- 1 Full article title: Neuropsychiatric Phenotypes and a Distinct Constellation of ASD Features in
- 2 3q29 Deletion Syndrome: Results from the 3q29 Registry
- 3 Authors: Rebecca M Pollak¹, Melissa M Murphy², Michael P Epstein², Michael E Zwick^{2,3},
- 4 Cheryl Klaiman^{3,4}, Celine A Saulnier³, the Emory 3q29 Project, Jennifer G Mulle^{2,5}
- 5 Affiliations: ¹Genetics and Molecular Biology, Laney Graduate School, Emory University,
- ⁶ ²Department of Human Genetics, School of Medicine, Emory University, ³Department of
- 7 Pediatrics, School of Medicine, Emory University, ⁴Marcus Autism Center, Children's
- 8 Healthcare of Atlanta and Emory University School of Medicine, ⁵Department of Epidemiology,
- 9 Rollins School of Public Health, Emory University
- 10 Corresponding author information: Jennifer Gladys Mulle, MHS, PhD, Whitehead 305M, 615
- 11 Michael Street, Atlanta, GA 30322; (404) 727-3042; jmulle@emory.edu
- 12 Author email addresses: Rebecca M Pollak, rebecca.pollak@emory.edu; Melissa M Murphy,
- 13 melissa.murphy@emory.edu; Michael P Epstein, mpepste@emory.edu; Michael E Zwick,
- 14 mzwick@emory.edu; Cheryl Klaiman, cheryl.klaiman@emroy.edu; Celine A Saulnier,
- 15 celine.saulnier@emory.edu; Jennifer G Mulle, jmulle@emory.edu
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23

Rebecca M Pollak

24 ABSTRACT

25 Background

- 26 The 1.6 Mb 3q29 deletion is associated with neurodevelopmental and psychiatric phenotypes,
- 27 including increased risk for autism spectrum disorder (ASD) and a 20-40-fold increased risk for
- 28 schizophrenia. However, the phenotypic spectrum of the deletion, particularly with respect to
- 29 ASD, remains poorly described.

30 Methods

- 31 We ascertained individuals with 3q29 deletion syndrome (3q29Del, "cases", n=93, 58.1% male)
- 32 and typically developing controls (n=64, 51.6% male) through the 3q29 registry
- 33 (https://3q29deletion.patientcrossroads.org). Self-report of neuropsychiatric illness was evaluated
- 34 for 93 cases. Subsets of participants were evaluated with the Social Responsiveness Scale (SRS,
- 35 n=48 cases, 56 controls), Social Communication Questionnaire (SCQ, n=33 cases, 46 controls),
- 36 Autism Spectrum Screening Questionnaire (ASSQ, n=24 cases, 35 controls), and Achenbach
- 37 Behavior Checklists (n=48 cases, 57 controls).

38 **Results**

- 39 3q29Del cases report a higher prevalence of autism diagnoses versus the general population
- 40 (29.0% vs. 1.47%, p<2.2E-16). Notably, 3q29 deletion confers a greater influence on risk for
- 41 ASD in females (OR=41.8, p=4.78E-05) than in males (OR=24.6, p=6.06E-09); this is aligned
- 42 with the reduced male:female bias from 4:1 in the general population to 2:1 in our study sample.
- 43 Although 71% of cases do not report a diagnosis of ASD, there is evidence of significant social
- 44 disability (3q29Del SRS *T-score*=71.8, control SRS *T-score*=45.9, p=2.16E-13). Cases also
- 45 report increased frequency of generalized anxiety disorder compared to controls (28.0% vs.
- 46 6.2%, p=0.001), which is mirrored by elevated mean scores on the Achenbach DSM-oriented

47	sub-scales (p<0.001). Finally, cases show a distinct constellation of ASD features on the SRS as
48	compared to idiopathic ASD, with substantially elevated Restricted Interests and Repetitive
49	Behaviors, but only mild impairment in Social Motivation.
50	Conclusions
51	Our sample of 3q29Del is significantly enriched for ASD diagnosis, especially among females,
52	and features of autism may be present even when an ASD diagnosis is not reported. Further, the
53	constellation of ASD features in this population is distinct from idiopathic ASD, with
54	substantially less impaired social motivation. Our study implies that ASD evaluation should be
55	the standard of care for individuals with 3q29Del. From a research perspective, the distinct ASD
56	subtype present in 3q29Del is an ideal entry point for expanding understanding of ASD.
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	

Rebecca M Pollak

71 Keywords

72 Autism, copy number variants, 3q29 deletion, psychiatric genetics, SRS, developmental delay,

73 genomic disorder

- -

Rebecca M Pollak

5

93

113

94 BACKGROUND

95	3q29 deletion syndrome (3q29Del) is a rare (~1 in 30,000) [1, 2] genomic disorder
96	characterized by a 1.6 Mb typically <i>de novo</i> deletion on chromosome 3 [3-5]. The interval
97	contains 21 distinct protein-coding genes, 3 antisense transcripts, 1 long noncoding RNA, and 1
98	microRNA. Our understanding of the syndrome phenotype continues to evolve. Initial reports
99	found developmental delay/intellectual disability universal among 3q29 deletion carriers, though
100	some case reports have since identified individuals without cognitive impairment [6]. The 3q29
101	deletion is associated with a 20-40-fold increased risk for schizophrenia (SZ), with multiple
102	replication studies supporting this association [7-11]. Case reports also indicate other
103	neuropsychiatric phenotypes may exist, including attention deficit/hyperactivity disorder
104	(ADHD) and bipolar disorder [3, 4, 12-16]. Previous work by our team examining self-report
105	data from 44 individuals with 3q29Del revealed a high prevalence (~20%) of generalized anxiety
106	disorder [5]. Further, case reports have long suggested an association with autism spectrum
107	disorder (ASD), and studies with large sample sizes indicate that the 3q29 deletion may confer a
108	19-fold increased risk for ASD ($p = 0.001$) [17, 18].
109	The range of neuropsychiatric manifestations in 3q29Del is consistent with other
110	genomic disorders. For example, the 22q11.2 deletion has a well-known association with
111	schizophrenia but is also associated with intellectual disability (ID), ASD, anxiety, mood
112	disorders, and ADHD [19, 20]. A similar constellation of phenotypes, including ASD, ADHD,

ID, SZ, and anxiety, has been identified in 16p11.2 deletion and duplication syndromes [21, 22],

114 7q11.23 duplication syndrome [23], and 1q21.1 deletion syndrome [24]. Thus, risk for multiple

Rebecca M Pollak

115 neuropsychiatric phenotypes appears to be a feature common to many genomic disorders,

116 including 3q29 deletion syndrome.

117	The present study aims to improve the current understanding of 3q29 deletion-associated
118	neuropsychiatric and neurodevelopmental phenotypes, and ASD in particular, by examining data
119	from comprehensive, standardized questionnaires in the largest cohort of individuals with
120	3q29Del ever assembled. Developing a clearer and more comprehensive picture of 3q29
121	deletion-associated phenotypes will aid in management of the syndrome for both families and
122	clinicians, which may in turn improve long-term outcomes. Additionally, a careful description of
123	the phenotypic spectrum of 3q29Del provides a basis for cross-disorder comparison between
124	genomic disorders, which may ultimately create inroads for identifying common mechanisms
125	underlying 3q29Del and similar CNV disorders.

126 METHODS AND MATERIALS

127 Sample

128 Individuals with 3q29Del were ascertained through the internet-based 3q29 deletion 129 registry (https://3q29deletion.patientcrossroads.org) as previously reported [5]. Briefly, 130 information about the registry was emailed to health care providers, medical geneticists, genetic 131 counselors, and support organizations; the registry is also advertised via Google AdWords, 132 where specific keywords were chosen to target the registry website in internet searches. 133 Participant recruitment, informed consent and assent, and data collection are all performed 134 through the registry website. Data were securely downloaded and de-identified for analysis. 135 After data cleaning of the electronic records (removing spam accounts, duplicate records, and 136 related individuals), 93 3q29Del registrants (58.1% male) were included in the present study, 137 ranging in age from 0.1-41.0 years (mean = 10.0 ± 8.6 years). Clinical diagnosis of 3q29 deletion

Rebecca M Pollak

	138	syndrome was	confirmed in	58% of our st	udy subjects	via review o	of clinical	genetics reports
--	-----	--------------	--------------	---------------	--------------	--------------	-------------	------------------

- 139 and/or medical records. To confirm that adaptation of standardized questionnaires to an online
- 140 format did not skew results, 64 typically developing controls (51.6% male) were included,
- 141 ranging in age from 1.0-41.0 years (mean = 9.9 ± 7.2 years). Controls were recruited via emails
- 142 sent to intramural CDC and Emory listservs and invited to fill out surveys in an identical fashion
- 143 to cases. Controls reporting a clinical diagnosis of any neurodevelopmental disorder were
- 144 excluded (n = 1). Description of the study sample can be found in Table 1. This study was
- approved by Emory University's Institutional Review Board (IRB00064133).

146 **Table 1: Characteristics of study participants with 3q29Del and controls.**

3q29 Deletion Syndrome	Control	P value
10.0 ± 8.6	9.9 ± 7.2	0.945
		0.521
54 (58.1%)	33 (51.6%)	
39 (41.9%)	31 (48.4%)	-
		0.0003
81 (87.1%)	41 (64.1%)	
2 (2.2%)	12 (18.8%)	-
10 (10.8%)	9 (14.1%)	
0 (0%)	2 (3.1%)	
-	-	2.37E-07
27 (29.0%)	2 (3.1%)	
54 (58.1%)	61 (95.3%)	
12 (12.9%)	1 (1.6%)	
		2.16E-09
42 (45.7%)	60 (93.8%)	
23 (25.0%)	1 (1.6%)	-
12 (13.0%)	1 (1.6%)	1
10 (10.9%)	2 (3.1%)	1
5 (5.4%)	0 (0%)	1
	$ \begin{array}{c} 10.0 \pm 8.6 \\ \hline 10.0 \pm 8.6 \\ \hline 54 (58.1\%) \\ 39 (41.9\%) \\ \hline 81 (87.1\%) \\ 2 (2.2\%) \\ \hline 10 (10.8\%) \\ 0 (0\%) \\ \hline 27 (29.0\%) \\ \hline 54 (58.1\%) \\ 12 (12.9\%) \\ \hline 42 (45.7\%) \\ 23 (25.0\%) \\ 12 (13.0\%) \\ 10 (10.9\%) \\ \hline \end{array} $	10.0 ± 8.6 9.9 ± 7.2 $54 (58.1\%)$ $33 (51.6\%)$ $39 (41.9\%)$ $31 (48.4\%)$ $81 (87.1\%)$ $41 (64.1\%)$ $2 (2.2\%)$ $12 (18.8\%)$ $10 (10.8\%)$ $9 (14.1\%)$ $0 (0\%)$ $2 (3.1\%)$ $27 (29.0\%)$ $2 (3.1\%)$ $54 (58.1\%)$ $61 (95.3\%)$ $12 (12.9\%)$ $1 (1.6\%)$ $42 (45.7\%)$ $60 (93.8\%)$ $23 (25.0\%)$ $1 (1.6\%)$ $10 (10.9\%)$ $2 (3.1\%)$

147 Demographic data collected from the custom Medical & Demographic Questionnaire completed

148 by participants upon enrollment in the online 3q29 Registry. P values were calculated with

Rebecca M Pollak

8

Student's t-test (age), Fisher's exact test (race, heart defect, age at walking), or Pearson's chisquare test (sex).

151 Questionnaires

Upon registration, the participant or his/her parent completed a custom medical and demographic questionnaire. This questionnaire includes questions on the sex, birthdate, race, and ethnicity of the participant, as well as a detailed medical history, including developmental milestones and prior clinical diagnoses of any neuropsychiatric or neurodevelopmental disorders [5].

157 Four standardized questionnaires were used to assess ASD-related symptomology and 158 general behavioral problems in the participants. The Social Responsiveness Scale (SRS; 159 preschool, school-age, and adult forms; n = 48 3q29Del, 56 controls) is a 65-item, 4 point Likert-160 scaled questionnaire designed to assess ASD-related symptoms along a normative continuum 161 [25]. The Social Communication Questionnaire (SCQ, n = 33 3q29Del, 46 controls) is a 40-item, 162 yes/no questionnaire designed to assess ASD-related symptoms keyed to DSM criteria [26]. The 163 Autism Spectrum Screening Questionnaire (ASSQ, n = 24 3q29Del, 35 controls) is a 27-item, 164 yes/somewhat/no questionnaire designed to assess ASD-related symptoms in high-functioning 165 individuals with no to mild ID [27]. The Child Behavior Checklist (CBCL) and Adult Behavior 166 Checklist (ABCL) are 100-, 113-, or 126-item (CBCL preschool, CBCL school-age, and ABCL, 167 respectively; n = 48 3q29Del, 57 controls), 3 point Likert-scaled questionnaires designed to 168 assess behavioral or developmental problems [28, 29]. Data from the CBCL and ABCL were 169 pooled for analysis. All standardized questionnaires were adapted for the online 3q29 deletion 170 registry and were completed by the participant or parent/guardian of the participant upon 171 registration. Some participants were not eligible to complete the standardized questionnaires

Rebecca M Pollak

9

172 because the proband was too young. Demographic characteristics of the respondents for each 173 questionnaire can be found in Table S1, demonstrating that the average age and sex distribution 174 of participants who completed the medical and demographic questionnaire was not different 175 from the average age and sex distribution of participants who completed each standardized form. 176 Analysis 177 Data from standardized questionnaires were imported into R [30] and were recoded and 178 scored according to the publisher's guidelines. Features of interest from the medical history 179 questionnaire (heart defects, age at walking, ASD diagnosis, global developmental delay/mental 180 retardation (GDD/MR) diagnosis) were recoded for analysis as follows: heart defects, yes/no; 181 age at walking, binned as normal (≤ 18 months), delayed (19-24 months), and extremely delayed 182 (>24 months); ASD diagnosis, yes/no; GDD/MR diagnosis yes (reported diagnosis of global 183 developmental delay and/or mental retardation)/no. To compare responses between 3q29Del 184 cases and controls, linear models and logistic regression models were implemented using the 185 stats R package [30]. To perform case-only analysis within 3q29Del cases, linear models and 186 logistic regression models were implemented using the stats R package [30] and cumulative link 187 proportional-odds models were implemented using the ordinal R package [31]. All statistical 188 models included age, race, and sex as covariates. To compare rates of self-reported diagnoses 189 and demographic parameters between 3q29Del cases and controls, Fisher's exact test was 190 implemented using the stats R package [30]. To compare rates of self-reported diagnoses in 191 3q29Del cases to population prevalence values, one-sample proportion tests with Yates' 192 continuity correction were implemented using the stats R package [30]. To compare sex 193 distribution between 3q29Del participants and controls, Pearson's chi square test was 194 implemented using the stats R package [30]. To compare age distribution in 3q29Del participants

195	and controls, two sample t-test was implemented using the stats R package [30]. To compare
196	scores in 3q29Del participants to mean values for children with idiopathic ASD, one sample t-
197	test was implemented using the stats R package [30]. Odds ratios and p values were calculated
198	using the fmsb R package [32]. Figures were generated using the plotly and ggplot2 R packages
199	[33][34].
200	Sensitivity Analysis
201	The questionnaires for 90 participants with 3q29Del (96.8%) were completed by a parent
202	or guardian ("parent-registered"), while 3 participants with 3q29Del (3.2%) completed all
203	questionnaires themselves ("self-registered"). All control participants were parent-registered. To
204	assess whether responses from the self-registered 3q29Del participants were influencing the
205	results, self-registrants were removed and the data were re-analyzed. Self-registrants were not
206	found to have a significant effect on the analyses (Tables S2 and S3). All results include both
207	parent- and self-registrants.
208	RESULTS
209	Self-report of neuropsychiatric diagnosis in 3q29Del
210	Self-report of neuropsychiatric diagnoses in our 3q29Del study subjects (Table 2)
211	revealed a higher prevalence of neuropsychiatric disorder diagnoses compared to controls,
212	including anxiety (28.0%), and compared to general population frequencies, including ASD
213	(29.0%, Figure 2A) and GDD/MR (59.1%) (Table 2), confirming prior work by our group [5].
214	Reported rates of conduct disorder (1.1% vs. 3.5%) and oppositional defiant disorder (3.2% vs.
215	3.5%) were similar to those observed in the general population. While a small proportion of
216	participants reported diagnoses of bipolar/manic depression (4.3%), depression (6.5%), and
217	schizophrenia (4.3%), we focused on ASD due to the young age (mean = 10.0 years) of our study

Rebecca M Pollak

218 population, since many study participants have not reached the age of risk for schizophrenia and

- 219 other adult-onset disorders. Despite this young age, the self-reported rate of SZ diagnoses in our
- adult study subjects (age > 18 years, n = 13) was 15-30 times higher than expected (15.4%)
- compared to an expected 0.5-1% in the general population; n = 2) [35-39] and the frequency of
- bipolar disorder was ~1.8 times higher than expected [40]. A summary of neuropsychiatric
- 223 diagnoses can be found in Table 2.

224 [Table 2 here]

- 225 SRS, SCQ, ASSQ, and CBCL/ABCL scores
- In 3q29 deletion study subjects, the mean SRS score was in the moderate range (*T-score*
- 227 = 71.8), the mean ASSQ score was in the clinical range (mean = 22.2), and the mean
- 228 CBCL/ABCL score was in the borderline range (*T*-score = 62.5). The mean SCQ score in 3q29
- deletion carriers was at the extremely high end of the normal range (mean = 13.9, clinical cutoff
- = 15) and elevated as compared to controls (mean = 3.5). Mean scores for typically developing
- controls were all in the normal range (SRS *T-score* = 45.9, ASSQ mean = 2.2, CBCL/ABCL *T*-
- score = 41.8, SCQ mean = 3.5) (Figure 1). Participants with 3q29Del scored significantly higher
- than typically developing controls on all four scales (p < 3.0E-12, Table S4).
- 234 Standardized scores stratified by ASD diagnosis

Next, we examined the relationship between SRS scores and reported ASD diagnosis, to determine whether the score inflation we observed in our study population as a whole was largely due to the increased prevalence of ASD. As expected, we observed that individuals with 3q29Del and an ASD diagnosis scored significantly higher than both controls and individuals with 3q29Del without an ASD diagnosis (3q29Del with ASD n = 17, *T-score* = 82.41; 3q29Del without ASD n = 31, *T-score* = 65.90; control n = 56, *T-score* = 45.90; p < 3.0E-13; Figure 2B).

We were interested to observe that individuals with 3q29Del without an ASD diagnosis also

Rebecca M Pollak

241

12

242	scored significantly higher than controls (3q29Del without ASD $n = 31$, <i>T-score</i> = 65.90; control
243	n = 56, <i>T-score</i> = 45.90; $p = 2.16E-13$; Figure 2B), indicating that increased SRS scores in
244	individuals with 3q29Del are not driven by ASD diagnostic status alone (Table S5). Similar
245	features were observed in the contribution of ASD diagnosis status to SCQ scores (Figure S1,
246	Table S6).
247	Standardized scores stratified by sex
248	Both males and females with 3q29Del reported a significantly increased frequency of
249	ASD diagnoses, with a substantially greater burden for ASD on females with 3q29Del. Males
250	with 3q29Del are at 16-fold increased risk for ASD as compared to the general population
251	(37.0% vs. 2.34%, OR = 24.6, p = 6.06E-09) and females are at 34-fold risk compared to the
252	general population (17.9% vs. 0.52%, OR = 41.8, p = 4.78E-05) (figure 2A) [41], resulting in a
253	male:female ratio in our study population of 2:1, as compared to the general population ratio of
254	4:1. Taken together, this indicates that the 3q29 deletion elevates the risk for ASD in females
255	more substantially than in males.
256	Based on the sex differences in ASD risk for individuals with 3q29Del, we also examined
257	possible sex differences in scores. We found that both males and females with 3q29Del scored
258	significantly higher than controls (3q29Del male $n = 26$, <i>T-score</i> = 74.31; control male $n = 30$, <i>T</i> -
259	<i>score</i> = 45.80; p = 7.70E-11; 3q29Del female n = 22, <i>T-score</i> = 68.73; control female n = 26, <i>T</i> -
260	<i>score</i> = 46.04; $p = 7.42E-09$); while 3q29Del males have higher scores than females, the
261	differences are not statistically significant (3q29Del male n = 26, <i>T-score</i> = 74.31; 3q29Del
262	female n = 22, <i>T-score</i> = 68.73; $p > 0.05$; Figure 2C). After stratifying our study population
263	further by sex and ASD diagnosis status, we determined that both male and female 3q29Del

Rebecca M Pollak

13

264	participants without an ASD diagnosis had significantly higher scores than controls (3q29Del
265	male without ASD n = 14, T -score = 66.29; control male n = 30, T -score = 45.80; p = 1.20E-06;
266	3q29Del female without ASD n = 17, <i>T</i> -score = 65.69; control female n = 26, <i>T</i> -score = 46.04; p
267	= 5.04E-07; Figure 2D). Taken together, this suggests that increased SRS scores in individuals
268	with 3q29Del are not driven by sex alone or by sex and ASD diagnosis status in combination
269	(Table S5); rather, the presence of the deletion itself confers a greater risk for social disability.
270	Furthermore, these data show an enrichment for female ASD in our study population, based on
271	the reduction in male bias and the highly similar scores between males and females with
272	3q29Del, irrespective of ASD diagnosis status. Similar features were observed in the
273	contribution of sex to SCQ scores (Figure S1, Table S6).
274	ASD presentation of 3q29Del
275	While total scores on the SRS, SCQ, ASSQ, and CBCL/ABCL can give an indication of
275 276	While total scores on the SRS, SCQ, ASSQ, and CBCL/ABCL can give an indication of the overall level of impairment of individuals, sub-scores can reveal nuanced deficits in specific
276	the overall level of impairment of individuals, sub-scores can reveal nuanced deficits in specific
276 277	the overall level of impairment of individuals, sub-scores can reveal nuanced deficits in specific behavioral domains. To this end, we analyzed all SRS sub-scales (Social Awareness, Social
276 277 278	the overall level of impairment of individuals, sub-scores can reveal nuanced deficits in specific behavioral domains. To this end, we analyzed all SRS sub-scales (Social Awareness, Social Cognition, Social Communication, Social Motivation, Restricted Interests and Repetitive
276 277 278 279	the overall level of impairment of individuals, sub-scores can reveal nuanced deficits in specific behavioral domains. To this end, we analyzed all SRS sub-scales (Social Awareness, Social Cognition, Social Communication, Social Motivation, Restricted Interests and Repetitive Behaviors, and Social Communication and Interaction) to better understand the extent of social
276 277 278 279 280	the overall level of impairment of individuals, sub-scores can reveal nuanced deficits in specific behavioral domains. To this end, we analyzed all SRS sub-scales (Social Awareness, Social Cognition, Social Communication, Social Motivation, Restricted Interests and Repetitive Behaviors, and Social Communication and Interaction) to better understand the extent of social disability in our study population; our goal was to determine whether our observed total score
276 277 278 279 280 281	the overall level of impairment of individuals, sub-scores can reveal nuanced deficits in specific behavioral domains. To this end, we analyzed all SRS sub-scales (Social Awareness, Social Cognition, Social Communication, Social Motivation, Restricted Interests and Repetitive Behaviors, and Social Communication and Interaction) to better understand the extent of social disability in our study population; our goal was to determine whether our observed total score inflation was due to a specific severe deficit in a few domains, or if individuals with 3q29Del
 276 277 278 279 280 281 282 	the overall level of impairment of individuals, sub-scores can reveal nuanced deficits in specific behavioral domains. To this end, we analyzed all SRS sub-scales (Social Awareness, Social Cognition, Social Communication, Social Motivation, Restricted Interests and Repetitive Behaviors, and Social Communication and Interaction) to better understand the extent of social disability in our study population; our goal was to determine whether our observed total score inflation was due to a specific severe deficit in a few domains, or if individuals with 3q29Del showed high scores across all sub-scales. The mean score for the Restricted Interests and

285 = 69.7), and Social Communication and Interaction (*T-score* = 69.5) were all in the moderate

range. Notably, the mean score for Social Motivation was in the mild range (*T-score* = 62.1,

Rebecca M Pollak

Figure 3A, Table 3). This sub-score profile is strikingly different from that reported in studies of

idiopathic ASD, where children tend to score equally high on all sub-scales (3q29Del Social

289 Motivation *T-score* = 62.1, idiopathic ASD Social Motivation *T-score* = 78.4, p = 7.66E-11)

290 [42]. This atypical behavioral profile is supported by clinical data; direct assessment of

individuals with 3q29Del by clinicians affiliated with the Emory 3q29 Project

292 (http://genome.emory.edu/3q29/, [43]) show less impaired social motivation as compared to

293 children with idiopathic ASD.

294 ASD presentation stratified by sex

295 To determine whether this unusual SRS sub-score profile was influenced by sex, we

examined profiles of male and female 3q29 deletion carriers separately. We found that the shape

297 of the profiles were identical, with males scoring on average 5 points higher than females on

every sub-scale (n = 26 male, 22 female; p > 0.05; Figure 3B; Table 3), demonstrating that the

social disability in 3q29Del is not qualitatively different between males and females.

300 ASD presentation stratified by ASD diagnosis

301 We then stratified our study subjects according to reported ASD diagnosis status and 302 examined subscale scores separately for 3q29Del individuals reporting a diagnosis of ASD and 303 those not reporting a diagnosis of ASD. We observed that the shape of the profile is shared 304 between 3q29Del individuals reporting a diagnosis of ASD and those not reporting a diagnosis of 305 ASD, with individuals reporting a diagnosis of ASD scoring on average 10-15 points higher on 306 every sub-scale (Figure 3C). As expected, 3q29Del participants with ASD scored significantly 307 higher on all sub-scales than 3q29Del participants without ASD (n = 17 with ASD, 31 without 308 ASD; p < 0.005; Table 3); however, 3q29Del participants without ASD still scored significantly 309 higher than controls on all sub-scales (n = 31 without ASD, 56 control; p < 5.0E-05; Table 3).

Rebecca M Pollak

310 [Table 3 here]

311 Additional neuropsychiatric phenotypes in 3q29Del

312	To further assess behavioral features associated with the 3q29 deletion, we examined the
313	DSM-oriented Attention Deficit/Hyperactivity Problems, Anxiety Problems, and Depressive
314	Problems sub-scales from the CBCL and ABCL. These DSM-oriented sub-scales align with
315	neuropsychiatric diagnoses reported by individuals with 3q29Del [5]. Individuals with 3q29Del
316	scored significantly higher than typically developing controls on all three scales (3q29Del
317	Attention Deficit/Hyperactivity Problems <i>T-score</i> = 61.0, control Attention Deficit/Hyperactivity
318	Problems <i>T-score</i> = 51.3, 3q29Del Anxiety Problems <i>T-score</i> = 60.9, control Anxiety Problems
319	T-score = 52.9, 3q29Del Depressive Problems T -score = 62.7, control Depressive Problems T -
320	<i>score</i> = 52.3, all p < 0.001, Figure 3D, Table S7), supporting previous reports of increased risk
321	for neuropsychiatric phenotypes associated with the 3q29 deletion [5].
322	Confounding due to heart defects and/or ID-related phenotypes
323	A previous study of 3q29Del by our group showed that approximately 25% of individuals
324	with 3q29Del reported a congenital heart defect [5]. Early hypoxic insult due to a heart defect
325	has been hypothesized to contribute to later neuropsychiatric and neurodevelopmental outcomes
326	[44-49]. To determine if the high frequency of heart defects in our study population was driving
327	adverse neurodevelopmental outcomes within 3q29Del cases, we implemented generalized linear
328	and cumulative link models to assess the relationship between congenital heart defects and
329	clinical ASD diagnosis, GDD/MR diagnosis, and age at walking, which has been reported to be a
330	suitable proxy for ID in the absence of available IQ and adaptive behavior measures [50] .
331	Congenital heart defects were not associated with self-reported ASD or GDD/MR diagnoses or
332	age at walking ($p > 0.05$, Table S8). Individuals with 3q29Del are also commonly diagnosed

333	with mild to moderate ID [5]. To ask whether ASD phenotypes or ASD features were
334	disproportionately overrepresented in individuals with more pronounced ID-related phenotypes
335	and/or heart defects, we stratified the data according to these phenotypes. Within our 3q29Del
336	study population, congenital heart defects were associated with significantly increased scores on
337	the SCQ and CBCL/ABCL ($p < 0.05$); however, reported GDD/MR diagnosis and age at
338	walking were not significantly associated with scores on the SRS, SCQ, ASSQ, or CBCL/ABCL
339	(p > 0.05, Table S9). These data indicate that ID-related phenotypes were not driving the
340	increased scores in our study population.
341	DISCUSSION
342	Previous studies have found enrichment of the 3q29 deletion in large samples ascertained
343	based on clinical ASD diagnosis [17, 18]. We have approached the association of 3q29Del with
344	ASD from a different angle; by ascertaining subjects with 3q29Del and investigating the
345	prevalence of reported ASD diagnosis and ASD-related phenotypes, the current study
346	complements the existing literature, providing additional evidence for the 3q29 deletion as a
347	genetic risk factor for ASD. Notably, the male:female ratio of self-reported ASD diagnosis in our
348	study population is 2:1. This is a reduction from the 4:1 male bias observed in idiopathic ASD in
349	the general population. A substantial reduction in male bias in ASD prevalence has been
350	observed in studies of other CNVs and single-gene mutations; a recent study has shown that as
351	the severity of a mutation increases, the sex ratio in ASD prevalence approaches 1:1 [51]. Taken
352	together, this suggests that the 3q29 deletion is approaching the severe end of the spectrum of
353	ASD-associated mutations.
354	We have shown that compared to typically developing children, our 3q29Del sample is
355	significantly enriched for ASD features and other behavioral problems, irrespective of a clinical

Rebecca M Pollak

17

356	ASD diagnosis. This finding is particularly concerning; while individuals with 3q29Del who
357	have an ASD diagnosis tend to score higher on symptomology scales overall, 3q29Del
358	individuals without an ASD diagnosis still score significantly higher than typically developing
359	children. This indicates several possible explanations: a) an enrichment for ASD features or
360	social disability that falls short of diagnostic criteria, b) possible undiagnosed ASD in our study
361	population, or c) non-specificity of the SRS, and potentially SCQ, for phenotypes other than
362	ASD, such as anxiety. The possibility of undiagnosed ASD in our study population is aligned
363	with anecdotal reports from parents of our study participants, where they have reported concerns
364	about atypical social development that do not appear to have been addressed using gold-standard
365	ASD evaluations. Based on the elevated symptomology scores in our study population, the
366	substantially increased risk for ASD associated with the 3q29 deletion, and the apparent severity
367	of the 3q29 deletion, our data suggest that gold-standard ASD evaluations should be the
368	recommended standard of care for individuals diagnosed with 3q29Del. If implemented, this
369	practice would enable patients to gain access to early interventions, treatments, and therapeutic
370	programs that are known to improve later outcomes.
371	Based on the SRS sub-scales, participants with 3q29Del display a strikingly different

behavioral profile as compared to a study of children with idiopathic ASD [42]. Male and female 3q29Del individuals show substantially less impaired social motivation in the context of an otherwise typical ASD profile, with the most severe deficits in the Restricted Interests and Repetitive Behaviors domain. This profile is also observed when dividing scores for 3q29Del participants based on reported ASD diagnosis. This qualitative difference from idiopathic ASD may serve as an inroad to therapeutic interventions in 3q29Del, as well as an investigative inroad to a distinct subtype of ASD. Because social motivation appears to be relatively well-preserved

Rebecca M Pollak

18

in 3q29Del, this suggests that therapies such as cognitive-behavioral therapy to teach social skills
and effective strategies for social interaction may be particularly successful in this patient
population.

382 Some facets of the difference in ASD features between 3q29Del and idiopathic ASD are 383 recapitulated by the scores on the Withdrawn sub-scale of the CBCL and ABCL. Previous 384 studies utilizing the CBCL in idiopathic ASD have found that mean scores for participants with 385 ASD are in the borderline range, with over 50% of subjects scoring in the borderline or clinical 386 range [52, 53]. While 3q29Del participants generally, as well as males and females separately, 387 score significantly higher than controls, their mean score is still in the normal range (Figure S2A 388 and B). However, 60% of 3q29Del participants reporting an ASD diagnosis score in the 389 borderline or clinical range (Figure S2C, Table S10), which is in line with what is expected 390 based on studies of idiopathic ASD [52, 53]. This is in conflict with the relatively well-preserved 391 social motivation in 3q29Del individuals with ASD identified in our analysis of the SRS sub-392 scales and suggests that a more refined analysis is merited to identify the true degree of social 393 disability in this population.

394 We tested the hypothesis that the score inflation observed in our 3q29Del study subjects 395 may be due to the high prevalence of developmental delay or congenital heart defects [5]. Our 396 available data do not support this hypothesis, and instead reveal that social disability is equally 397 distributed in our study population. Lack of direct measures of intellectual disability, and errors 398 or missing data in self-report measures, may obscure this relationship; however, numerous 399 studies of the relationship between ID and ASD in genomic disorders suggests that when the 400 population is stratified by the presence of a specific genetic variant, the association between 401 these two phenotypes diminishes. A large study of several genetic disorders showed that the

Rebecca M Pollak

19

402	prediction of genetic diagnosis based on ADI-R scores was not confounded by IQ [54]; a study
403	of 7q11.23 duplication found that IQ was not significantly associated with ASD status [55]; and
404	multiple studies of 22q11.2 deletion have shown that IQ is not significantly associated with SRS
405	score, ASD severity, and ASD status [56-58]. A question ripe for future investigation is the
406	potential role for microcephaly in the ASD-related phenotypes observed in 3q29Del.
407	Microcephaly, ASD, and ID are associated with the 16p11.2 duplication [21]; microcephaly has
408	been shown to be associated with ASD and ID in probands with pathogenic CNVs [59]; and
409	children with "complex autism", defined as ASD with microcephaly and/or dysmorphology,
410	have significantly lower cognitive function than children with "essential autism" [60]. Reports
411	have shown a high prevalence of microcephaly in 3q29Del [3, 4, 12]; however, this question was
412	not probed in the current study due to the high rate (>50%) of 3q29Del participants responding
413	"Unsure" to the medical history questionnaire regarding their child's head circumference at birth,
414	rendering this data unreliable. Ongoing studies with direct evaluation of study subjects [43] will
415	address these questions.
416	While this study is the most comprehensive study of behavioral phenotypes in 3q29Del to
417	date, it is not without limitations. All of the data used in the present study were collected from
418	questionnaires completed by the parents and guardians of individuals with 3q29Del, which
419	introduces several potential sources of bias. Some studies have questioned the validity and
420	reliability of parent-report data [61]; however, a recent study in Williams syndrome patients has
421	shown that parents are more accurate in predicting their child's social behaviors than the child
422	themselves [62]. The responses to the medical and demographic questionnaire are more likely to
423	include error due to the fact that the data is retrospective. By limiting our study to only a few key
424	points in the medical history (heart defects, age at walking, and ID/ASD diagnosis) we aimed to

Rebecca M Pollak

20

425	reduce recall errors; however, we only had proxies for ID, rather than direct evaluation of
426	cognitive ability. Further, the sample sizes for our stratified analyses were small, rendering them
427	underpowered; while the differences between males and females were not statistically
428	significant, males do score higher than females on all measures. Studies with larger sample size
429	will be better able to assess the importance of and estimate the true effect size of any difference
430	between males and females. Additionally, there is likely ascertainment bias within our sample.
431	First, our sample of 93 individuals with 3q29Del is 87.1% white, indicating that we are not
432	adequately reaching minority populations. Second, parents that register their children and
433	complete in-depth questionnaires are likely to be highly motivated, possibly because their
434	children experience significant morbidity – a potential indication that we are sampling from the
435	extreme of the phenotypic distribution of 3q29Del. Thus, scores on the standardized
436	questionnaires, as well as rates of heart defects and clinical neuropsychiatric diagnoses, may be
437	higher in our study sample than in the general 3q29Del population. Additionally, the odds ratios
438	calculated for the increased risk for ASD associated with the 3q29 deletion may also be
439	overestimated, due to the combined effects of self-report data and ascertainment bias; however,
440	if this increased risk is replicated using gold-standard diagnostic measures, it could provide
441	valuable insight into possible sex-specific effects of the deletion. Finally, the lack of observed
442	association between congenital heart defects and neurodevelopmental outcomes may be obscured
443	by the high rate of patent ductus arteriosus in 3q29 deletion syndrome [5], which is a relatively
444	mild heart defect; however, the low number of participants with different types of heart defects
445	rendered analyses to assess their associations with neurodevelopment underpowered (Table S11).
446	Ongoing studies by the Emory 3q29 Project (http://genome.emory.edu/3q29/), including direct

Rebecca M Pollak

21

447	in-person patient evaluations [43] aim to address some of the weaknesses of the present work by
448	performing comprehensive gold-standard evaluations by expert clinicians.
449	While direct in-person evaluations are the ideal method to corroborate the findings of this
450	study, the low population frequency of the 3q29 deletion and geographic dispersal of our study
451	population (Figure S3) renders this approach infeasible for a large number of study subjects.
452	However, a small number of 3q29 deletion study subjects have been directly assessed as part of
453	the Emory 3q29 Project (http://genome.emory.edu/3q29/). We confirm high concordance
454	between registry-leveraged data and gold-standard direct evaluation, as all participants
455	qualifying for an ASD diagnosis based on gold-standard evaluation have clinically significant
456	scores on the SRS and all participants reporting an ASD diagnosis qualified for an ASD
457	diagnosis after gold-standard assessment by the Emory 3q29 Project team (Table S12). Notably,
458	one participant that did not report a prior diagnosis of ASD received an ASD diagnosis after
459	assessment by our team, supporting our hypothesis that ASD may be underdiagnosed in the
460	3q29Del population. Five additional participants with a clinically significant SRS score did not
461	qualify for an ASD diagnosis, suggesting that the SRS is not selectively identifying children with
462	ASD in participants with 3q29Del, possibly due to the high rates of reported anxiety in our study
463	population. However, this comparison does suggest that our analysis, though based on self-report
464	data, reveals valid conclusions about behavioral phenotypes in 3q29 deletion syndrome. For
465	genetic syndromes with low population frequencies, data collection through remote means such
466	as online patient registries remains a valuable phenotyping tool.
467	While the current understanding of the 3q29 deletion is still evolving, there are more
468	well-understood CNV disorders that can be used as a comparison point to determine whether the

469 social disability phenotypes described in this study are distinct to 3q29Del. These include

Rebecca M Pollak

22

470	Williams Syndrome (WS, or the 7q11.23 deletion), the reciprocal 7q11.23 duplication, 16p11.2
471	deletion and duplication, Smith-Magenis Syndrome (SMS), and 22q11.2 deletion. WS is
472	typically associated with hyper-sociability [63], and patients with WS show more problems with
473	social cognition than with pro-social behaviors [64], similar to what we have observed in our
474	population of individuals with 3q29Del. However, the prevalence of restricted interests and
475	repetitive behaviors appears to be lower in WS as compared to 3q29Del [64], and the mean SRS
476	sub-scale Social Motivation score indicates enhanced social motivation in WS as compared to
477	3q29Del (WS mean <i>T-score</i> = 55.24, 3q29Del mean <i>T-score</i> = 62.1, p = 0.0005) [65]. Studies of
478	the reciprocal 7q11.23 duplication showed that parent-reported ASD symptomology via
479	standardized questionnaires was higher than ASD features as assessed by gold-standard
480	instruments; that some probands had been diagnosed with ASD based on delayed speech and
481	social anxiety but did not qualify for ASD via gold-standard measures; that substantially more
482	males than females qualified for an ASD diagnosis; and that 7q11.23 duplication probands were
483	indistinguishable from children with idiopathic ASD on measures of ASD severity and diagnosis
484	status [55, 66, 67]. This is qualitatively different from our 3q29Del population; all of the
485	participants with a prior ASD diagnosis who were later assessed by the Emory 3q29 Project team
486	had their diagnosis confirmed using gold-standard measures (Table S12), the male:female ratio
487	in our sample is 2:1, and we see significant differences between 3q29Del cases and idiopathic
488	ASD [42] on the SRS Social Motivation sub-scale.
489	Similar to 7q11.23 duplication, ASD probands with 16p11.2 deletion or duplication were
490	indistinguishable from idiopathic ASD probands [67]; probands with 16p11.2 deletion also have
491	a significantly higher mean SRS score as compared to 3q29Del (16p11.2 mean <i>T-score</i> = 77.8,
492	3q29Del mean T-score = 71.8, p = 0.003) [22], and males with 16p11.2 deletion are at increased

Rebecca M Pollak

23

493 risk for ASD compared to females and are overrepresented when cases are ascertained based on 494 neurodevelopmental disorders [68, 69], indicating a different sex-based ASD risk as compared to 495 3q29Del. A study of 16p11.2 duplication probands found that scores on the SRS Social 496 Motivation sub-scale were not significantly different from controls and that ASD cases had 497 specific impairments in social cognition and communication [70]; 3q29Del cases score 498 significantly higher than controls on the SRS Social Motivation sub-scale, and do not have 499 substantially higher scores on the Social Cognition or Social Communication sub-scales relative 500 to the other SRS sub-scales.

501 A recent study of SMS showed that female probands scored higher than males on SRS 502 sub-scales and the sex ratio of ASD was reversed, with more females than males qualifying for a 503 diagnosis [71], which we do not observe in our 3q29Del study population. Finally, studies of 504 22q11.2 deletion show some similarities with 3q29Del, including SRS total scores that are not 505 significantly different, high levels of ASD features in the absence of ASD diagnosis, and a 506 male:female ASD ratio of approximately 1:1 [19, 57, 58, 72]; however, 22q11.2 deletion 507 probands have a significantly lower mean ASSQ score as compared to 3q29Del (22q11.2 mean = 508 11, 3q29Del mean = 22.2, p = 0.00004), and 3q29Del cases have significantly higher scores on 509 several CBCL/ABCL sub-scales (Table S13) [73, 74]. Taken together, this evidence suggests 510 that while the ASD features in 3q29Del reported in this study share some characteristics with 511 other CNV disorders, the complete constellation of symptoms is discrete from previously 512 described genomic syndromes.

513 There are significant strengths of this study as compared to previous studies of 3q29Del. 514 First, this is the largest cohort of individuals with 3q29Del ever assembled. This is a critical step 515 in capturing the true phenotypic spectrum associated with the 3q29 deletion. Our use of

Rebecca M Pollak

24

516	standardized questionnaires allowed for comparison between ASD features present in 3q29Del
517	and those reported in idiopathic ASD and ASD in other CNV disorders. Additionally, our online
518	patient registry allows for remote data collection, which has enabled us to expand our sample
519	size. This study has shown that high-quality, comprehensive medical history and symptomology
520	data can be collected through an online patient registry, effectively reducing the patient-
521	ascertainment burden associated with studying rare disorders. Taken together, these attributes
522	make the present study an excellent complement to previously published case reports on
523	individuals with 3q29Del; by capturing a larger patient base with systematic assessments, we are
524	able to more accurately measure the presence of a variety of neuropsychiatric and
525	neurodevelopmental phenotypes associated with the 3q29 deletion. The findings reported here
526	indicate that comprehensive neuropsychiatric and neurodevelopmental assessments with gold
527	standard tools are merited for individuals diagnosed with 3q29Del, and that such assessments
528	should be the standard of care for this patient population.

529 CONCLUSIONS

530 The present study confirms previous reports of phenotypes in 3q29Del, as well as 531 expanding the spectrum of behavioral phenotypes associated with the deletion. We found that 532 individuals with 3q29Del report a significantly higher prevalence of ASD diagnosis than the 533 general population, and significantly elevated scores on the SRS, SCQ, ASSQ, and CBCL/ABCL 534 irrespective of ASD diagnosis indicate significant social disability overall in our study 535 population. Further, 3q29Del participants showed a distinct profile of ASD-related phenotypes 536 on the SRS sub-scales, marked by less impaired scores on the Social Motivation sub-scale and 537 extremely high scores on the Restricted Interests and Repetitive Behaviors sub-scale. This score 538 profile is consistent between 3q29Del males and females and between 3q29Del participants with

539	and without ASD, suggesting that it may be a hallmark behavioral feature of the syndrome and
540	providing a potential therapeutic inroad for the treatment of individuals with 3q29Del. Finally,
541	we identify a high degree of social disability in female 3q29Del participants; the 3q29 deletion
542	elevates the risk ASD in females (OR=41.8, p=4.78E-05) more substantially than in males
543	(OR=24.6, p=6.06E-09). These results demonstrate that there is a benefit to studying rare CNVs
544	such as 3q29Del; studying a single genomic variant with large effect allows us to control for
545	genetic etiology and unmask the mechanisms underlying the development of neuropsychiatric
546	and neurodevelopmental disorders.
547	
548	
549	
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	

Rebecca M Pollak

Abbreviations ASD: autism spectrum disorder; 3q29Del: 3q29 deletion syndrome; SRS: Social Responsiveness Scale; SCQ: Social Communication Questionnaire; ASSQ: Autism Spectrum Screening Questionnaire; CBCL: Child Behavior Checklist; ABCL: Adult Behavior Checklist; DSM: Diagnostic and Statistical Manual; SZ: schizophrenia; ADHD: attention deficit/hyperactivity disorder; CNV: copy number variation; ID: intellectual disability; GDD: global developmental delay; MR: mental retardation; WS: Williams Syndrome; SMS: Smith-Magenis Syndrome

Rebecca M Pollak

```
585
```

```
586
```

587 **DECLARATIONS**

588 Ethics approval and consent to participate

- 589 This study was approved by Emory University's Institutional Review Board (IRB00064133). All
- 590 study subjects gave informed consent prior to participating in this study.

591 **Consent for publication**

592 Not applicable.

593 Availability of data and material

- 594 The datasets used and analyzed during the current study are available from the corresponding
- 595 author on reasonable request.

596 **Competing interests**

- 597 CAS reports receiving royalties from Pearson Clinical for the Vineland-3.
- 598 The remaining authors have no competing interests to disclose.
- 599 Funding
- 600 Funded by NIH 1R01MH110701-01A1 (Mulle), the Treasure Your Exceptions Project (Zwick),
- 601 and NIH T32 GM0008490 (Pollak).

602 Authors' contributions

- 603 RMP performed the statistical analysis, produced all figures and tables, and wrote the
- 604 manuscript. MMM collected the data. MPE helped with statistical analyses and interpretation.
- 605 MMM, CK, and CAS helped with data interpretation. MEZ and JGM edited the manuscript and
- 606 provided guidance on analyzing and interpreting data. JGM was the principle investigator

Rebecca M Pollak

28

607 responsible for study direction. All authors participated in commenting on the drafts and have

608 read and approved the final manuscript.

609 Acknowledgements

- 610 We gratefully acknowledge our study population, the 3q29 deletion community, for their
- 611 participation and commitment to research. This manuscript is currently available on the bioRxiv
- 612 preprint server (https://doi.org/10.1101/386243).
- 613 We also acknowledge the contributions of the members of the Emory 3q29 Project: Hallie
- 614 Averbach, Emily Black, Gary J Bassell, T Lindsey Burrell, Grace Carlock, Tamara Caspary,
- 615 Joseph F Cubells, David Cutler, Paul A Dawson, Roberto Espana, Michael J Gambello, Katrina
- 616 Goines, Henry R Johnston, Sookyong Koh, Elizabeth J Leslie, Longchuan Li, Bryan Mak,
- 617 Tamika Malone, Trenell Mosley, Derek Novacek, Ryan Purcell, Timothy Rutkowski, Rossana
- 618 Sanchez, Jason Schroeder, Esra Sefik, Brittney Sholar, Sarah Shultz, Nikisha Sisodiya, Steven
- 619 Sloan, Elaine F Walker, Stephen T Warren, David Weinshenker, Zhexing Wen, and Mike
- 620 Zinsmeister.
- 621
- 622
- 623
- ____
- 624
- 625
- 626
- 627
- 628
- 629

29

630		
631		
632		
633		
634	REFI	ERENCES
635	1.	Stefansson H, Meyer-Lindenberg A, Steinberg S, Magnusdottir B, Morgen K,
636		Arnarsdottir S, Bjornsdottir G, Walters GB, Jonsdottir GA, Doyle OM, et al: CNVs
637		conferring risk of autism or schizophrenia affect cognition in controls. Nature 2014,
638		505: 361-366.
639	2.	Kendall KM, Rees E, Escott-Price V, Einon M, Thomas R, Hewitt J, O'Donovan MC,
640		Owen MJ, Walters JTR, Kirov G: Cognitive Performance Among Carriers of
641		Pathogenic Copy Number Variants: Analysis of 152,000 UK Biobank Subjects. Biol
642		<i>Psychiatry</i> 2017, 82: 103-110.
643	3.	Willatt L, Cox J, Barber J, Cabanas ED, Collins A, Donnai D, FitzPatrick DR, Maher E,
644		Martin H, Parnau J, et al: 3q29 microdeletion syndrome: clinical and molecular
645		characterization of a new syndrome. American Journal of Human Genetics 2005,
646		77:154-160.
647	4.	Ballif BC, Theisen A, Coppinger J, Gowans GC, Hersh JH, Madan-Khetarpal S, Schmidt
648		KR, Tervo R, Escobar LF, Friedrich CA, et al: Expanding the clinical phenotype of the
649		3q29 microdeletion syndrome and characterization of the reciprocal
650		microduplication. Molecular Cytogenetics 2008, 1:8.
651	5.	Glassford MR, Rosenfeld JA, Freedman AA, Zwick ME, Mulle JG, Unique Rare
652		Chromosome Disorder Support G: Novel features of 3q29 deletion syndrome: Results

653		from the 3q29 registry. American Journal of Medical Genetics Part A 2016, 170A:999-
654		1006.
655	6.	Cobb W, Anderson A, Turner C, Hoffman RD, Schonberg S, Levin SW: 1.3 Mb de novo
656		deletion in chromosome band 3q29 associated with normal intelligence in a child.
657		European Journal of Medical Genetics 2010, 53:415-418.
658	7.	Mulle JG: The 3q29 deletion confers >40-fold increase in risk for schizophrenia.
659		Molecular Psychiatry 2015, 20:1028-1029.
660	8.	Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC, Sobreira NL,
661		Valle D, Rudd MK, Satten G, et al: Microdeletions of 3q29 confer high risk for
662		schizophrenia. American Journal of Human Genetics 2010, 87:229-236.
663	9.	Marshall CR, Howrigan DP, Merico D, Thiruvahindrapuram B, Wu W, Greer DS, Antaki
664		D, Shetty A, Holmans PA, Pinto D, et al: Contribution of copy number variants to
665		schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics 2017,
666		49: 27-35.
667	10.	Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, Moran J,
668		Chambert K, Toncheva D, Georgieva L, et al: De novo CNV analysis implicates
669		specific abnormalities of postsynaptic signalling complexes in the pathogenesis of
670		schizophrenia. Mol Psychiatry 2012, 17:142-153.
671	11.	Szatkiewicz JP, O'Dushlaine C, Chen G, Chambert K, Moran JL, Neale BM, Fromer M,
672		Ruderfer D, Akterin S, Bergen SE, et al: Copy number variation in schizophrenia in
673		Sweden. Molecular Psychiatry 2014, 19:762.
674	12.	Cox DM, Butler MG: A clinical case report and literature review of the 3q29
675		microdeletion syndrome. Clinical dysmorphology 2015, 24:89-94.

676	13.	Città S, Buono S, Greco D, Barone C, Alfei E, Bulgheroni S, Usilla A, Pantaleoni C,
677		Romano C: 3q29 microdeletion syndrome: Cognitive and behavioral phenotype in
678		four patients. American Journal of Medical Genetics Part A 2013, 161A:3018-3022.
679	14.	Sagar A, Bishop JR, Tessman DC, Guter S, Martin CL, Cook EH: Co-occurrence of
680		autism, childhood psychosis, and intellectual disability associated with a de novo
681		3q29 microdeletion. American Journal of Medical Genetics Part A 2013, 161A:845-
682		849.
683	15.	Quintero-Rivera F, Sharifi-Hannauer P, Martinez-Agosto JA: Autistic and psychiatric
684		findings associated with the 3q29 microdeletion syndrome: case report and review.
685		American Journal of Medical Genetics Part A 2010, 152A:2459-2467.
686	16.	Biamino E, Di Gregorio E, Belligni EF, Keller R, Riberi E, Gandione M, Calcia A,
687		Mancini C, Giorgio E, Cavalieri S, et al: A novel 3q29 deletion associated with autism,
688		intellectual disability, psychiatric disorders, and obesity. American Journal of
689		Medical Genetics Part B, Neuropsychiatric Genetics 2016, 171B:290-299.
690	17.	Itsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, Krauss RM, Myers RM,
691		Ridker PM, Chasman DI, et al: Population analysis of large copy number variants and
692		hotspots of human genetic disease. American Journal of Human Genetics 2009,
693		84: 148-161.
694	18.	Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, Murtha
695		MT, Bal VH, Bishop SL, Dong S, et al: Insights into Autism Spectrum Disorder
696		Genomic Architecture and Biology from 71 Risk Loci. Neuron 2015, 87:1215-1233.
697	19.	Schneider M, Debbané M, Bassett AS, Chow EWC, Fung WLA, van den Bree M, Owen
698		M, Murphy KC, Niarchou M, Kates WR, et al: Psychiatric disorders from childhood to

699		adulthood in 22q11.2 deletion syndrome: results from the International Consortium
700		on Brain and Behavior in 22q11.2 Deletion Syndrome. The American Journal of
701		Psychiatry 2014, 171:627-639.
702	20.	McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JA,
703		Zackai EH, Emanuel BS, Vermeesch JR, Morrow BE, et al: 22q11.2 deletion syndrome.
704		<i>Nat Rev Dis Primers</i> 2015, 1 :15071.
705	21.	D'Angelo D, Lebon S, Chen Q, Martin-Brevet S, Snyder LG, Hippolyte L, Hanson E,
706		Maillard AM, Faucett WA, Mace A, et al: Defining the Effect of the 16p11.2
707		Duplication on Cognition, Behavior, and Medical Comorbidities. JAMA Psychiatry
708		2016, 73: 20-30.
709	22.	Hanson E, Bernier R, Porche K, Jackson FI, Goin-Kochel RP, Snyder LG, Snow AV,
710		Wallace AS, Campe KL, Zhang Y, et al: The cognitive and behavioral phenotype of
711		the 16p11.2 deletion in a clinically ascertained population. Biological Psychiatry
712		2015, 77: 785-793.
713	23.	Mervis CB, Klein-Tasman BP, Huffman MJ, Velleman SL, Pitts CH, Henderson DR,
714		Woodruff-Borden J, Morris CA, Osborne LR: Children with 7q11.23 duplication
715		syndrome: psychological characteristics. American Journal of Medical Genetics Part A
716		2015, 167: 1436-1450.
717	24.	Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, Lalani SR,
718		Graham B, Lee B, Shinawi M, et al: Recurrent reciprocal 1q21.1 deletions and
719		duplications associated with microcephaly or macrocephaly and developmental and
720		behavioral abnormalities. Nature Genetics 2008, 40:1466-1471.

1

10 1 T

Rebecca M Pollak

.

/21	25.	Constantino JN, Todd RD: The social responsiveness scale manual. 2 edn. Los Angeles:
722		Western Psychological Services; 2012.
723	26.	Rutter M, Bailey A, Lord C: The Social Communication Questionnaire - Manual. Los
724		Angeles: Western Psychological Services; 2003.
725	27.	Ehlers S, Gillberg C, Wing L: A screening questionnaire for Asperger syndrome and
726		other high-functioning Autism Spectrum Disorders in school age children. Journal of

. 1

727 *Autism and Developmental Disorders* 1999, **29**.

- 728 28. Achenbach TM, Rescorla LA: Manual for the ASEBA School-Age Forms & Profiles.
- 729 Burlington, VT: University of Vermont, Research Center for Children, Youth and
- 730 Families; 2001.
- 731 29. Achenbach TM, Rescorla LA: Manual for the ASEBA Adult Forms & Profiles.
- 732Burlington, VT: University of Vermont, Research Center for Children, Youth and
- 733 Families; 2003.
- 734 30. R Core Team: R: A language and environment for statistical computing. R
- 735 Foundation for Statistical Computing, Vienna, Austria 2008.
- 736 31. Christensen RHB: ordinal Regression Models for Ordinal Data. *R package version*737 20156-28 2015.
- 738 32. Nakazawa M: fmsb: Functions for medical statistics book with some demographic
 739 data. *R package version 063* 2018.
- 740 33. Sievert C, Parmer C, Hocking T, Chamberlain S, Ram K, Corvellec M, Despouy P:
- 741 plotly: Create Interactive Web Graphics via 'plotly.js'. *R package version 460* 2017.
- 742 34. Wickham H: ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag;
- 743 2009.

744	35.	Kessler RC, Birnbaum H, Demler O, Falloon IR, Gagnon E, Guyer M, Howes MJ,
745		Kendler KS, Shi L, Walters E, Wu EQ: The prevalence and correlates of nonaffective
746		psychosis in the National Comorbidity Survey Replication (NCS-R). Biol Psychiatry
747		2005, 58: 668-676.
748	36.	Wu EQ, Shi L, Birnbaum H, Hudson T, Kessler R: Annual prevalence of diagnosed
749		schizophrenia in the USA: a claims data analysis approach. Psychol Med 2006,
750		36: 1535-1540.
751	37.	Desai PR, Lawson KA, Barner JC, Rascati KL: Estimating the direct and indirect costs
752		for community-dwelling patients with schizophrenia. Journal of Pharmaceutical
753		Health Services Research 2013, 4:187-194.
754	38.	Saha S, Chant D, Welham J, McGrath J: A systematic review of the prevalence of
755		schizophrenia. PLoS Med 2005, 2:e141.
756	39.	Moreno-Kustner B, Martin C, Pastor L: Prevalence of psychotic disorders and its
757		association with methodological issues. A systematic review and meta-analyses.
758		PLoS One 2018, 13:e0195687.
759	40.	Merikangas KR, He JP, Burstein M, Swanson SA, Avenevoli S, Cui L, Benjet C,
760		Georgiades K, Swendsen J: Lifetime prevalence of mental disorders in U.S.
761		adolescents: results from the National Comorbidity Survey ReplicationAdolescent
762		Supplement (NCS-A). J Am Acad Child Adolesc Psychiatry 2010, 49:980-989.
763	41.	Christensen DL, Braun KVN, Baio J, Bilder D, Charles J, Constantino JN, Daniels J,
764		Durkin MS, Fitzgerald RT, Kurzius-Spencer M, et al: Prevalence and Characteristics
765		of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and

766		Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012.
767		<i>MMWR Surveill Summ</i> 2018, 65: 1-23.
768	42.	Torske T, Naerland T, Oie MG, Stenberg N, Andreassen OA: Metacognitive Aspects of
769		Executive Function Are Highly Associated with Social Functioning on Parent-Rated
770		Measures in Children with Autism Spectrum Disorder. Front Behav Neurosci 2017,
771		11:258.
772	43.	Murphy MM, Lindsey Burrell T, Cubells JF, Espana RA, Gambello MJ, Goines KCB,
773		Klaiman C, Li L, Novacek DM, Papetti A, et al: Study protocol for The Emory 3q29
774		Project: evaluation of neurodevelopmental, psychiatric, and medical symptoms in
775		3q29 deletion syndrome. BMC Psychiatry 2018, 18:183.
776	44.	Rogers BT, Msali ME, Buck GM, Lyon NR, Norris MK, Roland JMA, Gingell RL,
777		Cleveland DC, Pieroni DR: Neurodevelopmental outcome of infants with hypoplastic
778		left heart syndrome. The Journal of Pediatrics 1995:496-498.
779	45.	Forbess JM, Visconti KJ, Hancock-Friesen C, Howe RC, Bellinger DC, Jonas RA:
780		Neurodevelopmental outcome after congenital heart surgery: Results from an
781		institutional registry. Circulation 2002, 106:I-95-I-102.
782	46.	Wernovsky G, Shillingford AJ, Gaynor JW: Central nervous system outcomes in
783		children with complex congenital heart disease. Current Opinions in Cardiology
784		2005:94-99.
785	47.	Karsdorp PA, Everaerd W, Kindt M, Mulder BJ: Psychological and cognitive
786		functioning in children and adolescents with congenital heart disease: a meta-
787		analysis. J Pediatr Psychol 2007, 32:527-541.

788	48.	Shillingford AJ, Glanzman MM, Ittenbach RF, Clancy RR, Gaynor JW, Wernovsky G:
789		Inattention, hyperactivity, and school performance in a population of school-age
790		children with complex congenital heart disease. Pediatrics 2008, 121:e759-767.
791	49.	Kovacs AH, Saidi AS, Kuhl EA, Sears SF, Silversides C, Harrison JL, Ong L, Colman J,
792		Oechslin E, Nolan RP: Depression and anxiety in adult congenital heart disease:
793		predictors and prevalence. Int J Cardiol 2009, 137:158-164.
794	50.	Bishop SL, Thurm A, Farmer C, Lord C: Autism Spectrum Disorder, Intellectual
795		Disability, and Delayed Walking. Pediatrics 2016, 137:e20152959.
796	51.	De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L,
797		Fromer M, Walker S, et al: Synaptic, transcriptional and chromatin genes disrupted
798		in autism. Nature 2014, 515:209-215.
799	52.	Noterdaeme M, Minow F, Amorosa H: [Applicability of the Child Behavior Checklist
800		in developmentally delayed children]. Z Kinder Jugendpsychiatr Psychother 1999,
801		27: 183-188.
802	53.	Mazefsky CA, Anderson R, Conner CM, Minshew N: Child Behavior Checklist Scores
803		for School-Aged Children with Autism: Preliminary Evidence of Patterns
804		Suggesting the Need for Referral. Journal of psychopathology and behavioral
805		assessment 2011, 33: 31-37.
806	54.	Bruining H, Eijkemans MJ, Kas MJ, Curran SR, Vorstman JA, Bolton PF: Behavioral
807		signatures related to genetic disorders in autism. Mol Autism 2014, 5:11.
808	55.	Klein-Tasman BP, Mervis CB: Autism Spectrum Symptomatology Among Children
809		with Duplication 7q11.23 Syndrome. J Autism Dev Disord 2018, 48:1982-1994.

Rebecca M Pollak

810	56.	Hidding E, Swaab H, de Sonneville LM, van Engeland H, Sijmens-Morcus ME, Klaassen
811		PW, Duijff SN, Vorstman JA: Intellectual functioning in relation to autism and
812		ADHD symptomatology in children and adolescents with 22q11.2 deletion
813		syndrome. J Intellect Disabil Res 2015, 59:803-815.
814	57.	Vorstman JA, Breetvelt EJ, Thode KI, Chow EW, Bassett AS: Expression of autism
815		spectrum and schizophrenia in patients with a 22q11.2 deletion. Schizophr Res 2013,
816		143: 55-59.
817	58.	Vorstman JA, Morcus ME, Duijff SN, Klaassen PW, Heineman-de Boer JA, Beemer FA,
818		Swaab H, Kahn RS, van Engeland H: The 22q11.2 deletion in children: high rate of
819		autistic disorders and early onset of psychotic symptoms. J Am Acad Child Adolesc
820		<i>Psychiatry</i> 2006, 45: 1104-1113.
821	59.	Qiao Y, Riendeau N, Koochek M, Liu X, Harvard C, Hildebrand MJ, Holden JJ, Rajcan-
822		Separovic E, Lewis ME: Phenomic determinants of genomic variation in autism
823		spectrum disorders. J Med Genet 2009, 46:680-688.
824	60.	Flor J, Bellando J, Lopez M, Shui A: Developmental functioning and medical Co-
825		morbidity profile of children with complex and essential autism. Autism Res 2017,
826		10: 1344-1352.
827	61.	Finlay WML, Lyons E: Methodological issues in interviewing and using self-report
828		questionnaires with people with mental retardation. Psychological Assessment 2001,
829		13: 319-335.
830	62.	Fisher MH, Mello MP, Dykens EM: Who reports it best? A comparison between
831		parent-report, self-report, and the real life social behaviors of adults with Williams
832		syndrome. Research in Developmental Disabilities 2014, 35:3276-3284.

Rebecca M Pollak

833	63.	Lincoln AJ, Searcy YM, Jones W, Lord C: Social interaction behaviors discriminate
834		young children with autism and Williams syndrome. J Am Acad Child Adolesc
835		Psychiatry 2007, 46:323-331.
836	64.	Riby DM, Hanley M, Kirk H, Clark F, Little K, Fleck R, Janes E, Kelso L, O'Kane F,
837		Cole-Fletcher R, et al: The interplay between anxiety and social functioning in
838		Williams syndrome. J Autism Dev Disord 2014, 44:1220-1229.
839	65.	van der Fluit F, Gaffrey MS, Klein-Tasman BP: Social Cognition in Williams
840		Syndrome: Relations between Performance on the Social Attribution Task and
841		Cognitive and Behavioral Characteristics. Front Psychol 2012, 3:197.
842	66.	Morris CA, Mervis CB, Paciorkowski AP, Abdul-Rahman O, Dugan SL, Rope AF, Bader
843		P, Hendon LG, Velleman SL, Klein-Tasman BP, Osborne LR: 7q11.23 Duplication
844		syndrome: Physical characteristics and natural history. Am J Med Genet A 2015,
845		167a: 2916-2935.
846	67.	Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, Chu
847		SH, Moreau MP, Gupta AR, Thomson SA, et al: Multiple recurrent de novo CNVs,
848		including duplications of the 7q11.23 Williams syndrome region, are strongly
849		associated with autism. Neuron 2011, 70:863-885.
850	68.	Niarchou M, Chawner S, Doherty JL, Maillard AM, Jacquemont S, Chung WK, Green-
851		Snyder L, Bernier RA, Goin-Kochel RP, Hanson E, et al: Psychiatric disorders in
852		children with 16p11.2 deletion and duplication. Transl Psychiatry 2019, 9:8.
853	69.	Zufferey F, Sherr EH, Beckmann ND, Hanson E, Maillard AM, Hippolyte L, Macé A,
854		Ferrari C, Kutalik Z, Andrieux J, et al: A 600 kb deletion syndrome at 16p11.2 leads to

Rebecca M Pollak

39

855		energy imbalance and neuropsychiatric disorders. Journal of Medical Genetics 2012,
856		49: 660-668.
857	70.	Green Snyder L, D'Angelo D, Chen Q, Bernier R, Goin-Kochel RP, Wallace AS, Gerdts
858		J, Kanne S, Berry L, Blaskey L, et al: Autism Spectrum Disorder, Developmental and
859		Psychiatric Features in 16p11.2 Duplication. J Autism Dev Disord 2016, 46:2734-
860		2748.
861	71.	Nag HE, Nordgren A, Anderlid BM, Nærland T: Reversed gender ratio of autism
862		spectrum disorder in Smith-Magenis syndrome. Mol Autism 2018, 9:1.
863	72.	Schreiner MJ, Karlsgodt KH, Uddin LQ, Chow C, Congdon E, Jalbrzikowski M, Bearden
864		CE: Default mode network connectivity and reciprocal social behavior in 22q11.2
865		deletion syndrome. Soc Cogn Affect Neurosci 2014, 9:1261-1267.
866	73.	Niklasson L, Rasmussen P, Oskarsdottir S, Gillberg C: Autism, ADHD, mental
867		retardation and behavior problems in 100 individuals with 22q11 deletion
868		syndrome. Res Dev Disabil 2009, 30: 763-773.
869	74.	Sobin C, Kiley-Brabeck K, Monk SH, Khuri J, Karayiorgou M: Sex differences in the
870		behavior of children with the 22q11 deletion syndrome. Psychiatry Res 2009, 166:24-
871		34.
872	75.	Zablotsky B, Black LI, Blumberg SJ: Estimated Prevalence of Children With
873		Diagnosed Developmental Disabilities in the United States, 2014-2016. NCHS Data
874		<i>Brief</i> 2017:1-8.
875		
876		
877		

Rebecca M Pollak

40

878 Additional Files

- 879 File name: Supplemental Information
- 880 File format: Microsoft Word document (.docx)
- 881 Title of data: Supplementary figures and tables
- 882 Description of data: Supplementary figures are (S1) SCQ scores split by ASD status, sex, and
- 883 ASD status/sex, (S2) CBCL/ABCL Withdrawn sub-scale scores split by genotype, sex, and ASD
- status, and (S3) geographic distribution of study participants with 3q29Del. Supplementary
- tables are (S1) questionnaire demographics for the medical questionnaire, SRS, SCQ, ASSQ, and
- 886 CBCL/ABCL; (S2 and S3) sensitivity analysis description and results for effect of 3q29Del self-
- registrants; (S4) comparison of scores on all four scales for 3q29Del versus control; (S5) SRS
- score comparison stratified by ASD status and sex; (S6) SCQ score comparison stratified by
- ASD status and sex; (S7) CBCL/ABCL DSM-oriented sub-scale score comparison; (S8)
- 890 contribution of congenital heart defects to phenotypes of interest; (S9) test for confounding
- 891 factors contributing to symptomology questionnaire scores; (S10) CBCL/ABCL Withdrawn sub-
- scale score comparison; (S11) heart defects present in study sample; (S12) comparison of 3q29
- 893 registry-leveraged and gold-standard phenotyping measures; and (S13) comparison of
- 894 CBC/ABCL sub-scale scores between 3q29Del and 22q11.2 deletion.
- 895
- 896
- 897
- 898
- 899
- 900

Table 2: Self-reported neuropsychiatric diagnoses.

	3q29	Deletion Synd	rome		Control	P value; 3q29Del vs. Control	
	Total	Male	Female	Total	Male	Female	
GDD/MR (n, %)	-						<2.20E-16
Yes	55 (59.1%)	31 (57.4%)	24 (61.5%)	1.14%*	1.48%*	0.90%*	
No	38 (40.9%)	23 (42.6%)	15 (38.5%)	64 (100%)	33 (100%)	31 (100%)	
ASD (n, %)							<2.20E-16
Yes	27 (29.0%)	20 (37.0%)	7 (17.9%)	1.47%*	2.34%*	0.52%*	
No	66 (71.0%)	34 (63.0%)	32 (82.1%)	64 (100%)	33 (100%)	31 (100%)	
Anxiety (n, %)							0.001
Yes	26 (28.0%)	15 (27.8%)	11 (28.2%)	4 (6.2%)	2 (6.1%)	2 (6.5%)	
No	67 (72.0%)	39 (72.2%)	28 (71.8%)	60 (93.8%)	31 (93.9%)	29 (93.5%)	
Bipolar/Manic Depression (n. %)							0.146
Yes	4 (4.3%)	2 (3.7%)	2 (5.1%)	0 (0%)	0 (0%)	0 (0%)	
No	89 (95.7%)	52 (96.3%)	37 (94.9%)	64 (100%)	33 (100%)	31 (100%)	
Conduct Disorder (n, %)							1.00
Yes	1 (1.1%)	1 (1.9%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
No	92 (98.9%)	53 (98.1%)	39 (100%)	64 (100%)	33 (100%)	31 (100%)	
Depression (n, %)							1.00
Yes	6 (6.5%)	2 (3.7%)	4 (10.3%)	4 (6.2%)	4 (12.1%)	0 (0%)	
No	87 (93.5%)	52 (96.3%)	35 (89.7%)	60 (93.8%)	29 (87.9%)	31 (100%)	
Oppositional Defiant Disorder (n, %)		•	•		•		0.271
Yes	3 (3.2%)	2 (3.7%)	1 (2.6%)	0 (0%)	0 (0%)	0 (0%)	
No	90 (96.8%)	52 (96.3%)	38 (97.4%)	64 (100%)	33 (100%)	31 (100%)	
Panic Attacks (n, %)							0.045
Yes	12 (12.9%)	9 (16.7%)	4 (10.3%)	2 (3.2%)	0 (0%)	2 (6.5%)	
No	81 (87.1%)	45 (83.3%)	35 (89.7%)	62 (96.8%)	33 (100%)	29 (93.5%)	
Schizophrenia (n, %)	_			_			0.146

Yes	4 (4.3%)	1 (1.9%)	3 (7.7%)	0 (0%)	0 (0%)	0 (0%)
No	89 (95.7%)	53 (98.1%)	36 (92.3%)	64 (100%)	33 (100%)	31 (100%)

Characteristics of self-reported neuropsychiatric diagnoses in study participants with 3q29Del and controls. Asterisks indicate where 3q29Del was compared to general population prevalence values [41, 75]. P values were calculated with one-sample proportion test with Yates' continuity correction when comparing to population prevalence and Fisher's exact test when comparing to controls.

				-		• 0	• •						
		Social Awareness		Social Cognition		Social Communication		Social Motivation		RRB		SCI	
		Mean ± SD	P value	Mean ± SD	P value	Mean ± SD	P value	Mean ± SD	P value	Mean ± SD	P value	Mean ± SD	P value
Geno	otype												
	Control	$\begin{array}{c} 47.04 \pm \\ 8.88 \end{array}$	-	45.27 ± 7.64	-	$\begin{array}{r} 45.88 \pm \\ 8.14 \end{array}$	-	$\begin{array}{r} 46.13 \pm \\ 7.66 \end{array}$	-	47.66 ± 8.51	-	$\begin{array}{c} 45.50 \pm \\ 7.74 \end{array}$	-
	3q29Del	67.33 ± 13.28	1.45E- 13	69.06 ± 15.51	1.20E- 15	69.69 ± 13.92	<2.00E- 16	62.10 ± 13.52	1.62E- 10	77.31 ± 14.25	<2.00E- 16	69.52 ± 14.63	<2.00E- 16
Sex		-											
	Male control	$\begin{array}{c} 45.97 \pm \\ 9.15 \end{array}$	-	45.23 ± 7.42	-	$\begin{array}{c} 45.73 \pm \\ 6.34 \end{array}$	-	$\begin{array}{c} 46.57 \pm \\ 6.58 \end{array}$	-	47.63 ± 5.59	-	$\begin{array}{c} 45.37 \pm \\ 6.60 \end{array}$	-
	Male 3q29Del	69.92 ± 13.92	7.61E- 09	71.08 ± 17.65	1.07E- 08	72.12 ± 15.47	1.74E- 10	63.92 ± 15.23	3.39E- 06	79.92 ± 14.82	2.84E- 13	$\begin{array}{c} 72.00 \pm \\ 16.34 \end{array}$	7.12E- 10
	Female control	$\begin{array}{r} 48.27 \pm \\ 8.56 \end{array}$	-	45.31 ± 8.03	-	46.04 ± 9.95	-	$\begin{array}{r} 45.62 \pm \\ 8.85 \end{array}$	-	47.69 ± 11.08	-	45.65 ± 9.01	-
	Female 3q29Del	$\begin{array}{c} 64.27 \pm \\ 12.08 \end{array}$	4.52E- 06	$66.68 \pm$	1.29E- 08	66.82 ± 11.52	2.99E- 08	59.95 ± 11.14	1.36E- 05	74.23 ± 13.22	1.30E- 09	$\begin{array}{c} 66.59 \pm \\ 12.02 \end{array}$	1.87E- 08
ASD	Status												
	Control	$\begin{array}{c} 47.04 \pm \\ 8.88 \end{array}$	-	45.27 ± 7.64	-	$\begin{array}{r} 45.88 \pm \\ 8.14 \end{array}$	-	$\begin{array}{r} 46.13 \pm \\ 7.66 \end{array}$	-	47.66 ± 8.51	-	$\begin{array}{c} 45.50 \pm \\ 7.74 \end{array}$	-
	No ASD diagnosis 3q29Del	62.61 ± 13.20	5.17E- 09	64.10 ± 15.80	5.77E- 11	64.61 ± 13.54	1.20E- 12	58.00 ± 13.15	1.42E- 06	70.58 ± 11.50	<2.00E- 16	64.13 ± 14.39	5.19E- 12
	ASD diagnosis 3q29Del	75.94 ± 8.33	2.43E- 15	78.12 ± 10.18	<2.00E- 16	78.94 ± 9.18	<2.00E- 16	69.59 ± 10.99	5.12E- 12	89.59 ± 10.04	<2.00E- 16	79.35 ± 9.02	<2.00E- 16

Table 3: SRS sub-scale score comparison stratified by genotype, ASD status, and sex.

Rebecca M Pollak

919	Comparison of mean scores on the SRS sub-scales between study participants with 3q29Del and controls. 3q29Del participants were
920	stratified by ASD status and sex for further analysis. P values were calculated using simple linear regression, adjusting for age, race,
921	and sex.
922	
923	
924	
925	
926	
927	
928	
929	
930	
931	
932	
933	
934	
935	

Rebecca M Pollak

936 Figure Titles and Legends

937 Figure 1. Score distribution for 3q29Del and controls on the SRS, SCQ, ASSQ, and

938 CBCL/ABCL. Total scores on the SRS (n=48 3q29Del, 56 control), SCQ (n=33 3q29Del, 46

control), ASSQ (n=24 3q29Del, 35 control), and CBCL/ABCL (n=48 3q29Del, 57 control) for

- 940 registry participants. Self-reported diagnosis of ASD is denoted by shape (circle/ASD,
- triangle/no ASD), and sex of participant is denoted by color (red/female, blue/male). Controls areshown in black.

943 Figure 2. Comparison of ASD prevalence and SRS scores between 3q29Del and controls. A)

944 Proportion of participants with 3q29Del self-reporting a diagnosis of ASD (not all respondents

945 completed symptom questionnaires); 27 cases report an ASD diagnosis (green), comprised of 20

946 males (blue) and 7 females (red). Compared to general population frequencies (black), cases

947 report significantly higher incidence of ASD. B) SRS scores split by control (n=59), 3q29Del not

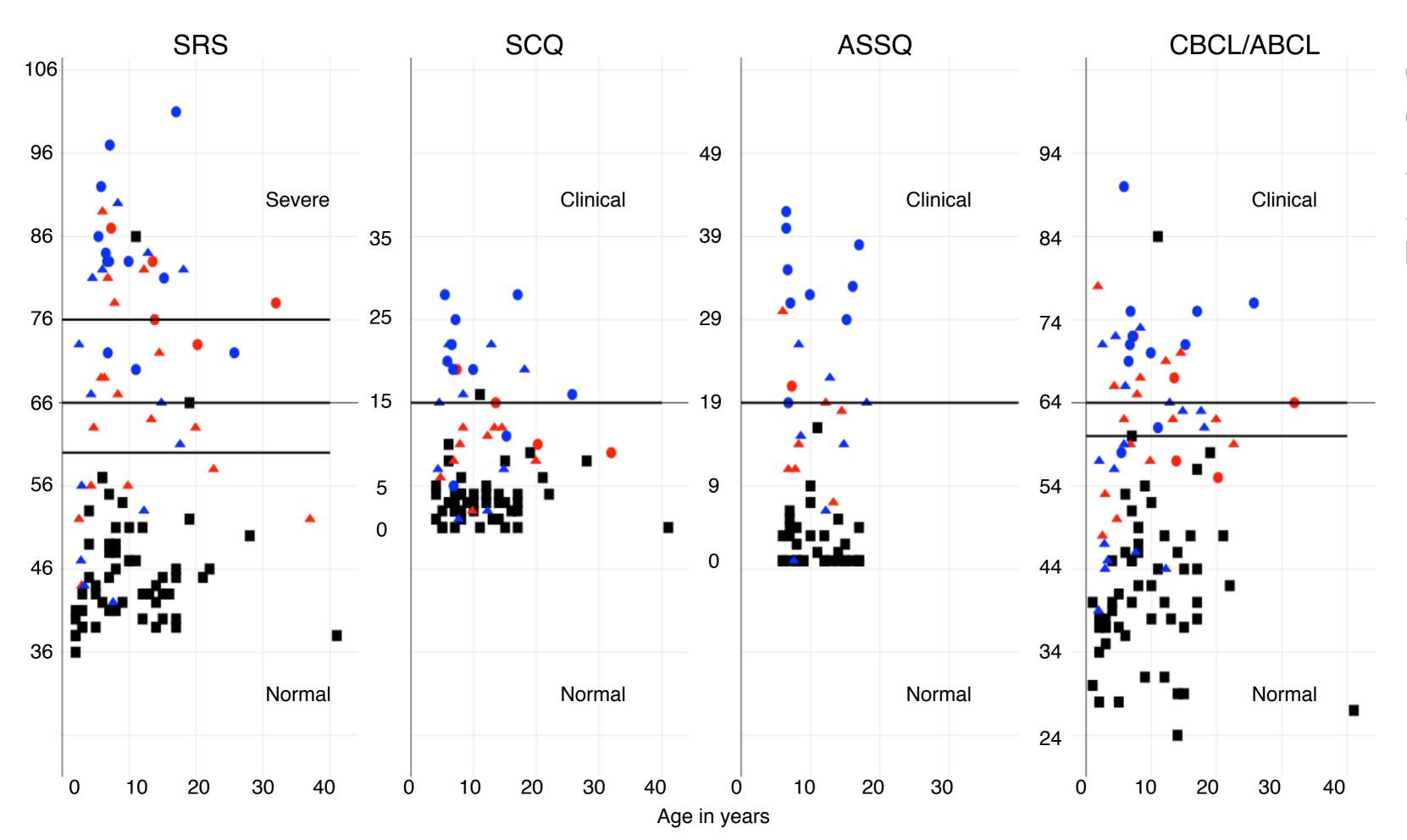
948 reporting an ASD diagnosis (n=31), and 3q29Del reporting an ASD diagnosis (n=17), showing a

949 significant association between self-reported diagnostic status and SRS score. C) SRS scores

950 split by sex, with control (n=59), 3q29Del female (n=22), and 3q29Del male (n=26), showing a

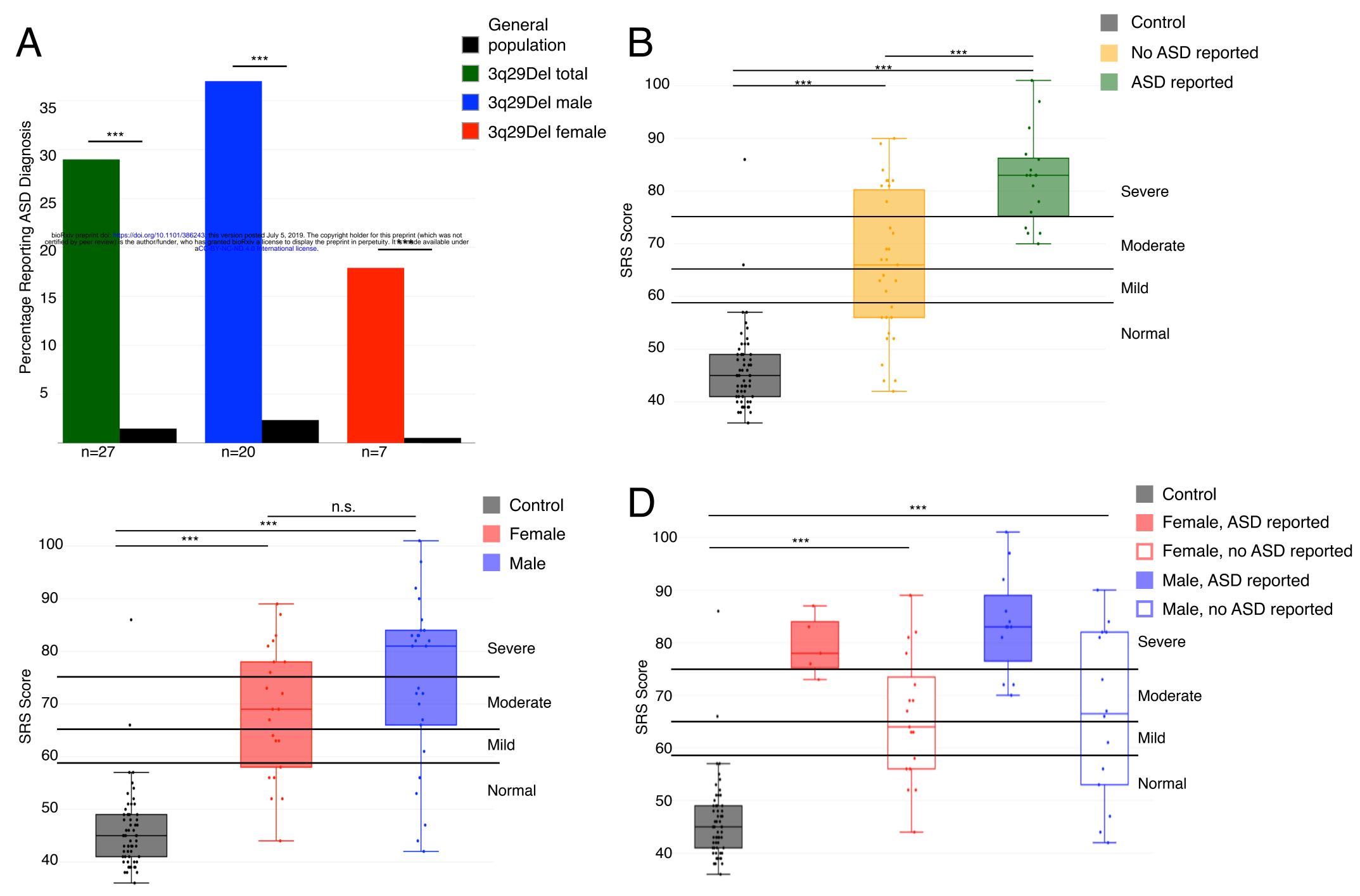
- lack of sex bias in scores for 3q29Del participants. **D**) SRS scores split by sex and self-reported
- 952 diagnostic status, with control (n=59), 3q29Del female reporting ASD (n=5), 3q29Del female not
- reporting ASD (n=17), 3q29Del male reporting ASD (n=12), and 3q29Del male not reporting
- ASD (n=14), showing inflated scores for 3q29Del participants irrespective of sex or diagnostic
- 955 status. ***, p<0.001

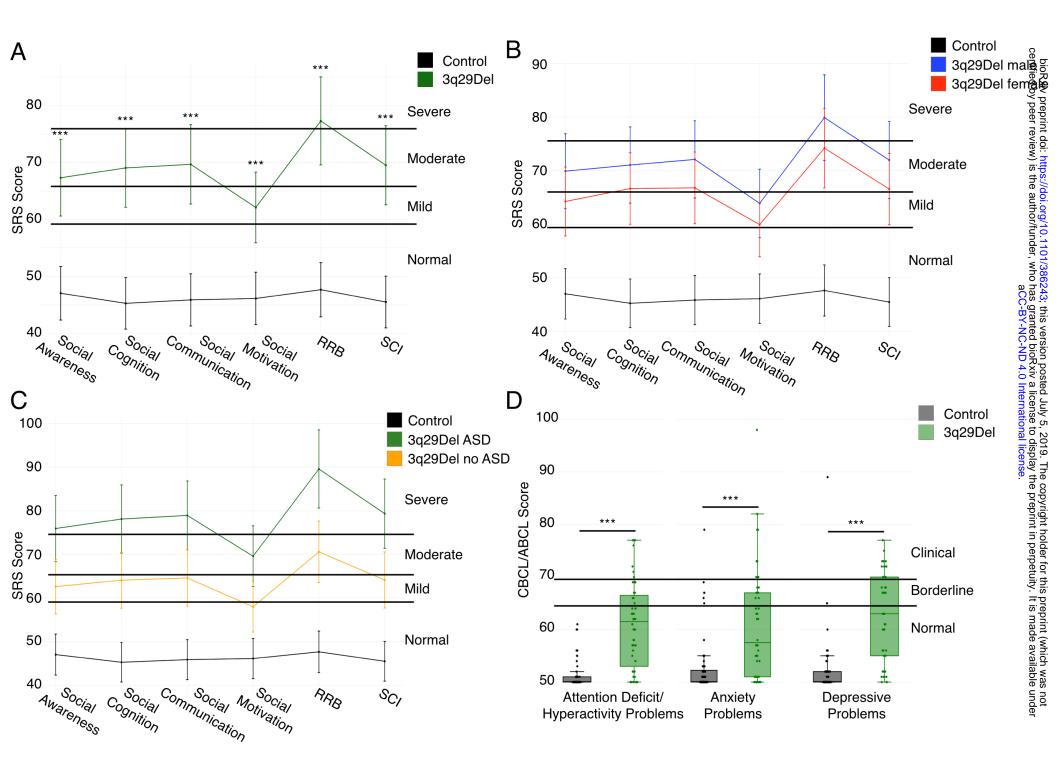
956 Figure 3. Comparison of SRS sub-scales and CBCL/ABCL DSM-oriented sub-scales


957 **between 3q29Del and controls. A)** Profile of individuals with 3q29Del (n=48) and controls

958 (n=59) across SRS sub-scales, showing moderate to severe impairment of 3q29Del participants

Rebecca M Pollak


959	in all domains except Social Motivation (RRB, Restricted Interests and Repetitive Behaviors;
960	SCI, Social Communication and Interaction). B) Profile of 3q29Del males (n=26) and females
961	(n=22) and controls $(n=59)$ across SRS sub-scales, showing that 3q29Del males and females
962	both score significantly higher than controls and that there are no significant differences in score
963	between males and females. C) Profile of 3q29Del participants reporting an ASD diagnosis
964	(n=17) and participants not reporting an ASD diagnosis (n=31) and controls (n=59) across SRS
965	sub-scales, showing that 3q29Del participants score significantly higher than controls
966	irrespective of ASD status, with 3q29Del participants reporting an ASD diagnosis scoring
967	significantly higher than those not reporting an ASD diagnosis. D) Profile of 3q29Del
968	participants (n=48) and controls (n=57) across 3 DSM-oriented sub-scales from the CBCL and
969	ABCL, showing significantly increased pathology in 3q29Del participants in all 3 domains. ***,


970 p<0.001

- ASD diagnosis, male
- ASD diagnosis, female
- ▲ No ASD diagnosis, male
- ▲ No ASD diagnosis, female

Control

