An Evolutionarily Conserved piRNA-producing Locus Required for Male Mouse Fertility Pei-Hsuan Wu,¹ Yu Fu,^{2,3}, Katharine Cecchini,¹ Deniz M. Özata,¹Zhiping Weng,^{3,4,*} and Phillip D. Zamore^{1,5,*} ¹Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA ²Bioinformatics Program, Boston University, 44 Cummington Mall, Boston, MA 02215, USA ³Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA. ⁴Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA ⁵Lead contact *Correspondence: zhiping.weng@umassmed.edu (Z.W.), phillip.zamore@umassmed.edu (P.D.Z.) Running title: A piRNA locus required for fertility **SUMMARY** (≤150 words; now 150) Pachytene piRNAs, which comprise >80% of all small RNAs in the adult mouse testis, have been proposed to bind and regulate target RNAs like miRNAs, to cleave targets like siRNAs, or to lack biological function altogether. Although mutants lacking proteins that make pachytene piRNAs are male sterile, no biological function has been identified for any mammalian piRNA-producing locus. Here, we report that loss of piRNA precursor transcription from a conserved pachytene piRNA locus on mouse chromosome 6 (*pi6*) perturbs male fertility. Loss of *pi6* piRNAs has no measurable effect on sperm quantity or transposon repression, yet *pi6*^{-/-} mice produce sperm with defects in motility, egg fertilization, and embryo development, severely reducing pup production even at the peak of male reproduction. Our data establish a direct role for pachytene piRNAs in spermiogenesis and embryo viability and enable new strategies to identify the RNA targets of individual piRNA species. Keywords: PIWI-interacting RNA; piRNA; MIWI; A-MYB; MYBL1, spermatogenesis; acrosome; zona pellucida; sperm; pachytene piRNA; meiosis # **Highlights** - Normal male mouse fertility and spermiogenesis require piRNAs from the pi6 locus - Normal sperm motility and binding to zona pellucida require pi6 piRNAs - Sperm from pi6 males fail to support embryo development - Defects in pi6 sperm reflect changes in the abundance of specific mRNAs #### INTRODUCTION Only animals produce PIWI-interacting RNAs (piRNAs), 21–35-nt small RNAs that form the most abundant class of small RNA in the germline. In most animals, piRNAs protect the germline genome from transposons and repetitive sequences, and, in many arthropods, piRNAs fight viruses and transposons in somatic tissues (Houwing et al., 2007; Aravin et al., 2008; Batista et al., 2008; Das et al., 2008; Lewis et al., 2018). The mammalian male germline makes three classes of piRNAs: (1) 26-28 nt transposonsilencing piRNAs predominate in the fetal testis (Aravin et al., 2008); (2) shortly after birth 26–27 nt piRNAs derived from mRNA 3' untranslated regions (UTRs) emerge (Robine et al., 2009); and (3) at the pachytene stage of meiosis, ~30 nt, non-repetitive pachytene piRNAs appear. Pachytene piRNAs accumulate to comprise >80% of all small RNAs in the adult mouse testis, and they continue to be made throughout the male mouse reproductive lifespan. These piRNAs contain fewer transposon sequences than the genome as a whole, and most pachytene piRNAs map only to the loci from which they are produced. The diversity of pachytene piRNAs is unparalleled in development, with >1 million distinct species routinely detected in spermatocytes or spermatids. Intriguingly, the sequences of pachytene piRNAs are not themselves conserved, but piRNA-producing loci have been maintained at the syntenic regions across eutherian mammals (Girard et al., 2006; Chirn et al., 2015), suggesting that the vast sequence diversity of pachytene piRNAs is itself biologically meaningful. In mice, 100 pachytene piRNA-producing loci have been annotated (Girard et al., 2006; Grivna et al., 2006; Lau et al., 2006; Ro et al., 2007; Li et al., 2013). All are coordinately regulated by the transcription factor A-MYB (MYBL1), which also promotes expression of proteins that convert piRNA precursor transcripts into mature piRNAs, as well as proteins required for cell cycle progression and meiosis (Bolcun-Filas et al., 2011). Of the 100 piRNA-producing loci, 15 pairs of pachytene piRNA-producing genes are divergently transcribed from bidirectional, A-MYB-binding promoters (Li et al., 2013). The contribution of pachytene piRNAs from each piRNA-producing locus is unequal, with just five loci—*pi2*, *pi6*, *pi7*, *pi9*, and *pi17*—contributing to >50% of all pachytene piRNA production at 17 days postpartum (dpp). Loss of proteins required to make pachytene piRNAs, including the pachytene piRNA-binding protein, MIWI (PIWIL1), invariably arrests spermatogenesis and renders males sterile (Deng and Lin, 2002; Reuter et al., 2011; Zheng and Wang, 2012; Li et al., 2013; Castañeda et al., 2014; Wasik et al., 2015). Yet, loss of the chromosome 17 pachytene piRNA-producing locus, 17-qA3.3-27363(-), 26735(+) (henceforth, pi17), has no detectable phenotype or impact on male fertility (Homolka et al., 2015), even though pi17 produces ~30% of all pachytene piRNAs. Similarly, mice disrupted in expression of a piRNA cluster on chromosome 2 are viable and fertile (P.-H.W., K.C., and PDZ, unpublished; Xu et al., 2008). Consequently, the function of pachytene piRNAs in mice is actively debated. One model proposes that pachytene piRNAs regulate meiotic progression of spermatocytes by cleaving mRNAs during meiosis (Goh et al., 2015; Zhang et al., 2015). Another model posits that pachytene piRNAs direct degradation of specific mRNAs via a miRNA-like mechanism involving mRNA deadenylation (Gou et al., 2014). A third model proposes that MIWI functions without piRNAs, and that piRNAs are byproducts without a critical function (Vourekas et al., 2012). Compelling evidence exists to support each model. In fact, direct demonstration of piRNA function in any animal has proven elusive. Only two piRNA-producing loci have been directly shown to have a biological function—both are in flies and were identified genetically before the discovery of piRNAs (Livak, 1984; Livak, 1990; Palumbo et al., 1994; Pélisson et al., 1994; Bozzetti et al., 1995; Prud'homme et al., 1995; Robert et al., 2001; Robert et al., 2001; Mével-Ninio et al., 2007). In male flies, piRNAs from *Suppressor of Stellate*, a multi-copy gene on the Y chromosome, silence the selfish gene *Stellate*, and deletion of *Suppressor of Stellate* leads to Stellate protein crystals in spermatocytes (Aravin et al., 2001; Aravin et al., 2003). In female flies, deletion of the piRNA-producing *flamenco* gene, which is expressed in somatic follicle cells that support oogenesis, leads to *gypsy* family transposon expression and infertility (Brennecke et al., 2007; Saito et al., 2009). Here, we report that a small promoter deletion in the chromosome 6 pachytene piRNA cluster 6-qF3-28913(-),8009(+) (henceforth, pi6) that eliminates pi6 piRNA production disrupts male fertility. The pi6 locus, one of the five most productive piRNA-producing loci in mice, generates 5.8% of pachytene piRNAs in the adult testis and is conserved among eutherian mammals. Mice lacking pi6-derived piRNAs produce normal numbers of sperm and continue to repress transposons. However, pi6 mutant sperm fertilize eggs poorly due to defective sperm motility and zona pellucida penetration. Consistent with these phenotypes, the steady-state abundance of mRNAs encoding proteins crucial for cilial function, zona pellucida proteolysis, and egg binding was significantly decreased in sperm progenitor cells from pi6 males. Our findings provide direct evidence for a biological function for pachytene piRNAs in male mouse fertility, and pi6 promoter deletions provide a new model for the future identification of piRNA targets in vivo. #### **RESULTS** #### pi6 Promoter Deletion Eliminates pi6 pachytene piRNAs To eliminate production of pi6 pachytene piRNAs while minimizing the impact on adjacent genes, we used a pair of single-guide RNAs to delete 227 bp, including the A-MYB-binding promoter sequences, from pi6 (Figure 1, S1A, and S1B, and Table S1; Li et al., 2013). For comparison, we created an analogous promoter deletion in pi17. We established stable mutant lines ($pi6^{em1}$ -1, -2, and -3 in Figure S1B) from three founders whose pi6 promoter deletion sizes range from 219 to 230 bp and differ at their deletion boundaries, reflecting imprecise DNA repair after Cas9 cleavage. All three deletions eliminated pi6 primary transcripts and mature pachytene piRNAs from both arms of the locus (Figure 1). Because these lines were created using the same pair of sgRNA guides, we refer to all as the $pi6^{em1}$ allele. #### pi6 is Required for Male Mouse Fertility When paired with C57BL/6 females, pi6^{em1/em1} males between 2 and 8 months old produced fewer pups compared to their littermates, even at peak reproductive age (Figure 2A and S2A). In six months, C57BL/6 males produced 7 ± 1 (n = 5) litters, while $pi6^{em1/em1}$ males produced 2 ± 2 (n = 6) litters. The significantly smaller number of progeny produced by *pi6*^{em1/em1} males over their reproductive lifetime does not reflect fewer pups produced in each litter: $pi6^{em1/em1}$ males sired 5 ± 2 (n = 4) pups per litter compared to 6 ± 2 (n = 27) pups per litter for C57BL/6 control males (Figure 2A). Moreover, pi6^{em1/em1} males regularly produced mating plugs, a sign of mating, in cohabiting females. Instead, the reduced progeny from pi6em1/em1 males reflects two abnormal aspects of their fertility (Figure 2B). First, 29% of pi6em1/em1 males never produced pups. Second, the mutants that did sire pups did so less frequently. These defects are specific for the loss of *pi6* piRNAs in males, because *pi6*+/em1 heterozygous males and *pi6*^{em1/em1} homozygous mutant
females showed no discernable phenotype. As observed previously for a partial-loss-of-function pi17 promoter deletion (Homolka et al., 2015), males and females carrying a ~583-bp promoter deletion in *pi17* were fully fertile, despite loss of primary transcripts and mature piRNAs from both arms of the pi17 locus (Figure 1). To test that the reduced fertility of $pi6^{em1/em1}$ male mice reflects loss of the pi6 promoter—and not an undetected Cas9-induced off-target mutation elsewhere in the genome—we used Cas9 and a second pair of sgRNAs to generate a 117 bp pi6 promoter deletion, $pi6^{em2}$ (Figures 1, S1A, and S1C, and Table S1). Like $pi6^{em1/em1}$ male mice, $pi6^{em2/em2}$ males produced neither primary pi6 transcripts nor mature pi6 piRNAs and showed reduced fertility (Figure S2A). We conclude that *pi6* piRNAs are required for C57BL/6 male fertility in mice. #### pi6em1/em1 Males Produce Fewer Embryos pi6 mutant male matings were less likely to produce fully developed embryos. We examined the embryos produced by natural mating of C57BL/6 females housed with C57BL/6, $pi6^{+/em1}$, or $pi6^{em1/em1}$ males at 8.5, 14.5, or 16.5 days after occurrence of a mating plug. At 8.5 days after mating, C57BL/6 females housed with $pi6^{em1/em1}$ males carried fewer embryos (2 ± 2, n = 3) compared to the females paired with $pi6^{+/em1}$ (6 ± 5, n = 2) or C57BL/6 control (7 ± 4, n = 1) males (Figure 2C). At 14.5 and 16.5 days postmating, female mice paired with $pi6^{em1/em1}$ males had even fewer embryos. Consistent with the observation that naturally-born pups sired by $pi6^{em1/em1}$ males were rare but healthy, the surviving embryos resulting from natural mating showed no obvious abnormalities. Moreover, pi6 piRNAs appear to play little if any role in the soma of the developing embryo. $pi6^{+/em1}$ heterozygous males mated to $pi6^{+/em1}$ heterozygous females yielded progeny at the expected Mendelian and sex ratios. Moreover, the weight of $pi6^{em1/em1}$ homozygous pups (28.3 ± 0.6 g, n = 8) that developed to adulthood was indistinguishable from their C57BL/6 (26.9 ± 0.3 g, n = 8) or heterozygous littermates (28.6 ± 0.3 g, n = 8) (Figure S2B). We detected no difference in the gross appearance or obvious changes in behavior among these pups. # *pi6*^{em1/em1} Males Produce Mature Spermatozoa Two-to-four months after birth, both $pi6^{+/em1}$ and $pi6^{em1/em1}$ testes weighed slightly less than C57BL/6 testes (Figure S2B). Nonetheless, $pi6^{em1/em1}$ testis gross histology was normal, with all expected germ cell types present in seminiferous tubules and sperm clearly visible in the lumen (Figure 2D). The quantity of caudal epididymal sperm produced by $pi6^{em1/em1}$ mice (19 ± 10 million sperm per ml; n = 6) was also comparable to that of their $pi6^{+/em1}$ (23 ± 7 million sperm/ml; n = 4) or C57BL/6 (20 ± 10 million sperm per ml; n = 13) littermates (Figure 2E). Although $pi6^{em1/em1}$ mice produce normal numbers of sperm, the sperm showed signs of agglutination compared to C57BL/6 sperm after 90 min of incubation in vitro, and ~10% of $pi6^{em1/em1}$ caudal epidydimal sperm had abnormal head morphology (Figure S2C). Defects in germ cell chromosomal synapsis, triggering errors in gene expression, have been linked to abnormal sperm head shape (Wong et al., 2008; de Boer et al., 2015). In fact, 22 ± 7 percent of $pi6^{em1/em1}$ pachytene spermatocytes had unsynapsed sex chromosomes or incompletely synapsed autosomal chromosomes, compared to 7 ± 3 percent for C57BL/6 (n = 4) (Figure S2E). ## pi6em1/em1 Sperm Fail to Fertilize pi6 mutant males produce ordinary numbers of normally shaped sperm (~90%), yet are ineffectual at siring offspring. We used in vitro fertilization (IVF) to distinguish between defects in mating behavior and sperm function, incubating sperm from C57BL/6, $pi6^{+/em1}$, or $pi6^{em1/em1}$ males with wild-type oocytes and scoring for the presence of both male and female pronuclei and the subsequent development of the resulting bipronuclear zygotes into two-cell embryos 24 h later (Figure 3A). The majority of oocytes incubated with C57BL/6 (91 ± 5%; n = 5) or $pi6^{+/em1}$ (60 ± 35%; n = 3) sperm developed into two-cell embryos. By contrast, only 7 ± 5% (n = 7) of oocytes incubated with $pi6^{em1/em1}$ sperm reached the two-cell stage. The majority of these oocytes remained one-cell embryos, and few contained a male pronucleus, suggesting that $pi6^{em1/em1}$ sperm are defective in fertilization. ### pi6em1/em1 Sperm Nuclei Support Fertilization The best studied piRNA function is transposon silencing, and mouse *pi2* has been proposed to be involved in LINE1 element silencing, although *pi2* mutant males are fertile (Xu et al., 2008). Moreover, LINE1 transcript abundance increases in mice bearing inactivating mutations in the catalytic site of MIWI (Reuter et al., 2011). Transposon activation can produce DNA damage, and genomic integrity is critical for fertilization (Ahmadi and Ng, 1999; Morris et al., 2002; Bourc'his and Bestor, 2004; Lewis and Aitken, 2005). However, pachytene piRNAs are depleted of repetitive sequences in contrast to other types of piRNA-producing genomic loci (Figure S3A; Aravin et al., 2006; Girard et al., 2006; Gainetdinov et al., 2018). We asked whether the defect in fertilization by $pi6^{em1/em1}$ might reflect DNA damage or epigenetic dysregulation of the $pi6^{em1/em1}$ sperm genome. $pi6^{+/em1}$ or $pi6^{em1/em1}$ sperm heads were individually injected into the cytoplasm of wild-type oocytes (intracytoplasmic sperm injection, or ICSI) (Figure 3B), bypassing the requirement for sperm motility, acrosome reaction, egg binding, or sperm-egg membrane fusion (Kuretake et al., 1996). $pi6^{em1/em1}$ sperm heads delivered by ICSI fertilized the oocyte at a rate similar to that of $pi6^{+/em1}$ sperm: 66% of oocytes injected with homozygous mutant $pi6^{em1/em1}$ sperm heads reached the two-cell stage, compared to 79% for $pi6^{+/em1}$. Thus, most $pi6^{em1/em1}$ nuclei are capable of fertilization. The steady-state abundance of transposon RNA in *pi6*^{em1/em1} testicular germ cells further supports the view that the fertilization defect caused by loss of *pi6* piRNAs does not reflect a failure to silence transposons. We used RNA-seq to measure the abundance of RNA from 1,007 transposons in four distinct germ cell types, purified by fluorescence-activated cell sorting: pachytene spermatocytes (4C), diplotene spermatocytes (4C), secondary spermatocytes (2C), and spermatids (1C). *pi6* piRNAs are plentiful in pachytene spermatocytes onwards (Figure S3B), yet when *pi6* piRNAs were eliminated, we found no significant changes in steady-state RNA abundance (i.e., an increase or decrease \geq 2-fold and FDR \leq 0.05) for any transposon family compared to C57BL/6 cells (Figure S3C). We also note that, similar to C57BL/6 testis, γ H2AX expression is confined to meiotic spermatocytes in $pi6^{em1/em1}$ testis, indicating absence of DNA damage (data not shown). Together with the rescue of the fertilization defects of $pi6^{em1/em1}$ sperm by ICSI, these data suggest that transposon silencing is unlikely to be the biological function of pi6 piRNAs. #### Impaired Motility in *pi6* Mutant Sperm To assess whether abnormal sperm motility might contribute to $pi6^{em1/em1}$ male subfertility, we observed freshly extracted caudal epididymal sperm from $pi6^{em1/em1}$ or C57BL/6 mice for 5 h. Ten minutes after sperm extraction, most $pi6^{em1/em1}$ sperm moved more slowly than C57BL/6 control sperm (Movies S1 and S2). With time, $pi6^{em1/em1}$ sperm motility declined more rapidly than C57BL/6 sperm (Movies S3–S10). At 4 and 5 h, most $pi6^{em1/em1}$ sperm only moved in place and showed signs of agglutination (Movies S8 and S10). To quantify the differences between pi6 mutant and control sperm, we used computer-assisted sperm analysis (CASA) to measure $pi6^{em2/em2}$ sperm motility 10 min after isolation (Mortimer, 2000). While control sperm swam at a path velocity comparable to previously reported (110 ± 50 µm/sec for 221 ± 75 cells measured; n = 3; Ren et al., 2001), $pi6^{em2/em2}$ sperm moved at a lower average path velocity (80 ± 60 µm/sec for 232 ± 57 cells measured; n = 3) (Table 1). Similarly, The $pi6^{em2/em2}$ sperm also showed less forward, progressive movement (progressive velocity = $50 \pm 60 \mu$ m/sec for 232 ± 57 cells measured; n = 3) compared to control sperm (progressive velocity = $70 \pm 50 \mu$ m/sec for 221 ± 75 cells measured; n = 3). For comparison, knockout of CatSper1 leads to ~65% reduction in path velocity and ~62% reduction in progressive velocity (Ren et al., 2001). As a population, the speed and progressivity of pi6 mutant sperm motility patterns varied more widely than control sperm (Movies S1–S10 and Table 1). Lower average path and progressive velocity in sperm populations is linked to worse outcomes in fertilization and pregnancy in IVF (Donnelly et al., 1998). Thus, the slower and less progressive movement in $pi6^{em1/em1}$ sperm likely contributes to the subfertility of $pi6^{em1/em1}$ males. #### pi6 Mutant Sperm Struggle to Penetrate the Zona Pellucida Mammalian spermatozoa stored in the epididymis are dormant. Sperm "capacitate," i.e., resume maturation, only upon entering the female reproductive tract (de Lamirande et al., 1997). Upon capacitation, sperm become capable of undergoing the acrosome reaction, which is required to bind and penetrate the outer oocyte glycoprotein layer, the zona pellucida (Florman and Storey, 1982; de Lamirande et al., 1997; Jin et al., 2011). To test whether the defect in fertilization by pi6 mutant sperm was due to impaired binding to or penetration of zona pellucida, we compared IVF using wild-type oocytes with their zona pellucida either intact or removed (Figure 4A). As before, $10 \pm 6\%$ (n = 3) of intact oocytes incubated with $pi6^{em1/em1}$ sperm reached the two-cell stage,
compared to $94 \pm 5\%$ (n = 3) for C57BL/6 sperm (Figure 4B). Strikingly, removing the zona pellucida from the wild-type oocytes fully rescued the fertilization rate of pi6 mutant sperm: $92 \pm 7\%$ (n = 3) of zona pellucida-free oocytes incubated with $pi6^{em1/em1}$ sperm reached the two-cell stage, compared to those with intact zona pellucida ($10 \pm 6\%$; n = 3) Ex vivo, the acrosome reaction occurs spontaneously in some sperm and can be further triggered by inducing Ca²⁺ influx using the ionophore A23187 (Talbot et al., 1976), which results in an acrosome reaction visually indistinguishable from that triggered by natural ligands such as progesterone (Osman et al., 1989) or ZP3 (Arnoult et al., 1996), while bypassing signaling pathways essential for acrosome reaction in vivo (Tateno et al., 2013) (Figure 4C and 4D). The spontaneous acrosome reaction rates for C57BL/6 (19 \pm 3%; n = 3) and pi6 mutant sperm were similar (17 \pm 8%; n = 3). Acrosome reaction triggered by ionophore-induced Ca²⁺ influx differed between the two genotypes: 45 \pm 14% of pi6 mutant sperm (n = 3) underwent partial or complete reaction, compared to 66 \pm 6% (n = 3) for C57BL/6 (Figure 4C). Our data suggest that pi6 mutant sperm less effectively undergo an acrosome reaction triggered by ionophore-induced Ca²⁺ influx, a defect expected to impair binding and penetrating the zona pellucida. #### Potential Role of Paternal pi6 piRNAs in Embryo Development Even when pi6 sperm successfully fertilize the oocyte, the resulting heterozygous embryos are less likely to complete gestation. Two-cell embryos generated by IVF using heterozygous or homozygous pi6 mutant or C57BL/6 control sperm were transferred to C57BL/6 surrogate mothers (Figure 5A). At least half of embryos from $pi6^{+/em1}$ (50 ± 10%; n = 3) or C57BL6 control (70 ± 10%; n = 3) sperm developed to term (Figure 5B), a rate typical for the C57BL/6 background (González-Jara et al., 2017). The low number of fertilized two-cell embryos produced in IVF using $pi6^{em1/em1}$ sperm precluded transferring the standard number of embryos to surrogate mothers. For example, in two IVF experiments using $pi6^{em1/em1}$ sperm, only 5 or 7 embryos could be transferred; the surrogate females failed to become pregnant (Figure 5B and S4A, Trials 1 and 2). In theory, this result might suggest a paternal role for pi6. A more mundane explanation is that the low number of embryos transferred reduced the yield of live fetuses, as reported previously (McLaren , 1955; Johnson et al., 1996; González-Jara et al., 2017). We conducted additional experiments to distinguish between these two possibilities. Oocytes were again fertilized by IVF with $pi6^{em1/em1}$ or C57BL/6 control sperm, and two-cell embryos transferred to surrogate females, but matching the number of embryos transferred to each surrogate for the two sperm genotypes. We used two strategies. First, similar numbers of embryos derived from $pi6^{em1/em1}$ sperm and filler embryos derived from control sperm were transferred to separate oviducts (Figure 5B, Trials 3 and 4). Again, fewer embryos developed to term for $pi6^{em1/em1}$ (17%) compared to control sperm (37%). Second, embryos were mixed before transfer and then equal numbers of embryos, selected randomly, were implanted in each oviduct (Figure 5B, Trial 5). Pups isolated by cesarean section 18.5 days after transfer were genotyped by PCR. In this experiment, only 40% of embryos derived from $pi6^{em1/em1}$ sperm developed to term, compared to 80% of filler embryos. Finally, in one experiment (Trial 6) where we obtained sufficient numbers of embryos derived from $pi6^{em1/em1}$ sperm, 10 $pi6^{em1/em1}$ -derived two-cell embryos were transferred to each oviduct of the surrogate female. Nevertheless, only 15% of the $pi6^{em1/em1}$ -derived embryos developed to term, compared to 85% of the control. We also monitored pre-implantation development ex vivo for up to 96 h, a period during which the one-cell embryo develops into a blastocyst. Of all the oocytes incubated with $pi6^{em1/em1}$ sperm, 40% remained one cell without evidence of a male pronucleus, presumably because they were not fertilized by $pi6^{em1/em1}$ mutant sperm. Among the remaining 60% oocytes that progressed to at least two-cell stage, which indicated successfully fertilization by $pi6^{em1/em1}$ sperm, 82% showed delayed development, requiring 48 h to reach the two-cell stage. None of these developed further. Only 3% of fertilized oocytes progressed to the blastocyst stage by 96 h, compared to 98% of oocytes fertilized by C57BL/6 sperm (Figure 5C). Further support for this idea comes from transfer of embryos generated by ICSI (Figure 5D). ICSI with $pi6^{em1/em1}$ or $pi6^{+/em1}$ sperm yielded comparable normal numbers of fertilized oocytes (Figure 3B), so no filler embryos were used; all embryos were transferred into a single oviduct of the surrogate female. In two independent experiments in which embryos generated by ICSI were transferred to surrogate mothers, only 19% of two-cell embryos derived from $pi6^{em1/em1}$ sperm heads developed to term, compared to 34% for embryos fertilized with $pi6^{+/em1}$ (Figure 5C). Only four of seven (57%) surrogate mothers carrying embryos derived from $pi6^{em1/em1}$ sperm became pregnant. All three surrogate mothers receiving embryos derived from $pi6^{+/em1}$ sperm became pregnant (Figure S4B). We note that the live fetuses generated using $pi6^{em1/em1}$ sperm in IVF or sperm heads in ICSI, like those produced by natural mating using $pi6^{em1/em1}$ males, showed no obvious morphological abnormalities and grew to adulthood normally when fostered by host mothers. This suggests a direct or indirect requirement for paternal pi6 piRNAs in early embryogenesis. # Changes in Spermatocyte mRNA Abundance Accompany Loss of pi6 piRNAs To characterize the molecular phenotypes of pi6 and pi17 mutants, we used RNA-seq to measure steady-state RNA abundance in pachytene spermatocytes, diplotene spermatocytes, secondary spermatocytes, and spermatids purified from *pi6*^{em1/em1}, pi17^{-/-}, and C57BL/6 adult testis (Figure 6A). pi6 and pi17 precursor transcripts are abundant in meiotic pachytene spermatocytes (tetraploid), decrease in diplotene spermatocytes, and fall to low levels in post-meiotic spermatids (haploid) (Figure S5B). Compared with C57BL/6 controls, pi6em1/em1 mutants had widespread changes in mRNA abundance in pachytene spermatocytes—481 mRNAs more than doubled, while 394 fell by more than half (FDR ≤ 0.05; Figure 6B and S5A, and Table S2)—but caused little alteration in mRNA abundance in diplotene spermatocytes, secondary spermatocytes, or spermatids. In contrast, pi17^{-/-} mutants showed significant changes in mRNA abundance in diplotene (10 mRNAs increased, 267 decreased) and secondary spermatocytes (103 mRNA increased, 400 decreased) but not in pachytene spermatocytes or spermatids (Figure S5A). Among the mRNAs that changed in the diplotene spermatocytes of pi17^{-/-} mutants, 56% remained different from controls in secondary spermatocytes in these mutants. These data suggest that, despite similar temporal expression, pi6 piRNAs function primarily in pachytene spermatocytes, while *pi17* piRNAs may be more important at a later stage of spermatogenesis. Furthermore, 734 (84%) of mRNAs with altered abundance in *pi6*^{em1/em1} pachytene spermatocytes were unchanged in any *pi17*^{-/-} sorted germ cell type we examined, suggesting that distinct sets of genes are dysregulated in *pi6*^{em1/em1} and *pi17*^{-/-} mutants. The abundance of piRNAs from the other four major pachytene piRNA clusters, including *pi17*, was unaffected by loss of *pi6* piRNAs, and loss of neither *pi6* nor *pi17* piRNAs had any significant effect on the abundance of mRNAs encoding piRNA pathway proteins (Table S3), suggesting that the changes in mRNA abundance in *pi6*^{em1/em1} or *pi17*^{-/-} cells reflect direct regulation of target genes by *pi6* or *pi17* piRNAs or the downstream regulation through the direct targets of these piRNAs. Gene Ontology (GO) analysis of the 481 up-genes found over 354 significantly enriched GO biological processes (FDR \leq 0.01 and enrichment \geq 2). Curiously, 106 of these GO terms correspond to developmental processes that do not normally occur in testis, suggesting a failure to suppress inappropriate programs without pi6 piRNAs. Similarly, $pi6^{em1/em1}$ mutants show increased mRNA abundance for 20 transcription factors that normally act in undifferentiated spermatogonia or spermatogonial stem cells or the stem cells of other tissues (Table S4). The mRNA abundance of several miRNA pathway genes also increased in $pi6^{em1/em1}$ pachytene spermatocytes, including Lin28a (5.6-fold), Zc3h7b (5-fold), and Ajuba (5.3-fold; Figure S5C) (Dresios et al., 2005; James et al., 2010; Pilotte et al., 2011; Piskounova et al., 2011). LIN28A inhibits let-7 biogenesis by binding to the loop of pre-let-7, blocking its processing by DICER (Piskounova et al., 2008; Hagan et al., 2009; Heo et al., 2009), and let-7 promotes Lin28a degradation by binding two conserved sites in the Lin28a 3' untranslated region (Reinhart et al., 2000; Agarwal et al., 2015) predicting that let-7 levels should fall and let-7 targets should rise in $pi6^{em1/em1}$. Indeed, in $pi6^{em1/em1}$ adult testis, the aggregate abundance of let-7a, let-7b, let-7c, let-7e, let-7f, let-7g, and let-7i, the seven most abundant let-7 family members (\geq 10 ppm in wild-type testis) fell to less than half of wild-type, suggesting *pi6* regulation of downstream target genes via *let-7*. Moreover, 48 predicted *let-7* targets (Agarwal et al., 2015) increased in the absence of *pi6*^{em1/em1}, including *Lin28a* and the mRNAs encoding three transcription factors: *Sall4* (increased 8.7-fold), *Elf4* (increased 7-fold), and *Pbx2* (increased 6.7-fold). SALL4 is normally expressed in undifferentiated
spermatogonia where it represses genes that specify somatic gene expression programs (Gassei and Orwig, 2013; Yamaguchi et al., 2015; Chan et al., 2017). ELF4 has been implicated in regulation of quiescence in hematopoietic stem cells (Lacorazza et al., 2006). Our data suggest that piRNAs, miRNAs, and transcription factors collaborate to ensure precise regulation of gene expression in spermatogenesis. # Genes that Function in the Cilium Assembly, Cilium Motility, and Fertilization Pathways Decrease in mRNA Abundance upon Loss of *pi6* piRNAs GO analysis of the 394 down-genes revealed only 36 significantly enriched GO biological processes (FDR ≤ 0.01 and fold enrichment ≥ 2), of which 34 are related to the production and function of sperm and can be organized into four sets (Table S5). One set encompasses broad spermatogenesis terms (e.g., *male gamete generation*, 4.6-fold enriched, FDR = 5.8 × 10⁻¹¹; *sperm capacitation*, 12-fold enriched, FDR = 7.4 × 10⁻³) while three sets are highly specific and match the in vivo phenotypes of *pi6* mutant males. The first specific set includes *cilium assembly* (6.2-fold enriched, FDR = 4.1 × 10⁻⁹) and *axonemal dynein complex assembly* (18-fold enriched, FDR = 1.1 × 10⁻⁵). The second set contains *sperm motility* (13-fold enriched, FDR = 6.0 × 10⁻¹⁰) and *cilium movement involved in cell motility* (27-fold enriched, FDR = 2.0 × 10⁻³). The third set involves *fertilization* (6.2-fold enriched, FDR = 1.7 × 10⁻⁵) and *binding of sperm to zona pellucida* (12-fold enriched, FDR = 2.3 × 10⁻³). None of these three sets of GO terms is enriched in the 481 genes whose mRNA levels increased in *pi6*^{em1/em1} pachytene spermatocytes. The three sets of specific GO terms contain 28, 36, and 22 genes whose mRNAs decreased (63 total and 23 shared between sets; Figure 6C and Table S6). The last two general GO terms—*microtubule-based process* (GO:0007017; with 27 genes whose mRNA abundance declined) and *organelle assembly* (GO:0070925; with 28 genes whose mRNA abundance decreased)—likely gained their enrichment from the large number of genes they share with Cilium assembly and Sperm motility processes (23 and 25 genes for the two GO terms, respectively). # Master Regulators of Cilium Assembly and Sperm Motility The 63 Cilium Assembly, Sperm Motility, or Fertility genes with reduced mRNA abundance in pi6 mutants include two transcription factors, Rfx2 and Foxi1, that act as master regulators of ciliogenesis (Figure 6C). Like pi6 itself, Rfx2 transcription is activated by A-MYB, and RFX2 also binds its own promoter (Horvath et al., 2009). Of the genes with decreased mRNA abundance in pi6em1/em1 pachytene spermatocytes, 31 both bind RFX2 and have reduced mRNA abundance in *Rfx2*^{-/-} testis, suggesting they are direct targets of RFX2 (Figure 6C and Table S7) (Kistler et al., 2015). Intriguingly, 23 of these 31 RFX2-regulated genes also bind A-MYB (Table S7). A-Myb mRNA levels are normal in pi6em1/em1, which may account for the relatively modest decreases in the mRNA abundance of these 23 genes. Unlike RFX2, the role of FOXJ1 in sperm flagellar assembly has not been extensively studied but its role in general ciliogenesis is well established: FoxJ1-/- mouse died at or soon after birth due to absence of cilia in multiple organs (Chen et al., 1998; Blatt et al., 1999; Brody et al., 2000; Yu et al., 2008). Six genes—Tekt4, Spa17, Drc1, Rsph1, Meig1, and Tsnaxip1—out of the 394 genes with reduced mRNA abundance in *pi6*^{em1/em1} pachytene spermatocytes are regulated by FOXJ1 in ciliogenesis in other tissues (Yu et al., 2008; Stauber et al., 2017). Fourteen genes whose mRNA abundances decrease in pi6em1/em1 are uniquely annotated with the GO term Fertilization (Figure 6C and Table S6). Several are required for sperm to bind the zona pellucida or for acrosome function, including Acrosin (halved in pi6em1/em1 pachytene spermatocytes), *Adam3* (decreased 2.5-fold), *Zpbp2* (decreased 3.3-fold), and the FOXJ1-regulated gene *Spa17* (decreased 5-fold). Among the genes with decreased or increased mRNA abundance in *pi6*^{em1/em1} cells, 28 have been reported to disrupt mouse or human male fertility or to play a role in spermatogenesis, spermiogenesis, or sperm function (Table S8). #### **DISCUSSION** Deletion of the mouse pachytene piRNA *pi6* locus results in specific, quantifiable defects in male fertility. These include impaired sperm mobility and failure in sperm to bind and penetrate the zona pellucida. The male fertility defects accompanying loss of *pi6* piRNAs are specific to this locus, as deletion of the promoter of *pi17*, which eliminates *pi17* piRNAs, had no detectable effect on male or female fertility or viability, as reported previously (Homolka et al., 2015). The phenotypic defects of *pi6* mutants reflect the molecular changes—decreased steady-state abundance of mRNAs encoding proteins that function in cilial motility and fertilization. Mutations in four of these genes also cause infertility in men. The molecular changes were detected only in pachytene spermatocytes but not in diplotene spermatocytes, secondary spermatocytes, or spermatids. By contrast, RNA-seq for 17.5 dpp or adult *pi6*^{em1/em1} testes revealed no changes in mRNA abundance compared to controls. These results underscore the power of analyzing sorted germ cells. Pachytene piRNAs have been proposed to act collectively in meiotic spermatocytes or post-meiotic spermatids to target mRNAs for destruction (Gou et al., 2014; Goh et al., 2015), but the extent to which piRNAs from different pachytene piRNA loci regulate overlapping sets of targets is unknown. Transcriptome analysis of sorted germ cells from *pi6*^{em1/em1} and *pi17*^{-/-} mutant mice revealed distinct changes in mRNA abundance, suggesting that, despite the coordinate temporal expression of pachytene piRNAs, individual pachytene piRNA loci regulate distinct sets of genes. Given that *pi6* produces 95,677 distinct piRNA sequences, the phenotypic specificity of the *pi6* mutant is extraordinary. For both miRNAs and siRNAs, the seed sequence plays a central role in determining a small RNA's regulatory target. Assuming that pachytene piRNAs find their target RNAs by a similar mechanism, the sequence diversity of the small RNAs produced by individual loci is enormous: *pi6* piRNAs encompass 9,880 distinct seed (g2–g8 or 7mer-m8; Bartel, 2009) and 17,304 distinct extended seed sequences (g2–g9) in adult mouse testis, while *pi17* generates 134,358 distinct piRNA sequences, encompassing 11,324 distinct g2–g8 seed and 21,972 distinct g2–g9 seed sequences. Yet, the g2–g9 seed sequences of the 100 most abundant *pi6* piRNAs are not found among the 100 most abundant *pi17* piRNAs. Furthermore, 97 of these *pi6* g2–g9 seed sequences are not found among any of the 100 most-abundant piRNAs produced by *pi2*, *pi7*, *pi9*, or *pi17*. Together with *pi6*, these loci produce more than half of all pachytene piRNAs. The unique seed sequences of the most abundant *pi6* piRNAs are consistent with the lack of compensation of loss of *pi6* piRNAs by other piRNA-producing loci. We envision that piRNAs from distinct loci target overlapping sets of genes, ensuring robust control of mRNA abundance across spermatogenesis. Our data show that *pi6* piRNAs regulate—directly or by regulating upstream factors—a specific set of mRNAs whose protein products must be eliminated for successful spermiogenesis. In this view, *pi6* piRNAs target mRNAs whose expression must decline at the onset of the pachynema in order to allow new sets of mRNAs to accumulate, such as the RFX2-regulated genes required for ciliogenesis. While we cannot exclude a direct role for piRNAs in activating gene expression or increasing mRNA stability, we note that the overwhelming majority of siRNAs and miRNAs in plants and animals act as repressors not activators. The phenotypic and molecular specificity of *pi6* may reflect a lower degree of redundancy with other piRNA clusters. Nonetheless other piRNA clusters may partially rescue the *pi6* phenotype, accounting for the incomplete penetrance of the *pi6* sterility phenotype. Conversely, the lack of a phenotype for other pachytene piRNA clusters may simply reflect greater redundancy with their piRNA-producing peers. Loss of regulation of the targets of *pi17* piRNAs may be compensated by piRNAs from other loci. Testing this hypothesis is clearly a prerequisite for explaining why loss of *pi6* and not *pi17* piRNAs has a measurable biological consequence. Beyond the requirement for *pi6* piRNAs to produce fully functional sperm, *pi6* piRNAs appear to play an additional role in embryo development. Our data suggest that the arrested development and reduced viability of embryos derived from *pi6* mutant sperm reflects a paternal defect and not the embryonic genotype. Damaged sperm DNA, abnormal sperm chromatin structure, and failure to form a male pronucleus in fertilized embryos have been reported to be linked to retarded embryo development (Sakkas et al., 1998; Borini et al., 2006). Our analysis of transposon RNA abundance in *pi6* mutant germ cells argues against a role for *pi6* piRNAs in transposon silencing during spermatogenesis, but we cannot currently exclude a direct or indirect role for *pi6* piRNAs in silencing transposons in the early embryo (Peaston et al., 2004). Of course, DNA damage might reflect incomplete repair of the double-stranded DNA breaks required for recombination, rather than transposition or transposon-induced illegitimate recombination. How piRNAs identify their targets remains poorly understood, in part because suitable biochemical or genetic model systems are not available. The availability of a mouse mutant missing a specific set of piRNAs whose absence causes a readily detectable phenotype should provide an additional tool for understanding the base-pairing rules that govern the binding of piRNAs to their RNA targets and for unraveling
the regulatory network created by pachytene piRNAs. #### SUPPLEMENTAL INFORMATION Supplemental Information includes Extended Experimental Procedures, Figures S1–5, Tables S1–S7, and Movies S1–S10. #### **AUTHOR CONTRIBUTIONS** P.H.W., K.C., Y.F., Z.W., and P.D.Z. conceived and designed the experiments. P.H.W. and K.C. performed the experiments. Y.F. analyzed the sequencing data. D.M.Ö generated A-MYB ChIP-seq datasets. P.H.W., Y.F., and P.D.Z. wrote the manuscript. #### **ACKNOWLEDGEMENTS** We thank P. Cohen and K. Grive at Cornell University for generously sharing protocols and advice on germ cell sorting and meiotic chromosome studies; H. Florman and P. Visconti for sharing protocols and advice on sperm studies; the UMMS Transgenic Animal Modeling Core for advice on fertility test and embryo phenotype; the UMMS FACS core for advice on and help with germ cell sorting; and members of our laboratories for critical comments on the manuscript. This work was supported in part by National Institutes of Health grants GM65236 to P.D.Z. and P01HD078253 to P.D.Z. and Z.W. #### **REFERENCES** - Adoyo, P. A., Lea, I. A., Richardson, R. T., Widgren, E. E., and O'Rand, M. G. (1997). Sequence and characterization of the sperm protein Sp17 from the baboon. Mol Reprod Dev 47, 66-71. - Agarwal, V., Bell, G. W., Nam, J. W., and Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife *4*, e05005. - Ahmadi, A., and Ng, S. C. (1999). Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool *284*, 696-704. - Antony, D., Becker-Heck, A., Zariwala, M. A., Schmidts, M., Onoufriadis, A., Forouhan, M., Wilson, R., Taylor-Cox, T., Dewar, A., Jackson, C., Goggin, P., Loges, N. T., Olbrich, H., Jaspers, M., Jorissen, M., Leigh, M. W., Wolf, W. E., Daniels, M. L., Noone, P. G., Ferkol, T. W., Sagel, S. D., Rosenfeld, M., Rutman, A., Dixit, A., O'Callaghan, C., Lucas, J. S., Hogg, C., Scambler, P. J., Emes, R. D., Uk10k, Chung, E. M., Shoemark, A., Knowles, M. R., Omran, H., and Mitchison, H. M. (2013). Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat 34, 462-472. - Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M. J., Kuramochi-Miyagawa, S., Nakano, T., Chien, M., Russo, J. J., Ju, J., Sheridan, R., Sander, C., Zavolan, M., and Tuschl, T. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203-207. - Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., and Tuschl, T. (2003). The small RNA profile during Drosophila melanogaster development. Dev Cell *5*, 337-350. - Aravin, A. A., Naumova, N. M., Tulin, A. V., Vagin, V. V., Rozovsky, Y. M., and Gvozdev, V. A. (2001). Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol *11*, 1017-1027. - Aravin, A. A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K. F., Bestor, T., and Hannon, G. J. (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell *31*, 785-799. - Arnoult, C., Zeng, Y., and Florman, H. M. (1996). ZP3-dependent activation of sperm cation channels regulates acrosomal secretion during mammalian fertilization. J Cell Biol *134*, 637-645. - Avenarius, M. R., Hildebrand, M. S., Zhang, Y., Meyer, N. C., Smith, L. L., Kahrizi, K., Najmabadi, H., and Smith, R. J. (2009). Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet *84*, 505-510. - Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell *136*, 215-233. - Batista, P. J., Ruby, J. G., Claycomb, J. M., Chiang, R., Fahlgren, N., Kasschau, K. D., Chaves, D. A., Gu, W., Vasale, J. J., Duan, S., Conte, D., Luo, S., Schroth, G. P., Carrington, J. C., Bartel, D. P., and Mello, C. C. (2008). PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 31, 67-78. - Becker-Heck, A., Zohn, I. E., Okabe, N., Pollock, A., Lenhart, K. B., Sullivan-Brown, J., McSheene, J., Loges, N. T., Olbrich, H., Haeffner, K., Fliegauf, M., Horvath, J., Reinhardt, R., Nielsen, K. G., Marthin, J. K., Baktai, G., Anderson, K. V., Geisler, R., Niswander, L., Omran, H., and Burdine, R. D. (2011). The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 43, 79-84. - Blatt, E. N., Yan, X. H., Wuerffel, M. K., Hamilos, D. L., and Brody, S. L. (1999). Forkhead transcription factor HFH-4 expression is temporally related to ciliogenesis. Am J Respir Cell Mol Biol *21*, 168-176. - Bolcun-Filas, E., Bannister, L. A., Barash, A., Schimenti, K. J., Hartford, S. A., Eppig, J. J., Handel, M. A., Shen, L., and Schimenti, J. C. (2011). A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Development *138*, 3319-3330. - Bolcun-Filas, E., Hall, E., Speed, R., Taggart, M., Grey, C., de Massy, B., Benavente, R., and Cooke, H. J. (2009). Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS Genet *5*, e1000393. - Borini, A., Tarozzi, N., Bizzaro, D., Bonu, M. A., Fava, L., Flamigni, C., and Coticchio, G. (2006). Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod *21*, 2876-2881. - Bourc'his, D., and Bestor, T. H. (2004). Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature *431*, 96-99. - Bozzetti, M. P., Massari, S., Finelli, P., Meggio, F., Pinna, L. A., Boldyreff, B., Issinger, O. G., Palumbo, G., Ciriaco, C., and Bonaccorsi, S. (1995). The Ste locus, a component of the parasitic cry-Ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the beta subunit of casein kinase 2. Proc Natl Acad Sci U S A 92, 6067-6071. - Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G. J. (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell *128*, 1089-1103. - Brody, S. L., Yan, X. H., Wuerffel, M. K., Song, S. K., and Shapiro, S. D. (2000). Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Respir Cell Mol Biol 23, 45-51. - Castañeda, J., Genzor, P., van der Heijden, G. W., Sarkeshik, A., Yates, J. R., Ingolia, N. T., and Bortvin, A. (2014). Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice. EMBO J 33, 1999-2019. - Chan, A. L., La, H. M., Legrand, J. M. D., Mäkelä, J. A., Eichenlaub, M., De Seram, M., Ramialison, M., and Hobbs, R. M. (2017). Germline Stem Cell Activity Is Sustained by SALL4-Dependent Silencing of Distinct Tumor Suppressor Genes. Stem Cell Reports 9, 956-971. - Chen, J., Knowles, H. J., Hebert, J. L., and Hackett, B. P. (1998). Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J Clin Invest *102*, 1077-1082. - Chiriva-Internati, M., Gagliano, N., Donetti, E., Costa, F., Grizzi, F., Franceschini, B., Albani, E., Levi-Setti, P. E., Gioia, M., Jenkins, M., Cobos, E., and Kast, W. M. - (2009). Sperm protein 17 is expressed in the sperm fibrous sheath. J Transl Med 7, 61. - Chirn, G. W., Rahman, R., Sytnikova, Y. A., Matts, J. A., Zeng, M., Gerlach, D., Yu, M., Berger, B., Naramura, M., Kile, B. T., and Lau, N. C. (2015). Conserved piRNA Expression from a Distinct Set of piRNA Cluster Loci in Eutherian Mammals. PLoS Genet *11*, e1005652. - Cole, F., Baudat, F., Grey, C., Keeney, S., de Massy, B., and Jasin, M. (2014). Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics. Nat Genet *46*, 1072-1080. - Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science *339*, 819-823. - Das, P. P., Bagijn, M. P., Goldstein, L. D., Woolford, J. R., Lehrbach, N. J., Sapetschnig, A., Buhecha, H. R., Gilchrist, M. J., Howe, K. L., Stark, R., Matthews, N., Berezikov, E., Ketting, R. F., Tavaré, S., and Miska, E. A. (2008). Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell *31*, 79-90. - de Boer, P., de Vries, M., and Ramos, L. (2015). A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology *3*, 174-202. - de Lamirande, E., Leclerc, P., and Gagnon, C. (1997). Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod 3, 175-194. - Deng, W., and Lin, H. (2002). miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 819-830. - Donnelly, E. T., Lewis, S. E., McNally, J. A., and Thompson, W. (1998). In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome. Fertil Steril *70*, 305-314. - Dresios, J., Aschrafi, A., Owens, G. C., Vanderklish, P. W., Edelman, G. M., and Mauro, V. P. (2005). Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc Natl Acad Sci U S A *102*, 1865-1870. - Ferrer, M., Rodriguez, H., Zara, L., Yu, Y., Xu, W., and Oko, R. (2012). MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res *349*, 881-895. - Florman, H. M., and Storey, B. T. (1982). Mouse gamete interactions:
the zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Dev Biol *91*, 121-130. - Fu, Y., Wu, P. H., Beane, T., Zamore, P. D., and Weng, Z. (2018). Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics 19, 531. - Gainetdinov, I., Colpan, S., Cecchini, K., and Zamore, P. D. (2018). A Single Mechanism of Biogenesis, Initiated and Directed by PIWI Proteins, Explains piRNA Production in Most Animals. Mol Cell, *in press*. - Gassei, K., and Orwig, K. E. (2013). SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes. PLoS One *8*, e53976. - Girard, A., Sachidanandam, R., Hannon, G. J., and Carmell, M. A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature *442*, 199-202. - Goertz, M. J., Wu, Z., Gallardo, T. D., Hamra, F. K., and Castrillon, D. H. (2011). Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest *121*, 3456-3466. - Goh, W. S., Falciatori, I., Tam, O. H., Burgess, R., Meikar, O., Kotaja, N., Hammell, M., and Hannon, G. J. (2015). piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev 29, 1032-1044. - González-Jara, P., Fontela, T., López-Mimbela, E., Cereceda, M., Del Olmo, D., and Moreno, M. (2017). Optimization of the balance between effort and yield in unilateral surgical transfer of mouse embryos. Lab Anim *51*, 622-628. - Gou, L. T., Dai, P., Yang, J. H., Xue, Y., Hu, Y. P., Zhou, Y., Kang, J. Y., Wang, X., Li, H., Hua, M. M., Zhao, S., Hu, S. D., Wu, L. G., Shi, H. J., Li, Y., Fu, X. D., Qu, L. H., Wang, E. D., and Liu, M. F. (2014). Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res *24*, 680-700. - Grivna, S. T., Beyret, E., Wang, Z., and Lin, H. (2006). A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20, 1709-1714. - Guichard, C., Harricane, M. C., Lafitte, J. J., Godard, P., Zaegel, M., Tack, V., Lalau, G., and Bouvagnet, P. (2001). Axonemal dynein intermediate-chain gene (DNAI1) - mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 68, 1030-1035. - Hagan, J. P., Piskounova, E., and Gregory, R. I. (2009). Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol *16*, 1021-1025. - Han, B. W., Wang, W., Zamore, P. D., and Weng, Z. (2015). piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome-and CAGE-seq, ChIP-seq and genomic DNA sequencing. Bioinformatics *31*, 593-595. - Haueter, S., Kawasumi, M., Asner, I., Brykczynska, U., Cinelli, P., Moisyadi, S., Bürki, K., Peters, A. H., and Pelczar, P. (2010). Genetic vasectomy-overexpression of Prm1-EGFP fusion protein in elongating spermatids causes dominant male sterility in mice. Genesis 48, 151-160. - Heo, I., Joo, C., Kim, Y. K., Ha, M., Yoon, M. J., Cho, J., Yeom, K. H., Han, J., and Kim, V. N. (2009). TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell *138*, 696-708. - Holloway, J. K., Sun, X., Yokoo, R., Villeneuve, A. M., and Cohen, P. E. (2014). Mammalian CNTD1 is critical for meiotic crossover maturation and deselection of excess precrossover sites. J Cell Biol *205*, 633-641. - Homolka, D., Pandey, R. R., Goriaux, C., Brasset, E., Vaury, C., Sachidanandam, R., Fauvarque, M. O., and Pillai, R. S. (2015). PIWI Slicing and RNA Elements in Precursors Instruct Directional Primary piRNA Biogenesis. Cell Rep *12*, 418-428. - Horani, A., Brody, S. L., Ferkol, T. W., Shoseyov, D., Wasserman, M. G., Ta-shma, A., Wilson, K. S., Bayly, P. V., Amirav, I., Cohen-Cymberknoh, M., Dutcher, S. K., Elpeleg, O., and Kerem, E. (2013). CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One 8, e72299. - Horvath, G. C., Kistler, M. K., and Kistler, W. S. (2009). RFX2 is a candidate downstream amplifier of A-MYB regulation in mouse spermatogenesis. BMC Dev Biol 9, 63. - Hough, S. R., Thornton, M., Mason, E., Mar, J. C., Wells, C. A., and Pera, M. F. (2014). Single-cell gene expression profiles define self-renewing, pluripotent, and lineage primed states of human pluripotent stem cells. Stem Cell Reports 2, 881-895. - Houwing, S., Kamminga, L. M., Berezikov, E., Cronembold, D., Girard, A., van den Elst, H., Filippov, D. V., Blaser, H., Raz, E., Moens, C. B., Plasterk, R. H., Hannon, G. J., Draper, B. W., and Ketting, R. F. (2007). A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell *129*, 69-82. - Howard, J. M., Nuguid, J. M., Ngole, D., and Nguyen, H. (2014). Tcf3 expression marks both stem and progenitor cells in multiple epithelia. Development *141*, 3143-3152. - Iguchi, N., Tanaka, H., Fujii, T., Tamura, K., Kaneko, Y., Nojima, H., and Nishimune, Y. (1999). Molecular cloning of haploid germ cell-specific tektin cDNA and analysis of the protein in mouse testis. FEBS Lett *456*, 315-321. - James, V., Zhang, Y., Foxler, D. E., de Moor, C. H., Kong, Y. W., Webb, T. M., Self, T. J., Feng, Y., Lagos, D., Chu, C. Y., Rana, T. M., Morley, S. J., Longmore, G. D., Bushell, M., and Sharp, T. V. (2010). LIM-domain proteins, LIMD1, Ajuba, and - WTIP are required for microRNA-mediated gene silencing. Proc Natl Acad Sci U S A 107, 12499-12504. - Jin, M., Fujiwara, E., Kakiuchi, Y., Okabe, M., Satouh, Y., Baba, S. A., Chiba, K., and Hirohashi, N. (2011). Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci U S A *108*, 4892-4896. - Johnson, A., Smith, R. G., Bassham, B., Lipshultz, L. I., and Lamb, D. J. (1991). The microsperm penetration assay: development of a sperm penetration assay suitable for oligospermic males. Fertil Steril *56*, 528-534. - Johnson, L. W., Moffat, R. J., Bartol, F. F., and Pinkert, C. A. (1996). Optimization of embryo transfer protocol for mice. Theriogenology *46*, 1267-1276. - Kistler, W. S., Baas, D., Lemeille, S., Paschaki, M., Seguin-Estevez, Q., Barras, E., Ma,W., Duteyrat, J. L., Morlé, L., Durand, B., and Reith, W. (2015). RFX2 Is a MajorTranscriptional Regulator of Spermiogenesis. PLoS Genet *11*, e1005368. - Kong, M., Richardson, R. T., Widgren, E. E., and O'Rand, M. G. (1995). Sequence and localization of the mouse sperm autoantigenic protein, Sp17. Biol Reprod 53, 579-590. - Kuretake, S., Kimura, Y., Hoshi, K., and Yanagimachi, R. (1996). Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod *55*, 789-795. - Lacorazza, H. D., Yamada, T., Liu, Y., Miyata, Y., Sivina, M., Nunes, J., and Nimer, S. D. (2006). The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell *9*, 175-187. - Lau, N. C., Seto, A. G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D. P., and Kingston, R. E. (2006). Characterization of the piRNA complex from rat testes. Science *313*, 363-367. - Lewis, S. E., and Aitken, R. J. (2005). DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res 322, 33-41. - Lewis, S. H., Quarles, K. A., Yang, Y., Tanguy, M., Frézal, L., Smith, S. A., Sharma, P. P., Cordaux, R., Gilbert, C., Giraud, I., Collins, D. H., Zamore, P. D., Miska, E. A., Sarkies, P., and Jiggins, F. M. (2018). Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat Ecol Evol *2*, 174-181. - Li, X. Z., Roy, C. K., Dong, X., Bolcun-Filas, E., Wang, J., Han, B. W., Xu, J., Moore, M. J., Schimenti, J. C., Weng, Z., and Zamore, P. D. (2013). An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell *50*, 67-81. - Lin, Y. N., Roy, A., Yan, W., Burns, K. H., and Matzuk, M. M. (2007). Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol *27*, 6794-6805. - Liu, D., Matzuk, M. M., Sung, W. K., Guo, Q., Wang, P., and Wolgemuth, D. J. (1998). Cyclin A1 is required for meiosis in the male mouse. Nat Genet *20*, 377-380. - Livak, K. J. (1984). Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics *107*, 611-634. - Livak, K. J. (1990). Detailed structure of the Drosophila melanogaster stellate genes and their transcripts. Genetics *124*, 303-316. - Maor-Sagie, E., Cinnamon, Y., Yaacov, B., Shaag, A., Goldsmidt, H., Zenvirt, S., Laufer, N., Richler, C., and Frumkin, A. (2015). Deleterious mutation in SYCE1 is associated with non-obstructive azoospermia. J Assist Reprod Genet *32*, 887-891. - McIntyre, B. A., Ramos-Mejia, V., Rampalli, S., Mechael, R., Lee, J. H., Alev, C., Sheng, G., and Bhatia, M. (2013). Gli3-mediated hedgehog inhibition in human pluripotent stem cells initiates and augments developmental programming of adult hematopoiesis. Blood *121*, 1543-1552. - McLaren, A. M., D (1955). Studies on the transfer of fertilized mouse eggs to uterine foster-mothers. 394-416. - Mével-Ninio, M., Pelisson, A., Kinder, J., Campos, A. R., and Bucheton, A. (2007). The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis. Genetics *175*, 1615-1624. - Mieusset, R., Fauquet, I., Chauveau, D., Monteil, L., Chassaing, N., Daudin, M., Huart, A., Isus, F., Prouheze, C., Calvas, P., Bieth, E., Bujan, L., and Faguer, S. (2017). The spectrum of renal involvement in male patients with infertility related to excretory-system abnormalities: phenotypes, genotypes, and genetic counseling. J Nephrol *30*, 211-218. - Miyata, H., Satouh, Y., Mashiko, D., Muto, M., Nozawa, K., Shiba, K., Fujihara, Y., Isotani, A., Inaba, K., and Ikawa, M. (2015). Sperm calcineurin inhibition
prevents mouse fertility with implications for male contraceptive. Science *350*, 442-445. - Morris, I. D., Ilott, S., Dixon, L., and Brison, D. R. (2002). The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum Reprod *17*, 990-998. - Mortimer D., C. E. F. M. G. (1987). Specific labelling by peanut agglutinin of the outer acrosomal membrane of the human spermatozoon. J Reprod Fertil *81*, 127-135. - Mortimer, S. T. (2000). CASA—Practical Aspects. J Androl 21, 515-524. - Nagy, A., Gertsenstein, M. V., K, and Behringer, R. (2003). Manipulating the Mouse Embryo, a Laboratory Manual. Cold Spring Harbor Laboratory Press (Cold Spring Harbor, NY). - Osman, R. A., Andria, M. L., Jones, A. D., and Meizel, S. (1989). Steroid induced exocytosis: the human sperm acrosome reaction. Biochem Biophys Res Commun *160*, 828-833. - Palumbo, G., Bonaccorsi, S., Robbins, L. G., and Pimpinelli, S. (1994). Genetic analysis of Stellate elements of Drosophila melanogaster. Genetics *138*, 1181-1197. - Pasek, R. C., Malarkey, E., Berbari, N. F., Sharma, N., Kesterson, R. A., Tres, L. L., Kierszenbaum, A. L., and Yoder, B. K. (2016). Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse. Dev Biol *412*, 208-218. - Peaston, A. E., Evsikov, A. V., Graber, J. H., de Vries, W. N., Holbrook, A. E., Solter, D., and Knowles, B. B. (2004). Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell *7*, 597-606. - Pélisson, A., Song, S. U., Prud'homme, N., Smith, P. A., Bucheton, A., and Corces, V. G. (1994). Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the *Drosophila flamenco* gene. EMBO J *13*, 4401-4411. - Pilotte, J., Dupont-Versteegden, E. E., and Vanderklish, P. W. (2011). Widespread regulation of miRNA biogenesis at the Dicer step by the cold-inducible RNA-binding protein, RBM3. PLoS One *6*, e28446. - Piskounova, E., Polytarchou, C., Thornton, J. E., LaPierre, R. J., Pothoulakis, C., Hagan, J. P., Iliopoulos, D., and Gregory, R. I. (2011). Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell *147*, 1066-1079. - Piskounova, E., Viswanathan, S. R., Janas, M., LaPierre, R. J., Daley, G. Q., Sliz, P., and Gregory, R. I. (2008). Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem *283*, 21310-21314. - Prud'homme, N., Gans, M., Masson, M., Terzian, C., and Bucheton, A. (1995). Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139, 697-711. - Qi, H., Moran, M. M., Navarro, B., Chong, J. A., Krapivinsky, G., Krapivinsky, L., Kirichok, Y., Ramsey, I. S., Quill, T. A., and Clapham, D. E. (2007). All four - CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci U S A *104*, 1219-1223. - Quinlan, A. R., and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics *26*, 841-842. - Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature *403*, 901-906. - Ren, D., Navarro, B., Perez, G., Jackson, A. C., Hsu, S., Shi, Q., Tilly, J. L., and Clapham, D. E. (2001). A sperm ion channel required for sperm motility and male fertility. Nature *413*, 603-609. - Reuter, M., Berninger, P., Chuma, S., Shah, H., Hosokawa, M., Funaya, C., Antony, C., Sachidanandam, R., and Pillai, R. S. (2011). Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature *480*, 264-267. - Richardson, R. T., Yamasaki, N., and O'Rand, M. G. (1994). Sequence of a rabbit sperm zona pellucida binding protein and localization during the acrosome reaction. Dev Biol *165*, 688-701. - Ro, S., Park, C., Song, R., Nguyen, D., Jin, J., Sanders, K. M., McCarrey, J. R., and Yan, W. (2007). Cloning and expression profiling of testis-expressed piRNA-like RNAs. RNA *13*, 1693-1702. - Robert, V., Prud'homme, N., Kim, A., Bucheton, A., and Pélisson, A. (2001). Characterization of the flamenco region of the Drosophila melanogaster genome. Genetics 158, 701-713. - Robine, N., Lau, N. C., Balla, S., Jin, Z., Okamura, K., Kuramochi-Miyagawa, S., Blower, M. D., and Lai, E. C. (2009). A broadly conserved pathway generates 3'UTR-directed primary piRNAs. Curr Biol *19*, 2066-2076. - Roy, A., Lin, Y. N., Agno, J. E., DeMayo, F. J., and Matzuk, M. M. (2007). Absence of tektin 4 causes asthenozoospermia and subfertility in male mice. FASEB J *21*, 1013-1025. - Roy, A., Lin, Y. N., Agno, J. E., DeMayo, F. J., and Matzuk, M. M. (2009). Tektin 3 is required for progressive sperm motility in mice. Mol Reprod Dev 76, 453-459. - Saito, K., Inagaki, S., Mituyama, T., Kawamura, Y., Ono, Y., Sakota, E., Kotani, H., Asai, K., Siomi, H., and Siomi, M. C. (2009). A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature *461*, 1296-1299. - Sakashita, A., Yeh, Y. V., Namekawa, S. H., and Lin, S. P. (2018). Epigenomic and single-cell profiling of human spermatogonial stem cells. Stem Cell Investig *5*, 11. - Sakkas, D., Urner, F., Bizzaro, D., Manicardi, G., Bianchi, P. G., Shoukir, Y., and Campana, A. (1998). Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod *13 Suppl 4*, 11-19. - Saleh, M., Rambaldi, I., Yang, X. J., and Featherstone, M. S. (2000). Cell signaling switches HOX-PBX complexes from repressors to activators of transcription mediated by histone deacetylases and histone acetyltransferases. Mol Cell Biol 20, 8623-8633. - Salzberg, Y., Eldar, T., Karminsky, O. D., Itach, S. B., Pietrokovski, S., and Don, J. (2010). Meig1 deficiency causes a severe defect in mouse spermatogenesis. Dev Biol 338, 158-167. - San Agustin, J. T., Pazour, G. J., and Witman, G. B. (2015). Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol Biol Cell 26, 4358-4372. - Selleri, L., DiMartino, J., van Deursen, J., Brendolan, A., Sanyal, M., Boon, E., Capellini, T., Smith, K. S., Rhee, J., Pöpperl, H., Grosveld, G., and Cleary, M. L. (2004). The TALE homeodomain protein Pbx2 is not essential for development and long-term survival. Mol Cell Biol 24, 5324-5331. - Shamsadin, R., Adham, I. M., Nayernia, K., Heinlein, U. A., Oberwinkler, H., and Engel, W. (1999). Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod *61*, 1445-1451. - Shawlot, W., Vazquez-Chantada, M., Wallingford, J. B., and Finnell, R. H. (2015). Rfx2 is required for spermatogenesis in the mouse. Genesis *53*, 604-611. - Stauber, M., Weidemann, M., Dittrich-Breiholz, O., Lobschat, K., Alten, L., Mai, M., Beckers, A., Kracht, M., and Gossler, A. (2017). Identification of FOXJ1 effectors during ciliogenesis in the foetal respiratory epithelium and embryonic left-right organiser of the mouse. Dev Biol *423*, 170-188. - Suzuki, H., Ahn, H. W., Chu, T., Bowden, W., Gassei, K., Orwig, K., and Rajkovic, A. (2012). SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol *361*, 301-312. - Talbot, P., Summers, R. G., Hylander, B. L., Keough, E. M., and Franklin, L. E. (1976). The role of calcium in the acrosome reaction: an analysis using ionophore A23187. J Exp Zool 198, 383-392. - Tanaka, H., Iguchi, N., Toyama, Y., Kitamura, K., Takahashi, T., Kaseda, K., Maekawa, M., and Nishimune, Y. (2004). Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol *24*, 7958-7964. - Tateno, H., Krapf, D., Hino, T., Sánchez-Cárdenas, C., Darszon, A., Yanagimachi, R., and Visconti, P. E. (2013). Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. Proc Natl Acad Sci U S A *110*, 18543-18548. - Thépot, D., Weitzman, J. B., Barra, J., Segretain, D., Stinnakre, M. G., Babinet, C., and Yaniv, M. (2000). Targeted disruption of the murine junD gene results in multiple defects in male reproductive function. Development *127*, 143-153. - Truett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A., and Warman, M. L. (2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52, 54. - Vogel, P., Hansen, G., Fontenot, G., and Read, R. (2010). Tubulin tyrosine ligase-like 1 deficiency results in chronic rhinosinusitis and abnormal development of spermatid flagella in mice. Vet Pathol *47*, 703-712. - Vourekas, A., Zheng, Q., Alexiou, P., Maragkakis, M., Kirino, Y., Gregory, B. D., and Mourelatos, Z. (2012). Mili and Miwi target RNA repertoire reveals piRNA - biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol 19, 773-781. - Wang, H., Ge, G., Uchida, Y., Luu, B., and Ahn, S. (2011). Gli3 is required for maintenance and fate specification of cortical progenitors. J Neurosci *31*, 6440-6448. - Wasik, K. A., Tam, O. H., Knott, S. R., Falciatori, I., Hammell, M., Vagin, V. V., and Hannon, G. J. (2015). RNF17 blocks promiscuous activity of PIWI proteins in mouse testes. Genes Dev 29, 1403-1415. - Wirschell, M., Olbrich, H., Werner, C., Tritschler, D., Bower, R., Sale, W. S., Loges, N. T., Pennekamp, P., Lindberg, S., Stenram, U., Carlén, B., Horak, E., Köhler, G., Nürnberg, P., Nürnberg, G., Porter, M. E., and Omran, H. (2013). The nexindynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet 45, 262-268. - Wong, E. C., Ferguson, K. A., Chow, V., and Ma, S. (2008). Sperm aneuploidy and
meiotic sex chromosome configurations in an infertile XYY male. Hum Reprod 23, 374-378. - Xu, M., You, Y., Hunsicker, P., Hori, T., Small, C., Griswold, M. D., and Hecht, N. B. (2008). Mice deficient for a small cluster of Piwi-interacting RNAs implicate Piwi-interacting RNAs in transposon control. Biol Reprod 79, 51-57. - Yamagata, K., Murayama, K., Okabe, M., Toshimori, K., Nakanishi, T., Kashiwabara, S., and Baba, T. (1998). Acrosin accelerates the dispersal of sperm acrosomal proteins during acrosome reaction. J Biol Chem *273*, 10470-10474. - Yamaguchi, R., Muro, Y., Isotani, A., Tokuhiro, K., Takumi, K., Adham, I., Ikawa, M., and Okabe, M. (2009). Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol Reprod *81*, 142-146. - Yamaguchi, Y. L., Tanaka, S. S., Kumagai, M., Fujimoto, Y., Terabayashi, T., Matsui, Y., and Nishinakamura, R. (2015). Sall4 is essential for mouse primordial germ cell specification by suppressing somatic cell program genes. Stem Cells *33*, 289-300. - Yanagimachi, R., Yanagimachi, H., and Rogers, B. J. (1976). The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol Reprod *15*, 471-476. - Yu, X., Ng, C. P., Habacher, H., and Roy, S. (2008). Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet *40*, 1445-1453. - Zhang, P., Kang, J. Y., Gou, L. T., Wang, J., Xue, Y., Skogerboe, G., Dai, P., Huang, D. W., Chen, R., Fu, X. D., Liu, M. F., and He, S. (2015). MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res *25*, 193-207. - Zhang, T., Oatley, J., Bardwell, V. J., and Zarkower, D. (2016). DMRT1 Is Required for Mouse Spermatogonial Stem Cell Maintenance and Replenishment. PLoS Genet 12, e1006293. - Zhang, Z., Shen, X., Gude, D. R., Wilkinson, B. M., Justice, M. J., Flickinger, C. J., Herr, J. C., Eddy, E. M., and Strauss, J. F. (2009). MEIG1 is essential for spermiogenesis in mice. Proc Natl Acad Sci U S A *106*, 17055-17060. - Zheng, K., and Wang, P. J. (2012). Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet 8, e1003038. - Zheng, K., Wu, X., Kaestner, K. H., and Wang, P. J. (2009). The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev Biol 9, 38. - Zhou, Q., Liu, M., Xia, X., Gong, T., Feng, J., Liu, W., Liu, Y., Zhen, B., Wang, Y., Ding, C., and Qin, J. (2017). A mouse tissue transcription factor atlas. Nat Commun 8, 15089. #### FIGURE LEGENDS Figure 1. pi6em1/em1, pi6em2/em2, and pi17-/- promoter deletion in mice Scissors indicate sites targeted by sgRNAs used to guide the Cas9-catalyzed promoter deletions. RNA-seq was used to measure the steady-state abundance of piRNA primary transcripts, and sequencing of NaIO₄ oxidation-resistant small RNA was used to measure the abundance of mature piRNAs in 17.5 dpp testes. See also Figure S1 and Table S1. #### Figure 2. Reduced fertility in pi6em1/em1 males by natural mating (A) Number of litters and pups per litter produced by male mice between 2–8 months of age. (B) Frequency and periodicity of litter production. Each bar represents a litter. (C) Number of embryos produced by males mated with C57BL/6 females. (D) Testis morphology analyzed by hematoxylin and eosin staining. (E) Concentration of sperm from the caudal epididymis. See also Figure S2. #### Figure 3. Fertilization defects of pi6em1/em1 sperm revealed by IVF and ICSI (A) Sperm function analyzed by in vitro fertilization (IVF). (B) Sperm function analyzed by intracytoplasmic sperm injection (ICSI). Thick lines denote the median, and whiskers report the 75th and 25th percentiles. See also Figure S3 #### Figure 4. Impaired motility and zona pellucida-binding in *pi6*^{em1/em1} sperm (A) Strategy for zona-free IVF. (B) Comparison of sperm function in standard and zona-free IVF. (C) Acrosome reaction triggered with the Ca²⁺ ionophore A23187 in vitro. The results using *pi6*^{em1/em1} and *pi6*^{em2/em2} sperm are combined and indicated. (D) Representative caudal epididymal spermatozoa with distinct acrosome reaction status. Green, peanut agglutinin to detect the acrosome; blue, DAPI to detect DNA. See also Movies S1–S10. #### Figure 5. Embryos derived from *pi6*^{em1/em1} sperm fail to develop (A) Strategy for surgical transfer of fertilized two-cell embryos to surrogate mothers. (B) Rates of IVF-derived two-cell embryos that developed to term. Each uterine cartoon represents one surrogate mother, and the colored circles represent embryos. The number of embryos transferred to each side of the oviduct is also indicated. (C) Development of IVF-derived embryos. Red, the number of embryos that developed to the stage expected for the time after fertilization. (D) Rates of ICSI-derived two-cell embryos that developed to term. See also Figure S4 ## Figure 6. The abundance of mRNAs encoding proteins required for sperm motility and zona pellucida-binding is decreased in $pi6^{em1/em1}$ germ cells (A) Strategy for purifying specific male germ cell types. (B) Volcano plots of steady-state transcript abundance in sorted testicular germ cells. Control cells were sorted from C57BL/6 testis. Each dot represents the mean abundance of an mRNA measured using three biologically independent samples. Differentially expressed transcripts (≥ 2 fold-change and ≤ 0.05 FDR) are indicated. (C) Major GO categories containing enriched GO terms associated with genes with decreased expression in $pi6^{em1/em1}$ pachytene spermatocytes (FDR \leq 0.01 and fold enrichment \geq 2). Genes annotated for a single category that are discussed in the main text are listed in respective categories. **(D)** RFX2 and A-MYB target genes with significantly decreased mRNA abundance in $pi6^{em1/em1}$ pachytene spermatocytes and established functions in sperm motility and zona pellucida-binding. ChIP-seq peaks around respective transcription start sites (TSS) are shown. . RFX-2 or A-MYB occupancy is reported as fold enrichment of ChIP-seq reads relative to input. See also Table S7 for the complete list of genes regulated by *pi6*, RFX2, and A-MYB. **Table 1.** Sperm motility measured by computer-assisted sperm analysis (CASA) | | C57 | BL/6 | pi6 ^{+/em2} | | pi6 ^{em2/em2} | | | | |-----------------------------------|----------|----------|----------------------|-----------|------------------------|-----------|-----------|-----------| | | Exp. 1 | Ехр. 2 | Exp. 1 | Mean ± SD | Exp.1 | Exp. 2 | Ехр. 3 | Mean ± SD | | Cells counted | 271 | 135 | 257 | n/a | 273 | 167 | 257 | n/a | | Motile cells | 256 | 106 | 227 | n/a | 247 | 111 | 208 | n/a | | Progressive cells | 217 | 87 | 187 | n/a | 146 | 81 | 166 | n/a | | Percent motile | 94 | 79 | 83 | 87 ± 8 | 90 | 66 | 81 | 80 ± 10 | | Percent progressive | 80 | 64 | 73 | 70 ± 8 | 53 | 49 | 65 | 56 ± 8 | | Path
Velocity
(μm/s) | 110 ± 50 | 110 ± 60 | 110 ± 50 | 110 ± 50 | 70 ± 80 | 80 ± 40 | 90 ± 60 | 80 ± 60 | | Progressive
Velocity
(µm/s) | 60 ± 50 | 50 ± 60 | 70 ± 40 | 70 ± 50 | 50 ± 70 | 40 ± 30 | 50 ± 60 | 50 ± 60 | | Track speed (μm/s) | 210 ± 90 | 220 ± 80 | 200 ± 100 | 210 ± 90 | 200 ± 100 | 210 ± 100 | 210 ± 100 | 200 ± 100 | | Lateral
Amplitude
(µm) | 13 ± 8 | 13 ± 7 | 13 ± 8 | 13 ± 8 | 12 ± 8 | 13 ± 7 | 13 ± 7 | 13 ± 7 | | Beat
Frequency
(%) | 30 ± 10 | 30 ± 20 | 30 ± 20 | 30 ± 20 | 30 ± 20 | 40 ± 20 | 30 ± 20 | 40 ± 10 | | Straightness (%) | 60 ± 30 | 50 ± 30 | 60 ± 30 | 60 ± 30 | 60 ± 20 | 50 ± 20 | 50 ± 30 | 50 ± 20 | | Linearity (%) | 30 ± 20 | 30 ± 20 | 40 ± 20 | 30 ± 20 | 30 ± 20 | 20 ± 10 | 20 ± 20 | 20 ± 20 | |------------------------------|---------|---------|---------|------------|---------|---------|---------|---------| | Elongation | 40 ± 20 | 40 ± 10 | 40 ± 10 | 40 ± 10 | 40 ± 20 | 40 ± 20 | 40 ± 10 | 40 ± 20 | | Area (μm²) | 90 ± 80 | 80 ± 50 | 80 ± 60 | 80 ± 70 | 60 ± 40 | 80 ± 60 | 80 ± 60 | 70 ± 50 | | Rapid cells
(> 50 µm/s) | 217 | 87 | 187 | n/a | 146 | 81 | 166 | n/a | | Medium cells
(25–50 μm/s) | 4 | 1 | 3 | n/a | 9 | 0 | 3 | n/a | | Slow cells
(< 25 µm/s) | 35 | 18 | 37 | n/a | 92 | 30 | 39 | n/a | | Static cells
(< 10 µm/s) | 15 | 29 | 30 | n/a | 26 | 56 | 49 | n/a | | Percent rapid cells | 80 | 64 | 73 | 74 ± 8 | 53 | 49 | 65 | 57 ± 8 | | Percent medium cells | 1 | 1 | 1 | 1 ± 0 | 3 | 0 | 1 | 2 ± 2 | | Percent slow cells | 13 | 13 | 14 | 13.4 ± 0.6 | 34 | 18 | 15 | 20 ± 10 | | Percent static cells | 6 | 21 | 12 | 13 ± 8 | 10 | 34 | 19 | 20 ± 10 | #### STAR METHODS #### **Mouse mutants** Mice were maintained and sacrificed according to guidelines approved by the Institutional Animal Care and Use Committee of the University of Massachusetts Medical School (A-2222-17). Small guide RNAs (sgRNAs) flanking piRNA promoters were designed using CRISPR design tools (crispr.mit.edu/). DNA oligos containing guide sequences were cloned into pX330 vectors (Cong et al., 2013), and their cleavage activity tested in NIH3T3 cells by co-transfecting pX330 constructs containing sgRNA sequences and puromycin-resistant plasmid (pPUR) using TransIT-X2 (Mirus Bio, Madison, WI). Puromycin (3 μ g/ μ I) was added 24 h after transfection and DNA extracted 48 h afterwards. Promoter deletions were detected by PCR using primers flanking the predicted Cas9 cleavage sites. For mice, sgRNAs were generated by in vitro transcription and purified by electrophoresis on 8% (w/v) polyacrylamide gels. To generate the *pi6*^{em1/em1} and *pi17*-/- lines used in this study, in vitro transcribed sgRNAs (10 ng/µl each) targeting *pi6* and *pi17* were mixed with Cas9 mRNA (40 ng/µl) and injected together into the cytoplasm of one-cell C57BL/6 zygotes (RNA only). For some founders, the sgRNA and Cas9 mRNA mixture was combined with pX330 plasmids expressing the same four sgRNAs and Cas9 and injected into both the cytoplasm and pronuclei of one-cell C57BL/6 zygotes (RNA + DNA). For
pi6^{em2/em2}, in vitro transcribed sgRNAs and Cas9 mRNA were injected into the cytoplasm of one-cell C57BL/6 embryos. Embryos were transferred to pseudopregnant females using standard methods. To screen for mutant founders, DNA was extracted from small pieces of tail clipped from three-week-old pups (Truett et al., 2000). Deletions were detected by PCR, and PCR products purified and cloned into TOPO blunt vectors. Mutant sequences were determined by Sanger sequencing. #### Mouse fertility test Each 2–8 month-old male mouse was housed with one 2–4 month-old C57BL/6 female, who was examined for the presence of a vaginal plug the following morning. When a plug was observed, the female was housed separately. For male mice who did not produce pups after 3 months (~3 cycles), the original female was replaced with a new female and the fertility test continued. #### Testis histology, sperm count, and sperm morphology Mouse testes were fixed in Bouin's solution overnight, washed with 70% ethanol, embedded in paraffin, and sectioned at 5 μm thickness. Sections were stained with hematoxylin solution, countered stained with eosin solution, and imaged using Leica DMi8 brightfield microscope equipped with an 20× 0.4 N.A. objective (HC PL FL L 20×/0.40 CORR PH1, Leica Microbiosystems, Buffalo Grove, IL). To quantify sperm abundance, the cauda epididymides were collected from mice and placed in phosphate-buffered saline (PBS) containing 4% (w/v) bovine serum albumin. A few incisions were made in the epididymides with scissors to release the sperm, followed by incubation at 37°C and 5% CO₂ for 20 min. A 20 μl aliquot of sperm suspension was diluted in 480 μl of 1% (w/v) paraformaldehyde (PFA), and sperm cells counted at 10× by brightfield microscopy. To assess sperm morphology, caudal epididymal sperm were fixed in 1% (w/v) PFA, stained with trypan blue, and a Leica DMi8 brightfield microscope equipped with an 63× 1.4 N.A. oil immersion objective (HC PL APO; Leica Microbiosystems, Buffalo Grove, IL). Sperm stained with Alexa 488-conjugated PNA (see below) were also used to assess sperm morphology. #### **Meiotic chromosome spreads** Meiotic chromosome spreads were prepared as described (Holloway et al., 2014). Mouse testes were incubated in hypotonic buffer (30 mM Tris-Cl, pH 8.2, 50 mM sucrose, 17 mM sodium citrate, 5 mM EDTA, 0.5 mM DTT) for 30 min on ice, then small fragments of seminiferous tubules were moved to 100 mM sucrose solution and pulled apart with forceps to release germ cells. A drop of sucrose solution containing germ cells was pipetted onto a glass slide with a thin layer of 1× PBS containing 1% PFA and 0.15% (v/v) Triton-X100 (pH 9.2) and spread by swirling. Slides were placed in a humidifying chamber for 2.5 h, air-dried, and washed twice with 1× PBS with 0.4% Photo-Flo 200 (Kodak, Rochester, NY) and once with water with 0.4% Photo-Flo 200, and air-dried. For immunostaining of meiotic chromosomes, slides were sequentially washed with (1) 1× PBS with 0.4% Photo-Flo 200, (2) 1× PBS containing 0.1% (v/v) Triton-X, and (3) blocked with PBS containing 3% (w/v) BSA, 0.05% (v/v) Triton X-100, and 10% (v/v) goat serum in 1× PBS at room temperature. The slides were then incubated with primary antibodies, anti-SCP1 (1:1000 dilution) and anti-SCP3 (1:1000 dilution), in a humidifying chamber overnight at room temperature. Washing and blocking steps were repeated the next day, and the slides were incubated with Alexa 488- or Alexa 594-conjugated secondary antibodies (1:10,000 dilution) for 1 h at room temperature. Slides were washed thrice with 1× PBS containing 0.4% (v/v) Photo-Flo 200, once with water containing 0.4% Photo-Flo 200 mixture, air-dried in the dark, mounted by incubation in ProLong Gold Antifade Mountant with DAPI (4',6'-diamidino-2phenylindole; Thermo Fisher Scientific, Waltham, MA) overnight in the dark, and imaged using a Leica DMi8 fluorescence microscope equipped with an 63× 1.4 N.A. oil immersion objective (HC PL APO; Leica Microbiosystems, Buffalo Grove, IL). #### **Cell sorting by FACS** Testicular cell sorting was performed as described (Cole et al., 2014). Testes were collected, decapsulated, and incubated in 0.4 mg/ml collagenase type IV (Worthington LS004188) in 1× Grey's Balanced Salt Solution (GBSS, Sigma, G9779) at 33°C rotating at 150 rpm for 15 min. Separated seminiferous tubules were washed with 1× GBSS and incubated in 0.5 mg/ml Trypsin and 1 μ g/ml DNase I in 1× GBSS at 33°C rotated at 150 rpm for 15 min. Tubules were dissociated on ice by gentle pipetting, and then 7.5% (v/v) fetal bovine serum (f.c.) was added to inactivate trypsin. The cell suspension was filtered through a pre-wetted 70 μ m cell strainer, and cells pelleted at 300 × g for 10 min at 4°C. Cells were resuspended in 1× GBSS containing 5% (v/v) FBS, 1 μ g/ml DNase I, and 5 μ g/ml Hoechst 33342 (Thermo Fisher Scientific, Waltham, MA) and rotated at 150 rpm at 33°C for 45 min. Propidium iodide (0.2 μ g/ml, f.c.; Thermo Fisher Scientific, Waltham, MA) was added, and cells strained through a pre-wetted 40 μ m cell strainer. Cell sorting was performed on a FACSAria II (BD Biosciences, Franklin Lakes, NJ). The purity of sorted fractions was assessed by immunostaining. Secondary spermatocyte and spermatid populations were >90% pure, and the pachytene spermatocytes and diplotene spermatocytes were >80% pure. #### In vitro fertilization (IVF) and embryo transfer In vitro fertilization was performed as previously described (Nagy et al., 2003) using spermatozoa from caudal epididymis of either C57BL/6, *pi6*+/em1, or *pi6*em1/em1 mice. Spermatozoa were incubated in human tubal fluid (HTF; 101.6 mM NaCl, 4.69 mM KCl, 0.37mM KH₂PO₄, 0.2 mM MgSO₄·7H₂O, 21.4 mM Na-lactate, 0.33 mM Na-pyruvate, 2.78 mM glucose, 25 mM NaHCO₃, 2.04 mM CaCl₂·2H₂O, 0.075 mg/ml Penicillin-G, 0.05 mg/ml streptomycin sulfate, 0.02% (v/v) phenol red, 4 mg/ml BSA) with oocytes (98–146 for control sperm and 120–293 for *pi6*em1/em1 sperm) from B6SJLF1/J mice for 3–4 h at 37°C with constant 5% O₂, 90% N₂, and 5% CO₂ concentration. Oocyte viability and the presence of pronuclei were assessed under a Nikon SMZ-2B (Nikon, Tokyo, Japan) dissecting microscope. To observe embryo development, embryos were moved into potassium-supplemented simplex optimized media (KSOM; 95 mM NaCl, 2.5 mM KCl, 0.35 mM KH₂PO₄, 0.2 mM MgSO₄·7H₂O, 10 mM Na-lactate, 0.2 mM Na-pyruvate, 0.2 mM glucose, 25 mM NaHCO₃, 1.71 mM CaCl₂·2H₂O, 1 mM L-glutamine, 0.01 mM EDTA, 0.075 mg/ml Penicillin-G, 0.05 mg/ml streptomycin sulfate, 0.02% (v/v) phenol red, 1 mg/ml BSA; Millipore Sigma, Burlington, MA) after IVF and assessed every 24 h. To measure birth rates, two-cell embryos were transferred to Swiss Webster pseudopregnant females, and fetuses isolated by cesarean section 18.5 d after embryo transfer. For zona-free IVF, the zona pellucida of oocytes was removed with acid Tyrode's solution as described (Yanagimachi et al., 1976; Johnson et al., 1991). #### Intracytoplasmic sperm injection (ICSI) Frozen caudal epididymal spermatozoa were thawed, the sperm tails detached (Nagy et al., 2003), and individual *pi6*+/em1 or *pi6*em1/em1 sperm heads injected into B6D2F1/J oocytes in Chatot-Ziomek-Bavister media (CZB; 81.62 mM NaCl, 4.83 mM KCl, 1.18 mM KH₂PO₄, 1.18 mM MgSO₄·7H₂O, 25 mM Na₂HCO₃, 1.70 mM CaCl₂·2H₂O, 0.11 mM Na₂-ETDA·2H₂O, 1 mM L-glutamine, 28 mM Na-lactate, 0.27 mM Na-pyruvate, 5.55 mM glucose, Penicillin-G 0.05 mg/ml, 0.07 mg/ml streptomycin sulfate, 4 mg/ml BSA) (Millipore Sigma, Burlington, MA) using the PiezoXpert (Eppendorf, Hamburg, Germany; Cat#5194000024). Surviving oocytes were counted, collected, and cultured in KSOM (Millipore Sigma, Burlington, MA) at 37°C and 5% CO₂ for 24 h. Two-cell embryos were surgically transferred unilaterally into the oviducts of pseudopregnant Swiss Webster females. At 16.5 days after the surgery, live fetus isolated by cesarean section. #### Sperm motility Cauda epidydimal sperm were collected from mice and placed in 37°C HTF media in an incubator with 5% CO₂. A drop of sperm was removed from the suspension and pipetted into a sperm counting glass chamber, then assayed by CASA or video acquisition. CASA was conducted using an IVOS II instrument (Hamilton Thorne, Beverly, MA) with the following settings: 100 frames acquired at 60 Hz; minimal contrast = 50; 4 pixel minimal cell size; minimal static contrast = 5; 0%straightness (STR) threshold; 10 μm/s VAP Cutoff; prog. min VAP, 20 μm/s; 10 μm/s VSL Cutoff; 5 pixel cell size; cell intensity = 90; static head size = 0.30–2.69; static head intensity = 0.10–1.75; static elongation = 10–94; slow cells motile = yes; 0.68 magnification; LED illumination intensity = 3000; IDENT illumination intensity = 3603; 37°C. Agglutination of *pi6*^{em1/em1} sperm prevented CASA measurements at later times. A Nikon Diaphot 200 microscope (Nikon, Tokyo, Japan) with darkfield optics equipped with Nikon E Plan 10×/0.25 160/- Ph1 DL objective (Nikon, Tokyo, Japan), ZWO ASI 174mm Monochrome CMOS Imaging camera (ZWO, SuZhou, China), and the SharpCap software (https://docs.sharpcap.co.uk/2.9/) using darkfield at 10× magnification were used to record sperm movement at 37°C. #### In vitro acrosome reaction assay Acrosome reaction was assessed as described (Talbot et al., 1976). Cauda epididymides were collected from mice, placed in HTF media pre-warmed for at least 2 h in a 37°C incubator at 5% CO₂. A few incisions were made in the epididymides with scissors to release the sperm, followed by incubation at 37°C in 5% CO₂ for 90 min. Calcium ionophore A23187 (10 µm f.c. in DMSO) was added, and incubation continued for 30 min. Sperm were fixed at room temperature for 10 min by adding two volumes of 4% (w/v) PFA, pelleting at 1,000 × *g* for 5 min, washed with 1× PBS, resuspended in fresh 1× PBS, spotted on a glass slide, and air-dried. Methanol was pipetted onto the sperm to permeabilize the cells, followed by
washing with 1× PBS. Slides were incubated overnight in 10 µg/ml Alexa Fluor 488-conjugated peanut agglutinin (PNA) in 1× PBS (Mortimer D., 1987), washed with 1× PBS, air-dried, and mounted with ProLong Gold Antifade Mountant with DAPI (Thermo Fisher Scientific, Waltham, MA). Sperm were imaged using a Leica DMi8 fluorescence microscope equipped with a 63× 1.4 N.A. oil immersion objective (HC PL APO; Leica Microbiosystems, Buffalo Grove, IL) and analyzed using ImageJ (version 2.0.0-rc-68/1.52e; https://fiji.sc/). #### Chromatin Immunoprecipitation (ChIP) and sequencing Frozen testes were cross-linked with 2% (w/v) formaldehyde at room temperature for 30 min using an end-over-end tumbler. Fixed tissues were homogenized in buffer containing 1% (w/v) sodium lauryl sulfate (SDS), 10mM EDTA, and 50mM Tris-HCl (pH 8.1) by 40 strokes in a Dounce tissue grinder with Pestle B (Kimble-Chase, Rockwood, TN). Lysed samples were sonicated using the E220 Covaris ultrasonicator (Covaris, Woburn, MA) to shear the chromatin to 150–200 bp fragments and diluted 1:10 with a buffer containing 0.01% (w/v) SDS, 1.1% (v/v) Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl (pH 8.1), 167 mM NaCl. Immunoprecipitation was performed using 5.5 µg of rabbit anti-A-MYB antibody (Sigma, St. Louis, MO), DNA was extracted with phenol:chloroform:isoamyl alcohol (25:24:1) (pH 8), and ChIP-seq libraries were prepared as previously described (Li et al., 2013). Libraries were sequenced using paired-end reading on NextSeq500 (Illumina, San Diego, CA), and reads were mapped to mouse genome assembly mm10 using Bowtie2 (v2.2.5). ChIP-seq peaks were determined using MACS2 (v2.1.1) and unique mapping reads were reported in this study as fold enrichment over input. #### RNA-seq and small RNA-seq Small RNA-seq and RNA-seq libraries were constructed and sequenced using NextSeq 500 (Illumina, San Diego, CA) as described (Fu et al., 2018). To sequence mature piRNAs, small RNA was oxidized with 25 mM NaIO₄ in 30 mM sodium borate, 30 mM boric acid (pH 8.6; Sigma Aldrich, St. Louis, MO) at 25°C for 30 min. RNA was precipitated with ethanol before adapter ligation. Small RNA-seq and RNA-seq reads were mapped to mouse genome assembly mm10 using piPipes (Han et al., 2015). Transcript abundance between $pi6^{+/em1}$ and C57BL/6 testes were indistinguishable (< 2-fold change and FDR > 0.05). Transcripts with low abundance (< 1 fpkm) in both C57BL/6 and $pi6^{em1/em1}$ cells were excluded. #### **Transposon mapping** RNA-seq reads were intersected using BEDtools (Quinlan and Hall, 2010) with Repeat Masker annotation from UCSC (downloaded from https://genome.ucsc.edu/cgi-bin/hgTables). Reads mapping to multiple genomic locations were apportioned. Reads for individual repeats were aggregated to obtain reads counts for repeat families. #### **Statistics** All statistics were performed using R (https://www.rstudio.com/) and graphs were generated using Igor Pro v7.08 (WaveMetrics) or ggplot2 v3.0.0 (https://ggplot2.tidyverse.org/). Unless otherwise stated, Mann-Whitney-Wilcoxon test was used to calculate *p* values. #### **ACCESSION NUMBERS** All sequencing data are available through the NCBI Sequence Read Archive using accession number PRJNA480354. #### SUPPLEMENTAL FIGURE, TABLE, AND MOVIES **Supplemental Figure Legends** Figure S1. Confirmation of mutant founder genotypes. Related to Figure 1 and Table S1. (A) Genotyping of mutant founders by PCR. Genomic sequences of *pi6* promoter region in *pi6*^{em1/em1} (B) and *pi6*^{em2/em2} (C) mouse lines. (D) Genomic sequences of *pi17* promoter region in *pi17*^{-/-} mouse lines. Dashes, genomic sequences deleted by CRISPR; dots, unaltered sequence omitted for clarity. #### Figure S2. *pi6*^{em1/em1} adult male phenotype. Related to Figure 2. (A) Number of litters produced in 6 months by 2–8 month-old males. (B) Body and testis weight of 2–4 month-old $pi6^{em1/em1}$ and $pi6^{em2/em2}$ males. Each dot represents an individual mouse. The thick lines denote median values, and whiskers indicate the 75th and 25th percentiles. (C) Representative spermatozoon. (D) Representative patterns of meiotic chromosome synapsis in pi6em1/em1 pachytene spermatocytes. SYCP1, Synaptonemal complex protein 1; SYCP3, Synaptonemal complex protein 3. (E) Quantification of patterns of meiotic chromosome synapsis depicted in (D). #### Figure S3. Abundance of transposons in $pi6^{em1/em1}$ germ cells. Related to Figure 3. (A) Proportions of the whole genome or piRNA sequences composed of repetitive sequences. (B) Abundance of repetitive sequences in mouse germ cells. A pseudocount of 1 was added to each value. Each dot represents the mean value of three biologically independent RNA-seq experiments. ## Figure S4. Pregnancy rate of surrogate mothers in IVF and ICSI experiments. Related to Figure 5. Percent of pregnant surrogate mothers in IVF (A) and ICSI (B). #### Figure S5. Transcriptome changes in pi6em1/em1 cells. Related to Figure 6. (A) Number of altered genes with mRNA abundance altered by \geq 2-fold with FDR \leq 0.05 in indicated cell types. (B) Abundance of pachytene piRNAs and their precursors in C75BL/6 purified germ cells. For piRNA precursor levels, each dot represents the mean value of triplicate datasets and each error bar indicates the standard deviation. For mature piRNAs, each dot represents the mean abundance of unique-mapping reads of two duplicate datasets. (C) mRNAs with altered abundance in $pi6^{em1/em1}$ cells and encoding protein with functions in meiotic chromosome organization and miRNA-mediated regulation. #### **Supplemental Table Legends** Table S1. Statistics of CRISPR injection for *pi6* mutant generation. Related to Figure 1 and S1. Table S2. Differentially expressed genes in *pi6*^{em1/em1} germ cells. Related to Figure 6 and S5. Mean abundance (fpkm) of significantly altered mRNAs (\geq 2-fold change \cap FDR 0.05) in C57BL/6 versus $pi6^{em1/em1}$ cells of RNA-seq triplicate datasets. A pseudocount of 0.5 was added to each value to calculate the differences. Transcripts with < 1 rpkm in both C57BL/6 and $pi6^{em1/em1}$ cells prior to adding pseudocount were excluded. ## Table S3. Expression of piRNA pathway genes in *pi6*^{em1/em1} cells. Related to Figure 6 and S5 Mean expression (fpkm) of piRNA genes in C57BL/6 versus $pi6^{em1/em1}$ cells of RNA-seq triplicate datasets. A pseudocount of 0.5 was added to each value to calculate the differences. Significant changes were \geq 2-fold increase or decrease and FDR \leq 0.05. Table S4. Transcription factors with altered mRNA abundance in *pi6*^{em1/em1} pachytene spermatocytes. Related to Figure 6 and S5. Table S5. Gene Ontology of genes with decreased expression in *pi6*^{em1/em1} pachytene spermatocytes. Related to Figure 6 and S5. Table S6. Genes with reduced expression in $pi6^{em1/em1}$ pachytene spermatocytes that are mapped to major Gene Ontology categories. Related to Figure 6 and S5. Table S7. RFX2 and A-MYB target genes with decreased abundance in *pi6*^{em1/em1} pachytene spermatocytes. Related to Figure 6 and S5. Table S8. Published male fertility genes with altered expression in $pi6^{em1/em1}$ cells. Related to Figure 6 and S5. #### **Legends to Movies** Movies S1-10. *pi6*^{em1/em1} sperm motility. **Movie S1.** C57BL/6 sperm motility at 10 minute time point. **Movie S2.** *pi6*^{em1/em1} sperm motility at 10 minute time point. **Movie S3.** C57BL/6 sperm motility at 90 minute time point. **Movie S4.** *pi6*^{*em1/em1*} sperm motility at 90 minute time point. **Movie S5.** C57BL/6 sperm motility at 3 hour time point. **Movie S6.** *pi6*^{em1/em1} sperm motility at 3 hour time point **Movie S7.** C57BL/6 sperm motility at 4 hour time point. **Movie S8.** *pi6*^{em1/em1} sperm motility at 4 hour time point. Movie S9. C57BL/6 sperm motility at 5 hour time point. **Movie S10.** $pi6^{em1/em1}$ sperm motility at 5 hour time point. bioRxiv preprint doi: https://doi.org/10.1101/386201; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. bioRxiv preprint doi: https://doi.org/10.1101/386201; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. bioRxiv preprint doi: https://doi.org/10.1101/386201; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. # B Intracytoplasmic injection (ICSI) | Inject sperm head ↓ pi6 ^{-lem1} or pi6 ^{-em1/em1} sperm | Sperm donor genotype | Trial | Viable injected oocytes | Two-cell
embryos | | |---|------------------------|-------|-------------------------|---------------------|--| | Wild-type oocyte | pi6+/•m1 | 1 | 37 | 29 (78%) | | | \downarrow | | 2 | 24 | 19 (79%) | | | Bi-pronuclear zygote | pi6 ^{em1/em1} | 1 | 63 | 40 (64%) | | | 24 h ↓ | ρισ | 2 | 98 | 66 (67%) | | | Two-cell embryo | | | | | | bioRxiv preprint doi: https://doi.org/10.1101/386201; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. Reacted
acrosomes (II+III) bioRxiv preprint doi: https://doi.org/10.1101/386201; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under pi6^{em1} 5 AGAAGACTGCCTACTCCAAGA-----(\Delta 227 bp)-----AAATGGAAAACA AGAAGACTGCCTACTCCAA-----(\Delta 231 bp)-----ATGGAAAACA Wu et al. Figure S2, related to Figure 2 bioRxiv preprint doi: https://doi.org/10.1101/386201; this version posted August 7, 2018. The copyright holder for this preprint (which was not capified by peer review) is the author/funder, who has granted bio a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-NI International license. C57BL/6 Father's Viable Total pi6+/em1 Trial litters litters genotype pi6^{em1/em1} pi6em2/em2 C57BL/6 Body weight (g) C57BL/6 pi6+/em1 pi6+/em1 pi6^{em1/em1} pi6^{em2/em2} pi6^{em1/em1} Testis weight (mg) Normal Agglutinated Normal Abnormal 5 µm 50 µm | E | C57BL/6 | | | | | | pi6 ^{em1/em1} | | | | | |--------------------|---------|----|----|----|-----------|-----|------------------------|----|----|------------|---------| | —
Trial | 1 | 2 | 3 | 4 | | 1 | 2 | 3 | 4 | | | | Cells counted | 77 | 88 | 60 | 87 | mean ± SD | 129 | 74 | 82 | 88 | mean ± SD | p-value | | Class I (%) | 6 | 8 | 2 | 8 | 6 ± 3 | 12 | 20 | 22 | 17 | 18 ± 5 | 0.03 | | Class II (%) | 3 | 0 | 0 | 1 | 1 ± 1 | 3 | 18 | 11 | 2 | 8 ± 7 | 0.06 | | Class I and II (%) | 1 | 0 | 0 | 0 | 0 ± 1 | 1 | 8 | 7 | 2 | 5 ± 4 | 0.05 | | Class I or II (%) | 8 | 8 | 2 | 9 | 7 ± 3 | 14 | 30 | 26 | 17 | 22 ± 7 | 0.03 | bioRxiv preprint doi: https://doi.org/10.1101/386201; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. ### Wu et al. Figure S4, related to Figure 5. bioRxiv preprint doi: https://doi.org/10.1101/386201; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. ### A | Sperm
donor
genotype | Trial | Number and placement of two-cell embryos in surrogate mother | Surrogate mothers | Pregnant surrogate mothers | |----------------------------|-------|---|-------------------|----------------------------| | | 1 | 12 12 12 12 12 | 3 | 3 | | C57BL/6 | 2 | 9 9 9 9 | 2 | 2 | | C3/BL/0 | 3 | 10 10 | 1 | 1 | | | | · W | | 100% | | | 1 | 7 7 7 7 | 2 | 2 | | | 2 | 12 / 13 12 / 13 12 / 13 12 / 13 12 / 12 | 5 | 5 | | pi6+/em1 | 3 | 12 / 12 | 5 | 5 | | | | W W W | | 100% | | | 1 | 0 5 | 1 | 0 | | | 2 | 0 5 | 1 | 0 | | | 3 | 8 12 | 1 | 1 | | pi6 ^{em1/em1} | 4 | 8 9 8 9 | 2 | 1 | | | 5 | 10 10 | 1 | 1 | | | 6 | 10 / 10 | 1 | 1 | | | | V | | 67 % | ### B | Sperm
donor
genotype | Trial | Number and placement of two-cell embryos in surrogate mother | Surrogate
mothers | Pregnant
surrogate
mothers | |----------------------------|-------|--|----------------------|----------------------------------| | | 1 | 0 15 0 15 | 2 | 2 | | pi6+/em1 | 2 | 19 | 1 | 1 | | | | " | | 100% | | | 1 | 0 13 0 14 | 3 | 2 | | pi6 ^{em1/em1} | 2 | 0 12 0 13 0 13 0 13 | 4 | 2 | | | | 17 17 17 17 | | 57 % | | A | | Number o
with alter
abunda | ed RNA | |---|------------------------------|----------------------------------|---------------------| | | Cell type | pi6 ^{em1/em1} | pi17 ^{-/-} | | | Pachytene spermatocytes (4C) | 875 | 0 | | | Diplotene spermatocytes (4C) | 9 | 277 | | | Secondary spermatocytes (2C) | 20 | 503 | | | Spermatids (1C) | 45 | 0 | | | Total altered unique genes | 928 | 625 | | С | | Genes | C57BL/6
(fpkm) | <i>pi6</i> ^{em1/em1}
(fpkm) | <i>pi6</i> ^{em1/em1}
C57BL/6 | FDR | |---|--------------|--------|-------------------|---|--|------------------------| | | Meiotic | Atm | 3.5 | 12.3 | 3.2 | 2.2×10^{-2} | | | chromosome | Dmc1 | 1.6 | 9.2 | 4.6 | 2.6×10^{-2} | | | organization | Syce1 | 215.2 | 71.6 | 0.3 | 4.3×10^{-3} | | | miRNA | Lin28a | 0.9 | 7.6 | 5.6 | 1.6 × 10 ⁻² | | | pathway | Zc3h7b | 1.6 | 10.1 | 5.0 | 4.3×10^{-3} | | | genes | Ajuba | 0.6 | 5.4 | 5.3 | 7.0×10^{-3} | Table S1. Statistics of CRISPR injection for pi6 mutant generation. | Allele | pi6 ^{em1} | | | | pi6 ^{em2} | |---------------------------------|----------------------|--------------------|---|---------|----------------------| | Nucleic acid injected | sgRNA +
Cas9 mRNA | pX330
construct | sgRNA + Cas9
mRNA + pX330
construct | Total | sgRNA + Cas9
mRNA | | Number of
pups
screened | 55 | 45 | 42 | 142 | 23 | | Number of founders | 5 (9%) | 1 (2%) | 2 (5%) | 8 (6%) | 5 (22%) | | Number of
female
founders | 3 (60%) | 1 (100%) | 1 (50%) | 5 (63%) | 2 (40%) | | Number of male founders | 2 (40%) | 0 (0%) | 1 (50%) | 3 (38%) | 3 (60%) | | Number of surviving founders | 5 (100%) | 0 (0%) | 2 (100%) | 7 (88%) | 5 (100%) | Table S2. Differentially expressed genes in pi6em1/em1 germ cells. | Cell | Ensembl | | Genomic
Location | C57BL/6 | pi6 ^{em1/em1} | pi6 ^{em1/em1} | | |---------|---------------------------|----------|------------------------------|---------|------------------------|------------------------|----------------------| | type | ID | Gene | (mm10) | (fpkm) | (fpkm) | C57BL/6 | FDR | | Pac spc | ENSMUSG00
000075014.1 | Gm10800 | chr2:98666546-
98667301 | 132.8 | 3644.7 | 27.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000075015.3 | Gm10801 | chr2:98662236-
98664083 | 12.7 | 299.3 | 22.6 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000021451.11 | Sema4d | chr13:51701245
-51793747 | 0.4 | 12.6 | 14.1 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000031584.12 | Gsr | chr8:33652522-
33698163 | 1.8 | 29.0 | 13.0 | 4.3×10 ⁻³ |
 Pac spc | ENSMUSG00
000031229.12 | Atrx | chrX:10579761
4-105929397 | 0.9 | 18.2 | 13.0 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000003949.12 | HIf | chr11:90336535
-90390895 | 0.3 | 10.3 | 12.8 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000032841.11 | Prr5l | chr2:101714284
-101883256 | 0.3 | 9.1 | 12.8 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000042105.14 | Inpp5f | chr7:128611327
-128696425 | 0.7 | 14.2 | 12.2 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000081327.1 | Gm11819 | chr4:13444769-
13445141 | 0.0 | 5.4 | 11.9 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000016386.11 | Mpped2 | chr2:106693268
-106868356 | 0.4 | 9.4 | 11.0 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000083546.1 | Tpt1-ps1 | chr3:101233459
-101233895 | 0.0 | 4.8 | 10.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000031161.11 | Hdac6 | chrX:7930119-
7947889 | 2.5 | 30.7 | 10.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000039428.6 | Tmem135 | chr7:89139722-
89404222 | 4.1 | 46.9 | 10.3 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000038080.12 | Kdm1b | chr13:47025169
-47084613 | 0.6 | 10.6 | 10.2 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000008318.5 | Relt | chr7:100845847
-100863446 | 0.3 | 7.9 | 10.2 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000005078.12 | Jkamp | chr12:72085588
-72185029 | 0.8 | 12.2 | 9.9 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000059625.6 | Sohlh1 | chr2:25842994-
25847248 | 0.6 | 10.4 | 9.9 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000032135.10 | Mcam | chr9:44123767-
44142727 | 1.5 | 18.9 | 9.9 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000042453.10 | Reln | chr5:21884453-
22344702 | 1.6 | 19.4 | 9.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000016262.10 | Sertad4 | chr1:192844487
-192856246 | 0.5 | 9.5 | 9.6 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000039323.14 | lgfbp2 | chr1:72824502-
72852474 | 1.3 | 16.9 | 9.5 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000028487.14 | Bnc2 | chr4:84275094-
84675275 | 1.6 | 19.5 | 9.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000068270.11 | Shroom4 | chrX:6399853-
6637448 | 0.3 | 6.5 | 9.2 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000032598.8 | Nckipsd | chr9:108808367
-108818844 | 2.0 | 22.5 | 9.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000017760.11 | Ctsa | chr2:164830731
-164857711 | 0.6 | 9.9 | 9.1 | 4.3×10 ⁻³ | | | ENSMUSG00 | | chr10:45067205 | | 110 | 0.4 | 10.10.2 | |---------|---------------------------|---------|-------------------------------|-----|------|-----|----------------------| | Pac spc | 000019849.10 | Prep | -45158997 | 1.2 | 14.6 | 9.1 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000026923.11 | Notch1 | chr2:26445695-
26516663 | 0.1 | 5.0 | 8.9 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000070371.7 | Prss36 | chr7:127932637
-127946725 | 0.3 | 6.7 | 8.9 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000000247.7 | Lhx2 | chr2:38339280-
38369733 | 0.1 | 5.3 | 8.9 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000027200.13 | Sema6d | chr2:124089968
-124667770 | 0.2 | 5.3 | 8.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000018417.10 | Myo1b | chr1:51749764-
51916071 | 0.9 | 12.1 | 8.8 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000050708.10 | Ftl1 | chr7:45457943-
45459884 | 6.6 | 61.9 | 8.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000027547.13 | Sall4 | chr2:168748331
-168768108 | 0.6 | 9.3 | 8.7 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000031431.9 | Tsc22d3 | chrX:14053952
7-140600659 | 3.8 | 36.4 | 8.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000071369.6 | Map3k5 | chr10:19934471
-20142753 | 1.0 | 12.2 | 8.5 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000030796.11 | Tead2 | chr7:45215752-
45239115 | 0.5 | 8.0 | 8.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000022763.12 | Aifm3 | chr16:17489610
-17507485 | 0.6 | 8.5 | 8.4 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000058454.10 | Dhcr7 | chr7:143823144
-143848410 | 2.5 | 24.8 | 8.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000086481.1 | Gm11707 | chr11:10697205
7-106973090 | 0.0 | 3.7 | 8.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000007891.11 | Ctsd | chr7:142325836
-142388038 | 3.7 | 34.1 | 8.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000025261.13 | Huwe1 | chrX:15180080
6-151935417 | 8.8 | 76.5 | 8.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000017386.6 | Traf4 | chr11:78158498
-78165589 | 0.8 | 10.0 | 8.2 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000053398.7 | Phgdh | chr3:98313169-
98339990 | 0.7 | 9.3 | 8.2 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000005672.8 | Kit | chr5:75574915-
75656722 | 2.0 | 20.2 | 8.1 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000009376.11 | Met | chr6:17463799-
17573980 | 0.3 | 6.0 | 8.1 | 2.1×10 ⁻² | | Pac spc | ENSMUSG00
000028293.10 | Slc35a1 | chr4:34663256-
34687438 | 0.9 | 11.2 | 8.1 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000061462.11 | Obscn | chr11:58994255
-59136402 | 0.5 | 7.8 | 8.0 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000031353.9 | Rbbp7 | chrX:16276040
1-162829454 | 2.5 | 23.6 | 8.0 | 2.8×10 ⁻² | | Pac spc | ENSMUSG00
000039382.7 | Wdr45 | chrX:7714332-
7728201 | 0.7 | 9.0 | 8.0 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000032291.8 | Crabp1 | chr9:54764747-
54773110 | 2.9 | 26.6 | 7.9 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000027669.10 | Gnb4 | chr3:32580331-
32616585 | 0.3 | 5.7 | 7.9 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000039683.12 | Sdk1 | chr5:141241489
-142215586 | 1.7 | 16.5 | 7.9 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000025577.7 | Cbx2 | chr11:11902296
1-119031270 | 0.9 | 10.7 | 7.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000030199.12 | Etv6 | chr6:134035699
-134270158 | 1.4 | 14.2 | 7.7 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000022433.14 | Csnk1e | chr15:79417855
-79443919 | 0.6 | 8.1 | 7.6 | 7.0×10 ⁻³ | |---------|---------------------------|----------|-------------------------------|-----|------|-----|----------------------| | Pac spc | ENSMUSG00
000001525.10 | Tubb5 | chr17:35833920
-35838306 | 2.2 | 19.8 | 7.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000036893.12 | Ehmt1 | chr2:24790768-
24919609 | 2.4 | 21.3 | 7.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000031403.10 | Dkc1 | chrX:75095853-
75131016 | 1.2 | 12.7 | 7.6 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000006494.7 | Pdk1 | chr2:71873223-
71903858 | 0.3 | 5.7 | 7.5 | 2.4×10 ⁻² | | Pac spc | ENSMUSG00
000029177.5 | Cenpa | chr5:30666776-
30674827 | 1.2 | 11.7 | 7.4 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000035202.7 | Lars2 | chr9:123366939
-123462664 | 2.7 | 22.9 | 7.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000002227.11 | Mov10 | chr3:104794835
-104818563 | 1.4 | 13.3 | 7.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000042439.8 | Zfp532 | chr18:65580229
-65689443 | 1.2 | 11.6 | 7.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000001082.8 | Mfsd10 | chr5:34633641-
34637212 | 1.1 | 10.7 | 7.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000041417.11 | Pik3r1 | chr13:10168056
2-101768217 | 0.2 | 4.5 | 7.2 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000025272.12 | Tro | chrX:15064530
3-150657583 | 0.5 | 6.5 | 7.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000004317.10 | Clcn5 | chrX:7153809-
7319358 | 0.6 | 7.8 | 7.2 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000012123.11 | Aim1I | chr4:134065911
-134095082 | 1.5 | 13.5 | 7.2 | 2.7×10 ⁻² | | Pac spc | ENSMUSG00
000024968.9 | Rcor2 | chr19:7267324-
7275225 | 1.0 | 10.4 | 7.1 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000036564.12 | Ndrg4 | chr8:95676979-
95715119 | 1.6 | 14.5 | 7.1 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000004328.11 | Hif3a | chr7:17031506-
17062427 | 0.1 | 3.6 | 7.1 | 3.0×10 ⁻² | | Pac spc | ENSMUSG00
000016239.7 | Lonrf3 | chrX:36328352-
36362341 | 2.1 | 18.2 | 7.1 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000002870.7 | Mcm2 | chr6:88883474-
88898780 | 2.5 | 20.7 | 7.1 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000040749.7 | Siah1b | chrX:16407070
4-164076493 | 1.5 | 13.6 | 7.1 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000026956.11 | Uap1l1 | chr2:25359888-
25365682 | 0.4 | 6.1 | 7.1 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000025815.9 | Dhtkd1 | chr2:5895509-
5942792 | 0.5 | 6.2 | 7.0 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000000787.8 | Ddx3x | chrX:13280969-
13294052 | 1.0 | 9.9 | 7.0 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000030091.13 | Nup210 | chr6:91013067-
91116829 | 1.7 | 14.7 | 7.0 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000000325.11 | Arvcf | chr16:18348181
-18479073 | 1.1 | 10.8 | 7.0 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000073294.4 | AU022751 | chrX:6027055-
6092269 | 0.3 | 5.3 | 7.0 | 3.7×10 ⁻² | | Pac spc | ENSMUSG00
000031103.8 | Elf4 | chrX:48411045-
48463132 | 0.3 | 5.3 | 7.0 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000024837.11 | Dmrt1 | chr19:25505617
-25604329 | 3.8 | 29.4 | 7.0 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000000037.12 | Scml2 | chrX:16111719
2-161258213 | 3.2 | 24.6 | 6.8 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000009670.7 | Tex11 | chrX:10083864
7-101059667 | 1.5 | 12.9 | 6.8 | 1.3×10 ⁻² | |---------|---------------------------|-------------------|-------------------------------|-----|------|-----|----------------------| | Pac spc | ENSMUSG00
000056004.12 | 9330182L
06Rik | chr5:9266117-
9481825 | 0.1 | 3.8 | 6.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000034168.6 | Irf2bpl | chr12:86880702
-86884814 | 0.6 | 6.6 | 6.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000000420.11 | Galnt1 | chr18:24205343
-24286818 | 1.9 | 15.5 | 6.7 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000034673.10 | Pbx2 | chr17:34589805
-34597400 | 2.1 | 16.8 | 6.7 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000034926.3 | Dhcr24 | chr4:106561037
-106589113 | 1.4 | 11.8 | 6.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000045374.14 | Wdr81 | chr11:75440943
-75454717 | 0.6 | 7.0 | 6.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000043993.6 | 2900052L
18Rik | chr11:12022980
1-120231585 | 0.3 | 5.0 | 6.6 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000037138.12 | Aff3 | chr1:38177325-
38664955 | 0.4 | 5.8 | 6.6 | 3.2×10 ⁻² | | Pac spc | ENSMUSG00
000030123.11
 Plxnd1 | chr6:115954810
-115995005 | 0.8 | 8.4 | 6.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000038764.10 | Ptpn3 | chr4:57190840-
57307305 | 0.2 | 4.1 | 6.6 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000006378.9 | Gcat | chr15:79030873
-79043558 | 0.8 | 8.0 | 6.5 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000039316.10 | Rftn1 | chr17:49992256
-50190674 | 0.8 | 8.2 | 6.5 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000020387.11 | Jade2 | chr11:51813454
-51857653 | 0.6 | 6.4 | 6.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000051817.8 | Sox12 | chr2:152393610
-152398063 | 0.6 | 6.3 | 6.5 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000069053.7 | Uba1y | chrY:818648-
847750 | 2.0 | 15.3 | 6.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000030530.11 | Furin | chr7:80388584-
80405436 | 1.0 | 9.3 | 6.4 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000019822.8 | Smpd2 | chr10:41476313
-41490369 | 1.6 | 13.1 | 6.4 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000026944.14 | Abca2 | chr2:25428702-
25448540 | 2.4 | 18.3 | 6.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000028980.10 | H6pd | chr4:149979474
-150009023 | 0.2 | 3.7 | 6.4 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000042506.11 | Usp22 | chr11:61151784
-61175055 | 1.9 | 15.0 | 6.3 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000039741.11 | Bahcc1 | chr11:12023294
6-120292296 | 1.1 | 9.4 | 6.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000015291.6 | Gdi1 | chrX:74304997-
74311862 | 0.7 | 7.3 | 6.3 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000006369.10 | Fbln1 | chr15:85205948
-85286535 | 1.0 | 8.9 | 6.3 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000046774.12 | 8030474K
03Rik | chrX:10179465
5-101798642 | 1.2 | 10.1 | 6.2 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000025764.10 | Jade1 | chr3:41555730-
41616864 | 2.0 | 15.0 | 6.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000044349.11 | Snhg11 | chr2:158375637
-158386145 | 0.2 | 4.1 | 6.2 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000074480.4 | Мех3а | chr3:88532394-
88541396 | 0.5 | 5.7 | 6.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000034714.9 | Ttyh2 | chr11:11467543
0-114720977 | 0.7 | 7.0 | 6.2 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000022216.12 | Psme1 | chr14:55578122
-55585302 | 1.8 | 13.7 | 6.2 | 4.0×10 ⁻² | |---------|---------------------------|----------|-------------------------------|------|------|-----|----------------------| | Pac spc | ENSMUSG00
000026074.10 | Map4k4 | chr1:39900912-
40026310 | 1.9 | 14.4 | 6.2 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000021466.7 | Ptch1 | chr13:63508327
-63573598 | 0.2 | 3.6 | 6.1 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000013033.12 | Lphn1 | chr8:83900104-
83955205 | 2.4 | 17.1 | 6.1 | 4.1×10 ⁻² | | Pac spc | ENSMUSG00
000032312.6 | Csk | chr9:57626646-
57645653 | 0.7 | 7.0 | 6.1 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000099502.1 | Gm28640 | chr2:74130180-
74130730 | 0.0 | 2.5 | 6.1 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000025558.11 | Dock9 | chr14:12154203
8-121797734 | 1.1 | 9.5 | 6.1 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000023262.8 | Acy1 | chr9:106432980
-106438319 | 0.4 | 5.0 | 6.0 | 3.0×10 ⁻² | | Pac spc | ENSMUSG00
000082670.1 | Gm14050 | chr2:122207919
-122208265 | 0.0 | 2.5 | 6.0 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000055780.6 | Usp26 | chrX:51753958-
51801233 | 1.6 | 12.3 | 6.0 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000034690.8 | Nlrp4c | chr7:6045160-
6105149 | 0.8 | 7.3 | 6.0 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000019087.9 | Atp6ap1 | chrX:74297096-
74304721 | 1.6 | 11.7 | 5.9 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000047945.6 | Marcksl1 | chr4:129513580
-129515985 | 7.6 | 47.5 | 5.9 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000020806.11 | Rhbdf2 | chr11:11659816
4-116627019 | 0.7 | 6.6 | 5.9 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000032812.12 | Arap1 | chr7:101348066
-101412586 | 0.5 | 5.1 | 5.9 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000020661.11 | Dnmt3a | chr12:3806006-
3914443 | 1.6 | 11.6 | 5.9 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000046574.7 | Prr12 | chr7:45027706-
45052881 | 0.9 | 7.5 | 5.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000005533.9 | lgf1r | chr7:67952858-
68226780 | 2.5 | 16.7 | 5.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000042410.11 | Agps | chr2:75832176-
75931350 | 1.7 | 12.2 | 5.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000072944.7 | Nup62cl | chrX:14000680
4-140062712 | 0.8 | 7.3 | 5.8 | 3.4×10 ⁻² | | Pac spc | ENSMUSG00
000004221.12 | lkbkg | chrX:74393289-
74453854 | 0.2 | 3.7 | 5.8 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000033792.8 | Atp7a | chrX:10602727
5-106124926 | 0.4 | 4.5 | 5.8 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000071773.4 | Rhox1 | chrX:37213803-
37222258 | 0.0 | 2.4 | 5.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000027359.12 | Slc27a2 | chr2:126521201
-126588243 | 0.3 | 4.0 | 5.7 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000025503.4 | Taldo1 | chr7:141392198
-141402968 | 2.6 | 17.1 | 5.7 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000019055.11 | Plod1 | chr4:147909752
-147936767 | 1.8 | 12.4 | 5.7 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000029223.9 | Uchl1 | chr5:66626494-
66687231 | 16.5 | 96.1 | 5.7 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000028782.10 | Bai2 | chr4:129984869
-130022633 | 0.4 | 4.8 | 5.7 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000055612.11 | Cdca7 | chr2:72476158-
72486893 | 1.8 | 12.7 | 5.7 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00 | Lin28a | chr4:134003329 | 0.9 | 7.6 | 5.6 | 1.6×10 ⁻² | |----------|---------------------------|-------------------|------------------------------|-----|------|-----|----------------------| | i ac spc | 000050966.5
ENSMUSG00 | | -134019869
chrX:7894518- | 0.9 | 7.0 | 3.0 | | | Pac spc | 000031157.6 | Pqbp1 | 7899269 | 0.4 | 4.7 | 5.6 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000079487.7 | Med12 | chrX:10127402
9-101325963 | 3.0 | 18.9 | 5.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000028434.8 | Epb4.1I4b | chr4:56991971-
57143437 | 0.8 | 6.8 | 5.6 | 2.1×10 ⁻² | | Pac spc | ENSMUSG00
000037344.9 | Slc12a9 | chr5:137314557
-137333597 | 1.2 | 8.8 | 5.6 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000028078.10 | Dclk2 | chr3:86786150-
86920852 | 0.3 | 4.1 | 5.6 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000016534.11 | Lamp2 | chrX:38401356-
38456454 | 2.2 | 14.3 | 5.6 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000057897.10 | Camk2b | chr11:5969643-
6066362 | 0.3 | 4.0 | 5.5 | 2.1×10 ⁻² | | Pac spc | ENSMUSG00
000002028.8 | Kmt2a | chr9:44803354-
44881296 | 1.2 | 9.0 | 5.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000020097.10 | Sgpl1 | chr10:61098641
-61147703 | 2.4 | 15.4 | 5.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000037824.5 | Tspan14 | chr14:40906444
-40966807 | 1.0 | 7.6 | 5.5 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000030084.7 | Plxna1 | chr6:89304629-
89362613 | 3.2 | 20.0 | 5.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000039262.12 | Prrc2b | chr2:32151081-
32236382 | 1.8 | 12.0 | 5.5 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000066687.4 | Zbtb16 | chr9:48654310-
48835945 | 0.9 | 7.0 | 5.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000029804.12 | Herc3 | chr6:58831464-
58920398 | 0.8 | 6.5 | 5.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000020653.7 | Klf11 | chr12:24651370
-24662774 | 1.2 | 8.7 | 5.5 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000005413.7 | Hmox1 | chr8:75093590-
75100596 | 0.6 | 5.3 | 5.4 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000028032.9 | Papss1 | chr3:131564767
-131643670 | 0.8 | 6.5 | 5.4 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000041936.14 | Agrn | chr4:156165289
-156197488 | 0.9 | 7.2 | 5.4 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000045237.5 | 1110012L
19Rik | chrX:70385876-
70389417 | 0.0 | 2.2 | 5.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000031167.12 | Rbm3 | chrX:8138974-
8147964 | 2.4 | 15.1 | 5.4 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000044150.8 | A830080D
01Rik | chrX:15952668
7-159593081 | 1.2 | 8.4 | 5.4 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000017561.12 | Crlf3 | chr11:80046492
-80080991 | 1.2 | 8.5 | 5.4 | 3.2×10 ⁻² | | Pac spc | ENSMUSG00
000045294.10 | Insig1 | chr5:28071362-
28078662 | 3.1 | 19.0 | 5.4 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000001506.10 | Col1a1 | chr11:94936223
-94953042 | 0.1 | 3.0 | 5.4 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000045659.13 | Plekha7 | chr7:116123492
-116308376 | 0.6 | 5.2 | 5.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000007379.11 | Dennd2c | chr3:103102603
-103169769 | 0.8 | 6.5 | 5.4 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000033434.11 | Gtpbp6 | chr5:110099968
-110108197 | 3.5 | 20.7 | 5.4 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000021996.12 | Esd | chr14:74732296
-74750765 | 4.1 | 24.0 | 5.3 | 3.2×10 ⁻² | | | ENSMUSG00 | | chr5:23740647- | | | | | |---------|---------------------------|-------------------|-------------------------------|-----|------|-----|----------------------| | Pac spc | 000057541.10 | Pus7 | 23783711 | 1.3 | 9.2 | 5.3 | 2.1×10 ⁻² | | Pac spc | ENSMUSG00
000013089.11 | Etv5 | chr16:22381308
-22439719 | 0.4 | 4.3 | 5.3 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000008489.14 | Elavl2 | chr4:91250762-
91400785 | 1.2 | 8.5 | 5.3 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000022178.10 | Ajuba | chr14:54567468
-54577661 | 0.6 | 5.4 | 5.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000038437.7 | MIIt6 | chr11:97663216
-97685463 | 1.3 | 8.7 | 5.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000000838.13 | Fmr1 | chrX:68678484-
68717963 | 3.1 | 18.2 | 5.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000028654.9 | Mycl | chr4:122995651
-123002485 | 0.1 | 2.7 | 5.3 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000034771.11 | Tle2 | chr10:81572611
-81590845 | 0.2 | 2.9 | 5.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000025795.7 | Rassf3 | chr10:12141034
9-121476250 | 0.2 | 3.2 | 5.2 | 4.1×10 ⁻² | | Pac spc | ENSMUSG00
000028405.9 | Aco1 | chr4:40143080-
40198338 | 0.6 | 5.3 | 5.2 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000048240.10 | Gng7 |
chr10:80948623
-81014945 | 0.1 | 2.8 | 5.2 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000052373.10 | Мрр3 | chr11:10199965
1-102028461 | 0.2 | 3.2 | 5.2 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000018899.12 | Irf1 | chr11:53770013
-53778374 | 0.4 | 4.1 | 5.2 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000097119.1 | B230354K
17Rik | chr17:45433851
-45442544 | 1.5 | 9.6 | 5.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000034160.9 | Ogt | chrX:10164005
9-101684351 | 1.7 | 10.9 | 5.1 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000037315.10 | Jade3 | chrX:20425687-
20519939 | 1.2 | 8.5 | 5.1 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000036591.11 | Arhgap21 | chr2:20847918-
20968881 | 1.4 | 9.4 | 5.1 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000002059.13 | Rab34 | chr11:78188429
-78192193 | 0.7 | 5.8 | 5.1 | 2.8×10 ⁻² | | Pac spc | ENSMUSG00
000017009.3 | Sdc4 | chr2:164424246
-164443887 | 1.4 | 9.0 | 5.1 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000029822.11 | Osbpl3 | chr6:50293329-
50456201 | 0.1 | 2.7 | 5.1 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000045411.12 | 2410002F
23Rik | chr7:44246721-
44262720 | 4.7 | 25.7 | 5.1 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000102859.1 | RP23-
20B1.1 | chr3:73933045-
73934122 | 0.0 | 2.0 | 5.1 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000003070.6 | Efna2 | chr10:80179481
-80190010 | 0.3 | 3.3 | 5.0 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000038072.10 | Galnt11 | chr5:25222847-
25265918 | 0.9 | 6.8 | 5.0 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000022390.10 | Zc3h7b | chr15:81744847
-81796269 | 1.6 | 10.1 | 5.0 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000031012.13 | Cask | chrX:13517079-
13851367 | 0.4 | 4.0 | 5.0 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000037706.12 | Cd81 | chr7:143021783
-143067934 | 2.1 | 12.3 | 4.9 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000040732.14 | Erg | chr16:95359168
-95586593 | 0.2 | 3.1 | 4.9 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000060216.11 | Arrb2 | chr11:70432634
-70440828 | 0.9 | 6.5 | 4.9 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000031150.8 | Ccdc120 | chrX:7731713-
7750905 | 0.1 | 2.4 | 4.9 | 1.1×10 ⁻² | |---------|---------------------------|-------------------|-------------------------------|-----|------|-----|----------------------| | Pac spc | ENSMUSG00
000038677.9 | Scube3 | chr17:28142315
-28174852 | 0.7 | 5.2 | 4.9 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000020923.13 | Ubtf | chr11:10230455
9-102319742 | 2.7 | 15.0 | 4.9 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000024640.5 | Psat1 | chr19:15904677
-15947337 | 2.6 | 14.7 | 4.9 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000103643.1 | RP24-
271K21.1 | chr3:32260332-
32261104 | 0.0 | 1.9 | 4.9 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000021318.11 | Gli3 | chr13:15440301
-15730026 | 1.1 | 7.2 | 4.8 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000031558.11 | Slit2 | chr5:47983154-
48306282 | 0.7 | 5.2 | 4.8 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000079584.2 | Gm364 | chrX:57409153-
57488767 | 4.3 | 22.3 | 4.8 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000005125.8 | Ndrg1 | chr15:66929320
-67013039 | 0.3 | 3.2 | 4.8 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000042515.9 | Mum1l1 | chrX:13921004
1-139238335 | 0.8 | 5.7 | 4.7 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000067873.7 | Htatsf1 | chrX:57053582-
57067183 | 0.8 | 5.6 | 4.7 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000090673.1 | Gm340 | chr19:41582369
-41586536 | 0.9 | 6.3 | 4.7 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000037712.11 | Fermt2 | chr14:45458791
-45530118 | 0.8 | 5.8 | 4.7 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000008435.11 | Rdh13 | chr7:4424769-
4445649 | 0.3 | 3.2 | 4.7 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000031397.7 | Tktl1 | chrX:74177258-
74208500 | 1.6 | 9.5 | 4.7 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000061731.5 | Ext1 | chr15:53064037
-53346159 | 0.5 | 4.1 | 4.7 | 2.4×10 ⁻² | | Pac spc | ENSMUSG00
000017724.10 | Etv4 | chr11:10176974
1-101785371 | 0.3 | 3.3 | 4.7 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000024070.11 | Prkd3 | chr17:78949404
-79020816 | 2.7 | 14.6 | 4.7 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000031314.13 | Taf1 | chrX:10153273
3-101601789 | 2.1 | 11.7 | 4.7 | 4.1×10 ⁻² | | Pac spc | ENSMUSG00
000031214.9 | Ophn1 | chrX:98554276-
98891025 | 1.0 | 6.5 | 4.7 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000032511.13 | Scn5a | chr9:119483407
-119579016 | 0.3 | 3.4 | 4.7 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000025246.9 | Tbl1x | chrX:77511012-
77662983 | 0.7 | 4.9 | 4.7 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000067768.8 | XIr4b | chrX:73107634-
73292976 | 0.0 | 2.0 | 4.6 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000022429.10 | Dmc1 | chr15:79561499
-79605084 | 1.6 | 9.2 | 4.6 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000002900.11 | Lamb1 | chr12:31265233
-31329644 | 0.5 | 4.2 | 4.6 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000032936.9 | Camkv | chr9:107935076
-107949691 | 0.4 | 3.7 | 4.6 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000029366.9 | Dck | chr5:88764995-
88783281 | 0.8 | 5.3 | 4.6 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000026860.12 | Sh3glb2 | chr2:30344808-
30359337 | 2.4 | 13.0 | 4.6 | 3.0×10 ⁻² | | Pac spc | ENSMUSG00
000029998.10 | Pcyox1 | chr6:86386005-
86397150 | 0.3 | 3.3 | 4.6 | 2.5×10 ⁻² | | Dan 200 | ENSMUSG00 | M-40 | chr5:122100950 | 0.0 | 1.0 | 4.0 | 4.010-3 | |---------|---------------------------|-------------------|-------------------------------|-----|------|-----|----------------------| | Pac spc | 000013936.8 | Myl2 | -122138957 | 0.0 | 1.8 | 4.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000009941.6 | Nxf2 | chrX:13494452
5-134964754 | 2.0 | 10.9 | 4.6 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000028080.11 | Lrba | chr3:86224679-
86782692 | 3.0 | 15.5 | 4.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000036989.11 | Trim3 | chr7:105604462
-105633571 | 1.0 | 6.1 | 4.5 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000027395.11 | Polr1b | chr2:129100994
-129126594 | 3.4 | 17.1 | 4.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000026643.12 | Nmt2 | chr2:3284211-
3328877 | 6.5 | 31.2 | 4.5 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000024811.7 | Tnks2 | chr19:36834231
-36893477 | 5.6 | 26.9 | 4.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000020432.8 | Tcn2 | chr11:3917191-
3932159 | 0.3 | 3.0 | 4.5 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000063239.12 | Grm4 | chr17:27422386
-27513341 | 0.1 | 2.1 | 4.5 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000089989.5 | Flt3l | chr7:45125557-
45136432 | 0.3 | 3.0 | 4.5 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000026192.9 | Atic | chr1:71557149-
71579631 | 2.2 | 11.6 | 4.5 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000037553.10 | Zdhhc18 | chr4:133605298
-133650154 | 0.7 | 4.8 | 4.5 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000042644.8 | ltpr3 | chr17:27057303
-27122223 | 0.7 | 4.9 | 4.5 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000020715.5 | Ern1 | chr11:10639464
9-106487852 | 2.1 | 11.1 | 4.5 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000021069.12 | Pygl | chr12:70190810
-70234165 | 0.5 | 3.8 | 4.4 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000047098.13 | Rnf31 | chr14:55591707
-55610030 | 2.2 | 11.5 | 4.4 | 2.7×10 ⁻² | | Pac spc | ENSMUSG00
000030110.9 | Ret | chr6:118151747
-118197744 | 0.1 | 2.1 | 4.4 | 2.8×10 ⁻² | | Pac spc | ENSMUSG00
000045071.9 | E130308A
19Rik | chr4:59626210-
59761439 | 0.7 | 4.6 | 4.4 | 3.2×10 ⁻² | | Pac spc | ENSMUSG00
000016757.6 | Ttll12 | chr15:83575118
-83595157 | 1.4 | 8.1 | 4.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000021109.9 | Hif1a | chr12:73901374
-73949785 | 2.3 | 11.9 | 4.4 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000034311.3 | Kif4 | chrX:10062288
2-100727214 | 0.6 | 4.5 | 4.4 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000002058.9 | Unc119 | chr11:78343481
-78349164 | 1.6 | 9.0 | 4.4 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000103155.1 | RP23-
234G15.1 | chr3:54021163-
54021909 | 0.0 | 1.7 | 4.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000062949.9 | Atp11c | chrX:60223289-
60807993 | 1.4 | 7.6 | 4.4 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000049672.10 | Zbtb14 | chr17:69383049
-69390750 | 0.3 | 2.9 | 4.4 | 4.6×10 ⁻² | | Pac spc | ENSMUSG00
000028527.14 | Ak4 | chr4:101419276
-101466995 | 1.6 | 8.9 | 4.4 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000015243.4 | Abca1 | chr4:53030786-
53159895 | 0.6 | 4.5 | 4.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000025105.8 | Bnc1 | chr7:81966671-
81992618 | 0.6 | 4.2 | 4.4 | 2.8×10 ⁻² | | Pac spc | ENSMUSG00
000033295.9 | Ptprf | chr4:118208212
-118291405 | 6.7 | 31.0 | 4.4 | 4.3×10 ⁻³ | | | T T | | T | | 1 | T | 1 | |---------|---------------------------|---------|-------------------------------|-----|------|-----|----------------------| | Pac spc | ENSMUSG00
000040363.10 | Bcor | chrX:12036739-
12160355 | 0.2 | 2.4 | 4.4 | 3.7×10 ⁻² | | Pac spc | ENSMUSG00
000026193.11 | Fn1 | chr1:71585519-
71662843 | 3.5 | 16.9 | 4.3 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000040856.13 | Dlk1 | chr12:10945282
2-109463336 | 0.3 | 3.2 | 4.3 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000025854.11 | Fam20c | chr5:138754513
-138810077 | 0.0 | 1.9 | 4.3 | 4.6×10 ⁻² | | Pac spc | ENSMUSG00
000024909.10 | Efemp2 | chr19:5473972-
5481853 | 2.1 | 10.7 | 4.3 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000050947.8 | Amigo1 | chr3:108186334
-108192286 | 0.6 | 4.3 | 4.3 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000029096.11 | Htra3 | chr5:35652040-
35679782 | 0.1 | 2.0 | 4.3 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000057530.10 | Ece1 | chr4:137862236
-137965229 | 0.9 | 5.5 | 4.3 | 4.6×10 ⁻² | | Pac spc | ENSMUSG00
000033170.10 | Card10 | chr15:78775137
-78803042 | 0.3 | 3.0 | 4.3 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000069044.6 | Usp9y | chrY:1298960-
1459782 | 0.7 | 4.5 | 4.3 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000026641.9 | Usf1 | chr1:171411312
-171420352 | 1.8 | 9.1 | 4.3 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000032366.11 | Tpm1 |
chr9:67022589-
67049406 | 0.7 | 4.4 | 4.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000022175.8 | Lrp10 | chr14:54464163
-54471497 | 0.5 | 3.7 | 4.2 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000037552.13 | Plekhg2 | chr7:28359603-
28372599 | 4.5 | 20.4 | 4.2 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000020167.10 | Tcf3 | chr10:80409513
-80433647 | 4.5 | 20.3 | 4.2 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000030872.10 | Gga2 | chr7:121986721
-122021222 | 1.9 | 9.7 | 4.2 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000038576.11 | Susd4 | chr1:182763859
-182896591 | 0.1 | 2.1 | 4.2 | 3.7×10 ⁻² | | Pac spc | ENSMUSG00
000055067.11 | Smyd3 | chr1:178951959
-179518041 | 5.0 | 22.4 | 4.2 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000059895.8 | Ptp4a3 | chr15:73723144
-73758766 | 2.0 | 10.0 | 4.2 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000008682.9 | Rpl10 | chrX:74270811-
74273135 | 4.7 | 21.1 | 4.1 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000039713.12 | Plekhg5 | chr4:152072497
-152115400 | 0.7 | 4.6 | 4.1 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000032311.13 | Nrg4 | chr9:55208924-
55326844 | 0.3 | 2.6 | 4.1 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000053436.10 | Mapk14 | chr17:28691341
-28748404 | 3.1 | 14.3 | 4.1 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000031523.12 | Dlc1 | chr8:36567750-
36953143 | 0.3 | 2.9 | 4.1 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000035284.9 | Vps13c | chr9:67840395-
67995634 | 2.3 | 10.9 | 4.0 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000063382.5 | Bcl9l | chr9:44499135-
44510388 | 0.9 | 5.0 | 4.0 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000034708.7 | Grn | chr11:10243031
4-102447682 | 1.3 | 6.6 | 4.0 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000035621.9 | Midn | chr10:80148271
-80158368 | 2.6 | 11.8 | 4.0 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000056153.10 | Socs6 | chr18:88665223
-88927481 | 1.5 | 7.6 | 4.0 | 2.1×10 ⁻² | | Pac spc | ENSMUSG00
000059991.6 | Nptx2 | chr5:144545886
-144557478 | 1.7 | 8.5 | 4.0 | 1.1×10 ⁻² | |---------|---------------------------|---------|------------------------------|------|------|-----|----------------------| | Pac spc | ENSMUSG00
000025269.12 | Apex2 | chrX:15051951
8-150643878 | 0.3 | 2.8 | 4.0 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000013629.12 | Cad | chr5:31054779-
31078479 | 10.2 | 42.1 | 4.0 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000025019.11 | Lcor | chr19:41482644
-41562246 | 1.3 | 6.8 | 4.0 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000028633.7 | Ctps | chr4:120539867
-120570276 | 3.3 | 14.8 | 4.0 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000070462.4 | Mesdc1 | chr7:83879872-
83884305 | 0.1 | 2.1 | 4.0 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000003545.2 | Fosb | chr7:19302720-
19310045 | 0.6 | 3.9 | 4.0 | 3.2×10 ⁻² | | Pac spc | ENSMUSG00
000032280.12 | Tle3 | chr9:61372365-
61418497 | 8.4 | 34.8 | 4.0 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000025612.5 | Bach1 | chr16:87698944
-87733346 | 0.5 | 3.7 | 4.0 | 2.7×10 ⁻² | | Pac spc | ENSMUSG00
000042035.7 | lgsf3 | chr3:101377124
-101463059 | 1.6 | 7.9 | 4.0 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000059316.2 | Slc27a4 | chr2:29802633-
29817522 | 1.6 | 7.9 | 3.9 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000031386.10 | Hcfc1 | chrX:73942791-
73966357 | 2.4 | 11.0 | 3.9 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000001034.13 | Mapk7 | chr11:61485430
-61494406 | 7.0 | 29.1 | 3.9 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000027087.7 | Itgav | chr2:83724396-
83806916 | 0.2 | 2.3 | 3.9 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000029767.12 | Calu | chr6:29348068-
29388468 | 4.8 | 20.4 | 3.9 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000041329.9 | Atp1b2 | chr11:69599735
-69605942 | 1.0 | 5.6 | 3.9 | 3.0×10 ⁻² | | Pac spc | ENSMUSG00
000034472.9 | Rasd2 | chr8:75213943-
75224113 | 1.8 | 8.4 | 3.9 | 2.7×10 ⁻² | | Pac spc | ENSMUSG00
000051592.10 | Ccnb3 | chrX:6979651-
7041619 | 0.8 | 4.4 | 3.9 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000018651.10 | Tada2a | chr11:84078919
-84129600 | 1.8 | 8.5 | 3.9 | 3.0×10 ⁻² | | Pac spc | ENSMUSG00
000060671.8 | Atp8b2 | chr3:89939480-
89963508 | 3.9 | 16.5 | 3.9 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000028444.13 | Cntfr | chr4:41657497-
41697089 | 0.8 | 4.4 | 3.9 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000042686.5 | Jph1 | chr1:16898184-
17097889 | 0.4 | 3.0 | 3.9 | 3.0×10 ⁻² | | Pac spc | ENSMUSG00
000041263.10 | Rusc1 | chr3:89083980-
89093363 | 0.1 | 1.9 | 3.9 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000048752.3 | Prss50 | chr9:110857966
-110864628 | 6.6 | 27.1 | 3.9 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000025809.11 | ltgb1 | chr8:128685653
-128733200 | 4.5 | 18.8 | 3.8 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000026837.11 | Col5a1 | chr2:27882924-
28039514 | 0.9 | 4.8 | 3.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000020821.13 | Kif1c | chr11:70700547
-70731964 | 2.2 | 9.7 | 3.8 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000019943.9 | Atp2b1 | chr10:98915151
-99026143 | 0.9 | 4.7 | 3.8 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000015501.6 | Hivep2 | chr10:13966074
-14154446 | 0.2 | 2.2 | 3.8 | 4.3×10 ⁻³ | | Dag and | ENSMUSG00 | Dot10 | chr6:25743736- | 0.0 | 0.7 | 2.0 | 4.8×10 ⁻² | |---------|---------------------------|----------|-------------------------------|-----|------|-----|----------------------| | Pac spc | 000029676.11 | Pot1a | 25809246 | 2.2 | 9.7 | 3.8 | 4.8×10 - | | Pac spc | ENSMUSG00
000030201.11 | Lrp6 | chr6:134446475
-134566965 | 2.1 | 9.3 | 3.8 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000032228.12 | Tcf12 | chr9:71842687-
72111871 | 9.5 | 36.8 | 3.8 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000015944.8 | Gatsl2 | chr5:134099710
-134144343 | 0.5 | 3.4 | 3.8 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000048277.11 | Syngr2 | chr11:11780966
7-117839908 | 3.3 | 13.8 | 3.7 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000045348.11 | Nyap1 | chr5:137730882
-137741607 | 0.2 | 2.1 | 3.7 | 3.7×10 ⁻² | | Pac spc | ENSMUSG00
000029207.12 | Apbb2 | chr5:66298860-
66618828 | 1.1 | 5.6 | 3.7 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000025323.9 | Sp4 | chr12:11823493
2-118301440 | 1.2 | 5.8 | 3.7 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000027794.4 | Sohlh2 | chr3:55182027-
55209957 | 4.1 | 16.6 | 3.7 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000038212.11 | Hiatl1 | chr13:65064662
-65112982 | 3.2 | 13.2 | 3.7 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000028906.11 | Epb4.1 | chr4:131923412
-132076992 | 0.9 | 4.9 | 3.7 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000052911.5 | Lamb2 | chr9:108479735
-108490530 | 2.0 | 8.7 | 3.7 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000048170.10 | Mcmbp | chr7:128696440
-128740495 | 3.9 | 15.7 | 3.7 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000060685.4 | Gm14511 | chrX:8975709-
8976559 | 0.0 | 1.3 | 3.7 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000042364.10 | Snx18 | chr13:11359217
9-113618564 | 1.3 | 6.0 | 3.7 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000022436.11 | Sh3bp1 | chr15:78899666
-78919517 | 1.0 | 5.1 | 3.7 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000027353.10 | Mcm8 | chr2:132816140
-132844197 | 2.6 | 10.8 | 3.7 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000032875.7 | Arhgef17 | chr7:100869745
-100932161 | 0.3 | 2.5 | 3.6 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000041415.9 | Dicer1 | chr12:10468774
1-104751952 | 3.0 | 12.1 | 3.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000003500.9 | Impdh1 | chr6:29200433-
29216364 | 1.7 | 7.5 | 3.6 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000034413.10 | Neurl1b | chr17:26414828
-26446349 | 0.1 | 1.8 | 3.6 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000037606.13 | Osbpl5 | chr7:143688761
-143756985 | 0.1 | 1.6 | 3.6 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000024130.11 | Abca3 | chr17:24351949
-24414542 | 1.0 | 4.8 | 3.6 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000095078.1 | Gm5866 | chr5:52582319-
52583227 | 0.0 | 1.3 | 3.6 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000071553.6 | Cpa2 | chr6:30541581-
30564476 | 0.5 | 3.0 | 3.6 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000027333.14 | Smox | chr2:131491495
-131525922 | 0.5 | 3.2 | 3.5 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000018547.8 | Pip4k2b | chr11:97715156
-97744704 | 0.6 | 3.5 | 3.5 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000032485.10 | Scap | chr9:110333292
-110384935 | 3.9 | 15.2 | 3.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000031295.9 | Phka2 | chrX:16050216
5-160598878 | 3.2 | 12.7 | 3.5 | 4.3×10 ⁻² | | | ENSMUSG00 | | chr4:34803112- | | | | _ | |---------|---------------------------|-------------------|-------------------------------|-----|------|-----|----------------------| | Pac spc | 000039967.10 | Zfp292 | 34882960 | 2.2 | 8.9 | 3.5 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000025586.12 | Cpeb1 | chr7:81347025-
81455465 | 5.6 | 21.2 | 3.5 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000031310.12 | Zmym3 | chrX:10140438
3-101420849 | 3.2 | 12.5 | 3.5 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000045817.8 | Zfp36l2 | chr17:84183930
-84187947 | 2.3 | 9.5 | 3.5 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000033763.10 | Mtss1l | chr8:110721475
-110741400 | 1.1 | 5.3 | 3.5 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000003410.7 | Elavl3 | chr9:22015004-
22052023 | 0.3 | 2.3 | 3.5 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000001924.11 | Uba1 | chrX:20658325-
20683179 | 8.6 | 31.3 | 3.5 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000050846.8 | Zfp623 | chr15:75940951
-75949377 | 0.6 | 3.2 | 3.5 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000031987.5 | Egln1 | chr8:124908595
-124949254 | 0.5 | 2.8 | 3.5 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000009596.5 | Taf7l | chrX:13446011
7-134476490 | 8.1 | 29.5 | 3.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000029478.12 | Ncor2 | chr5:125017152
-125179219 | 4.5 | 16.8 | 3.5 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000054520.11 | Sh3bp2 | chr5:34525837-
34563638 | 0.4 | 2.8 | 3.5 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000022350.6 | E430025E
21Rik | chr15:59331997
-59374167 |
2.0 | 8.1 | 3.5 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000030757.9 | Zkscan2 | chr7:123479515
-123500449 | 3.4 | 13.0 | 3.5 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000063410.7 | Stk24 | chr14:12128634
2-121379334 | 0.6 | 3.2 | 3.5 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000024074.7 | Crim1 | chr17:78200247
-78376592 | 0.5 | 2.9 | 3.5 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000051586.10 | Mical3 | chr6:120931706
-121003153 | 1.6 | 6.6 | 3.5 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000022443.12 | Myh9 | chr15:77760586
-77842175 | 1.1 | 5.2 | 3.4 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000026979.12 | Psd4 | chr2:24367579-
24414954 | 0.1 | 1.4 | 3.4 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000044167.6 | Foxo1 | chr3:52268335-
52353221 | 1.5 | 6.3 | 3.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000023927.11 | Satb1 | chr17:51736186
-51834723 | 0.2 | 1.9 | 3.4 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000062542.7 | Syt9 | chr7:107370727
-107548656 | 1.0 | 4.8 | 3.4 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000020422.9 | Tns3 | chr11:8431651-
8664535 | 0.3 | 2.3 | 3.4 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000046139.7 | Patl1 | chr19:11912398
-11945096 | 2.6 | 10.0 | 3.4 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000035778.13 | Ggta1 | chr2:35400178-
35463231 | 0.1 | 1.7 | 3.4 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000001507.12 | Itga3 | chr11:95044473
-95076801 | 0.5 | 2.9 | 3.4 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000022673.4 | Mcm4 | chr16:15623896
-15637400 | 2.6 | 9.9 | 3.4 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000037679.8 | Inf2 | chr12:11258878
3-112615556 | 0.4 | 2.5 | 3.4 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000028530.10 | Jak1 | chr4:101068982
-101265282 | 5.7 | 20.3 | 3.4 | 1.6×10 ⁻² | | Dan 200 | ENSMUSG00 | A b | chr12:35497973 | 0.0 | 1.7 | 0.4 | 4.010=2 | |---------|---------------------------|----------|-------------------------------|------|-------|-----|----------------------| | Pac spc | 000019256.13 | Ahr | -35535038 | 0.2 | 1.7 | 3.4 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000074796.6 | Slc4a11 | chr2:130684112
-130697519 | 0.2 | 1.7 | 3.3 | 5.0×10 ⁻² | | Pac spc | ENSMUSG00
000040007.8 | Bahd1 | chr2:118900376
-118924528 | 4.3 | 15.4 | 3.3 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000041225.12 | Arhgap12 | chr18:6024426-
6136098 | 2.8 | 10.5 | 3.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000038160.6 | Atg5 | chr10:44268357
-44364291 | 1.7 | 6.7 | 3.3 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000036902.9 | Neto2 | chr8:85636587-
85690973 | 0.6 | 3.1 | 3.3 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000053716.9 | Dusp7 | chr9:106368631
-106375724 | 1.4 | 5.9 | 3.3 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000025151.12 | Maged1 | chrX:94535473-
94542143 | 4.9 | 17.5 | 3.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000027070.10 | Lrp2 | chr2:69424339-
69586065 | 0.1 | 1.6 | 3.3 | 2.4×10 ⁻² | | Pac spc | ENSMUSG00
000032392.10 | Parp16 | chr9:65214689-
65239219 | 0.5 | 2.8 | 3.3 | 3.7×10 ⁻² | | Pac spc | ENSMUSG00
000031328.11 | Flna | chrX:74223460-
74249820 | 1.5 | 6.1 | 3.3 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000036523.12 | Greb1 | chr12:16670614
-16800886 | 0.2 | 1.8 | 3.3 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000098195.1 | Gm7693 | chr7:72712633-
72713621 | 0.0 | 1.1 | 3.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000051790.11 | Nlgn2 | chr11:69823121
-69837784 | 1.2 | 4.9 | 3.2 | 3.0×10 ⁻² | | Pac spc | ENSMUSG00
000027340.11 | Slc23a2 | chr2:132052495
-132220250 | 1.5 | 6.0 | 3.2 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000054321.6 | Taf4b | chr18:14783244
-14900359 | 3.5 | 12.4 | 3.2 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000027932.10 | Slc27a3 | chr3:90385238-
90389938 | 0.6 | 3.0 | 3.2 | 4.1×10 ⁻² | | Pac spc | ENSMUSG00
000034902.13 | Pip5k1c | chr10:81292962
-81319973 | 5.5 | 18.8 | 3.2 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000028661.8 | Epha8 | chr4:136929418
-136956816 | 0.3 | 2.1 | 3.2 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000005373.9 | Mlxipl | chr5:135106890
-135138382 | 0.3 | 2.1 | 3.2 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000048897.11 | Zfp710 | chr7:80024813-
80092751 | 0.4 | 2.5 | 3.2 | 5.0×10 ⁻² | | Pac spc | ENSMUSG00
000024457.12 | Trim26 | chr17:36837133
-36859398 | 1.7 | 6.4 | 3.2 | 3.7×10 ⁻² | | Pac spc | ENSMUSG00
000068876.10 | Cgn | chr3:94760068-
94786492 | 0.9 | 3.9 | 3.2 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000030309.12 | Caprin2 | chr6:148842491
-148896237 | 12.0 | 39.5 | 3.2 | 4.1×10 ⁻² | | Pac spc | ENSMUSG00
000020092.8 | Pald1 | chr10:61319656
-61383523 | 0.1 | 1.5 | 3.2 | 4.7×10 ⁻² | | Pac spc | ENSMUSG00
000010592.8 | Dazl | chr17:50279393
-50293599 | 50.8 | 162.9 | 3.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000032902.1 | Slc16a1 | chr3:104638667
-104658462 | 4.3 | 14.7 | 3.2 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000040249.11 | Lrp1 | chr10:12753816
0-127621148 | 0.2 | 1.8 | 3.2 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000021294.7 | Kif26a | chr12:11214620
7-112181747 | 0.4 | 2.2 | 3.2 | 3.1×10 ⁻² | | | ENSMUSG00 | | chr9:108986162 | | | | | |---------|---------------------------|----------|-------------------------------|------|------|-----|----------------------| | Pac spc | 000049699.3 | Ucn2 | -108987164 | 0.0 | 1.1 | 3.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000034218.11 | Atm | chr9:53439148-
53536740 | 3.5 | 12.3 | 3.2 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000055491.9 | Pprc1 | chr19:46032592
-46072915 | 9.5 | 31.1 | 3.2 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000005034.11 | Prkacb | chr3:146729578
-146812960 | 3.0 | 10.5 | 3.1 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000017550.10 | Atad5 | chr11:80089399
-80135794 | 1.3 | 5.1 | 3.1 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000019877.6 | Serinc1 | chr10:57515773
-57532530 | 10.2 | 32.9 | 3.1 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000026478.10 | Lamc1 | chr1:153218921
-153332786 | 0.2 | 1.7 | 3.1 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000095123.1 | Gm21781 | chr10:4391586-
4396424 | 1.6 | 5.9 | 3.1 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000041351.12 | Rap1gap | chr4:137664725
-137729861 | 2.7 | 9.4 | 3.1 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000019179.6 | Mdh2 | chr5:135778479
-135790398 | 16.4 | 52.0 | 3.1 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000071076.5 | Jund | chr8:70697738-
70700616 | 4.3 | 14.4 | 3.1 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000033352.7 | Map2k4 | chr11:65688242
-65788297 | 0.9 | 4.0 | 3.1 | 2.8×10 ⁻² | | Pac spc | ENSMUSG00
000000184.9 | Ccnd2 | chr6:127125778
-127212411 | 0.3 | 2.0 | 3.1 | 3.0×10 ⁻² | | Pac spc | ENSMUSG00
000034903.14 | Cobll1 | chr2:65088338-
65239675 | 0.2 | 1.7 | 3.1 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000034762.5 | Glis1 | chr4:107434571
-107635061 | 0.5 | 2.6 | 3.1 | 4.1×10 ⁻² | | Pac spc | ENSMUSG00
000024151.9 | Msh2 | chr17:87672329
-87723713 | 3.4 | 11.6 | 3.1 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000033059.7 | Pygb | chr2:150786734
-150831758 | 1.6 | 6.0 | 3.1 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000032898.6 | Fbxo21 | chr5:117976769
-118010191 | 4.5 | 14.7 | 3.0 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000028030.8 | Tbck | chr3:132684143
-132838506 | 1.7 | 6.1 | 3.0 | 5.0×10 ⁻² | | Pac spc | ENSMUSG00
000020782.14 | Llgl2 | chr11:11582404
8-115855780 | 1.6 | 5.8 | 3.0 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000004113.14 | Cacna1b | chr2:24603886-
24763152 | 0.9 | 3.6 | 3.0 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000057672.11 | Pkn1 | chr8:83666832-
83699179 | 1.9 | 6.8 | 3.0 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000026238.10 | Ptma | chr1:86526725-
86530712 | 18.8 | 57.0 | 3.0 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000022791.12 | Tnk2 | chr16:32643873
-32683493 | 3.0 | 9.9 | 3.0 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000015647.9 | Lama5 | chr2:180176372
-180225859 | 1.6 | 5.7 | 3.0 | 2.4×10 ⁻² | | Pac spc | ENSMUSG00
000031657.12 | Heatr3 | chr8:88137854-
88172027 | 5.4 | 17.1 | 3.0 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000034282.3 | Evpl | chr11:11622055
8-116238077 | 0.3 | 1.9 | 3.0 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000070570.4 | Slc17a7 | chr7:45163920-
45176138 | 1.0 | 3.9 | 3.0 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000052298.8 | Cdc42se2 | chr11:54717455
-54787675 | 11.9 | 36.2 | 3.0 | 1.1×10 ⁻² | | | ENIONALICOGO | | ob#10:11070017 | | 1 | I | | |---------|---------------------------|-------------------|-------------------------------|------|------|-----|----------------------| | Pac spc | ENSMUSG00
000072825.6 | Cep170b | chr12:11272217
3-112746591 | 1.1 | 4.1 | 2.9 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000032547.8 | Ryk | chr9:102834916
-102908305 | 4.4 | 13.8 | 2.9 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000024098.5 | Twsg1 | chr17:65923065
-65951187 | 3.3 | 10.7 | 2.9 | 4.7×10 ⁻² | | Pac spc | ENSMUSG00
000021910.11 | Nisch | chr14:31170929
-31216946 | 14.0 | 41.8 | 2.9 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000009035.9 | Tmem184
b | chr15:79360683
-79403303 | 1.6 | 5.6 | 2.9 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000023977.10 | Ubr2 | chr17:46928291
-47010532 | 3.3 | 10.7 | 2.9 | 2.1×10 ⁻² | | Pac spc | ENSMUSG00
000021611.8 | Tert | chr13:73627000
-73649041 | 0.4 | 2.0 | 2.9 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000067336.6 | Bmpr2 | chr1:59763399-
59879014 | 1.0 | 3.9 | 2.9 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000007817.10 | Zmiz1 | chr14:25455736
-25666743 | 0.3 | 1.9 | 2.9 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000036046.10 | 5031439G
07Rik | chr15:84943935
-84988551 | 1.4 | 5.0 | 2.9 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000032849.9 | Abcc4 | chr14:11848269
1-118706219 | 0.3 | 1.8 | 2.8 | 3.7×10 ⁻² | | Pac spc | ENSMUSG00
000007564.10 | Ppp2r1a | chr17:20945310
-20965916 | 9.4 | 27.3 | 2.8 | 2.7×10 ⁻² | | Pac spc | ENSMUSG00
000056724.10 | Nbeal2 | chr9:110624788
-110654161 | 1.2 | 4.2 | 2.8 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000029863.9 |
Casp2 | chr6:42264984-
42282508 | 7.9 | 23.0 | 2.8 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000027646.11 | Src | chr2:157418443
-157471862 | 1.0 | 3.8 | 2.8 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000042978.9 | Sbk1 | chr7:126272618
-126294999 | 3.4 | 10.3 | 2.8 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000053617.7 | Sh3pxd2a | chr19:47260173
-47464411 | 0.6 | 2.5 | 2.8 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000033624.6 | Pdpr | chr8:111094629
-111145480 | 5.8 | 17.0 | 2.8 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000035898.9 | Uba6 | chr5:86110719-
86172803 | 9.6 | 27.3 | 2.7 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000042700.11 | Sipa1l1 | chr12:82170015
-82451782 | 5.1 | 15.0 | 2.7 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000063455.12 | D630045J
12Rik | chr6:38048482-
38254009 | 2.0 | 6.2 | 2.7 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000033228.7 | Scaf11 | chr15:96411697
-96460843 | 3.0 | 8.9 | 2.7 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000003812.9 | Dnase2a | chr8:84908559-
84937359 | 0.1 | 1.1 | 2.7 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000037410.9 | Tbc1d2b | chr9:90163068-
90270804 | 0.8 | 2.9 | 2.7 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000005802.8 | Slc30a4 | chr2:122681232
-122721456 | 4.2 | 12.3 | 2.7 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000061313.7 | Ddhd2 | chr8:25725323-
25754280 | 4.4 | 12.7 | 2.7 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000028961.11 | Pgd | chr4:149149990
-149166771 | 10.9 | 29.7 | 2.7 | 3.2×10 ⁻² | | Pac spc | ENSMUSG00
000005410.5 | Mcm5 | chr8:75109527-
75128439 | 9.7 | 26.4 | 2.6 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000053198.9 | Prx | chr7:27499323-
27520214 | 0.1 | 1.1 | 2.6 | 4.9×10 ⁻² | | | ENCMILECCO | | chr11:10310168 | | 1 | I | | |---------|---------------------------|-------------------|-------------------------------|--------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000056938.12 | Acbd4 | 1-103112200 | 0.1 | 1.0 | 2.6 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000037815.6 | Ctnna1 | chr18:35118887
-35254773 | 4.2 | 11.8 | 2.6 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000052085.6 | Dock8 | chr19:24999528
-25202432 | 0.2 | 1.2 | 2.6 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000018846.8 | Pank3 | chr11:35769483
-35791285 | 4.6 | 12.8 | 2.6 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000014602.11 | Kif1a | chr1:93015463-
93101951 | 0.3 | 1.4 | 2.6 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000027312.10 | Atrn | chr2:130906494
-131030333 | 6.9 | 18.4 | 2.5 | 4.1×10 ⁻² | | Pac spc | ENSMUSG00
000009995.13 | Taz | chrX:74273216-
74290151 | 0.5 | 1.9 | 2.5 | 2.8×10 ⁻² | | Pac spc | ENSMUSG00
000075470.1 | Alg10b | chr15:90224310
-90230554 | 6.6 | 17.6 | 2.5 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000033948.3 | Zswim5 | chr4:116877375
-116989264 | 3.8 | 10.4 | 2.5 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000032340.7 | Neo1 | chr9:58874678-
59036441 | 4.1 | 11.0 | 2.5 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000003316.10 | Glg1 | chr8:111154420
-111259216 | 11.4 | 29.1 | 2.5 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000033767.10 | D930015E
06Rik | chr3:83897654-
84040175 | 7.9 | 20.0 | 2.4 | 4.7×10 ⁻² | | Pac spc | ENSMUSG00
000041859.10 | Мст3 | chr1:20802967-
20820312 | 11.1 | 27.4 | 2.4 | 5.0×10 ⁻² | | Pac spc | ENSMUSG00
000062296.4 | Trank1 | chr9:111311738
-111395774 | 3.1 | 8.2 | 2.4 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000033253.14 | Szt2 | chr4:118359989
-118409273 | 8.7 | 20.9 | 2.3 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000038644.10 | Pold1 | chr7:44532745-
44548849 | 22.1 | 51.8 | 2.3 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000063146.7 | Clip2 | chr5:134489385
-134552434 | 0.2 | 1.2 | 2.3 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000032267.7 | Usp28 | chr9:48985384-
49042517 | 6.9 | 16.3 | 2.3 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000050310.8 | Rictor | chr15:6708380-
6800398 | 8.2 | 19.2 | 2.3 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000027878.10 | Notch2 | chr3:98013537-
98150367 | 3.4 | 8.3 | 2.2 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000029512.7 | Ulk1 | chr5:110784487
-110810097 | 7.0 | 15.9 | 2.2 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000005469.9 | Prkaca | chr8:83972977-
83996445 | 55.2 | 25.9 | 0.5 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000030086.12 | Chchd6 | chr6:89383145-
89595652 | 157.2 | 74.1 | 0.5 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000032396.13 | Dis3l | chr9:64306755-
64341288 | 162.8 | 76.5 | 0.5 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000028937.10 | Acot7 | chr4:152178133
-152271855 | 332.0 | 154.5 | 0.5 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000021771.9 | Vdac2 | chr14:21831268
-21856926 | 249.6 | 115.8 | 0.5 | 4.7×10 ⁻² | | Pac spc | ENSMUSG00
000024897.8 | Apba1 | chr19:23758875
-23949597 | 58.8 | 27.0 | 0.5 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000036211.3 | Hist1h1t | chr13:23695813
-23696542 | 1424.2 | 658.2 | 0.5 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000040548.11 | Tex2 | chr11:10650214
6-106613423 | 125.0 | 56.6 | 0.5 | 3.8×10 ⁻² | | | | | 1 45 40004000 | | | ı | 1 | |---------|---------------------------|-------------------|-------------------------------|-------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000000552.9 | Zfp385a | chr15:10331389
4-103340086 | 77.0 | 34.7 | 0.5 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000074734.2 | 4933416C
03Rik | chr10:11601821
2-116274932 | 129.5 | 58.4 | 0.5 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000022622.4 | Acr | chr15:89568325
-89574585 | 125.8 | 56.7 | 0.5 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000030357.6 | Fkbp4 | chr6:128429734
-128438677 | 229.3 | 102.8 | 0.4 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000058297.12 | Spock2 | chr10:60106218
-60135198 | 29.4 | 12.9 | 0.4 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000020078.11 | Vps26a | chr10:62454842
-62486805 | 97.4 | 43.4 | 0.4 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000022092.10 | Ррр3сс | chr14:70217897
-70289449 | 89.0 | 39.5 | 0.4 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000023456.10 | Tpi1 | chr6:124808660
-124814296 | 100.4 | 44.4 | 0.4 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000034274.7 | Thoc5 | chr11:4895319-
4928867 | 62.8 | 27.5 | 0.4 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000033213.12 | AA467197 | chr2:122636985
-122641191 | 367.2 | 162.0 | 0.4 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000031554.13 | Adam5 | chr8:24727092-
24824369 | 289.5 | 126.8 | 0.4 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000026163.13 | Sphkap | chr1:83254138-
83408200 | 27.9 | 12.0 | 0.4 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000063229.10 | Ldha | chr7:46841474-
46855627 | 571.8 | 250.6 | 0.4 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000036196.11 | Slc26a8 | chr17:28637782
-28689987 | 55.6 | 24.0 | 0.4 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000025171.1 | Ubtd1 | chr19:41981762
-42034641 | 75.8 | 32.8 | 0.4 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000040734.10 | Ppp1r13l | chr7:19359748-
19378533 | 64.3 | 27.7 | 0.4 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000072295.5 | Als2cr11 | chr1:59014223-
59094900 | 151.0 | 65.0 | 0.4 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000025509.11 | Pnpla2 | chr7:141455197
-141460743 | 164.1 | 70.6 | 0.4 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000022246.9 | Rai14 | chr15:10568978
-10714631 | 87.2 | 37.3 | 0.4 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000045466.14 | Zfp956 | chr6:47943170-
47965300 | 78.6 | 33.5 | 0.4 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000051768.8 | Xrcc1 | chr7:24547149-
24573438 | 54.9 | 23.1 | 0.4 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000024206.10 | Rfx2 | chr17:56775896
-56831008 | 182.8 | 77.6 | 0.4 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000039183.5 | Nubp2 | chr17:24882610
-24886350 | 126.2 | 53.4 | 0.4 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000075706.6 | Gpx4 | chr10:80047165
-80056439 | 509.6 | 216.5 | 0.4 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000029131.10 | Dnajb6 | chr5:29735636-
29786478 | 150.3 | 63.3 | 0.4 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000017843.9 | Ppp2r5c | chr12:11048573
8-110583061 | 117.1 | 49.2 | 0.4 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000028878.7 | Fam76a | chr4:132899212
-132922558 | 33.4 | 13.7 | 0.4 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000049792.6 | Bag5 | chr12:11170948
7-111713257 | 114.8 | 47.9 | 0.4 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000039936.14 | Pik3cd | chr4:149649167
-149702571 | 16.8 | 6.8 | 0.4 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000035211.8 | Xrra1 | chr7:99859217-
99917824 | 82.9 | 34.4 | 0.4 | 4.0×10 ⁻² | |---------|---------------------------|--------------|-------------------------------|-------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000042246.4 | Tmc7 | chr7:118535842
-118584736 | 16.6 | 6.6 | 0.4 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000002102.11 | Psmc3 | chr2:91054008-
91070417 | 344.2 | 142.9 | 0.4 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000027550.10 | Lrrcc1 | chr3:14533787-
14572658 | 76.1 | 31.3 | 0.4 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000024154.6 | Gtf2a1l | chr17:88668659
-88715152 | 119.6 | 49.4 | 0.4 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000056665.2 | Them6 | chr15:74721203
-74728034 | 52.6 | 21.5 | 0.4 | 3.4×10 ⁻² | | Pac spc | ENSMUSG00
000033210.12 | Slc9c1 | chr16:45535308
-45607001 | 40.4 | 16.4 | 0.4 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000045107.4 | Saysd1 | chr14:20075645
-20083172 | 49.4 | 20.1 | 0.4 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000013822.6 | Elof1 | chr9:22112988-
22117148 | 314.9 | 129.8 | 0.4 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000020520.10 | Galnt10 | chr11:57623697
-57787514 | 25.1 | 10.1 | 0.4 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000027363.11 | Usp8 | chr2:126707327
-126783458 | 111.1 | 45.5 | 0.4 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000024474.5 | lk | chr18:36744655
-36757639 | 120.9 | 49.4 | 0.4 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000025035.8 | Arl3 | chr19:46531108
-46573085 | 184.1 | 75.4 | 0.4 | 3.1×10 ⁻² |
| Pac spc | ENSMUSG00
000035890.8 | Rnf126 | chr10:79758514
-79766952 | 266.5 | 109.1 | 0.4 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000020472.10 | Zkscan17 | chr11:59485519
-59526751 | 62.4 | 25.3 | 0.4 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000053624.3 | Gykl1 | chr18:52693678
-52695668 | 118.9 | 48.2 | 0.4 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000027378.12 | Nphp1 | chr2:127740731
-127788897 | 348.5 | 141.4 | 0.4 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000025793.11 | Hgs | chr11:12046763
4-120483984 | 99.1 | 40.0 | 0.4 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000022013.3 | Dnajc15 | chr14:77826216
-77874917 | 151.1 | 61.0 | 0.4 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000062732.6 | Lypd4 | chr7:24864619-
24869941 | 210.4 | 85.0 | 0.4 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000058741.3 | Prr19 | chr7:25301358-
25304133 | 55.7 | 22.3 | 0.4 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000039886.4 | Tmem120
a | chr5:135735484
-135744271 | 92.6 | 37.2 | 0.4 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000040097.11 | Flywch1 | chr17:23755422
-23771591 | 119.6 | 48.1 | 0.4 | 2.4×10 ⁻² | | Pac spc | ENSMUSG00
000025218.6 | Poll | chr19:45552274
-45560531 | 44.5 | 17.7 | 0.4 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000035560.4 | Wdr20rt | chr12:65225516
-65228454 | 60.9 | 24.3 | 0.4 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000084883.1 | Ccdc85c | chr12:10820634
4-108275417 | 19.4 | 7.5 | 0.4 | 3.2×10 ⁻² | | Pac spc | ENSMUSG00
000042156.11 | Dzip1 | chr14:11887551
9-118925314 | 37.5 | 14.8 | 0.4 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000019834.11 | Slc22a16 | chr10:40570335
-40604132 | 96.9 | 38.7 | 0.4 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000030096.7 | SIc6a6 | chr6:91684066-
91759063 | 6.0 | 2.1 | 0.4 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000045211.4 | Nudt18 | chr14:70577846
-70582571 | 54.4 | 21.6 | 0.4 | 1.8×10 ⁻² | |---------|---------------------------|-------------------|-------------------------------|-------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000025337.6 | Sbds | chr5:130245730
-130255530 | 66.6 | 26.4 | 0.4 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000029310.9 | Nudt9 | chr5:104046305
-104065379 | 42.8 | 16.9 | 0.4 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000016982.6 | Pom121l2 | chr13:21981193
-21988734 | 150.6 | 60.0 | 0.4 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000026331.9 | Slco6c1 | chr1:97059037-
97128301 | 91.6 | 36.3 | 0.4 | 3.2×10 ⁻² | | Pac spc | ENSMUSG00
000027702.7 | Lrrc34 | chr3:30624266-
30672431 | 77.7 | 30.8 | 0.4 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000030216.10 | Wbp11 | chr6:136813653
-136828233 | 303.5 | 121.1 | 0.4 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000058709.7 | Egln2 | chr7:27153713-
27166802 | 263.5 | 105.0 | 0.4 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000031553.11 | Adam3 | chr8:24677224-
24725852 | 182.1 | 72.4 | 0.4 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000069805.6 | Fbp1 | chr13:62864752
-62888282 | 387.3 | 153.8 | 0.4 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000050035.6 | Fhl4 | chr10:85097018
-85102495 | 573.4 | 226.2 | 0.4 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000074749.6 | Kiz | chr2:146855863
-146970097 | 100.3 | 39.3 | 0.4 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000070953.9 | Rabepk | chr2:34777555-
34799912 | 66.4 | 25.9 | 0.4 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000025762.10 | Larp1b | chr3:40950630-
41040234 | 194.3 | 76.4 | 0.4 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000024304.10 | Cdh2 | chr18:16588876
-16809246 | 25.9 | 9.9 | 0.4 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000029147.7 | Ppm1g | chr5:31202667-
31220545 | 243.8 | 95.8 | 0.4 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000024158.13 | Hagh | chr17:24840142
-24864450 | 183.5 | 71.7 | 0.4 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000024654.8 | Asrgl1 | chr19:9109867-
9279175 | 282.2 | 110.2 | 0.4 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000030792.7 | Dkkl1 | chr7:45207524-
45211883 | 833.7 | 326.1 | 0.4 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000031631.11 | Cfap97 | chr8:46033260-
46195590 | 165.1 | 64.2 | 0.4 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000034932.4 | Mrpl54 | chr10:81264712
-81266934 | 103.2 | 39.9 | 0.4 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000019906.10 | Lin7a | chr10:10727184
2-107425143 | 30.4 | 11.6 | 0.4 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000020462.10 | Cfap36 | chr11:29221531
-29247409 | 195.0 | 75.6 | 0.4 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000022671.8 | Mzt2 | chr16:15848440
-15863369 | 74.4 | 28.6 | 0.4 | 4.1×10 ⁻² | | Pac spc | ENSMUSG00
000042797.8 | Aqp11 | chr7:97726378-
97738247 | 123.6 | 47.6 | 0.4 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000073730.2 | 4933415F
23Rik | chr1:23048294-
23235673 | 149.2 | 57.4 | 0.4 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000038026.8 | Kcnj9 | chr1:172320500
-172329318 | 29.9 | 11.2 | 0.4 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000032239.9 | Rp9 | chr9:22448310-
22468356 | 99.1 | 37.7 | 0.4 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000022085.3 | Pebp4 | chr14:69840419
-70059886 | 190.7 | 72.7 | 0.4 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000032497.11 | Lrrfip2 | chr9:111118110
-111225668 | 30.9 | 11.5 | 0.4 | 2.9×10 ⁻² | |---------|---------------------------|-------------------|------------------------------|-------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000055720.9 | UbI7 | chr9:57910985-
57929968 | 171.4 | 65.2 | 0.4 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000033128.8 | Gga1 | chr15:78877189
-78894585 | 49.8 | 18.7 | 0.4 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000016626.8 | NIrp14 | chr7:107166989
-107198102 | 73.3 | 27.6 | 0.4 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000019944.10 | Rhobtb1 | chr10:69151433
-69291791 | 15.7 | 5.7 | 0.4 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000020434.4 | 4921536K
21Rik | chr11:3886087-
3895098 | 72.1 | 26.9 | 0.4 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000027088.6 | Phospho2 | chr2:69789622-
69800005 | 177.7 | 66.6 | 0.4 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000053030.7 | Spink2 | chr5:77205106-
77211471 | 391.6 | 146.7 | 0.4 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000050623.4 | Tex40 | chr19:6922425-
6925380 | 236.1 | 88.2 | 0.4 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000001794.8 | Capns1 | chr7:30186941-
30195164 | 128.2 | 47.7 | 0.4 | 2.7×10 ⁻² | | Pac spc | ENSMUSG00
000016526.8 | Dyrk3 | chr1:131127454
-131138340 | 36.5 | 13.3 | 0.4 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000031839.6 | Hsbp1 | chr8:119344537
-119348927 | 279.4 | 104.1 | 0.4 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000037617.7 | Spag1 | chr15:36179367
-36235610 | 29.3 | 10.6 | 0.4 | 2.4×10 ⁻² | | Pac spc | ENSMUSG00
000039168.11 | Dap | chr15:31224313
-31274341 | 36.2 | 13.2 | 0.4 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000050553.2 | Gk2 | chr5:97392439-
97588125 | 204.0 | 75.6 | 0.4 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000009115.5 | Spatc1I | chr10:76562271
-76570532 | 25.2 | 9.0 | 0.4 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000030030.4 | 1700003E
16Rik | chr6:83156403-
83162975 | 214.5 | 79.3 | 0.4 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000075227.6 | Znhit2 | chr19:6061191-
6062472 | 140.2 | 51.7 | 0.4 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000050996.6 | Cetn1 | chr18:9615523-
9619478 | 198.1 | 73.1 | 0.4 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000052566.7 | Hook2 | chr8:84990594-
85003364 | 20.6 | 7.3 | 0.4 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000028294.11 | 1700003M
02Rik | chr4:34688558-
34730206 | 279.3 | 103.2 | 0.4 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000033368.8 | Trim69 | chr2:122120107
-122186189 | 58.7 | 21.4 | 0.4 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000030801.9 | Kat8 | chr7:127912516
-127930113 | 68.5 | 25.0 | 0.4 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000040794.5 | C1qtnf4 | chr2:90885859-
90890525 | 106.5 | 38.9 | 0.4 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000028392.11 | Bspry | chr4:62480052-
62497298 | 98.6 | 36.0 | 0.4 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000025324.7 | Atp10a | chr7:58658201-
58829426 | 8.9 | 3.0 | 0.4 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000047383.7 | Als2cr11 | chr1:58997314-
59006218 | 62.1 | 22.5 | 0.4 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000022972.5 | 1110004E
09Rik | chr16:90925808
-90934927 | 138.7 | 50.6 | 0.4 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000027793.2 | Ccna1 | chr3:55045468-
55055055 | 33.7 | 12.0 | 0.4 | 3.4×10 ⁻² | | Pac spc | ENSMUSG00
000029073.5 | Cptp | chr4:155864722
-155869440 | 70.9 | 25.7 | 0.4 | 1.4×10 ⁻² | |---------|---------------------------|-------------------|------------------------------|-------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000052075.6 | 1700029F
12Rik | chr13:97021863
-97034362 | 291.8 | 106.2 | 0.4 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000024937.10 | Ehbp1l1 | chr19:5707375-
5726317 | 31.2 | 11.1 | 0.4 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000022525.9 | Hrasls | chr16:29209694
-29230531 | 84.8 | 30.5 | 0.4 | 4.7×10 ⁻² | | Pac spc | ENSMUSG00
000026807.8 | Ak8 | chr2:28700163-
28813165 | 88.2 | 31.7 | 0.4 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000061032.8 | Rrp1 | chr10:78400361
-78413043 | 245.9 | 88.9 | 0.4 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000037979.9 | Ccdc92 | chr5:124834417
-124862424 | 269.0 | 96.9 | 0.4 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000042404.12 | Dennd4b | chr3:90265184-
90280669 | 16.5 | 5.6 | 0.4 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000038587.8 | Akap12 | chr10:4266328-
4359468 | 86.7 | 31.0 | 0.4 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000026790.15 | Odf2 | chr2:29889220-
29931746 | 609.6 | 217.8 | 0.4 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000023170.10 | Gps2 | chr11:69913887
-69916591 | 120.5 | 42.8 | 0.4 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000050957.4 | Insl6 | chr19:29321343
-29325356 | 137.4 | 48.8 | 0.4 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000028576.8 | Ift74 |
chr4:94614490-
94693229 | 68.2 | 24.0 | 0.4 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000031786.6 | Drc7 | chr8:95055102-
95078141 | 36.5 | 12.7 | 0.4 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000047104.4 | Pbp2 | chr6:135309783
-135310347 | 119.8 | 42.3 | 0.4 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000022375.6 | Lrrc6 | chr15:66379857
-66500910 | 44.1 | 15.4 | 0.4 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000045246.7 | Kcng4 | chr8:119623853
-119635680 | 8.0 | 2.5 | 0.4 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000035314.8 | Gdpd5 | chr7:99381548-
99460983 | 3.2 | 0.8 | 0.4 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000024387.9 | Csnk2b | chr17:35116195
-35128855 | 719.3 | 254.7 | 0.4 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000068854.7 | Hist2h2be | chr3:96221118-
96223738 | 17.1 | 5.7 | 0.4 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000046447.3 | Camk2n1 | chr4:138454313
-138460123 | 7.8 | 2.4 | 0.4 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000074384.3 | Al429214 | chr8:36993574-
36995531 | 35.6 | 12.2 | 0.4 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000048707.9 | Tprn | chr2:25262617-
25269885 | 104.4 | 36.4 | 0.4 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000029798.9 | Herc6 | chr6:57580991-
57665136 | 4.5 | 1.2 | 0.4 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000062270.9 | Morf4l1 | chr9:90091664-
90114774 | 622.7 | 218.1 | 0.4 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000037001.10 | Zfp39 | chr11:58888152
-58904225 | 43.3 | 14.9 | 0.4 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000031027.11 | Stk33 | chr7:109279222
-109444893 | 180.4 | 62.6 | 0.3 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000054428.8 | Atpif1 | chr4:132530554
-132533659 | 159.8 | 55.1 | 0.3 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000026650.11 | Meig1 | chr2:3409042-
3422648 | 953.3 | 329.8 | 0.3 | 9.2×10 ⁻³ | | | ENION #1100000 | <u> </u> | -10-40405044 | | | I | T | |---------|---------------------------|-------------------|-------------------------------|-------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000042293.7 | Gm5617 | chr9:48495344-
48495964 | 406.6 | 140.4 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000038782.4 | 1700028J
19Rik | chr7:44229932-
44236122 | 318.6 | 109.7 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000073758.6 | Sh3d21 | chr4:126150601
-126163491 | 37.7 | 12.7 | 0.3 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000041399.3 | 1700013G
24Rik | chr4:137453283
-137455461 | 53.7 | 18.1 | 0.3 | 3.4×10 ⁻² | | Pac spc | ENSMUSG00
000045835.4 | Hdgfl1 | chr13:26768172
-26770119 | 180.7 | 61.6 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000038729.16 | Akap2 | chr4:57434246-
57896984 | 1.3 | 0.1 | 0.3 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000034227.7 | Foxj1 | chr11:11633070
3-116335399 | 15.4 | 4.9 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000038949.8 | Cnst | chr1:179546369
-179627478 | 12.8 | 4.0 | 0.3 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000027517.9 | Ankrd60 | chr2:173568665
-173578365 | 44.8 | 15.0 | 0.3 | 3.7×10 ⁻² | | Pac spc | ENSMUSG00
000042249.7 | Adrbk2 | chr5:112910477
-113015514 | 8.4 | 2.5 | 0.3 | 2.4×10 ⁻² | | Pac spc | ENSMUSG00
000073471.2 | Rsph3a | chr17:7881105-
7979824 | 89.2 | 30.0 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000046487.6 | Mospd4 | chr18:46465214
-46465790 | 85.8 | 28.8 | 0.3 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000037418.5 | Best1 | chr19:9985173-
10001633 | 19.9 | 6.4 | 0.3 | 2.1×10 ⁻² | | Pac spc | ENSMUSG00
000050107.2 | Gsg2 | chr11:73090582
-73147446 | 161.2 | 54.2 | 0.3 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000029151.10 | Slc30a3 | chr5:31086105-
31112526 | 91.4 | 30.5 | 0.3 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000034552.4 | Zswim2 | chr2:83915078-
83941228 | 26.7 | 8.7 | 0.3 | 2.8×10 ⁻² | | Pac spc | ENSMUSG00
000026255.11 | Efhd1 | chr1:87264362-
87310839 | 280.4 | 94.2 | 0.3 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000078627.5 | 43169 | chr11:10536079
7-105456735 | 296.4 | 99.5 | 0.3 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000031849.8 | Сотр | chr8:70373547-
70382065 | 42.8 | 14.1 | 0.3 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000024565.8 | Sall3 | chr18:80966375
-80988575 | 3.6 | 0.9 | 0.3 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000099958.1 | 1700010B
13Rik | chr15:73645851
-73652347 | 19.3 | 6.2 | 0.3 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000039963.14 | Ccdc40 | chr11:11922857
1-119265236 | 68.8 | 22.8 | 0.3 | 3.1×10 ⁻² | | Pac spc | ENSMUSG00
000021997.4 | Lrrc63 | chr14:75084302
-75130881 | 37.7 | 12.3 | 0.3 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000047841.8 | BC051628 | chr2:181220012
-181222854 | 37.4 | 12.2 | 0.3 | 3.0×10 ⁻² | | Pac spc | ENSMUSG00
000068860.5 | Gm128 | chr3:95236919-
95251193 | 229.1 | 76.2 | 0.3 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000025480.4 | Syce1 | chr7:140777228
-140787854 | 215.2 | 71.6 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000070424.7 | Art5 | chr7:102096878
-102111148 | 26.8 | 8.6 | 0.3 | 3.0×10 ⁻² | | Pac spc | ENSMUSG00
000028555.11 | Ttc39a | chr4:109406622
-109444745 | 16.1 | 5.1 | 0.3 | 3.5×10 ⁻² | | Pac spc | ENSMUSG00
000037910.2 | 1700018B
24Rik | chr3:48605731-
48609102 | 192.6 | 63.8 | 0.3 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000020878.6 | Lrrc46 | chr11:97034601
-97041407 | 383.9 | 127.5 | 0.3 | 9.2×10 ⁻³ | |---------|---------------------------|-------------------|-------------------------------|--------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000022442.11 | Ttll1 | chr15:83483771
-83510893 | 21.5 | 6.8 | 0.3 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000024033.9 | Rsph1 | chr17:31255018
-31277356 | 743.0 | 246.0 | 0.3 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000064280.9 | Ccdc146 | chr5:21292960-
21424677 | 27.4 | 8.7 | 0.3 | 4.7×10 ⁻² | | Pac spc | ENSMUSG00
000035420.6 | Fam170a | chr18:50278368
-50283019 | 32.3 | 10.4 | 0.3 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000036398.9 | Ppp1r11 | chr17:36948355
-36951741 | 298.8 | 98.6 | 0.3 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000040424.11 | Hipk4 | chr7:27523266-
27531175 | 16.4 | 5.1 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000032334.9 | Loxl1 | chr9:58287722-
58313212 | 4.1 | 1.0 | 0.3 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000044566.11 | Cage1 | chr13:38006051
-38061433 | 128.1 | 42.0 | 0.3 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000043621.9 | Ubxn10 | chr4:138709836
-138746132 | 89.4 | 29.1 | 0.3 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000006930.11 | Нар1 | chr11:10034732
6-100356128 | 27.3 | 8.6 | 0.3 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000028976.6 | Slc2a5 | chr4:150119282
-150144169 | 223.2 | 72.7 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000021660.10 | Btf3 | chr13:98309895
-98324415 | 173.5 | 56.4 | 0.3 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000031518.6 | Spata4 | chr8:54550330-
54610098 | 555.1 | 180.8 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000017195.11 | Zpbp2 | chr11:98551096
-98558665 | 133.8 | 43.2 | 0.3 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000031893.6 | Tsnaxip1 | chr8:105827743
-105844676 | 60.8 | 19.4 | 0.3 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000024430.9 | Cabyr | chr18:12741323
-12755146 | 56.3 | 17.9 | 0.3 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000035785.5 | Cmtm2b | chr8:104322236
-104330756 | 245.4 | 79.1 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000003354.5 | Ccdc65 | chr15:98708206
-98723326 | 121.7 | 39.0 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000074575.4 | Kcng1 | chr2:168260116
-168281736 | 6.3 | 1.7 | 0.3 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000050677.2 | Ccdc96 | chr5:36484587-
36488172 | 46.2 | 14.5 | 0.3 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000026578.6 | Ccdc181 | chr1:164275584
-164287847 | 149.5 | 47.6 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000027528.8 | Fabp9 | chr3:10179850-
10197283 | 1302.0 | 415.4 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000080268.3 | Brms1 | chr19:5041403-
5049917 | 65.1 | 20.4 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000041566.3 | Tssk1 | chr16:17894222
-17897922 | 14.4 | 4.2 | 0.3 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000024973.12 | Hrasls5 | chr19:7612540-
7639642 | 480.9 | 152.5 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000087122.1 | 4930403D
09Rik | chr11:34226814
-34783892 | 111.3 | 34.9 | 0.3 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000073380.1 | Arrdc5 | chr17:56294112
-56300286 | 23.4 | 7.1 | 0.3 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000044581.7 | 4932415D
10Rik | chr10:82282115
-82285278 | 16.0 | 4.7 | 0.3 | 2.4×10 ⁻² | | | ENSMUSG00 | | chr6:52162510- | | | | | |---------|---------------------------|-------------------|-------------------------------|-------|-------|-----|----------------------| | Pac spc | 000000942.10 | Ноха4 | 52221854 | 30.8 | 9.4 | 0.3 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000045915.11 | Ccdc42 | chr11:68587020
-68597966 | 58.3 | 18.0 | 0.3 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000033739.8 | Fkbpl | chr17:34644763
-34646324 | 62.3 | 19.2 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000052273.2 | Dnah3 | chr7:119922716
-120095177 | 8.4 | 2.3 | 0.3 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000022445.6 | Cyp2d26 | chr15:82790106
-82794245 | 7.7 | 2.1 | 0.3 | 4.6×10 ⁻² | | Pac spc | ENSMUSG00
000084135.3 | Pom121I1
2 | chr11:14599313
-14599862 | 79.2 | 24.4 | 0.3 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000030672.8 | Mylpf | chr7:127211607
-127214298 | 1.1 | 0.0 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000035085.5 | 1700020L
24Rik | chr11:83437676
-83463071 | 25.5 | 7.6 | 0.3 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000024175.1 | Tekt4 | chr17:25471589
-25476594 | 51.7 | 15.7 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000029188.10 | Slc34a2 | chr5:53038081-
53071664 | 28.2 | 8.4 | 0.3 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000026546.12 | Cfap45 | chr1:172520800
-172563717 | 62.6 | 19.1 | 0.3 | 2.0×10 ⁻² | | Pac spc |
ENSMUSG00
000021977.7 | 1700129C
05Rik | chr14:59133039
-59142893 | 104.2 | 31.9 | 0.3 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000042190.8 | Cmklr1 | chr5:113612353
-113650426 | 10.4 | 2.9 | 0.3 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000021258.9 | Ccnk | chr12:10817973
7-108203359 | 174.0 | 53.4 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000027030.11 | Stk39 | chr2:68210444-
68472268 | 207.1 | 63.5 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000056223.7 | Spata31 | chr13:64917405
-64923184 | 14.8 | 4.2 | 0.3 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000049985.10 | Ankrd55 | chr13:11228845
0-112384002 | 6.6 | 1.7 | 0.3 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000100075.1 | 1700018L
02Rik | chr19:29020832
-29048729 | 53.7 | 16.1 | 0.3 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000030189.11 | Ybx3 | chr6:131364857
-131388450 | 619.0 | 189.5 | 0.3 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000029517.9 | Ankrd7 | chr6:18866317-
18879586 | 56.9 | 17.0 | 0.3 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000030590.10 | Fam98c | chr7:29134853-
29156920 | 142.6 | 43.2 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000022439.5 | Parvg | chr15:84324025
-84342978 | 4.5 | 1.0 | 0.3 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000090843.2 | Gm17673 | chr12:83954498
-83984852 | 6.5 | 1.6 | 0.3 | 4.2×10 ⁻² | | Pac spc | ENSMUSG00
000102758.1 | RP23-
349M18.1 | chr3:23804334-
23939477 | 1.1 | 0.0 | 0.3 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000074127.5 | Cmtm2a | chr8:104281041
-104310145 | 397.0 | 120.0 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000078907.1 | Fam186b | chr15:99271017
-99287180 | 50.9 | 15.1 | 0.3 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000043986.5 | Spata31d
1d | chr13:59725924
-59731752 | 6.3 | 1.6 | 0.3 | 2.1×10 ⁻² | | Pac spc | ENSMUSG00
000046173.2 | Pabpc6 | chr17:9666496-
9669704 | 224.3 | 67.5 | 0.3 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000045573.9 | Penk | chr4:4133530-
4188703 | 39.2 | 11.5 | 0.3 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000020679.7 | Hnf1b | chr11:83850062
-83905819 | 4.6 | 1.0 | 0.3 | 4.8×10 ⁻² | |---------|---------------------------|-------------------|-------------------------------|-------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000049115.10 | Agtr1a | chr13:30336440
-30382867 | 7.7 | 2.0 | 0.3 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000008482.8 | Rnf151 | chr17:24715838
-24718057 | 31.6 | 9.1 | 0.3 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000028560.7 | Usp1 | chr4:98923809-
98935543 | 138.2 | 41.0 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000053783.5 | 1700016K
19Rik | chr11:75999911
-76003569 | 103.3 | 30.5 | 0.3 | 2.1×10 ⁻² | | Pac spc | ENSMUSG00
000046755.5 | Kif2b | chr11:91575314
-91577558 | 42.6 | 12.3 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000026125.5 | Prss39 | chr1:34498409-
34503063 | 68.8 | 20.1 | 0.3 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000031841.14 | Cdh13 | chr8:118283732
-119324921 | 1.9 | 0.2 | 0.3 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000021643.10 | Serf1 | chr13:10010679
4-100114571 | 403.1 | 119.2 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000028813.2 | CK137956 | chr4:127927591
-127970951 | 71.5 | 20.8 | 0.3 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000057816.3 | 1700007G
11Rik | chr5:98329353-
98801910 | 96.1 | 28.1 | 0.3 | 3.3×10 ⁻² | | Pac spc | ENSMUSG00
000073102.3 | Drc1 | chr5:30281387-
30366708 | 39.1 | 11.2 | 0.3 | 1.1×10 ⁻² | | Pac spc | ENSMUSG00
000043913.10 | Ccdc60 | chr5:116123613
-116288985 | 185.4 | 54.5 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000046750.12 | BC089491 | chr7:28284651-
28291186 | 35.3 | 10.1 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000029679.7 | Hyal6 | chr6:24733244-
24745452 | 39.7 | 11.4 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000027968.7 | Larp7 | chr3:127536953
-127553348 | 118.1 | 34.5 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000032204.9 | Aqp9 | chr9:71110658-
71168682 | 77.4 | 22.4 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000038555.7 | Reep2 | chr18:34840588
-34847463 | 31.4 | 8.8 | 0.3 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000071234.2 | Syndig1I | chr12:84677277
-84698807 | 5.5 | 1.3 | 0.3 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000020475.3 | Pgam2 | chr11:5801639-
5803733 | 601.0 | 175.4 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000022269.9 | 43170 | chr15:26309047
-26409576 | 256.1 | 74.3 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000070980.4 | Actl7b | chr4:56740004-
56741443 | 157.5 | 45.6 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000020799.12 | Tekt1 | chr11:72344721
-72362442 | 128.5 | 36.9 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000078442.2 | Ccdc105 | chr10:78746923
-78753067 | 27.7 | 7.6 | 0.3 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000028314.6 | Toporsl | chr4:52596273-
52612430 | 36.7 | 10.2 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000036557.4 | 1700011E
24Rik | chr17:87389570
-87427741 | 297.1 | 84.8 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000037568.8 | Vash2 | chr1:190947645
-190979296 | 16.8 | 4.4 | 0.3 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000038398.7 | Upf3a | chr8:13785614-
13798538 | 108.0 | 30.3 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000021585.8 | Cast | chr13:74694285
-74807921 | 12.7 | 3.2 | 0.3 | 3.8×10 ⁻² | | Dagana | ENSMUSG00 | Drdv6h | chr2:80292471- | 101 5 | 26.0 | 0.2 | 4.3×10 ⁻³ | |---------|---------------------------|-------------------|-------------------------------|-------|------|-----|----------------------| | Pac spc | 000050114.7 | Prdx6b | 80295356 | 131.5 | 36.9 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000021552.6 | Gkap1 | chr13:58233350
-58274188 | 202.5 | 56.9 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000038025.7 | Phf2 | chr13:48801749
-48870885 | 46.5 | 12.7 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000040829.10 | Zmynd15 | chr11:70453982
-70466202 | 38.5 | 10.5 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000074764.7 | Sel1l2 | chr2:140229854
-140389706 | 21.0 | 5.5 | 0.3 | 2.2×10 ⁻² | | Pac spc | ENSMUSG00
000063971.6 | 1700011A
15Rik | chr15:10144774
4-101453909 | 30.5 | 8.2 | 0.3 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000029624.10 | Ptcd1 | chr5:145140361
-145167108 | 40.5 | 11.0 | 0.3 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000030847.7 | Bag3 | chr7:128523582
-128546977 | 10.6 | 2.6 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000029235.10 | Pdcl2 | chr5:76312114-
76331156 | 291.3 | 81.0 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000036463.7 | 4930544G
11Rik | chr6:65952570-
65954012 | 146.2 | 40.4 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000037638.5 | Zbtb42 | chr12:11267882
7-112682747 | 22.5 | 5.9 | 0.3 | 1.3×10 ⁻² | | Pac spc | ENSMUSG00
000039540.8 | 4921524L
21Rik | chr18:6603632-
6638966 | 45.6 | 12.3 | 0.3 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000021545.4 | 1700067P
10Rik | chr17:48089631
-48090920 | 28.2 | 7.5 | 0.3 | 4.7×10 ⁻² | | Pac spc | ENSMUSG00
000034675.13 | Dbn1 | chr13:55473428
-55488111 | 9.3 | 2.2 | 0.3 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000028845.11 | Tekt2 | chr4:126322120
-126325688 | 85.5 | 23.3 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000039335.7 | Spata16 | chr3:26637619-
26983212 | 159.5 | 43.6 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000021846.8 | Peli2 | chr14:48120868
-48260883 | 14.6 | 3.7 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000028310.2 | Ppp3r2 | chr4:49661610-
49845744 | 132.7 | 35.9 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000036214.9 | Znrd1as | chr17:36958591
-36965622 | 57.3 | 15.3 | 0.3 | 4.3×10 ⁻² | | Pac spc | ENSMUSG00
000024116.5 | Prss21 | chr17:23868055
-23873114 | 30.1 | 7.9 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000053868.3 | Gm5142 | chr14:59158502
-59178749 | 88.4 | 23.8 | 0.3 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000042581.10 | Thsd7b | chr1:129273301
-130219278 | 11.5 | 2.8 | 0.3 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000021499.8 | Catsper3 | chr13:55784567
-55808998 | 12.6 | 3.1 | 0.3 | 4.9×10 ⁻² | | Pac spc | ENSMUSG00
000070331.9 | Qrich2 | chr11:11644132
4-116455237 | 207.4 | 56.2 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000059810.14 | Rgs3 | chr4:62559846-
62704001 | 15.4 | 3.8 | 0.3 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000028637.11 | Ccdc30 | chr4:119322892
-119415521 | 166.0 | 44.3 | 0.3 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000033579.12 | Fa2h | chr8:111345134
-111393824 | 21.1 | 5.3 | 0.3 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000032680.7 | 6820408C
15Rik | chr2:152415586
-152444330 | 25.1 | 6.3 | 0.3 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000023873.8 | 1700010l1
4Rik | chr17:8988332-
9008319 | 313.4 | 83.5 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000044362.7 | Ccdc89 | chr7:90426311-
90428660 | 47.0 | 12.2 | 0.3 | 1.1×10 ⁻² | |---------|---------------------------|-------------------|-------------------------------|-------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000067367.5 | Lyar | chr5:38220469-
38234306 | 529.1 | 140.6 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000031831.6 | Dnaaf1 | chr8:119575234
-119605222 | 308.3 | 81.6 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000097863.1 | 1010001B
22Rik | chr5:109995510
-109996398 | 1.4 | 0.0 | 0.3 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000051732.2 | Pabpc2 | chr18:39773496
-39776082 | 280.5 | 73.2 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000029999.10 | Tgfa | chr6:86195250-
86275639 | 8.3 | 1.8 | 0.3 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000031493.9 | Ggn | chr7:29170219-
29173933 | 150.0 | 38.6 | 0.3 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000035522.3 | Tsga8 | chrX:82948869-
85206141 | 40.9 | 10.2 | 0.3 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000049476.8 | 1700104B
16Rik | chr8:33730533-
33731819 | 64.0 | 16.2 | 0.3 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000037621.7 | Atoh8 |
chr6:72206176-
72235577 | 18.2 | 4.3 | 0.3 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000059395.4 | Nkapl | chr13:21467046
-21468509 | 87.3 | 22.1 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000030549.5 | Rhcg | chr7:79593362-
79617657 | 14.8 | 3.4 | 0.3 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000000632.9 | Sez6 | chr11:77930799
-77979048 | 6.5 | 1.3 | 0.3 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000017417.10 | Plxdc1 | chr11:97923237
-97986444 | 14.5 | 3.4 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000071104.5 | Ccdc110 | chr8:45934618-
45944145 | 20.5 | 4.9 | 0.3 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000023949.6 | Tcte1 | chr17:45523433
-45549677 | 71.1 | 17.8 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000071636.6 | Rimbp3 | chr16:17208134
-17213921 | 123.3 | 31.1 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000062075.9 | Lmnb2 | chr10:80901202
-80918245 | 12.1 | 2.7 | 0.3 | 3.9×10 ⁻² | | Pac spc | ENSMUSG00
000022620.10 | Arsa | chr15:89472475
-89484847 | 99.8 | 24.9 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000040866.9 | Rsph6a | chr7:19054689-
19074447 | 92.8 | 23.1 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000030292.7 | Smco2 | chr6:146850103
-146871406 | 62.5 | 15.4 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000024209.9 | 1700061G
19Rik | chr17:56875476
-56888904 | 17.2 | 3.9 | 0.3 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000022915.3 | 1700093J
21Rik | chr16:96082675
-96089070 | 1.5 | 0.0 | 0.3 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000079334.4 | Nat6 | chr9:107575819
-107587425 | 15.5 | 3.5 | 0.3 | 4.4×10 ⁻² | | Pac spc | ENSMUSG00
000048988.7 | Elfn1 | chr5:139907942
-139974711 | 7.0 | 1.4 | 0.2 | 2.5×10 ⁻² | | Pac spc | ENSMUSG00
000017832.2 | Hspb9 | chr11:10071384
9-100714575 | 352.7 | 87.7 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000022441.13 | Efcab6 | chr15:83866711
-84065379 | 70.3 | 17.1 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000038246.6 | Fam50b | chr13:34734849
-34747613 | 67.2 | 16.3 | 0.2 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000034683.8 | Ppp1r1c | chr2:79707779-
79818496 | 22.3 | 5.1 | 0.2 | 3.8×10 ⁻² | | | | I | I I | | 1 | 1 | 1 | |---------|---------------------------|-------------------|-------------------------------|-------|-------|-----|----------------------| | Pac spc | ENSMUSG00
000034706.12 | Dnaic2 | chr11:11472740
7-114757889 | 18.4 | 4.2 | 0.2 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000078127.2 | Fam170b | chr14:32833961
-32836789 | 18.9 | 4.3 | 0.2 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000044117.8 | 29000110
08Rik | chr16:13981701
-14101500 | 10.6 | 2.2 | 0.2 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000012042.4 | 4930579F
01Rik | chr3:138164134
-138186713 | 12.1 | 2.6 | 0.2 | 4.8×10 ⁻² | | Pac spc | ENSMUSG00
000026649.10 | 1700009P
17Rik | chr1:171113917
-171126967 | 42.3 | 9.8 | 0.2 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000079523.4 | Tmsb10 | chr6:72957346-
72958748 | 655.0 | 156.7 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000100937.1 | 1700020D
05Rik | chr19:5495277-
5510489 | 122.8 | 29.0 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000085464.1 | Gm16208 | chr8:107029674
-107031188 | 1.6 | 0.0 | 0.2 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000043859.4 | 1700049L
16Rik | chr10:71979889
-71980694 | 22.5 | 5.0 | 0.2 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000027518.3 | 1700021F
07Rik | chr2:173522585
-173528501 | 54.5 | 12.6 | 0.2 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000035179.3 | Ppp1r32 | chr19:10474256
-10482897 | 48.4 | 11.1 | 0.2 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000047025.4 | Ccer1 | chr10:97693058
-97694926 | 46.2 | 10.5 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000028610.12 | Dmrtb1 | chr4:107676289
-107684230 | 370.7 | 86.9 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000039330.4 | Tsga10ip | chr19:5390048-
5394401 | 78.3 | 18.0 | 0.2 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000036168.11 | Ccdc38 | chr10:93540631
-93605245 | 123.1 | 28.5 | 0.2 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000021056.7 | Tex21 | chr12:76198691
-76246746 | 19.1 | 4.1 | 0.2 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000055602.12 | Tcp10b | chr17:13061103
-13082481 | 47.8 | 10.7 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000083649.5 | Rasl2-9 | chr7:5124937-
5125950 | 72.2 | 16.3 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000022602.10 | Arc | chr15:74669082
-74672570 | 69.8 | 15.7 | 0.2 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000039391.7 | Ccdc81 | chr7:89866147-
89903629 | 16.9 | 3.5 | 0.2 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000030544.5 | Mesp1 | chr7:79792240-
79793788 | 44.4 | 9.7 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000020023.13 | Tmcc3 | chr10:94311948
-94612084 | 9.5 | 1.8 | 0.2 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000001948.9 | Spa17 | chr9:37603294-
37613720 | 164.8 | 36.8 | 0.2 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000018776.9 | Slc35g3 | chr11:69759889
-69761968 | 16.5 | 3.3 | 0.2 | 1.6×10 ⁻² | | Pac spc | ENSMUSG00
000038498.3 | Catsper1 | chr19:5335740-
5344153 | 15.1 | 3.0 | 0.2 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000081360.1 | Gm11718 | chr11:10719109
3-107191630 | 1.8 | 0.0 | 0.2 | 2.4×10 ⁻² | | Pac spc | ENSMUSG00
000020268.9 | Lyrm7 | chr11:54826865
-54860916 | 15.3 | 3.0 | 0.2 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000090273.3 | Prr22 | chr17:56770249
-56772208 | 27.7 | 5.7 | 0.2 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000084938.1 | BB557941 | chr2:57127478-
57181754 | 1.8 | 0.0 | 0.2 | 1.3×10 ⁻² | | | ENSMUSG00 | | chr17:7324645- | | | | | |---------|---------------------------|-------------------|-------------------------------|-------|------|-----|----------------------| | Pac spc | 000071322.8 | Tcp10a | 7345974 | 80.2 | 17.2 | 0.2 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000011263.11 | Exoc3l2 | chr7:19489055-
19496760 | 10.0 | 1.8 | 0.2 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000023165.9 | Ssxb2 | chrX:8454344-
8461726 | 1.8 | 0.0 | 0.2 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000021534.7 | 1700001L
19Rik | chr13:68597438
-68614231 | 14.8 | 2.8 | 0.2 | 4.6×10 ⁻² | | Pac spc | ENSMUSG00
000052469.8 | Тср10с | chr17:13354571
-13377223 | 65.1 | 13.6 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000043036.9 | Ccdc63 | chr5:122100950
-122138957 | 22.1 | 4.3 | 0.2 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000101963.1 | 1700001J
11Rik | chr9:40050364-
40053028 | 188.7 | 39.7 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000042189.5 | Tekt3 | chr11:63061653
-63094964 | 63.2 | 13.0 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000104111.1 | RP23-
71J17.3 | chr1:160041700
-160044331 | 1.9 | 0.0 | 0.2 | 3.6×10 ⁻² | | Pac spc | ENSMUSG00
000036598.3 | Ccdc113 | chr8:95534099-
95558888 | 106.7 | 22.1 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000032023.7 | 4931429I1
1Rik | chr9:40894848-
40964118 | 24.5 | 4.7 | 0.2 | 2.9×10 ⁻² | | Pac spc | ENSMUSG00
000027505.2 | Fam209 | chr2:172472519
-172474331 | 39.6 | 7.9 | 0.2 | 1.5×10 ⁻² | | Pac spc | ENSMUSG00
000084837.1 | 1700108N
11Rik | chr2:144305174
-144332639 | 43.2 | 8.5 | 0.2 | 4.5×10 ⁻² | | Pac spc | ENSMUSG00
000046585.8 | Cfap58 | chr19:47937711
-48035379 | 11.3 | 1.9 | 0.2 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000062154.9 | Tex33 | chr15:78378399
-78395912 | 40.9 | 7.9 | 0.2 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000024306.8 | Ccdc178 | chr18:21810896
-22171396 | 18.1 | 3.3 | 0.2 | 4.0×10 ⁻² | | Pac spc | ENSMUSG00
000097562.1 | Gm26639 | chr13:65590292
-65591561 | 2.0 | 0.0 | 0.2 | 2.4×10 ⁻² | | Pac spc | ENSMUSG00
000091955.2 | Gm9844 | chr7:24862212-
24862697 | 2.0 | 0.0 | 0.2 | 2.0×10 ⁻² | | Pac spc | ENSMUSG00
000087510.1 | 1700112K
13Rik | chr4:127810637
-127812173 | 2.0 | 0.0 | 0.2 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000072878.4 | 1700123L
14Rik | chr6:96113153-
96657198 | 254.1 | 49.8 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000012211.9 | Tex22 | chr12:11307450
1-113088917 | 102.9 | 19.8 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000080059.4 | Rps19-
ps3 | chr4:147821776
-147822202 | 2.1 | 0.0 | 0.2 | 2.7×10 ⁻² | | Pac spc | ENSMUSG00
000021338.13 | Lrrc16a | chr13:24012343
-24280795 | 11.2 | 1.7 | 0.2 | 1.7×10 ⁻² | | Pac spc | ENSMUSG00
000100585.1 | 1700108J
01Rik | chr14:12218169
3-122402232 | 181.0 | 33.8 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000049526.7 | Tmem202 | chr9:59518685-
59525501 | 28.7 | 5.0 | 0.2 | 7.0×10 ⁻³ | | Pac spc | ENSMUSG00
000029784.9 | Ssmem1 | chr6:30509848-
30520254 | 90.5 | 16.0 | 0.2 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000084475.1 | Gm25782 | chr16:8449497-
8449786 | 2.5 | 0.0 | 0.2 | 3.8×10 ⁻² | | Pac spc | ENSMUSG00
000087335.2 | 4930526F
13Rik | chr13:54926762
-54930256 | 6.0 | 0.6 | 0.2 | 4.7×10 ⁻² | | Pac spc | ENSMUSG00
000097066.1 | Gm26758 | chr13:65780904
-65867305 | 2.9 | 0.0 | 0.1 | 2.1×10 ⁻² | | | ENSMUSG00 | 4933421A | chr4:122961308 | | | | | |------------------|---------------------------|-------------------|-------------------------------|-------|--------|------|----------------------| | Pac spc | 000086443.1 | 08Rik | -122963475 | 6.6 | 0.5 | 0.1 | 5.0×10 ⁻² | | Pac spc | ENSMUSG00
000087332.1 | Gm12690 | chr4:99569499-
99573011 | 2.9 | 0.0 | 0.1 | 2.3×10 ⁻² | | Pac spc | ENSMUSG00
000030617.8 | Ccdc83 | chr7:90223877-
90265432 | 38.7 | 5.1 | 0.1 | 1.8×10 ⁻² | | Pac spc | ENSMUSG00
000094338.1 | Hist1h2bl | chr13:21715762
-21716143 | 3.4 | 0.0 | 0.1 | 4.3×10 ⁻³ | | Pac spc | ENSMUSG00
000053896.9 | 4933409G
03Rik | chr2:68582412-
68616387 | 74.9 | 8.9 | 0.1 | 1.9×10 ⁻² | | Pac spc | ENSMUSG00
000103011.1 | RP23-
241J7.2 | chr3:9072766-
9073211 | 4.3 | 0.0 | 0.1 | 1.4×10 ⁻² | | Pac spc | ENSMUSG00
000095331.3 | Ptma-ps1 | chr7:24063831-
24064140 | 4.6 | 0.0 | 0.1 | 2.6×10 ⁻² | | Pac spc | ENSMUSG00
000084372.1 | Gm13988 |
chr2:123273923
-123274211 | 10.1 | 0.0 | 0.0 | 9.2×10 ⁻³ | | Pac spc | ENSMUSG00
000048559.4 | 4930555K
19Rik | chr15:41173700
-41173871 | 50.6 | 0.0 | 0.0 | 1.5×10 ⁻² | | Dip spc | ENSMUSG00
000075014.1 | Gm10800 | chr2:98666546-
98667301 | 52.6 | 1072.4 | 20.2 | 4.9×10 ⁻² | | Dip spc | ENSMUSG00
000075015.3 | Gm10801 | chr2:98662236-
98664083 | 5.6 | 84.6 | 14.0 | 4.9×10 ⁻² | | Dip spc | ENSMUSG00
000000278.10 | Scpep1 | chr11:88905927
-88955465 | 13.6 | 61.1 | 4.4 | 4.9×10 ⁻² | | Dip spc | ENSMUSG00
000023572.12 | Ccndbp1 | chr2:121008402
-121016904 | 4.0 | 17.7 | 4.1 | 4.9×10 ⁻² | | Dip spc | ENSMUSG00
000058569.7 | Tmed9 | chr13:55593134
-55597663 | 8.2 | 29.1 | 3.4 | 4.9×10 ⁻² | | Dip spc | ENSMUSG00
000097164.1 | Cep83os | chr10:94673492
-94688613 | 38.4 | 125.2 | 3.2 | 4.9×10 ⁻² | | Dip spc | ENSMUSG00
000022136.7 | Dnajc3 | chr14:11893793
1-118981702 | 21.8 | 61.6 | 2.8 | 4.9×10 ⁻² | | Dip spc | ENSMUSG00
000022501.5 | Prm1 | chr16:10796325
-10796886 | 126.4 | 308.2 | 2.4 | 4.9×10 ⁻² | | Dip spc | ENSMUSG00
000038015.6 | Prm2 | chr16:10791379
-10796134 | 107.0 | 248.8 | 2.3 | 4.9×10 ⁻² | | Secondary
spc | ENSMUSG00
000023572.12 | Ccndbp1 | chr2:121008402
-121016904 | 0.2 | 12.0 | 17.3 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000033713.7 | Foxn3 | chr12:99194979
-99450111 | 1.2 | 15.3 | 9.4 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000000278.10 | Scpep1 | chr11:88905927
-88955465 | 4.9 | 33.9 | 6.3 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000022136.7 | Dnajc3 | chr14:11893793
1-118981702 | 4.2 | 29.2 | 6.3 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000022300.9 | Dcaf13 | chr15:39112864
-39146856 | 2.0 | 12.6 | 5.2 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000048310.8 | Pskh1 | chr8:105900440
-105931778 | 2.2 | 10.2 | 4.0 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000028684.10 | Urod | chr4:116989964
-116994413 | 2.4 | 10.0 | 3.7 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000058569.7 | Tmed9 | chr13:55593134
-55597663 | 0.9 | 4.3 | 3.5 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000025134.2 | Alyref | chr11:12059212
0-120598365 | 9.0 | 31.6 | 3.4 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000074997.3 | Pin1rt1 | chr2:104713925
-104716379 | 3.7 | 10.9 | 2.7 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000083282.2 | Ctsf | chr19:4855128-
4860912 | 0.4 | 1.9 | 2.7 | 3.1×10 ⁻² | | | 1 | 1 | | | 1 | Ι | 1 | |------------------|---------------------------|-------------------|-------------------------------|-------|-------|------|----------------------| | Secondary
spc | ENSMUSG00
000053453.8 | Thoc7 | chr14:13918443
-13961225 | 37.5 | 100.8 | 2.7 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000079606.1 | Gm595 | chrX:48841465-
48877713 | 18.5 | 45.3 | 2.4 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000019210.8 | Atp6v1e1 | chr6:120795244
-120822685 | 7.9 | 18.7 | 2.3 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000102483.1 | RP23-
474A1.1 | chr1:177808549
-177962233 | 14.7 | 31.9 | 2.1 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000021534.7 | 1700001L
19Rik | chr13:68597438
-68614231 | 108.1 | 48.8 | 0.5 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000001948.9 | Spa17 | chr9:37603294-
37613720 | 529.1 | 239.1 | 0.5 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000099863.1 | 1700031L
13Rik | chr5:82122407-
82124713 | 103.6 | 36.1 | 0.4 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000036249.12 | Rbm43 | chr2:51924447-
51935163 | 22.0 | 6.9 | 0.3 | 3.1×10 ⁻² | | Secondary
spc | ENSMUSG00
000064288.4 | Hist1h4k | chr13:21750193
-21750505 | 1.5 | 0.0 | 0.3 | 3.1×10 ⁻² | | Sptd | ENSMUSG00
000023572.12 | Ccndbp1 | chr2:121008402
-121016904 | 0.3 | 9.5 | 12.5 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000022136.7 | Dnajc3 | chr14:11893793
1-118981702 | 4.0 | 24.1 | 5.5 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000002985.11 | Apoe | chr7:19696108-
19699166 | 3.0 | 18.6 | 5.4 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000058252.6 | 170000810
5Rik | chrX:13565469
7-135693790 | 16.2 | 87.7 | 5.3 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000022300.9 | Dcaf13 | chr15:39112864
-39146856 | 1.5 | 9.5 | 5.0 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000000278.10 | Scpep1 | chr11:88905927
-88955465 | 2.9 | 15.3 | 4.6 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000047654.6 | Tssk6 | chr8:69887787-
69903518 | 82.3 | 378.9 | 4.6 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000048310.8 | Pskh1 | chr8:105900440
-105931778 | 2.0 | 11.1 | 4.6 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000053453.8 | Thoc7 | chr14:13918443
-13961225 | 18.4 | 83.6 | 4.4 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000019210.8 | Atp6v1e1 | chr6:120795244
-120822685 | 2.8 | 14.2 | 4.4 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000045217.5 | Ppp1r2-
ps9 | chrX:15110584-
15111466 | 18.7 | 82.6 | 4.3 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000029766.4 | 1700012A
03Rik | chr6:32050245-
32058921 | 32.5 | 136.3 | 4.1 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000036002.8 | Fam214b | chr4:43027689-
43053253 | 10.2 | 43.7 | 4.1 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000051896.4 | Tex37 | chr6:70913086-
70918927 | 55.7 | 232.4 | 4.1 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000036918.11 | Ttc7 | chr17:87282885
-87381769 | 14.1 | 58.6 | 4.1 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000031085.11 | Gm498 | chr7:143866870
-143897506 | 31.3 | 127.5 | 4.0 | 3.7×10 ⁻² | | Sptd | ENSMUSG00
000026473.11 | Glul | chr1:153849541
-153909723 | 63.6 | 255.3 | 4.0 | 4.8×10 ⁻² | | Sptd | ENSMUSG00
000076438.5 | Oxct2b | chr4:123105164
-123139951 | 47.5 | 190.9 | 4.0 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000050087.3 | Cby3 | chr11:50354461
-50359699 | 14.3 | 57.6 | 3.9 | 4.8×10 ⁻² | | Sptd | ENSMUSG00
000076436.1 | Oxct2a | chr4:123312644
-123343252 | 44.3 | 173.4 | 3.9 | 2.4×10 ⁻² | | | ENCMUCOO | | obr0:14006070 | | 1 | | T | |------|---------------------------|-------------------|-------------------------------|-------|-------|-----|----------------------| | Sptd | ENSMUSG00
000027562.8 | Car2 | chr3:14886272-
14900770 | 29.2 | 112.3 | 3.8 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000047394.7 | Odf3b | chr15:89377449
-89379254 | 10.0 | 38.4 | 3.7 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000049653.4 | Spatc1 | chr15:76268088
-76292572 | 38.1 | 139.6 | 3.6 | 3.7×10 ⁻² | | Sptd | ENSMUSG00
000078346.3 | Gm5132 | chrX:14211147-
14211661 | 13.0 | 47.7 | 3.6 | 3.7×10 ⁻² | | Sptd | ENSMUSG00
000003178.7 | Mical3 | chr6:121007240
-121081609 | 41.8 | 148.6 | 3.5 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000000125.5 | Wnt3 | chr11:10377414
9-103817957 | 5.2 | 18.8 | 3.4 | 3.7×10 ⁻² | | Sptd | ENSMUSG00
000074259.6 | Gramd2 | chr9:59680143-
59718874 | 2.3 | 8.9 | 3.4 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000021791.6 | Dydc2 | chr14:41049208
-41069074 | 13.9 | 47.5 | 3.3 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000027482.8 | Bpifa3 | chr2:154130335
-154138356 | 29.1 | 98.1 | 3.3 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000036046.10 | 5031439G
07Rik | chr15:84943935
-84988551 | 8.1 | 27.7 | 3.3 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000021194.5 | Chga | chr12:10255496
8-102565027 | 0.6 | 2.9 | 3.2 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000020307.10 | Cdc34 | chr10:79682194
-79688394 | 102.2 | 325.7 | 3.2 | 3.7×10 ⁻² | | Sptd | ENSMUSG00
000031770.11 | Herpud1 | chr8:94377920-
94395377 | 49.9 | 157.5 | 3.1 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000056508.5 | 1700001K
19Rik | chr12:11066768
8-110682619 | 49.4 | 153.8 | 3.1 | 4.8×10 ⁻² | | Sptd | ENSMUSG00
000050721.8 | Plekho2 | chr9:65554385-
65580040 | 5.3 | 16.9 | 3.0 | 3.7×10 ⁻² | | Sptd | ENSMUSG00
000058794.8 | Nfe2 | chr15:10324821
1-103258403 | 0.5 | 2.6 | 3.0 | 3.7×10 ⁻² | | Sptd | ENSMUSG00
000031930.10 | Wwp2 | chr8:107436397
-107558594 | 13.0 | 39.9 | 3.0 | 4.8×10 ⁻² | | Sptd | ENSMUSG00
000071076.5 | Jund | chr8:70697738-
70700616 | 13.6 | 41.3 | 3.0 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000048038.6 | 4932418E
24Rik | chr2:26271645-
26294557 | 31.4 | 91.7 | 2.9 | 4.8×10 ⁻² | | Sptd | ENSMUSG00
000024197.9 | Plin3 | chr17:56278961
-56290511 | 1.9 | 5.9 | 2.6 | 3.7×10 ⁻² | | Sptd | ENSMUSG00
000083282.2 | Ctsf | chr19:4855128-
4860912 | 0.2 | 1.4 | 2.6 | 3.7×10 ⁻² | | Sptd | ENSMUSG00
000014791.9 | Elmo3 | chr8:105305600
-105310623 | 0.3 | 1.3 | 2.3 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000036949.12 | Slc39a12 | chr2:14388315-
14494977 | 4.7 | 1.4 | 0.4 | 2.4×10 ⁻² | | Sptd | ENSMUSG00
000099508.1 | 1700030L
20Rik | chr3:136435269
-136449349 | 16.5 | 5.3 | 0.3 | 4.8×10 ⁻² | | Sptd | ENSMUSG00
000102758.1 | RP23-
349M18.1 | chr3:23804334-
23939477 | 8.4 | 2.4 | 0.3 | 2.4×10 ⁻² | Table S3. Expression of piRNA pathway genes in pi6em1/em1 cells. | Gene Ensembl ID | C57BL/6
(fpkm) | pi6 ^{em1/em1}
(fpkm) | <i>pi6</i> ^{em1/em1}
———————————————————————————————————— | FDR | |-----------------|-------------------|----------------------------------|---|-----| |-----------------|-------------------|----------------------------------|---|-----| **Pachytene Spermatocyte** | | pomatodyto | | | | | |--------------|-----------------------|-------|-------|-----|-----| | Piwil1 | ENSMUSG00000029423.6 | 491.0 | 377.3 | 0.8 | 0.7 | | Piwil2 | ENSMUSG00000033644.4 | 154.5 | 237.4 | 1.5 | 0.4 | | Mov10l1 | ENSMUSG00000015365.11 | 100.0 | 164.5 | 1.6 | 0.5 | | A-Myb | ENSMUSG00000025912.12 | 51.6 | 49.8 | 1.0 | 1.0 | | Tdrd1 | ENSMUSG00000025081.9 | 188.6 | 194.1 | 1.0 | 1.0 | | Tdrd6 | ENSMUSG00000040140.10 | 272.3 | 117.1 | 0.4 | 0.1 | | UAP56/Ddx39b | ENSMUSG00000019432.11 | 90.5 | 115.8 | 1.3 | 0.6 | | PLD6 | ENSMUSG00000043648.7 | 121.0 | 85.9 | 0.7 | 0.5 | | Papi/Tdrkh | ENSMUSG00000041912.8 | 29.4 | 36.4 | 1.2
| 0.7 | | Tdrd12 | ENSMUSG00000030491.12 | 109.4 | 119.1 | 1.1 | 0.9 | | Ddx4 | ENSMUSG00000021758.9 | 259.6 | 220.5 | 0.8 | 0.8 | | Piwil4 | ENSMUSG00000036912.13 | 0.0 | 1.8 | 4.4 | 0.5 | | Mael | ENSMUSG00000040629.4 | 600.4 | 340.9 | 0.6 | 0.2 | | Rnf17 | ENSMUSG00000000365.8 | 85.1 | 99.4 | 1.2 | 0.8 | | Henmt1 | ENSMUSG00000045662.12 | 37.1 | 30.7 | 0.8 | 0.8 | | PNLDC1 | ENSMUSG00000073460.4 | 8.0 | 11.3 | 1.4 | 0.6 | **Diplotene Spermatocyte** | Piwil1 | ENSMUSG00000029423.6 | 270.5 | 344.8 | 1.3 | 1.0 | |--------------|-----------------------|-------|-------|-----|-----| | Piwil2 | ENSMUSG00000033644.4 | 54.6 | 75.7 | 1.4 | 1.0 | | Mov10l1 | ENSMUSG00000015365.11 | 33.9 | 43.2 | 1.3 | 1.0 | | A-Myb | ENSMUSG00000025912.12 | 43.2 | 47.4 | 1.1 | 1.0 | | Tdrd1 | ENSMUSG00000025081.9 | 79.7 | 109.9 | 1.4 | 1.0 | | Tdrd6 | ENSMUSG00000040140.10 | 473.1 | 473.7 | 1.0 | 1.0 | | UAP56/Ddx39b | ENSMUSG00000019432.11 | 42.4 | 54.3 | 1.3 | 1.0 | | PLD6 | ENSMUSG00000043648.7 | 90.7 | 110.3 | 1.2 | 1.0 | | Papi/Tdrkh | ENSMUSG00000041912.8 | 14.8 | 17.6 | 1.2 | 1.0 | | Tdrd12 | ENSMUSG00000030491.12 | 62.5 | 78.4 | 1.3 | 1.0 | | Ddx4 | ENSMUSG00000021758.9 | 216.5 | 190.6 | 0.9 | 1.0 | | Piwil4 | ENSMUSG00000036912.13 | 0.0 | 0.0 | 1.0 | 1.0 | | Mael | ENSMUSG00000040629.4 | 673.1 | 637.9 | 0.9 | 1.0 | | Rnf17 | ENSMUSG00000000365.8 | 36.4 | 48.7 | 1.3 | 1.0 | | Henmt1 | ENSMUSG00000045662.12 | 40.7 | 45.4 | 1.1 | 1.0 | | PNLDC1 | ENSMUSG00000073460.4 | 4.6 | 4.7 | 1.0 | 1.0 | **Secondary Spermatocyte** | ENSMUSG00000029423.6 | 33.3 | 40.7 | 1.2 | 1.0 | |-----------------------|--|--|---|---| | ENSMUSG00000033644.4 | 12.7 | 21.6 | 1.7 | 0.6 | | ENSMUSG00000015365.11 | 10.2 | 15.0 | 1.5 | 1.0 | | ENSMUSG00000025912.12 | 30.6 | 34.5 | 1.1 | 1.0 | | ENSMUSG00000025081.9 | 9.7 | 13.8 | 1.4 | 1.0 | | ENSMUSG00000040140.10 | 444.0 | 489.6 | 1.1 | 1.0 | | ENSMUSG00000019432.11 | 14.3 | 17.0 | 1.2 | 1.0 | | ENSMUSG00000043648.7 | 20.5 | 32.0 | 1.5 | 1.0 | | ENSMUSG00000041912.8 | 5.5 | 5.1 | 0.9 | 1.0 | | ENSMUSG00000030491.12 | 20.7 | 22.9 | 1.1 | 1.0 | | ENSMUSG00000021758.9 | 294.1 | 223.8 | 0.8 | 1.0 | | ENSMUSG00000036912.13 | 0.0 | 0.0 | 0.9 | 1.0 | | ENSMUSG00000040629.4 | 797.2 | 797.4 | 1.0 | 1.0 | | ENSMUSG00000000365.8 | 38.0 | 30.3 | 0.8 | 1.0 | | ENSMUSG00000045662.12 | 22.7 | 28.5 | 1.3 | 1.0 | | ENSMUSG00000073460.4 | 1.9 | 1.6 | 0.9 | 1.0 | | | ENSMUSG00000033644.4 ENSMUSG00000015365.11 ENSMUSG00000025912.12 ENSMUSG00000025081.9 ENSMUSG00000040140.10 ENSMUSG00000019432.11 ENSMUSG00000043648.7 ENSMUSG00000041912.8 ENSMUSG00000030491.12 ENSMUSG00000021758.9 ENSMUSG00000036912.13 ENSMUSG00000040629.4 ENSMUSG000000045662.12 | ENSMUSG00000033644.4 12.7 ENSMUSG00000015365.11 10.2 ENSMUSG00000025912.12 30.6 ENSMUSG00000025081.9 9.7 ENSMUSG00000040140.10 444.0 ENSMUSG00000019432.11 14.3 ENSMUSG00000043648.7 20.5 ENSMUSG00000041912.8 5.5 ENSMUSG00000041912.8 5.5 ENSMUSG00000021758.9 294.1 ENSMUSG00000021758.9 294.1 ENSMUSG00000036912.13 0.0 ENSMUSG00000040629.4 797.2 ENSMUSG000000045662.12 22.7 | ENSMUSG00000033644.4 12.7 21.6 ENSMUSG00000015365.11 10.2 15.0 ENSMUSG00000025912.12 30.6 34.5 ENSMUSG00000025081.9 9.7 13.8 ENSMUSG00000040140.10 444.0 489.6 ENSMUSG00000019432.11 14.3 17.0 ENSMUSG00000043648.7 20.5 32.0 ENSMUSG00000041912.8 5.5 5.1 ENSMUSG00000030491.12 20.7 22.9 ENSMUSG00000021758.9 294.1 223.8 ENSMUSG000000036912.13 0.0 0.0 ENSMUSG000000046629.4 797.2 797.4 ENSMUSG000000045662.12 22.7 28.5 | ENSMUSG00000033644.4 12.7 21.6 1.7 ENSMUSG00000015365.11 10.2 15.0 1.5 ENSMUSG00000025912.12 30.6 34.5 1.1 ENSMUSG00000025081.9 9.7 13.8 1.4 ENSMUSG00000040140.10 444.0 489.6 1.1 ENSMUSG00000019432.11 14.3 17.0 1.2 ENSMUSG00000043648.7 20.5 32.0 1.5 ENSMUSG000000041912.8 5.5 5.1 0.9 ENSMUSG00000030491.12 20.7 22.9 1.1 ENSMUSG000000021758.9 294.1 223.8 0.8 ENSMUSG000000040629.4 797.2 797.4 1.0 ENSMUSG00000000365.8 38.0 30.3 0.8 ENSMUSG000000045662.12 22.7 28.5 1.3 | **Spermatid** | opermana | | | | | | |--------------|-----------------------|-------|-------|-----|-----| | Piwil1 | ENSMUSG00000029423.6 | 14.2 | 21.0 | 1.5 | 0.7 | | Piwil2 | ENSMUSG00000033644.4 | 7.8 | 12.2 | 1.5 | 0.7 | | Mov10l1 | ENSMUSG00000015365.11 | 8.0 | 6.6 | 0.8 | 0.9 | | A-Myb | ENSMUSG00000025912.12 | 12.9 | 18.3 | 1.4 | 0.8 | | Tdrd1 | ENSMUSG00000025081.9 | 14.8 | 16.7 | 1.1 | 1.0 | | Tdrd6 | ENSMUSG00000040140.10 | 283.6 | 389.5 | 1.4 | 0.9 | | UAP56/Ddx39b | ENSMUSG00000019432.11 | 21.1 | 15.2 | 0.7 | 0.8 | | PLD6 | ENSMUSG00000043648.7 | 24.0 | 15.8 | 0.7 | 0.7 | | Papi/Tdrkh | ENSMUSG00000041912.8 | 4.5 | 5.6 | 1.2 | 0.9 | | Tdrd12 | ENSMUSG00000030491.12 | 14.8 | 16.7 | 1.1 | 1.0 | | Ddx4 | ENSMUSG00000021758.9 | 34.1 | 60.6 | 1.8 | 0.6 | | Piwil4 | ENSMUSG00000036912.13 | 0.0 | 0.0 | 1.0 | 1.0 | | Mael | ENSMUSG00000040629.4 | 997.0 | 728.6 | 0.7 | 0.8 | | Rnf17 | ENSMUSG00000000365.8 | 35.1 | 26.7 | 0.8 | 0.8 | | Henmt1 | ENSMUSG00000045662.12 | 28.1 | 17.9 | 0.6 | 0.7 | | PNLDC1 | ENSMUSG00000073460.4 | 2.2 | 1.1 | 0.6 | 0.6 | Table S4. Transcription factors with altered mRNA abundance in *pi6*^{em1/em1} pachytene spermatocytes. | | Ensembl | C57BL/6 | pi6 ^{em1/em1} | pi6 ^{em1/em1} | | |--------|-----------------------|---------|------------------------|------------------------|------------------------| | Genes | ID | (fpkm) | (fpkm) | C57BL/6 | FDR | | Sohlh1 | ENSMUSG00000059625.6 | 0.6 | 10.4 | 9.9 | 2.2 × 10 ⁻² | | Sall4 | ENSMUSG00000027547.13 | 0.6 | 9.3 | 8.7 | 4.3×10^{-3} | | Etv6 | ENSMUSG00000030199.12 | 1.4 | 14.2 | 7.7 | 3.8×10^{-2} | | Elf4 | ENSMUSG00000031103.8 | 0.3 | 5.3 | 7.0 | 1.6 × 10 ⁻² | | Dmrt1 | ENSMUSG00000024837.11 | 3.8 | 29.4 | 7.0 | 4.3×10^{-3} | | Pbx2 | ENSMUSG00000034673.10 | 2.1 | 16.8 | 6.7 | 1.8 × 10 ⁻² | | Lin28a | ENSMUSG00000050966.5 | 0.9 | 7.6 | 5.6 | 1.6 × 10 ⁻² | | Erg | ENSMUSG00000040732.14 | 0.2 | 3.1 | 4.9 | 1.5×10^{-2} | | Ubtf | ENSMUSG00000020923.13 | 2.7 | 15.0 | 4.9 | 1.3 × 10 ⁻² | | Gli3 | ENSMUSG00000021318.11 | 1.1 | 7.2 | 4.8 | 3.9×10^{-2} | | Hif1a | ENSMUSG00000021109.9 | 2.3 | 11.9 | 4.4 | 4.3×10^{-2} | | Usf1 | ENSMUSG00000026641.9 | 1.8 | 9.1 | 4.3 | 4.9×10^{-2} | | Tcf3 | ENSMUSG00000020167.10 | 4.5 | 20.3 | 4.2 | 1.1 × 10 ⁻² | | Tcf12 | ENSMUSG00000032228.12 | 9.5 | 36.8 | 3.8 | 1.8×10^{-2} | | Sohlh2 | ENSMUSG00000027794.4 | 4.1 | 16.6 | 3.7 | 4.8×10^{-2} | | Zfp292 | ENSMUSG00000039967.10 | 2.2 | 8.9 | 3.5 | 7.0×10^{-3} | | Foxo1 | ENSMUSG00000044167.6 | 1.5 | 6.3 | 3.4 | 4.3×10^{-3} | | Mlxipl | ENSMUSG00000005373.9 | 0.3 | 2.1 | 3.2 | 3.3×10^{-2} | | Jund | ENSMUSG00000071076.5 | 4.3 | 14.4 | 3.1 | 2.6 × 10 ⁻² | | Notch2 | ENSMUSG00000027878.10 | 3.4 | 8.3 | 2.2 | 3.6 × 10 ⁻² | | Rfx2 | ENSMUSG00000024206.10 | 182.8 | 77.6 | 0.4 | 3.8 × 10 ⁻² | | Hoxa4 | ENSMUSG00000000942.10 | 30.8 | 9.4 | 0.3 | 2.3 × 10 ⁻² | | Foxj1 | ENSMUSG00000034227.7 | 15.4 | 4.9 | 0.3 | 1.6 × 10 ⁻² | ## References Goertz et al., 2011; Howard et al., 2014; Hough et al., 2014; Kistler et al., 2015; Lacorazza et al., 2006; McIntyre et al., 2013; Saleh et al., 2000; Sakashita et al., 2018; Selleri et al., 2004; Stauber et al., 2017; Suzuki et al., 2012; Thépot et al., 2000; Wang et al., 20115; Yamaguchi et al., 2015; Yu et al., 2008; Zhang et al., 2016; Zheng et al., 2009; Zhou et al., 2017 Table S5. Gene Ontology of genes with decreased expression in *pi6*^{em1/em1} pachytene spermatocytes. | GO
Biological
process | Mus
musculus
reference
list (22,262
genes) | Number
of genes | Expected enrichment | Observed enrichment | p-value | FDR | |---
--|--------------------|---------------------|---------------------|--------------------------|--------------------------| | Cilium organization (GO:0044782) | 292 | 27 | 4.54 | 5.95 | 7.46×10^{-13} | 1.44 × 10 ⁻⁹ | | Cilium assembly (GO:0060271) | 261 | 25 | 4.06 | 6.16 | 2.66 × 10 ⁻¹² | 4.13 × 10 ⁻⁹ | | Cell projection assembly (GO:0030031) | 363 | 27 | 5.64 | 4.79 | 7.85 × 10 ⁻¹¹ | 8.68 × 10 ⁻⁸ | | Plasma membrane bounded cell projection assembly (GO:0120031) | 350 | 26 | 5.44 | 4.78 | 1.83 × 10 ⁻¹⁰ | 1.89 × 10 ⁻⁷ | | Axonemal dynein complex assembly (GO:0070286) | 33 | 9 | 0.51 | 17.55 | 1.19 × 10 ⁻⁸ | 1.08 × 10 ⁻⁵ | | Axoneme assembly (GO:0035082) | 65 | 11 | 1.01 | 10.89 | 2.17×10^{-8} | 1.68 × 10 ⁻⁵ | | Microtubule bundle formation (GO:0001578) | 95 | 11 | 1.48 | 7.45 | 7.01 × 10 ⁻⁷ | 4.17 × 10 ⁻⁴ | | Cell projection organization (GO:0030030) | 1059 | 36 | 16.46 | 2.19 | 1.97 × 10 ⁻⁵ | 7.45 × 10 ⁻³ | | Sperm motility (GO:0097722) | 84 | 17 | 1.31 | 13.02 | 2.34×10^{-13} | 6.03×10^{-10} | | Flagellated sperm motility (GO:0030317) | 80 | 15 | 1.24 | 12.06 | 1.60×10^{-11} | 1.90 × 10 ⁻⁸ | | Cilium movement (GO:0003341) | 55 | 11 | 0.85 | 12.87 | 4.67×10^{-9} | 4.52×10^{-6} | | Cilium or flagellum-dependent cell motility (GO:0001539) | 24 | 8 | 0.37 | 21.45 | 2.12 × 10 ⁻⁸ | 1.73 × 10 ⁻⁵ | | Cilium-dependent cell motility (GO:0060285) | 24 | 8 | 0.37 | 21.45 | 2.12 × 10 ⁻⁸ | 1.82 × 10 ⁻⁵ | | Cilium movement involved in cell motility (GO:0060294) | 12 | 5 | 0.19 | 26.81 | 4.34 × 10 ⁻⁶ | 2.04 × 10 ⁻³ | | Microtubule-based movement (GO:0007018) | 240 | 15 | 3.73 | 4.02 | 1.00 × 10 ⁻⁵ | 4.45 × 10 ⁻³ | | Regulation of cilium movement (GO:0003352) | 15 | 5 | 0.23 | 21.45 | 1.05 × 10 ⁻⁵ | 4.50 × 10 ⁻³ | | Regulation of microtubule-based movement (GO:0060632) | 29 | 6 | 0.45 | 13.31 | 1.37 × 10 ⁻⁵ | 5.60 × 10 ⁻³ | | Fertilization (GO:0009566) | 166 | 16 | 2.58 | 6.2 | 2.26×10^{-8} | 1.67×10^{-5} | | Single fertilization (GO:0007338) | 123 | 12 | 1.91 | 6.28 | 1.17 × 10 ⁻⁶ | 6.48×10^{-4} | | Binding of sperm to zona pellucida (GO:0007339) | 38 | 7 | 0.59 | 11.85 | 5.09 × 10 ⁻⁶ | 2.32 × 10 ⁻³ | | Sperm-egg recognition
(GO:0035036) | 43 | 7 | 0.67 | 10.47 | 1.05 × 10 ⁻⁵ | 4.40×10^{-3} | | Sperm capacitation (GO:0048240) | 31 | 6 | 0.48 | 12.45 | 1.92 × 10 ⁻⁵ | 7.42×10^{-3} | | Sexual reproduction (GO:0019953) | 806 | 49 | 12.53 | 3.91 | 1.53 × 10 ⁻¹⁵ | 2.38 × 10 ⁻¹¹ | | Spermatogenesis (GO:0007283) | 529 | 39 | 8.22 | 4.74 | 4.90×10^{-15} | 2.53×10^{-11} | | Multi avanniam vanua dustiva | | | | | | | |--|------|----|-------|------|--------------------------|--------------------------| | Multi-organism reproductive process (GO:0044703) | 929 | 52 | 14.44 | 3.6 | 4.55×10^{-15} | 3.52×10^{-11} | | Male gamete generation
(GO:0048232) | 549 | 39 | 8.53 | 4.57 | 1.51 × 10 ⁻¹⁴ | 5.84 × 10 ⁻¹¹ | | Multicellular organismal reproductive process (GO:0048609) | 786 | 45 | 12.22 | 3.68 | 1.84 × 10 ⁻¹³ | 5.70 × 10 ⁻¹⁰ | | Multicellular organism reproduction (GO:0032504) | 798 | 45 | 12.4 | 3.63 | 3.03×10^{-13} | 6.71×10^{-10} | | Gamete generation (GO:0007276) | 664 | 40 | 10.32 | 3.88 | 1.01 × 10 ⁻¹² | 1.74×10^{-9} | | Reproduction (GO:0000003) | 1334 | 57 | 20.73 | 2.75 | 9.11×10^{-12} | 1.18 × 10 ⁻⁸ | | Reproductive process
(GO:0022414) | 1333 | 57 | 20.72 | 2.75 | 8.86 × 10 ⁻¹² | 1.25 × 10 ⁻⁸ | | Spermatid differentiation (GO:0048515) | 217 | 18 | 3.37 | 5.34 | 2.58 × 10 ⁻⁸ | 1.82 × 10 ⁻⁵ | | Spermatid development (GO:0007286) | 209 | 17 | 3.25 | 5.23 | 8.23 × 10 ⁻⁸ | 5.31 × 10 ⁻⁵ | | Germ cell development
(GO:0007281) | 313 | 17 | 4.86 | 3.49 | 1.49 × 10 ⁻⁵ | 5.91 × 10 ⁻³ | | Organelle assembly (GO:0070925) | 620 | 28 | 9.64 | 2.91 | 9.23 × 10 ⁻⁷ | 5.30 × 10 ⁻⁴ | | Microtubule-based process (GO:0007017) | 628 | 27 | 9.76 | 2.77 | 3.51 × 10 ⁻⁶ | 1.70 × 10 ⁻³ | Table S6. Genes with reduced expression in *pi6*^{em1/em1} pachytene spermatocytes that are mapped to major Gene Ontology categories. | Gene | Cilium
assembly | Sperm
motility | Fertilization | |----------|--------------------|-------------------|---------------| | Acr | | | + | | Adam3 | | + | + | | Arl3 | + | + | | | Arsa | | | + | | Cabyr | | | + | | Cast | | | + | | Catsper1 | | + | + | | Catsper3 | | + | + | | Ccdc40 | + | + | | | Ccdc63 | + | + | | | Ccdc65 | + | + | | | Ccdc113 | + | | | | Cdh13 | + | | | | Dkkl1 | | | + | | Dnaaf1 | + | + | | | Dnah3 | | + | | | Dnaic2 | + | + | | | Drc1 | + | + | | | Dzip1 | + | | | | Efhd1 | + | | | | Fbp1 | + | | | | Foxj1 | + | | | | Gdpd5 | + | | | | Нар1 | + | + | | | Hist1h1t | | + | + | | Ift74 | + | + | | | Insl6 | | + | + | | Kif2b | | + | | | Lrrc6 | + | + | | | Lrrc46 | + | | | | + | | | |---|--|---------------------------------------| | + | | | | + | | | | + | | | | + | | | | | | + | | | | + | | + | | | | | | + | | + | | | | | + | | | | + | + | | | + | + | | | | + | | | + | | | | | + | | | | + | | + | | | | + | | | | + | | | | | + | | | + | + | | | + | + | | | + | + | | | + | + | | | | + | + | | + | | | | + | | | | + | + | | | + | | | | | | + | | | | + | | | | + | | | +
+
+
+
+
+
+
+
+
+
+
+ | + + + + + + + + + + + + + + + + + + + | Table S8. Published male fertility genes with altered expression in pi6em1/em1 cells. | | 51051451 | | 053DL (0 | pi6 ^{em1/em1} | pi6 ^{em1/em1} | | |----------|---------------------------|---|-------------------|------------------------|------------------------|---------------------| | Gene | ENSEMBL
ID | Reference | C57BL/6
(fpkm) | (fpkm) | C57BL/6 | FDR | | Adam3 | ENSMUSG000
00031553.11 | Yamaguchi et al., 2009 | 182.1 | 72.4 | 0.4 | 3×10 ⁻² | | Catsper1 | ENSMUSG000
00038498.3 | Ren et al., 2009; Avenarius et al., 2009; Qi et al., 2007 | 15.1 | 3.0 | 0.2 | 9×10 ⁻³ | | Catsper3 | ENSMUSG000
00021499.8 | Qi et al., 2007 | 12.6 | 3.1 | 0.3 | 5×10 ⁻² | | Ccdc40 | ENSMUSG000
00039963.14 | Antony et al., 2013;
Becker-Heck et al., 2011 | 68.8 | 22.8 | 0.3 | 3×10 ⁻² | | Ccdc42 | ENSMUSG000
00045915.11 | Pasek et al., 2016 | 58.3 | 18.0 | 0.3 | 3×10 ⁻² | | Ccdc65 | ENSMUSG000
00003354.5 | Horani et al., 2013 | 121.7 | 39.0 | 0.3 | 4×10 ⁻³ | | Ccna1 | ENSMUSG000
00027793.2 | Liu et al., 1998 | 33.7 | 12.0 | 0.4 | 3×10 ⁻² | | Dnaic2 | ENSMUSG000
00034706.12 | Guichard et al., 2001 | 18.4 | 4.2 | 0.2 | 7×10 ⁻³ | | Drc1 | ENSMUSG000
00073102.3 | Wirschell et al., 2013 | 39.1 | 11.2 | 0.3 | 1×10 ⁻² | | Gga1 | ENSMUSG000
00033128.8 | International Mouse Phenotyping Consortium | 49.8 | 18.7 | 0.4 | 2×10 ⁻² | | Hnf1b | ENSMUSG000
00020679.7 | Mieusset et al., 2017 | 4.6 | 1.0 | 0.3 | 5 ×10 ⁻² | | Ift74 | ENSMUSG000
00028576.8 | San Agustin et al., 2015 | 68.2 | 24.0 | 0.4 | 2×10 ⁻² | | Lrrcc1 | ENSMUSG000
00027550.10 | International Mouse
Phenotyping Consortium | 76.1 | 31.3 | 0.4 | 2×10 ⁻² | | Meig1 | ENSMUSG000
00026650.11 | Zhang et al., 2009;
Salzberg et al., 2010 | 953.3 | 329.8 | 0.3 | 9×10 ⁻³ | | Ррр3сс | ENSMUSG000
00022092.10 | Miyata et al., 2015 | 89.0 | 39.5 | 0.4 | 3×10 ⁻² | | Ppp3r2 | ENSMUSG000
00028310.2 | International Mouse
Phenotyping Consortium | 132.7 | 35.9 | 0.3 | 4×10 ⁻³ | | Prm1 | ENSMUSG000
00022501.5 | Haueter et al., 2010 | 126.4 | 308.2 | 2.4 | 5×10 ⁻² | | Rfx2 | ENSMUSG000
00024206.10 | Kistler et al., 2015; Shawlot et al., 2015 | 182.8 | 77.6 | 0.4 | 4×10 ⁻² | | Spink2 | ENSMUSG000
00053030.7 | International Mouse
Phenotyping Consortium | 391.6 | 146.7 | 0.4 | 7×10 ⁻³ | | Stk33 | ENSMUSG000
00031027.11 | Martins et al., 2018 | 180.4 | 62.6 | 0.3 | 2×10 ⁻² | | Syce1 | ENSMUSG000
00025480.4 | Bolcun-Filas et al., 2009;
Maor-Sagie et al., 2015 | 215.2 | 71.6 | 0.3 | 4×10 ⁻³ | | Tekt2 | ENSMUSG000
00028845.11 | Iguchi et al., 1999; Tanaka
et al., 2004 | 85.5 | 23.3 | 0.3 | 2×10 ⁻² | | Tekt3 | ENSMUSG000
00042189.5 | Roy et al., 2009 | 63.2 | 13.0 | 0.2 | 4×10 ⁻³ | | Tekt4 | ENSMUSG000
00024175.1 | Roy et al, 2007 | 51.7 | 15.7 | 0.3 | 7×10 ⁻³ | | Ttll1 | ENSMUSG00000
022442.11 | Vogel et al., 2010 | 22.0 | 7.3 | 0.3 | 3×10 ⁻² | | Zpbp2 ENSMUSG
00017195. | 1 In et al 2007 | 133.8 | 43.2 | 0.3 | 1×10 ⁻² | |----------------------------|-----------------|-------|------|-----|--------------------| |----------------------------|-----------------|-------|------|-----|--------------------|