets 

Although there is a single GRN which describes transcriptional regulation in an 
organism, different approaches to defining regulatory interactions may result in differences in 
inferred GRNs. Here, TF-target interactions in S. cerevisiae were defined based on: (1) ChIP-
chip experiments (ChIP), (2) changes in expression in deletion mutants (Deletion), (3) TF PWMs 
(PWM1), (4) a subset of PWMs curated by experts (PWM2), and (5) PBM experiments (PBM; 
Table 1, Methods, Files S1-S5). The number of TF-target interactions in the S. cerevisiae 
GRNs ranges from 16,602 in the ChIP-Chip data set to 78,095 in the PWM1 data set. This ~5-
fold difference in the number of interactions identified is driven by differences in the average 
number of interactions per TF, which ranges from 105.6 in the ChIP GRN to 558.8 in the PBM 
GRN (Table 1). For this reason, even though most TFs were present in >1 data sets (Figure 
1A), the numbers of interactions per TF are only weakly correlated between data sets (e.g. 
between ChIP and Deletion, Pearson’s correlation coefficient (PCC) = 0.09; ChIP and PWM, 
PCC = 0.11; and Deletion and PWM, PCC=0.046). In fact, for 80.5% for TF, a majority of their 
TF-target interactions were unique to a single data set (Figure 1B), indicating that, in spite of 
relatively similar coverage TF and their target genes, these data set provide distinct 
characterizations of the S. cerevisiae GRN. 

This lack of correlation is due to a lack of overlap of specific interactions (i.e. the same 
TF and target gene) between different data sets, (Figure 1C). Of the 156,710 TF-target 
interactions analyzed, 89.0% were unique to a single data set, with 40.0% of unique interactions 
belonging to the PWM1 data set. Although the overlaps in TF-target interactions between ChIP 
and Deletion as well as between ChIP and PWM were significantly higher than when TF targets 
were chosen at random (p=2.4e-65 and p<1e-307, respectively, see Methods), the overlap 
coefficients (the size of intersection of two set divided by the size of the smaller set) were only 
0.06 and 0.22, respectively. In all other cases, the overlaps were either not significant or 
significantly lower than random expectation (Figure 1D). Taken together, the low degree of 
overlap between GRNs based on different data sets is expected to impact how expression 
prediction models would perform. Because it remains an open question which dataset would 
better predict expression, in subsequent sections, we explored using the five datasets 
individually or jointly to predict cell-cycle phase specific expression in S. cerevisiae. 
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Predicting phase-specific expression during S. cerevisiae cell-cycle using TF-target 
interaction information 

Cell-cycle expressed genes were defined as genes with sinusoidal expression oscillation 
over the cell cycle with distinct minima and maxima (Spellman et al. 1998). These genes were 
clustered into five broad categories by Spellman et al. (1998) consisting of 71-300 genes based 
on the timing of peak expression that corresponds to the G1, S, S/G2, G2/M, and M/G1 phases 
of the cell cycle (Figure 2A). While it is known that each phase represents a functionally distinct 
period of the cell-cycle, the extent to which regulatory mechanisms are distinct or shared both 
within cluster and across all phase clusters has not been modeled using GRN information. 
Thus, we used each set of regulatory interactions as features to independently predict whether 
or not a gene was a cell-cycle gene and, more specifically, if it was expressed during a 
particular cell-cycle phase using Support Vector Machine (SVM, see Methods).  Although not 
all of the regulatory data sets have complete coverage of the S. cerevisiae genome, on average 
the coverage of genes expressed in each phase of cell-cycle was >70% among TF-target 
datasets (Table S1). The performance of the SVM classifier was assessed using the Area 
Under Curve-Receiver Operating Characteristic (AUC-ROC), which ranges from a value of 0.5 
for a random, uninformative classifier to 1.0 for a perfect classifier.  

Two types of classifiers were established using TF-target interaction data. The first 
(general) is for predicting whether a gene is a cell cycle gene in any phase or not. The second 
type (phase-specific) is for predicting whether a gene belongs to a specific phase cluster. Based 
on AUC-ROC values, both the data source of TF-target interactions (analysis of variance (AOV), 
p<2e-16) and the phase during the cell cycle (p<2e-16) significantly impact prediction 
performance. Among datasets, the PBM and the expert curated PWM2 dataset have the lowest 
AUC-ROCs (Figure 2B). This poor performance could be because these data sets have the 
fewest TFs. If we restrict the ChIP, Deletion and full set of PWM (PWM1) data sets to only TF 
present in the PBM data set, they still perform better than the PBM-based classifier (Figure 2C). 
Hence, the low performance of PBM and the expert PWM must also depend on the interaction 
inferred for each TF. Conversely, if we take the full set of PWMs (PWM1), which has the most 
features, and restricts it to only include TFs present in the best performing ChIP or Deletion 
datasets, performance is unchanged (Figure 2D). Therefore, even though a severe reduction of 
features can impact performance of our classifiers, so long as the most important cell-cycle 
regulators are covered, performance of the classifier is unaffected. 

Overall, our results indicate that both cell-cycle expression in general and timing of cell-
cycle expression can be predicted using TF-target interaction data, and ChIP-based interactions 
alone can be used to predict all phase clusters with an AUC-ROC >0.7, except S/G2 (Figure 
2B). Nevertheless, there remains room for improvement as our classifiers are far from perfect, 
particularly for predicting expression in S/G2. One explanation for the difference in performance 
between phases is that S/G2 bridges the replicative phase (S) and the second growth phase 
(G2) of the cell-cycle that likely contains a heterogeneous set of genes with diverse functions 
and regulatory programs. This hypothesis is supported by the fact that S/G2 genes are not 
significantly over-represented in any Gene Ontology terms (see later sections). Alternatively, it 
is also possible that TF-target interactions are insufficient to describe the GRN controlling S/G2 
expression and higher-order regulatory interactions need to be considered.  
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Incorporating feedforward loops for predicting phase-specific expression  

Because a gene can be regulated by multiple TFs simultaneously where the regulating 
TFs may also interact and influence each other's transcription, our next step was to identify TF-
TF-target interactions that may be used to improve phase-specific expression prediction. Here 
we focused on network motifs, which are patterns of regulatory interactions that are enriched in 
a biological network and thus theorized to be functionally important (Alon, 2007). In particular, 
we examined feed-forward loops (FFLs) that consists of a primary TF that regulates a 
secondary TF and a target gene that is regulated by both the primary and secondary TFs 
(Figure 3A). An FFL is expected to result in peak expression following a delay after the 
expression of the primary TF is induced (Alon, 2007), and is therefore a potential regulatory 
mechanism for phase-specific expression in the cell-cycle. We defined FFLs in S. cerevisiae 
using the same regulatory data sets used to identify TF-target interactions and found that 
significantly more FFLs were present in each of the five GRNs than randomly expected (Table 
2), indicating FFLs are an overrepresented network motif.   

We next built models predicting general and phase-specific cell-cycle expression using 
only regulation by FFLs as features. There was little overlap between data sets ─ 97.6% of 
FFLs were unique to one data set and no FFL was common to all data sets (Figure 3B). Thus, 
we treated FFLs from each GRN independently in machine learning. Compared to TF-target 
interactions, fewer cell-cycle genes were part of an FFL, ranging from 19% of all cell-cycle 
genes in the PWM2 dataset to 90% in PWM1 (Table S2). Hence, the models made with FFLs 
will be relevant to only a subset of cell-cycle expressed genes. Nonetheless, we found the same 
overall pattern of model performance with FFLs as we did using TF-target data (Figure 3C), 
indicating that FFLs were useful for identifying TF-TF interactions important for cell-cyclic 
expression regulation. Similar to the TF-target-based models, the best predictions from the FFL-
based models were from GRNs derived from ChIP, Deletion, and PWM1. Notably, while the 
ChIP, Deletion and PWM1 TF-target-based models performed similarly over all phases (Figure 
2B), predictions using ChIP-based FFLs had the highest AUC-ROC values for all phases of 
expression (Figure 3C).  

ChIP FFL models also had higher AUC-ROCs for each phase than those using ChIP-
based TF-target interactions. However, if we used ChIP TF-target interactions to predict cell-
cycle expression for the same subset of cell cycle genes covered by ChIP FFLs, the 
performance TF-target based predictions improve better for all phases (Table S3). Hence, the 
improved performance from using FFLs was mainly because the subsets of TFs and cell-cycle 
gene targets covered by the ChIP FFL provided an effective method for feature selection. Thus, 
FFLs complement TF-target interactions for the purpose improving model performance. This 
also suggests that further improvement in cell cycle expression prediction might be achieved by 
including both TF-target and FFL interactions across data sets.  
 
Integrating multiple GRNs to improve prediction of cell-cycle expression 

To consider both TF-target interactions and FFLs by combining data sets, we focused on 
interactions identified from the ChIP and Deletion data sets because they contributed to better 
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predictive performance than PBM, PWM1 and PWM2 interactions (Figure 2B, 3C. Furthermore, 
ChIP and Deletion GRNs are expected to be complementary because ChIP identifies direct 
interactions, while in the Deletion data the interactions can be indirect. To alleviate the concern 
of overfitting, we first identified which features were important to the performance of the ChIP-
based and Deletion-based classifiers.  For classifiers based on TF-target interactions, each TF 
serve as a “feature” for making predictions. For classifiers based on FFLs, a feature is a specific 
TF-TF combination. The importance of these features was quantified using SVMs weight (see 
Methods) where a positive weight is predictive of cell-cycle expressed genes, while a negatively 
weighted feature is predictive of non-cell cycle genes. The important features for each phase-
specific classifier based on ChIP and Deletion data were defined independently. To determine if 
model performance can be improved by using only the top features, we defined four feature 
subsets using two weight thresholds (10th and 25th percentile) with two different signs (positive 
and negative weights) (see Methods, Table S4).  This approach allowed us to assess if 
accurate predictions only require cell-cycle associated (i.e. positive weight) features, or if 
performance depends on exclusionary (i.e. negative weight) features as well.  

First, we assessed the predictive power of each subset of TF-target, FFL, and TF-
target/FFL combined features identified using ChIP (Figure 4A) or Deletion (Figure 4B) data. 
Generally, the feature subsets consisting of both the top and bottom 25th percentile weights 
performed best with only one exception, compared to when TF-target and FFL features were 
considered separately (purple outline, Figure 4A,B). When combining TF-target and FFL 
features, the model performance was not always better compared to using TF-target or FFL 
data separately. This is to be expected for comparisons to FFL models given that we have 
previously seen that it is easier to predict the phase of cell-cycle genes regulated by FFLs 
regardless of what feature set is used (Table S3). A notable exception is that models built using 
the top and bottom 10th percentile of both features was the best predictors of G1 phase (yellow 
outline, Figure 4A, B). In contrast, only M/G1 is predicted better in TF-target models than in 
models using both TF-target and FFL data, both of which have the same coverage of cell-cycle 
genes. The results suggest we can achieve equal or improved performance predicting cell-cycle 
expression via feature selection, so long as both features associated with cell-cycle (positive 
weight) and non-cell-cycle (negative weight) gene expression are included.  

Next, we addressed whether combining ChIP and deletion data would lead to models 
that outperform models using each data type alone. Generally, combining these two datasets 
(Figure 4C) improves or maintains model performance for the general cycling genes and most 
phase (white texts, Figure 4). The ChIP+deletion models were only outperformed by Deletion 
data set models for G1 and S phase. For general criteria for classifying all phases, the 
consistency with which classifiers built using both ChIP and Deletion data (Figure 4C) 
outperformed classifiers built with just one data set (Figure 4A,B) indicates the power of using 
complementary experimental data to predict expression. Additionally, these combined models 
outperform classifiers based on the entirety of any single data set even though they contain 
fewer total features. While we would expect that this subset of important TFs will consist of 
known cell-cycle regulators, we also sought to use important TF-target and TF-TF interactions 
to discover novel TF functions that are associated with cell-cycle regulation. 
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Functions of TFs important for predicting cell-cycle expression 

In our analysis of the ChIP and Deletion data sets, we found that performance of 
classifiers using only the most important features is similar to those using the full feature set. Of 
the 25 TFs that have been annotated as cell-cycle regulators in S. cerevisiae (GO:0051726), 20 
were covered by the ChIP and Deletion data set (Table S5). For ChIP-based classifier, the 10th 
percentile of the most important TFs from all phases, except M/G1, are enriched for known cell-
cycle regulators (Table 3). While this pattern of enrichment was not found in Deletion features 
nor in 25th percentile of features for either data set, 17 of the 25 annotated, cell-cycle regulators 
are important features for predicting ≥ 1 phase of cell cycle in one or both data sets (Table S5). 
These seemingly contradictory results between enrichment and coverage occur because the set 
of annotated cell-cycle regulators contains both general and highly phase-specific regulators 
(Table S5). 

While important TFs identified by our classifiers are enriched for annotated cell-cycle 
regulators, these known regulators still represent the minority of TFs predicted as important. For 
example, there are 84 TFs with the top 10th percentile weights in the combined model for G1 
prediction (Figure 4). To better understand the functions of these other important (with high 
weight) TFs, we looked for enriched GO Terms other than cell-cycle regulation among TFs with 
the top 10th and 25th percentile weights in classifier predicting general cyclic expression using 
either the ChIP or the Deletion TF-target data (Table S6). We identified 126 over-represented 
GO terms in total, 94 of which were unique to ChIP-based or Deletion-based classifiers. TFs 
important in ChIP-based classifiers tend to be enriched in genes involved in the positive 
regulation of transcription in response to variety of stress conditions (e.g. freezing, genotoxicity, 
heat, high salinity, reactive oxygen species, and amino acid starvation; Table S6). This is 
consistent with the finding that cell-cycle genes, particularly those involved in the G1-S phase 
transition, are needed for heat-shock response (Jarolim et al., 2013). In contrast, TFs important 
to Deletion-based classifiers are enriched in categories relevant to cellular metabolism (e.g. 
amino acid metabolism, glycolysis, and respiration; Table S6), consistent with the view that the 
metabolic status of the cell determines cell cycle progression (Cai and Tu, 2012).  

The distinct functions enriched in TFs important in ChIP and Deletion data supports the 
hypothesis that the improvement in predictive power from combining feature sets between ChIP 
and Deletion data was due to the distinct, but complementary characterization of gene 
regulation in S. cerevisiae. These findings also support the notion that a significant number of 
TFs important for cell-cycle expression predictions are novel cell-cycle regulations.  
 
Interaction between TFs important for predicting cell-cycle expression 

To explore the potential regulatory differences between the ChIP and Deletion datasets, 
we constructed ChIP and Deletion GRNs by selecting the top 10th percentile of TF features for 
predicting general cell-cycle expression. The resulting network shows differences in connectivity 
of GRNs, with only 2 of 15 features in the ChIP being singletons (Figure 5A), while 10 of 15 TF 
are not connected to any other TF in the Deletion network (Figure 5B). In addition, only two 
nodes (MBP1 and SWI4) are shared between these two GRNs (orange outline, Figure 5A, B). 
This connectivity differences likely reflect the nature of the methods in assessing interactions, 
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one direct and the other indirect. The Swi6-Swi4-Mbp1 module, which regulates G1/S phase 
transition (Iyer et al., 2001; Bean et al., 2005; Wittenberg and Reed, 2005) and part of the Fkh1-
Fkh2-Ndd1 module, which regulates S/G2 (Zhu et al., 2000) and G2/M (Koranda et al., 2000) 
expression, are present in the ChIP but not the Deletion data-based network. We would expect 
this outcome for the Deletion GRN, as the 10th percentile of important TFs was not enriched for 
known cell cycle regulations (Table 3).  

We should also point that while Swi6-Swi4-Mbp1 is present in the ChIP GRN, Fkh1 is 
missing (Figure 5A), suggesting that we may be missing important interactions if we only 
consider TFs that are individually important. To address this issue, we also built GRNs with the 
TF-TF interactions in the top 10th percentile of importance ranks from the FFL-based models 
predicting general cell cycle genes based on ChIP (Figure 5C) and Deletion (Figure 5D) data. 
Since these TF-TFs interactions were also used as features in phase-specific predictions, we 
labeled interactions that were above the 10th percentile of importance for individual phases 
(edge labels, Figure 5C, D). In the GRN based on the ChIP FFL data (Figure 5C), 61% 
interactions were important for predicting ≥1 phases of cell-cycle expression.  Furthermore, both 
Swi6-Swi4-Mbp1 (red) and Fkh1-Fkh2-Ndd1 (green) modules are fully represented in this 
network and are important for predicting multiple phases of cell cycle expression (Figure 5C). 

In contrast, using the 10th percentile of TF-TF features based the Deletion data to 
construct a GRN dataset revealed none of the modules uncovered using the ChIP data (except 
Swi4 and Swi6, Figure 5D). This is most likely because the inferences based on the Deletion 
dataset were indirect. Nonetheless, the Deletion data allows for the identification of known cell 
cycle regulators not found in the ChIP network, particular Sfp1 (Xu and Norris, 1998) that also 
plays roles in regulation of ribosomes in response to stress (Jorgensen et al., 2002; Marion et 
al., 2004) (green outline, Figure 5D). These findings highlight the importance of incorporating 
TF-TF interaction data, as well as the need to incorporating both ChIP and Deletion datasets. 

 
Novel regulators of cell-cycle expression  

In the GRN based on the ChIP FFL data, two modules that are not annotated as cell-
cycle regulators are also identified. The first is the feedback loop between Ste12 and Tec1 
important during S/G2 and M/G1 transitions (purple, Figure 5C). Ste12 and Tec1 are known to 
form a complex that shares co-regulators with Swi4 and Mbp1 to promote filamentous growth 
(van der Felden et al., 2014). The second is the Rap1-Hap1-Msn4 module important for 
predicting the M/G1 and G1 phases (blue, Figure 5C). Rap1 is involved in telomere 
organization (Guidi et al. 2015; Laporte et al. 2016). Hap1 is an oxygen response regulator 
(Keng 1992; Ter Linde and Steensma 2002). Msn4 is a general stress response regulator 
(Martinez-Pastor et al. 1996; Schmitt and McEntee 1996). We should emphasize that none 
of the TFs in these two modules is annotated as cell-cycle regulators despite their importance in 
predicting cell-cycle expression. In the Deletion FFL GRN (Figure 5D), TFs that are potentially 
novel cell-cycle regulators can also be identified. Two examples include Rpn4 and Cst6 are 
responsible for regulating proteolytic stress response (Mannhaupt et al., 1999; Ng et al., 2000; 
Xie and Varshavsky, 2001) and carbon utilization (Garcia-Gimeno and Struhl, 2000), 
respectively (green outlines, Figure 5D). While these non-canonical regulators do not appear to 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/387050doi: bioRxiv preprint 

https://doi.org/10.1101/387050


 

regulate cell-cycles transitions directly, the types of genes they regulate (metabolism, 
adhesion/filamentous growth, and stress response) are cell-cycle associated.  

Note that, in addition to the identified modules, five TFs (CUP9, DIG1, PHD1, ROX1, 
and YOX1) are common between the ChIP-based and the Deletion-based TF-TF networks 
(Figure 5C, D). If we are more inclusive and consider the top 25 percentile TF-TF interaction 
features based on ChIP, four additional TFs are now common (IXR1, MCM1, UME6, YLR-278C; 
Figure 5E). Three of these overlapping TFs (MCM1, UME6, and YOX1) are GO annotated cell-
cycle regulators. Of the remaining six, four genes do not directly regulate transition between 
cell-cycle phases but influence the progression of growth phases, and thus affect the cell-cycle 
indirectly. DIG1 and ROX1 knockouts delay G1 progression (White et al., 2009), PHD1 interacts 
with TUP1 (Hanlon et al., 2011), which also results in G1 delay when knocked out (White et al., 
2009), and CUP9 regulates PTR2 (Hauser et al., 2001), which causes abnormal G2 progression 
when over-expressed (Spoko et al., 2006). For the remaining two genes, IXR1 is not known to 
directly or indirectly affect growth phase progression, but is responsible for aerobic repression 
the cytochrome c gene COX5B alongside ROX1 (Lambert et al., 1994) and affects the 
expression of genes involved in DNA replication during hypoxia (Vizoso-Vasquez et al., 2012), 
but otherwise has not implicated in cell-cycle regulation. YLR-278C lacks any evidence of 
association with the cell-cycle and its only GO biological progress annotation is “biological 
progress unknown”.  The repeated appearance of YLR-278C in our networks warrants further 
investigation of the TF as a regulator of the cell-cycle or of cell-cycle related processes.  

Overall, these findings demonstrate the utility of the FFL-based classifiers and the need 
to consider the importance ranks of TF-TF interaction features when predicting gene 
expression. The GRN constructed from carefully selected TF-TF interactions allow the recovery 
of regulatory modules which cannot be identified based on TF-target interaction data. 
Furthermore, GRNs built from the ChIP and Deletion TF-TF interactions both identified 
interactions important to >1 phases of cell-cycle expression, but the characteristics of these 
interactions differ. ChIP-based interactions contain modules with known shared functions, while 
Deletion-based interactions involve central metabolism regulators like Sfp1 and consist of both 
direct and indirect relationships.  

 

Conclusions 

Predicting the expression of genes from their regulators and regulatory interactions 
remains a challenging exercise, but one that can be useful for studying how organisms respond 
to various stimuli and how that response is regulated at the molecular level. Here, we have 
shown that the problem of predicting complex expression patterns, such as the timing of 
expression across the cell-cycle, is tractable using a variety of experimental and computational 
methods of defining TF-target interactions. In spite of painting distinctly different pictures of the 
S. cerevisiae GRN, interactions inferred from ChIP-Chip, Deletion and PWM data sets were 
useful for predicting genes expressed during the cell cycle and for distinguishing between genes 
expressed at different phases. In fact, the differences between the ChIP and Deletion sets 
meant that integrating them into a single model improved the overall accuracy of machine 
learning predictions. Furthermore, we found that models were improved with the addition of TF-
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TF interactions in the form of FFLs. Particularly, a subset of the most important TF-TF 
interactions, combined with a subset of the most important TF-target interactions, led to models 
that performed better than either the full set of TF-target interactions or FFLs.  

By studying the TFs involved in the most important TF-target interactions and FFLs we 
were able to infer that these interactions play a biologically significant role in regulating the cell-
cycle. We found that the 10th percentile of important TFs from every phase except M/G1 were 
enriched for TFs with cell-cycle annotations. For the M/G1 phase we identified important TF-TF 
interactions that involve non-canonical cell-cycle regulators, such as the regulatory modules 
Ste12-Tec1 and Rap1-Msn4-Hap1. The Rap1-Msn4-Hap1 module stands out in that, while 
these regulators are individually poor predictors of cell-cycle expression, interactions between 
these TFs are among the best predictors of both cell-cycle expression in general and of the 
M/G1 and G1 phases in particular. Our GO analysis also indicated that TFs important for 
predicting cell-cycle expression were enriched for genes associated with metabolism (Cst6), 
invasive growth (Ste12-Tec1), and stress responses (Rpn4, Rap1-Msn4-Hap1), which was 
reflected in the network analysis as we found that interactions important for >1 phases of cell-
cycle expression were clustered around TFs involved in those processes. 

Although our best performing model was based on data with nearly complete coverage 
of the S. cerevisiae TF-DNA interactions, our models do not provide a complete picture of the 
regulation of cell-cycle expression for at least the following three reasons. First, cell-cycle 
control involves additional levels of regulation beyond transcription. In particular, kinases and 
the interaction between kinases and TFs are known to play a key role in regulating the timing of 
the cell cycle, and FFLs are frequently observed in this TF-kinase network (Csikász-Nagy et al., 
2009). Second, better characterization of TF binding sites will also help provide more accurate 
representation of the GRN regulating expression timing, such as novel methods of 
characterizing binding sites that incorporate information about both position and DNA 
modification (Csikász-Nagy et al., 2009; O’Malley et al., 2016). Third, our approach to 
understanding interactions between TFs involve FFLs, a relatively simple type of network motifs. 
More complicated interactions involving >2 TFs could further improve the prediction model. 
Nevertheless, the fact we were able to predict certain aspects of cell-cycle expression using 
only FFLs justifies their use in an expression modeling context. Furthermore, FFLs can be used 
to compose more complex interactions. For example, negative-feedback loops, which have 
previously been identified as being involved in the regulation of biological oscillations (Bertoli, 
Skotheim, and de Bruin 2013; Pett et al. 2016), are composed of two FFL where the primary or 
secondary TFs are reversed. Our identification of the interactions Ste12 and Tec1 as important 
to cell-cycle expression is an example of how more complicated regulatory pathways can be 
captured by using their constituent FFLs.  

This work shows that predictive models can provide a framework for identifying both 
regulators and regulatory interactions controlling temporal gene expression. Understanding the 
molecular basis of the timing of expression is of interest not only for the cell-cycle, but other 
important biological processes, such as response to acute stresses like predation and infection, 
and to cyclical changes in the environment including light and heat, and other cues. Although 
there remains room for improvement, the approach described here is not limited to the study of 
expression timing, but can also be applied to any expression pattern with discrete phases. 
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Methods 

TF-target interaction data and regulatory cite mapping 

Data used to infer TF-target interactions in S. cerevisiae were obtained from the following 
sources: ChIP-Chip (Harbison et al., 2004) and Deletion (Reimand et al., 2010) data were 
downloaded from ScerTF (http://stormo.wustl.edu/ScerTF/), PWMs (de Boer and Hughes, 2012) 
and the expert curated subset of these PWMs were downloaded from YetFaSCO 
(http://yetfasco.ccbr.utoronto.ca/), and PBM binding scores were taken from Zhu et al. (see 
Supplemental Table 5, (Zhu et al., 2009). For ChIP-Chip and Deletion data, the interaction 
between TF and their target genes were directly annotated, however, for PWMs and PBMs data 
we mapped inferred binding sites to the promoters of genes in S. cerevisiae downloaded from 
Yeastract (http://www.yeastract.com/). All position weight matrices were mapped for the PWM 
data set, however for PBM data we only used the oligonucleotides in the top 10th percentile of 
scores for every TF. This threshold was determined using a pilot study which found that using 
the 10th percentile as a cutoff maximized performance of prediction using PBM data. Mapping 
was done according to the pipeline previously described in Zou et al. (2011) using a threshold 
mapping p-value of 1e-5 to infer a TF-target interaction. 
 
Overlap between TF-target interaction data 

To evaluate the significance of the overlap in TF-target interactions between different GRNs, we 
compared the observed number of overlaps to what we expected were the genes regulated by 
each transcription factor randomized. In detail, for each set of TF-target interactions we 
replaced the target gene of each interaction with one that was randomly drawn from the total set 
of target genes across all data sets, such that the number of interactions for each TF were 
preserved. For each randomization of target gene, the number of overlapping features between 
each pair of data set was calculated. This process was repeated 1000 time to determine the 
mean and standard deviation of overlap between each data set expected under this 
randomization regimen. To determine to degree to which our observation differed from the 
expectation under this random model, we applied the two-tailed z-test to the differences 
between the observed number of overlaps and the distribution of overlaps from the randomized 
trials. 
 
Expected feed-forward loops in S. cerevisiae regulatory networks 

FFLs were defined in each set of TF-target interactions as any pair of TFs with a common target 
genes where a TF-target interaction also existed between one TF (the primary TF) and the other 
(the secondary TF) which, for clarity, we refer to as a TF-TF interaction. The expected number 
of FFLs in each data set was determined according to the method described by Uri Alon in “An 
Introduction to Systems Biology” (Chapter 4, 2007b). Briefly, the expected number of FFLs 
(NFFL) in a randomly arranged GRN is approximated by the cube of the mean connectivity (λ) of 
the network with a standard deviation equal to the square-root of the mean. Therefore, for each 
data set we compared the observed number of FFLs to the expected number of FFLs from a  
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network with the same number of connections, but with those connections randomly arranged 
by defining λ as the number of TF-target interactions divided by the total number of nodes 
(TFs+target genes) and calculating mean the standard deviation as above. 
 
Validating FFLs in cell-cycle expression 

FFLs were validated in the context of cell-cycle expression by modeling the regulation and 
expression of genes involved in the FFL using a system of ordinary differential equations: 

∆�� � � � ���  0 
�,�  ��  ��� � � � �
�,�  
�,�  ���
� 

Where S and T are the expression of the secondary TF and target gene respectively, ∝S and ∝T 

are the decay rates of the secondary TF and target gene respectively, and βS, T indicates the 
production rate of the target gene dependent on the secondary TF. In the nonhomogeneous 
term portion of the equation, βP,S and βP,T are the production rate of the secondary TF and target 
gene, respectively, which depend on the primary TF, while f(t) is the expression of the primary 
TF over time which is independent of both the secondary TF and the target gene. This system 
was solved in Maxima (http://maxima.sourceforge.net/index.html). For each FFL, maximum 
likelihood estimation, implemented using the bbmle package in R (https://cran.r-project.org/web/ 
packages/bbmle/index.html), was used to fit the model parameters to the observed expression 
of genes during the cell-cycle as defined by Spellman et al. (1998). Each run was initialized 

using the same set of initial conditions and only FFLs for which a reasonable (∝ < 0, βs > 0), 

non-initial parameters could be fit were kept. Between 80 and 90% of FFLs in each data set 
passed this threshold, while only 21% of FFLs built from random TF-TF-target triplets were fit. 
 
Classifying cell-cycle genes using machine learning 

Predicting cell-cycle expression and phase of cell-cycle expression was done using the Support 
Vector Machine (SVM) algorithm implemented in Weka (Hall et al. 2009). Each expressed gene 
was treated as separate instance. The features were the presence or absence of TF-target 
and/or TF-TF interactions in FFLs defined with each of five regulatory datasets (ChIP-Chip, 
Deletion, PWM, Expert-PWM, and PBM). For the general model, two classes were defined, 
cyclic and non-cyclic, based on Spellmen et al. (1998) (see Table S7). For each SVM run, the 
full set of positive instances (cyclic expression) and negative instances (non-cyclic expression) 
was used to generate 100 balanced (i.e. 1-to-1 ratio of positive to negative) inputs to ensure that 
final evaluation is not biased by the fact that most of the genome it not cyclically expressed 
under any cell-cycle phase. Genes were only selected for the input of a SVM run if at least one 
TF-target or TF-TF interaction feature was present. In addition to the general cell-cycle model, 
an SVM model was established for predicting genes in each cell-cycle phase. Models were 
constructed as above expect that classes were defined as expression during a specific phase of 
the cell-cycle, again based on data from non-cyclic, based on Spellmen et al. (1998). 

Each balanced input set was further divided for 10-fold cross validation with SVM 
implemented in Weka (Hall et al., 2009). Each run was optimized using a grid search of two 
parameters: (1) C: the minimum distance between the positive and negative groups, and (2) R: 
the ratio of negative to positive examples in the training set. The tested values of the two 
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parameters were: C = (0.01, 0.1, 0.5, 1, 1.5, 2.0) and R = (0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4). For 
each pair of parameters, performance was measured using the prediction scores values 
averaged across the 100 balanced input sets and the reported AUC-ROC was calculated using 
this average score. For each choice of positive class and feature set, the pair of grid search 
parameters which maximized the average AUC-ROC was used to define the representative 
model for that predictor and calculate the reported AUC-ROC for that predictor.  
 
Evaluating the relationship between model performance, class and feature 

The effect of the phase (general cell-cycle, G1, S, S/G2, G2/M or M/G1) of expression being 
predicted (class) and the data set (ChIP-Chip, Deletion, PWM, Expert PWM or PBM) from which 
TF-target interactions were derived (feature) on the performance of each SVM model was 
evaluated using analysis of variance (ANOVA). This was done using the “aov” function in the R 
statistical language using the following model: 

� �  � � � � � � � 
Where “S” is the representative AUC-ROC score of the SVM model, “C” is a categorical feature 
representing the positive-class set (cyclic expression or a specific phase of expression), and “D” 
is a categorical feature representing the data set of regulations used.  
 
Importance of features to predicting cell-cycle expression 

The importance of a feature for each model was determined by rerunning each SVM model 
using the best pair of parameters with the options “-i -k” in order to generate an output files with 
class and features statistics. From the resulting output file, custom Python scripts were used to 
extract the weight value for each of the features used in the linear classifier. Features were then 
ordered by their weight to determine importance, such that the feature with the largest positive 
value (most strongly associated with the positive class) had the highest rank and the feature 
with the largest negative value (most strongly associated with the negative class) had the lowest 
rank. Because multiple features often had the same weight value, we defined cutoff scores for 
the 10th and 25th percentile conservatively, such that the cutoff for the Xth percentile of positive 
features was smallest weight above which includes X% or less of all features and the Xth 
percentile of negative features was the largest weight below which includes X% or less of all 
features. The effect of this is observed most prominently in the 25th percentile features sets as 
ties between feature weights were more common towards the middle of the weight distributions. 
 
GO Analysis 

GO annotation for genes in S. cerevisiae were obtained from the Saccharomyces Genome 
Database (http://www.yeastgenome.org/download-data/curation). The significance of 
enrichment of a particular term in a set of important TF compared to the incidence of the GO 
annotation across the genome was determined using the Fisher’s Exact Test and adjusted for 
multiple-hypothesis testing using the Benjamini-Hochberg method (Benjamini and Hochberg, 
1995).  
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Tables 

Table 1. Size and origin of GRNs defined using each data set 

Data Set TF Target genes # of interactions Source 

ChIP 152 4701 16,062 ScerTF 

Deletion 151 5256 26,757 ScerTF 

PWM1 230 6536 78,095 YeTFaSCO 

PWM2 104 4740 9726 YeTFaSCO 

PBM 81 4922 45,264 Zhu et al. (2009) 

 
Table 2. Observed and expected numbers of FFLs in GRNs defined using different data 
sets 

Data Set 
# observed 

FFLs 
μ expected1 

σ
2 expected1 Z-score2 

ChIP 3777 811 28.47 104.15 

Deletion 13,162 2427 49.26 217.90 

PWM1 75,514 52,915 230.03 98.24 

PWM2 1700 398 19.94 65.26 

PBM 67,895 47,371 217.64 94.30 
1The mean (μ) and standard deviation (σ2) of FFLs expected in a GRN was determined using the cube of 
the mean connectivity of the GRN (see Methods). 
2The z-score reflects the difference between the observed and expected number of FFLs divided by the 
standard deviation of the expected number of FFLs (see Methods). 
 
Table 3. Enrichment p-values of known cell-cycle regulators among TF features 
important to predicting general cell-cycle or phase-specific expression  

Data Set Top TF feature 
percentile 

General G1 S S-G2 G2-M M-G1 

ChIP 10th 7.31e-061 0.035 0.0004 0.004 0.0007 0.085 

ChIP 25th 0.0003 0.099 0.099 0.26 0.27 0.1 

Deletion 10th  0.42 0.123 0.41 0.41 1 0.11 

Deletion 25th 1 0.2775 1 0.78 0.27 0.58 
1P-values determined by Fisher’s Exact tests. 
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Figure Legends 

Figure 1. Overlap of TF and interactions between data sets  

(A) The coverage of S. cerevisiae TFs (rows) in GRNs derived from four data sets (columns). 
ChIP: Chromatin Immuno-Precipitation. Deletion: knockout mutant expression data. PBM: 
Protein-Binding Microarray. PWM: Position Weight Matrix. The numbers of TFs shared between 
datasets or dataset-specific are indicated on the right. (B) Percentage of target genes of each S. 
cerevisiae TF (row) belonging to each GRN. Darker red indicates a higher percentage of 
interactions found within a data set, while darker blue indicates a lower percentage of 
interactions. TFs are ordered as in (A). (C) Venn-diagram of the number of overlapping TF-
target interactions from different data sets: ChIP (blue), Deletion (red), PWM1 (orange), PWM2 
(purple), PBM (green). (D) Expected and observed numbers of overlaps between TF-target 
interaction data sets. Boxplots of the expected number of overlapping TF-target interactions 
between each pair of GRNs based on randomly drawing TF-target interactions from the total 
pool of interactions across all data sets (see Methods). Blue filled circles indicate the observed 
number of overlaps between each pair of GRNs. 
 
Figure 2. Cell-cycle phase expression and performance of classifiers using TF-interaction 
data 

(A) Expression profiles of genes at specific phases of the cell-cycle. The normalized expression 
levels of genes in each phase of the cell-cycle: G1 (red), S (yellow), S/G2 (green), G2/M (blue), 
and M/G1 (purple). Time (x-axis) is expressed in minutes and, for the purpose of displaying 
relative levels of expression over time, the expression (y-axis) of each gene was normalized 
between 0 and 1. Each figure shows the mean expression of the phase. (B) AUC-ROC values 
of SVM classifiers for predicting whether a gene is cycling in any cell-cycle phases (general) or 
in a specific phase using TFs and TF-target interactions derived from each data set. The 
reported AUC-ROC for each classifier is the average AUC-ROC of 100 data subsets l (see 
Methods). Darker red shading indicates an AUC-ROC closer to one while darker blue indicates 
an AUC-ROC closer to zero. (C) Classifiers constructed using the TF-target interactions from 
the ChIP, Deletion, or PWM1 data, but only for TFs that were also present in PBM data set. (D) 
Classifiers constructed using the TF-target interactions from the PWM1 data, but only for TFs 
that were also present in ChIP or Deletion data set.  
 
Figure 3. FFL definition and model performance 

(A) Example Gene Regulatory Network (GRN, left) and feed-forward loops (FFLs, right). The 
presence of a regulatory interaction between TF1 and TF2 means that any target gene which is 
co-regulated by both of these TFs is part of a FFL. For example, TF1 and TF2 form a FFL with 
both Tar2 and Ta3, but not Tar1 or Tar4 because they are not regulated by TF2 and TF1, 
respectively. (B) Correlation plot description. (C)  Correlation plot description. (D) Venn diagram 
description (E) AUC-ROC values for SVM classifiers of each cell-cycle expression gene set (as 
in Figure 2) using TF-TF interaction information and FFLs derived from each data set. Heatmap 
coloring scheme is the same as that in Figure 2. 
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Figure 4. Performance of classifiers using important TF-target and/or FFL features from 
ChIP, Deletion, and combined data sets  

(A) AUC-ROC values for models of general cycling or each phase-specific expression set 
constructed using a subset of ChIP TF-target interactions, FFLs, or both that had the top or 
bottom 10th and 25th percentile of feature weight (see Methods). The reported AUC-ROC for 
each classifier is the average AUC-ROC of 100 runs (see Methods). (B) Similar to (A) except 
with Deletion data. (C) Similar to (A) except with combined ChIP-Chip and Deletion data and 
only the top and bottom 10th and 25th subsets were used. Purple outline: highlight performance 
of the top and bottom 25th percentile models.  Yellow outline: improved G1-specific expression 
prediction by combining TF-target and FFL features. White texts: highest AUC-ROC(s) for 
predicting general cycling genes or genes with peak expression in a specific phase. 
 
Figure 5. Cell-cycle GRNs based on important TF Features 

(A, B) The GRNs consisted of TFs with the top 10th percentile weights for predicting all cell-
cycle expressed genes using TF-target interactions from ChIP (A), or Deletion (B) data. (C, D) 
The GRNs consisted of TFs in FFLs with the top 10th percentile weights for predicting all cell-
cycle expressed genes using ChIP (C) or deletion (D) data. Interactions are further annotated 
with the phase of cell-cycle expression they are important for predicting (10th percentile of SVM 
weight in ChIP-Chip models). Insert: Cell-cycle phase 1 = G1, 2 = S, 3 = S/G2, 4 = G2/M, 5 = 
M/G1. (E) The ChIP GRN consisted of TFs in FFLs with the top 25th percentile weights for 
predicting cell-cycle expressed genes. Red edges: new interactions identified compared to (C). 
In (A-E), node outline colors indicate TFs shared between GRNs in:  orange - (A) and (B); pink - 
(A) and (C); blue – (B), (C), (D), and (E) (except Hap4); cyan: (C), (D), and (E) Filled colors: four 
modules with TF-TF interactions important for predicting expression in ≥2 phases. 
 

Supplemental Tables 

TableS1: TF-target feature counts and target gene coverage by data set 
 
TableS2: FFL feature counts and target gene coverage by data set 
 
Table S3: AUR-ROC of ChIP TF-target interaction models on genes covered by ChIP FFLs 
 
Table S4: Number of features in combined ChIP and Deletion models 
 
TableS5: Importance of annotated cell-cycle regulations to prediction of different phases of 
expression in ChIP and Deletion data sets 
 
TableS6: Enrichment of GO terms in TFs important to predicting phase of cell-cycle expression 
in ChIP 
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Table S7: Cell-cycle phase of S. cerevisiae genes 
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