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Reads assignment to taxonomic units is a key step in micro-
biome analysis pipelines. To date, accurate taxonomy annota-
tion, particularly at species rank, is still challenging due to the
short size of read sequences and differently curated classifica-
tion databases. However, the close phylogenetic relationship be-
tween species encountered in dairy products requires accurate
species annotation to achieve sufficient phylogenetic resolution
for further downstream ecological studies or for food diagnos-
tics. Taxonomy annotation in universal 16S databases with en-
vironmental sequences like Silva, RDP or Greengenes is based
on predictions rather than on studies of type strains or isolates.
We provide a manually curated database composed
of 10’290 full-length 16S rRNA gene sequences from
prokaryotes tailored for dairy products analysis
(https://github.com/marcomeola/DAIRYdb). The perfor-
mance of the DAIRYdb was compared with the universal
databases Silva, LTP, RDP and Greengenes. The DAIRYdb
significantly outperformed all other databases independently
of the classification algorithm by enabling higher accurate
taxonomy annotation down to the species rank. The DAIRYdb
accurately annotates over 90% of the sequences of either single
or paired hypervariable regions automatically.
The manually curated DAIRYdb strongly improves taxonomic
classification accuracy for microbiome studies in dairy environ-
ments. The DAIRYdb is a practical solution that enables autom-
atization of this key step, thus facilitating the routine application
of NGS microbiome analyses for microbial ecology studies and
diagnostics in dairy products.
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Introduction
The exploration of microbial communities has experienced
a boost during the last decade with the advent of next gen-
eration sequencing (NGS) technologies (1). Previously un-
detectable, since unculturable, micro-organisms in soils (2),
water (3, 4), airborne (5, 6), snow (7), ice (8), food (9), hu-
man gut (10–12) etc. could be unravelled at an unprece-
dented depth and resolution. An infinite number of descrip-
tive studies have been published describing microbial com-
munity structures in various environments, often correlating

their dynamic changes over time or space by means of the
16S rRNA gene (13–15).

The marker gene 16S rRNA. The 16S rRNA gene (16S)
was proposed by Carl Woese and George Fox in the 1980s
as the gold standard marker gene for molecular taxonomic
research (16–18). Several characteristics of the 16S make it
a marker gene for surveys of microbial diversity: i) it is an
ubiquitous and highly conserved gene in prokaryotes, ii) it
has a functional degree and size presenting clock-like mu-
tation rates like an evolutionary chronometer, iii) and the
presence of alternating conserved and hypervariable regions
(HVRs) permit to design universal primers on the conserved
regions and to use the HVRs (V1-V9) for taxonomic classifi-
cation (19, 20).
Before the advent of NGS, microbial community studies
were based on fingerprinting techniques, such as DGGE, T-
RFLP or LH-PCR sometimes in combination with Sanger
sequencing of the complete 16S spanning over about 1550
bp. While Sanger sequencing delivered almost the complete
16S at good quality, the throughput was low due to the high
workload preventing researchers to unravel the full array of
microbial diversity within a sample (20).

Classification tools. Taxonomic classification of the 16S is
not trivial and requires both familiarity with prokaryotic phy-
logeny and often manual intervention due to poor annotation
of the operational taxonomic units (OTUs) by the available
16S databases (21). On the one hand, NGS has triggered
the acquisition of enormous amounts of sequencing data, of-
fering the possibility to overcome the limitations of Sanger
sequencing. On the other hand it has brought huge com-
putational challenges, such as the risk of taxonomic miss-
annotations or ambiguous results during taxonomic classifi-
cation steps. Despite the steadily increasing read length ob-
tained by NGS, the need for trustworthy classification of very
short 16S sequences covering only one to three HVR remains
a crucial step to obtain robust and accurate taxonomic classi-
fication in modern microbiology (22).
Numerous classification predictors algorithms have been de-
veloped and optimized in recent years with the aim to ac-
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Fig. 1. Development of the DAIRYdb consisted in three main steps: construction, curation and validation. For construction, dairy products specific 16S rRNA gene sequences
were retrieved from Silva, RDP and Greengenes using Genbank NCBI, EMBL, Agroscope and INRA sequences. Curation was performed based on the cross-validation
results from the leave-one-out test of SATIVA and highly iterated RAxML tree, followed by manual curation of taxonomic assignment and consistency throughout all taxonomic
ranks, with a particular focus on singleton taxons with no reference sequence. Validation was performed comparing identification accuracy of single and HVR pairs by the five
databases (Greengenes 13.8, LTP version, Silva 128 NR99, RDP version and DAIRYdb).

curately annotate the taxonomy of OTUs from short reads.
Those classification tools have been developed for 16S and
other genes based on different mathematical models, such as
e.g., k-mer, Bayesian, Hidden Markov-Monte-Carlo model
(HMM) etc.). The Basic Local Alignment Search Tool
(Blast) has long been the gold standard for sequence com-
parison and annotation (23). In recent years, more 16S
specific taxonomy predictors have been developed, includ-
ing RDP Naive Bayesian Classifier (NBC) (24), a naive
Bayesian Classifier based on k-mers, GAST (25), MEGAN
(26), Metaxa2 (27), riboFrama (28), SPINGO (29), PROTAX
(30), SINTAX (31), DynamiC (32), Humidor (33), MAPseq
(34), microclass (35) and other tools implemented in the most
current 16S pipelines like mothur (36), Qiime v1 (37), Qiime
v2 (https://qiime2.org) and FROGS (38).
Here we used three taxonomy predictors based on different
algorithms and programming languages (39), in which dedi-
cated databases can be integrated and used for classification.
One of the three classification tools used in this study to test
the performance of the DAIRYdb was the updated version
of Blast, Blast+ (40). It is based on an heuristic method for
identification of database sequences that resemble the query
sequence above a certain threshold. It searches for short
sequence matches, which are locally aligned after the first
match (40).
Another classification tool used in this study was Metaxa2, an
HMM based software tool for automated detection and clas-
sification of short NGS fragments, such as ribosomal small

and large subunits, SSU and LSU, respectively, or any gene
of interest useful for classification of any organism (27, 41).
The third taxonomy predictor used in this study was SIN-
TAX, a non-Bayesian taxonomy classifier specific for 16S
sequences, which uses k-mer similarity to identify the top hit
in a reference database providing bootstrap confidence values
at each taxonomic rank (31).

16S repositories. Although classification prediction algo-
rithms have strongly improved, manually curated databases
containing only authoritative full-length 16S sequences from
type strains and cultivated reference strains can potentially
compensate the limitations of short read sequences annota-
tions by means of sophisticated algorithms. To date, three
main independent universal repositories dedicated to univer-
sal 16S sequences from prokaryotes are widely used: Silva,
The Ribosomal Database Project (RDP), and Greengenes
(42).
Silva is the universal 16S repository with the highest num-
ber of sequences. The latest release of Silva SSU/LSU 132
(www.arb-silva.de) contained 6’073’181 16S sequences of at
least 300 bp, with 2’090’668 good quality sequences with at
least 900 bp length (43–45). Taxonomic rank information of
Silva and Living Tree Project (LTP) are based on the Bergey’s
Taxonomic Outlines and the List of Prokaryotic Names with
Standing Nomenclature (LPSN) (46). Minimal training sets,
such as the SSU Ref NR 99 or the LTP (47), offer a reduced
number of sequences for faster classification but still cover-

2 | bioRχiv Meola M. et al. | DAIRYdb: A manually curated 16S database

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/386151doi: bioRxiv preprint 

https://qiime2.org
www.arb-silva.de
https://doi.org/10.1101/386151
http://creativecommons.org/licenses/by-nc/4.0/


DRAFTFig. 2. Origin of sequence in the DAIRYdb. A) Five-factors Venn diagram comparing
the origins of the sequences (9’948) retrieved from the public repositories Genbank
NCBI and EMBL associated to the keywords "cheese", "dairy", "milk", "teat" and
"whey/starter". About 12.7% (1’263) sequences were only detected in cheese and
15.1% (1’507) were detected in all three cheese, milk and dairy environments. B)
Total number of sequences associated to a particular keyword. C) Number of se-
quences shared by 1 to 5 keywords. About 19.4% (1’933) sequences were detected
in all 5 keywords, while 17.1% (1’700) sequences were unique to one keyword.

ing the broadest currently known biodiversity.
The second biggest repository, the Ribosomal Database
Project (RDP Release 11, Update 5; http://rdp.cme.msu.edu)
(48), contained at the time of writing 3’356’809 16S
sequences from the International Nucleotide Sequence
Database Collaboration (INSDC) (49). The nomenclature is
based on the Bacterial Nomenclature Up-to-Date and the tax-
onomic rank information on the Bergey’s Manual.
Greengenes v13_5 (50) contains 1’800’000 quality filtered
16S sequences. Classification nomenclature is based on au-
tomatic de novo tree construction and rank mapping with the
NCBI Taxonomy database (51). Although frequently used
in community studies together with Qiime (37), the last up-
date dates back to 2013 with no indication for an imminent
update.

Taxonomy annotation in microbiology. Phylogenetic
classification has tailored taxa by means of phylogenetic,
phenotype and genomic coherence that make taxonomic units
unique within the classification schema (52). Phylogenetic
coherence is determined by the 16S for which the previ-
ously mentioned databases provide a valuable tool for tax-

Fig. 3. Complete microbial diversity present in the DAIRYdb. Prokaryotic biodi-
versity in the DAIRYdb is represented by 2 kingdoms, 47 phyla, 136 classes, 249
orders, 463 families, 1’757 genera and 4’030 unique species-like groups. The most
represented phyla is Firmicutes (37% of all sequences), followed by the Proteobac-
teria (22%), Bacteroidetes (14%), Actinobacteria (9%), Chloroflexi (2%), Acidobac-
teria (2%), Archaea (1%) and 34 other minor phyla.

onomic classification (52). However, the exponential in-
crease of 16S sequences from previously unknown and un-
cultured bacteria led to an explosion of exotic labels at any
taxonomic rank with often contrasting taxonomic classifica-
tions between databases based on different taxonomic cata-
logues (e.g., Bergey’s Taxonomic Outlines, List of Prokary-
otic Names with Standing Nomenclature (LPSN), Interna-
tional Sequence Database Collaboration (INSDC), Bacterial
Nomenclature Up-to-Date (53, 54)).
The lack of consensus on a widely accepted taxonomy, as
well as the lack of taxonomic characterisation of yet uncul-
tured bacteria, are severely limiting communication among
scientists and may lead to incorrect annotations and thus "poi-
son every experiment that makes use of them" (52, 55). In
worst cases, incorrectly annotated bacteria are included in
databases further used to classify new sequences. In fact,
it has been shown that there are numerous unambiguous
disagreements between the nomenclature hierarchies, where
many taxon names are placed into different parent taxa in the
databases Silva and Greengenes or the taxonomy is not con-
sistent with the tree (54) . In addition to hierarchy disagree-
ments, about 34% of identical sequences in Silva and Green-
genes databases presented annotation conflicts, 24% of which
were blanks (unclassified) in either of both database (54).
While the blanks imply a false negative by one database or
a false positive by the other, differently annotated sequences
with the same Accession number or identical sequence string
must be due to annotation error in one or both databases (54).
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Fig. 4. Presence and extraction efficiency of all HVR in the sequences of the
DAIRYdb. Single HVR (A) and (B) and HVR pairs (C) and (D) HVRs were extracted
using in silio PCR with mothur (B) and (D) and HVR extraction with V-Xtractor (A)
and (B) from sequences present in DAIRYdb v1.1 to test completeness of the se-
quences therein. While almost 100% of the 10’290 sequences span over V2 to V8
only 89% contain V1 and 68% contain V9 (A) and (C). The in silico PCR highlights
the theoretical amplification efficiency of the most common universal primers with 0
mismatches normalized to the total number of detected HVR (B) and (D).

While NGS has allowed researchers to obtain deep insights
into the microbial community structures inhabiting various
environments, the complexity of the analytical process
and taxonomy annotation on short read sequences is still
challenging and prevents researchers to deploy microbial
community analysis for diagnostic purposes in an accurate
and reproducible way (1, 67). Previous studies have high-
lighted the importance of high-quality data for improving the
classifications of the obtained OTUs (22, 68, 69). Although
universal 16S databases cover vast prokaryotic biodiversity,
they often fail to guarantee accurate classification to the
species rank for sequences obtained from a highly studied
environment, such as dairy products. In fact, classification
accuracy at lower taxonomic ranks increases with a gold
standard training set encompassing only full-length and good
quality representative sequences innate to the investigated
environment (22, 54, 69, 70).
In microbiology, distinction is made between the concept
and the definition of species (52). The species concept
explains the idea of what is considered to be a species as a
unit of biodiversity, the meaning of the patterns of recurrence
observed in nature, and the reason for their existence (71).
The species definition, however, is concretely the set of
parameters that are applied to circumscribe the category
(72).
Thanks to the dropping costs, NGS is increasingly ap-
plied routinely as diagnostic technology for quality
assessments and microbial community analyses in dairy
products. Several initiatives aimed at tracking from
"Farm to Fork" the range of expected microbial commu-
nities along the food supply chain, such as Food Safety
Consortium with IBM, Mars and Bio-Rad Laboratories
(www-03.ibm.com/press/us/en/pressrelease/45938.wss and
www-03.ibm.com/press/us/en
/pressrelease/52690.wss). However, fast and accurate, thus
automatized classification of the OTUs is not yet possible
at the biologically most significant species rank due to the
short sequence fragments and the absence of food-dedicated,
thoroughly curated 16S databases, particularly. Therefore,
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manually curated databases are of paramount importance
to improve reproducibility, speed during the bioinformatics
process of microbial community studies and communication
between researchers (54).
Here we present a comprehensive gold standard database,
DAIRYdb (Database, Agroscope, Inra, Ribosomal, accu-
racY), for 16S OTUs classification from NGS data of dairy
products. The main goal was to develop a dedicated database
that allow researchers to accurately and automatically
annotate short reads of 16S down to the species level.
Manual curation of the database and its restriction to the
biodiversity expected in dairy products strongly improves
accuracy and reproducibility of phylogenetic classification
to all taxonomic ranks. DAIRYdb is publicly available
at https://github.com/marcomeola/DAIRYdb and can be
integrated in any classification prediction tool that allows
the integration of customized databases, such as Blast+,
Metaxa2, SINTAX and FROGS.

Results
Construction. The 16S sequence database of dairy products
DAIRYdb was constructed using a set of over 390’000
sequences associated to the selected keywords (cheese, milk,
teat, dairy, starter, whey) deposited in NCBI GenBank and
ENA/EMBL, as well as sequences with 97% ANI from
Silva, RDP and Greengenes (Figure 1). About 10’000 best
quality reference sequences were retained after filtering
based on sequence length (>1300 bp), quality (pintail >75)
and potential chimeras. Finally, 16S sequences of important
species from cheese and dairy environments (73, 74), whose
sequences were lost during the clustering, were added,
resulting to the final number of 10’290 16S sequences.
The observed distribution among the different key words
might reflect the unequal distribution of microbiome studies
predominantly performed on cheese, dairy and milk samples,
as compared to teats and whey. About 1933 sequences of
the DAIRYdb were shared among all keywords (Figure 2A)
and 1778 were shared among the keywords dairy, cheese
and milk. In fact, the majority of the sequences composing
the DAIRYdb were linked to those three keywords (Figure
2B). Altogether, 1’700 sequences were associated to just
one keyword, with most of the sequences shared by four
keywords (Figure 2C).

Curation. During the first step of data curation, the se-
quences were taxonomically annotated with Silva by means
of SINA (75). The resulted annotation at all taxonomic
ranks underwent a first manual check and cleaning for tax-
onomic inconsistencies through cross-comparison with the
other members of the same taxonomic rank in a phylo-
genetic tree. No taxonomic overlaps comparable to other
databases are present in the DAIRYdb, where different
species of the same genus fall under different taxonomic lin-
eages (54). A maximum of three closest neighbour type
strains (CN) with authoritative taxonomy (CN) from Silva

sharing 99% global sequence similarity to each sequence in
the DAIRYdb were added to the 10’290 sequences in the
DAIRYdb as reference during the curation process and re-
moved at the end of the curation process. The maximal num-
ber of lowest common ancestors (LCA) with an authorita-
tive taxonomy strongly improved the curation process with
the Semi-Automatic Taxonomy Improvement and Validation
Algorithm (SATIVA) increasing robustness of the proposed
changes of miss-annotated environmental sequences within
the DAIRYdb (76).
By using only near full-length and curated 16S from type
strains as reference sequences, we were able to validate
and correct the taxonomy annotation where necessary. The
SATIVA results were inspected and taxonomy manually cu-
rated using a highly iterated phylogenetic tree. The approach
used during the manual curation broadly follows the rationale
described in detail in a recently published study (54). Tax-
onomy annotations from authoritative type strain sequences
were used as reference for the environmental sequences in
the tree. For ranks at which no taxonomic annotation was
possible with certainty due to the lack of authoritative type
strains within the same clade (i.e., commonly labelled un-
known, uncultured etc. in universal databases), the lowest
common rank (LCR) (70) was used down to the species rank
with the addition of the unclassified rank. Although not all
OTUs in a microbiome study will be classified to the species
rank, at least they will not all be merged to the same unclas-
sified species rank, but taking over the LCR to differentiate
between all unclassified OTUs. As an example, a sequence
assigned to the LCR, the genus Sporichthya, was named at
species rank Sporichthya_Species. This approach avoids the
merging of abundance values from different unknown species
to biological uninformative groups, thus improving commu-
nication among scientists (53).
DAIRYdb version 1.1 contains 2 kingdoms (Bacteria and
Archaea), 47 phyla, 136 classes, 249 orders, 463 families,
1757 genera and 4030 unique species-like groups/species
complexes (Figure 3, Additional File 1 and Additional File
2). The Firmicutes is the predominant phylum with 37%
of all sequences, followed by the Proteobacteria (22%),
Bacteroidetes (14%), Actinobacteria (9%), Chloroflexi (2%),
Acidobacteria (2%), Archaea (1%) and 34 other minor
phyla. The 1% of Archaea is subdivided into Euryarchaeota
(74%), Crenarchaetoa (13%), Thaumarchaeota (9%), Woe-
searchaeota (3%) and others (1%). Altogether, the DAIRYdb
is able to capture the diversity of known taxa expected to oc-
cur in dairy products. Increasing number of whole genome
sequences (WGS) will more likely lead to a replacement of
incomplete 16S sequences in the DAIRYdb by full-length se-
quences that cover all HVRs.
The cheese microbiome is often dominated by few phyloge-
netically closely related species, of lactic acid bacteria (LAB)
belonging to a few genera (e.g., Lactobacillus, Lactococcus,
Leuconostoc and Streptococcus) (9). Therefore, special at-
tention was put into the manual curation of the DAIRYdb
sequences at species rank. Despite the genotypic and pheno-
typic characteristics of the most common LAB in cheese are
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Fig. 5. Taxonomy annotation accuracy of the DAIRYdb on reads extracted with V-Xtractor. Single HVR V1-V9 were re-annotated using three different classification algorithms,
Blast+, Metaxa2 or SINTAX, respectively. This figure shows the results with SINTAX (Analyses with Metaxa2 and Blast+ are shown in Additional File 2). Taxonomy annotation
was bootstrapped 1000 times with a subset of 100 randomly selected sequences from the DAIRYdb and annotated with DAIRYdb (A), Greengenes (B), LTP (C), RDP (D) and
Silva (E). Average performance of all HVR for each database (F) (accuracy = correctly annotated/total).

extensively studied and described, several unresolved contro-
versies regarding the nomenclature of some keystone species
still remain unsolved, such as for the species L. helveticus and
L. gallinarum, S. thermophilus and S. salivarius, L. casei and
L. paracasei and L. zeae, L. plantarum and L. paraplantarum
(77–79). The DAIRYdb is composed of sequences retrieved
from the Silva database along with their respective taxonomy,
which was manually inspected for nomenclature hierarchy
conflicts based on the phylogenetic position within the tree.
However, some conflicting annotations of the same sequence
were detected between the Silva taxonomy and the Bacterial
Diversity Metadatabase, such as the species assignment of
the type strain sequence Accession AB008205, which is la-
belled as L. casei in Silva and L. paracasei in BacDive (80).
For the reference sequences of the most crucial species, it
was tried to use bacterial names listed in the actual "List of
prokaryotic names" according to BacDive, however, further
disagreements between Silva and BacDive cannot be com-
pletely excluded. Moreover, it is also possible that some cru-
cial genera in dairy products may undergo a radical genome-
based relabelling in order to have more homogeneous clusters
(79).
Different approaches were applied on inpure taxa, i.e. taxa
that overlap in the tree despite being assigned to different
nomenclature (54), by the universal databases. For instances,
for the genera Escherichia and Shigella, Silva, LTP and
RDP use the combined genus name Escherichia–Shigella but
retain well-established species names, such as Escherichia
coli. Differently, Greengenes leaves their sequences unclas-
sified at ranks below the family Enterobacteriaceae (54).
The different taxonomic nomenclature references used by the
three databases have an impact on revisions to resolve con-
flicts with sequence-based phylogenies and the labelling of
new candidate groups identified in environmental sequences.

However, discussion on the taxonomic inconsistencies and
limitations of the universal databases (Silva, LTP, RDP and
Greengenes), which the DAIRYdb was compared with, goes
beyond the scope of this study and was extensively discussed
elsewhere(54, 70).
The DAIRYdb will undergo regular updates in accordance to
update on bacterial nomenclature (79), integrating the nov-
elties or correcting the changes. Finally, the inclusion of
full-length and high-quality 16S sequences from reference
type strains leads to a more robust and confident taxonomic
classification(68).

Validation. At present, only short read sequences can be
obtained from the most common amplicon NGS sequencer
with at least 99% quality and up to 600 bp in length (Illumina
MiSeq, Ion Torrent S5). Although long reads sequencing
technology, such as PacBio and Oxford Nanopore, are
steadily improving read quality, they are not yet routinely
used for amplicon metabarcoding studies. Therefore,
performance of the DAIRYdb was evaluated on short read
sequences spanning over either a single HVR or HVR pairs.
The single HVRs and HVR pairs were extracted from
randomly subsampled sequences from the DAIRYdb using
two methods: V-Xtractor (81) (Figure 4A,C) or in silico
PCR with mothur (36). V-Xtractor was used to evaluate
the general annotation accuracy of all HVRs present in
the DAIRYdb. The in silico PCR with universal primers
(Table 1) highlighted the theoretical extraction efficiency
of the primer pairs adapted to the pool of sequences in the
DAIRYdb. While V-Xtractor extracted the HVRs, the in
silico PCR also evaluated the theoretical extraction efficiency
of different primer pairs. The ratio between the number
of detected HVRs with V-Xtractor and HVRs extracted by
in silico PCR determined the biodiversity coverage of the
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Fig. 6. Taxonomy annotation accuracy of the DAIRYdb on reads extracted with V-Xtractor. The HVR pairs V1-V2, V2-V3, V3-V4, V4-V5, V5-V6, V6-V7, V7-V8, V8-V9 were
re-annotated using three different classification algorithms, Blast+, Metaxa2 or SINTAX, respectively. This figure shows the results with SINTAX (Analyses with Metaxa2
and Blast+ are shown in Additional File 2). Taxonomy annotation was bootstrapped 1000 times with a subset of 100 randomly selected sequences from the DAIRYdb and
annotated with DAIRYdb (A), Greengenes (B), LTP (C), RDP (D) and Silva (E). Average performance of all HVR for each database (F) (accuracy = correctly annotated/total).

different HVRs achieved with the different primer pairs
and potential biases in community structure in downstream
analyses depending on the different HVR analysed (Figure
4B,D).
Almost 100% of the sequences in the DAIRYdb span from
V2 to V8. The HVR V1 (89%) and V9 (68%) are the regions
with the least coverage in the DAIRYdb. This is due to the
commonly used universal primers 8F and 1492R for the
full-length 16S PCR leading to the entirely or partial loss of
V1 and V9 (Figure 4A, Table 1). The primer pairs targeting
the V1, V2 and V9 were less efficient as compared to the
primer pairs targeting V3 to V8. The primer pairs for V4
performed best with 90% coverage, followed by V7 (88%),
V5 and V6 (85%), and V3 (83%). The same hold true for the
HVR pairs, where the HVR pairs V1V2, V2V3 and V8V9
performed less well as compared to the central HVR pairs
(Figure 4C, 1).
The net in silico performance of each primer pair is presented
as normalized to the total number of sequences detected by
V-Xtractor for each HVR (Figure 4B,D). Percentage values
of the single HVRs slightly increased while confirming
the overall picture. The largest biodiversity coverage by
the DAIRYdb was achieved by the single HVR V4 (92%),
followed by the HVR pairs V5V6 and V3V4 (89%).
The taxonomy annotation accuracy of the DAIRYdb was
compared with other universal databases, such as Silva128,
RDP trainset v16, LTP and Greengenes analysing frag-
ments of single HVRs or HVR pairs extracted from the
sequences in the DAIRYdb with V-Xtractor and in silico
PCR. The synthetic HVR fragments were extracted from
1000 subsamples of each 100 randomly selected sequences
from the DAIRYdb by either V-Xtractor or in silico PCR
and assigned to all taxonomic ranks by the means of three
different classification predictors (Blast+, Metaxa2 and

SINTAX) using the aforementioned databases. Taxonomic
annotation accuracy of the single HVR extracted with
V-Xtractor with the DAIRYdb using SINTAX was above
75% at all taxonomic ranks (Figure 5). Accuracy was highest
for the even HVRs (V2, V4, V6 and V8) as compared to
the odd HVRs (V1, V3, V5, V7 and V9). The region V2
presented the greatest classification accuracy, which is in
line with other findings showing that the regions V1 and V2
resulted in a more accurate OTU clustering at 97%, 98%
and 99% (32). Overall, the universal databases were less
accurate with decreasing taxonomic rank (Figure 5B-D).
Only the RDP trainset v16 achieved about 25% of correct
species annotations, while the other databases only classified
to genus rank. Although the RDP trainset v16 performed
best among all universal databases, annotation accuracy was
below the accuracy values assessed in previous studies (54).
Different to the DAIRYdb, the HVR V4 performed best
with the universal databases with exception to Silva, where
V2 achieved a higher accuracy (Figure 5). Generally, the
difference in classification accuracy was stable through all
HVRs with exception to the Silva database, where bigger
oscillations were observed between the HVRs showing a
clear drop for V6 and V7 (Figure 5E). All HVRs taken
together, the DAIRYdb achieved a significantly better
taxonomy annotation accuracy of average 88.9% ± 5.5 as
compared to the universal databases tested, particularly at
order to species ranks (Figure 5F). The annotation accuracy
results with Blast+ and Metaxa2 of single HVR extracted
with in silico PCR (Additional File 3, Figures 1, 3 and 7),
V-Xtractor (Additional File 3, Figures 5 and 9), and HVR
pairs with in silico PCR (Additional File 3, Figures 2, 4
and 8), V-Xtractor (Additional File 3, Figures 6 and 10) are
available in Additional File 3.
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Fig. 7. Comparison of the overall annotation accuracy of the three algorithms, Blast+, Metaxa2 and SINTAX for all single HVR (A) and HVR pairs (B). Although Blast+
presented a slightly better performance over SINTAX and Metaxa2, it was not statistically significant. All three classification tools assigned more than 75% of the sequences
using the DAIRYdb as a reference for all HVR pairs.

The results with the HVR pairs was similar to the single
HVRs (Figure 6). Classification confidence between HVR
pairs was less variable between different HVR pairs and
within the bootstrapping values of the same HVR pair as
compared to the single HVRs, indication for a more robust
classification with increasing number of HVRs. The HVR
pair V1V2 achieved the highest classification accuracy at
species rank in the DAIRYdb, as well as with RDP and Silva.
These results are in agreement with previous studies, where
V1 and V2 have been shown to have the highest average
classification accuracy and average confidence estimate
up to the genus rank (24). Greengenes species annotation
accuracy was similar for all HVRs, while LTP showed very
low performance at species rank. The average accuracy
value for correct species annotation of all HVR pairs with
the DAIRYdb was over 94% ± 2.8 (Figure 6F). Only species
annotation with the RDP trainset v16 achieved 25% of
correct annotations. The BLAST16S database was shown to
obtain genus accuracies ∼50% for V4, which improves with
increasing length to ∼60% with V3–V5 and ∼70% with
full-length 16S (70). As expected, the increasing number of
HVR increases the confidence in taxonomy annotation.
Taxonomy annotation accuracy varied only little between
different taxonomy predictors with the DAIRYdb and not
significantly with either both, single HVR (Additional File 3,
Figure 11) or HVR pairs and (Additional File 3, Figure 12).
In fact, classification annotation accuracy performance varied
more dependent on the database rather than the classification
predictor. These results indicate that annotation of the
members of the bacterial community is primarily influenced
by the selection of the database, by the HVR, and only then
by the taxonomy predictor (Additional File 3, Figures 1-10).
A comparison of the three classification predictors, Blast+,
Metaxa2 and SINTAX with the DAIRYdb confirmed that
HVR pairs could be more accurately assigned to the correct
species than single HVR (Figure 7). Among all tools, Blast+
and SINTAX were slightly yet not significantly better than

Metaxa2. Since Metaxa2 uses more stringent parameters,
as it only assigns the taxa if in agreement with Blast+,
the lower performance of Metaxa2 with respect to Blast+
alone is not surprising. Moreover, Metaxa2 performance
is strongly dependent on the average nucleotide identity
(ANI) thresholds used, which were set according to (82). On
the other hand, the more stringent parameters of Metaxa2
reduce the number of over-classified sequences. Generally,
taxonomy annotation results are most robust whilst using
different classification predictors with the DAIRYdb. We
therefore recommend to use both, Metaxa2 with integrated
Blast+ and SINTAX to obtain taxonomy annotations closest
to the ground truth. Although a lower SINTAX cutoff of
0.6 increases the risk of over-classification, it is justified by
the better quality of the DAIRYdb and the comparison with
Metaxa2 for definitive taxonomy annotation (more details
on the recommended usage on real samples are described on
https://github.com/marcomeola/DAIRYdb).

Outlook. The advances of genomics in microbiology has
led to a reassessment of the phylogeny, which still remains a
moving target particularly for microbial taxonomy (53, 54).
The complexity of microbial taxonomy was already reflected
in the statement by S. T. Cowan saying that "Taxonomy is
the most subjective branch of any biological discipline, and
in many ways is more an art than a science" (52, 83). As
of 2014, the number of species of prokaryotes with validly
published names was about 11’000 (84). However, microbial
systematics is failing in its fundamental mission to precisely
provide the ecological properties of an organism that is
classified to a species (85).
The correct definition of a bacterial community structure re-
mains a bioinformatic challenge, where any parameter, from
wet-lab (i.e., DNA extraction, primer and HVR selection,
amplification, sequencing) to the bioinformatic pipeline,
can influence the outcome. The results of microbiome
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studies are most strongly influenced by the selection of the
primer pairs and thereof of the HVR amplified, rather than
on the sequencing technology used for the study (86–88).
The OTU-picking algorithm dependent on the sequencing
technology (clustering vs. denoising) or ASVs instead (89),
the classification predictor are of secondary importance,
although their impact on the outcome is not negligible
(67). The selection of the primer pairs should be made
after careful consideration of their coverage in diversity
with respect to the studied environment (67). Although
researchers tend to use primers as universal as possible to
catch the entire diversity present in the samples, it might
be a pragmatic approach to lose some universality while
increasing specificity for the studied environment. For dairy
products, the DAIRYdb achieves both, covering all the
biodiversity expected in these environments, while achieving
specificity in taxonomic annotation.
The main scope of the DAIRYdb is to improve accurate
species classification in dairy products. Beyond this, it
covers a considerable diversity in agreement with the
diversity detected in dairy products so far. However, the
DAIRYdb does not necessarily perform better than universal
databases on a set of sequences from another environments,
such as the human gut. Classification accuracy performed
on sequences from type strains included in the Human
Intestinal Tract database (HITdb) showed that the DAIRYdb
performed comparably well to the RDP trainset v16 and
significantly better than Silva and Greengenes (Figure 8)
(69). Yet, the way and ability to recognize the basic unit
for taxonomy of prokaryotes depends on the resolution
power of the observational methods actually available
(52). The study of every particular environment calls upon
peculiar requirements. Dairy products are no exception, as
their bacterial communities are usually dominated by few
phylogenetically highly related species, which are often
difficult to discern, such as L. casei, L. paracasei and L.
rhamnosus or S. thermophilus and S. salivarius. Particularly
for S. thermophilus, which is a very important representative
bacterium in dairy products, the official name still is S.
salivarius subsp. thermophilus (90). Although a separate
full species status was proposed (91), persistent contention
prevented a full ratification by the taxonomic committees
(90). Increasing sequence read lengths will make it possible
to cover three HVRs or even the entire 16S, thus significantly
improving taxonomic annotation accuracy at species rank by
using a manually curated database like the DAIRYdb.
Although it can be considered a significant progress to obtain
over 90% of accurate species classification based on short
16S fragments, quality of dairy products is often influenced
by different strains of the same species. The resolution at
strain or subspecies rank, however, based on full 16S is
highly unlikely to be achieved independently from advancing
sequencing technology. While on the one hand the definition
of strains and subspecies is even more problematic than
higher ranks such as species (85), on the other hand, the
intraspecies variability of the 16S lacks sufficient resolution
to clearly discern between strains and subspecies within the

same species (92). Nevertheless, recent powerful bioinfor-
matics tools, such as Oligotyping (93) or Minimal Entropy
Decomposition (MED) (94), can be applied to distinguish
between ecologically relevant amplicon sequence variants
(ASVs) within OTUs assigned to a same species. The
resulting oligotypes or haplotypes within a species might
be linked to different metabolic pathways or associated to
identified physico-chemical characteristics of cheese or dairy
products. Hereof, the DAIRYdb is a powerful improvement
as it accurately identifies the sequences belonging to the
same species, which can further be decomposed to oligo-
types. Finally, links between oligotypes and 16S from WGS
could improve the link between phylogeny and ecotypes for
a better ecological understanding of the system (85, 89, 95).

Fig. 8. Taxonomy annotation accuracy test on sequences from the HITdb. Compar-
ison of the taxonomy annotation accuracy at species rank between the DAIRYdb,
RDP, Silva and Greengenes on type strain sequences present in the HITdb (69).
On sequences from origin other than dairy products, the DAIRYdb performs sig-
nificantly better than Silva and Greengenes, but not better than the RPD trainset
v16.

Conclusions
Accurate prediction of taxonomy based on the marker gene
16S is a fundamental step in microbial diagnostics and mi-
crobial ecology studies. Dairy products, particularly cheeses,
are enriched by a few dominant species often belonging to the
same genera, such as Lactobacillus spp., Lactococcus spp.,
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Streptococcus spp.. An automatic and reliable taxonomic an-
notation to the correct species is pivotal to further routine mi-
crobial diagnostics.
While universal 16S databases, such as Silva, RDP and
Greengenes cover a broad biodiversity allowing to capture
the maximal biodiversity available in a system, the enormous
number of sequences in those databases lead to conflicting
taxonomy annotation at genus and species ranks and am-
biguous annotations or blanks due to competing sequences
increase accordingly (69). Moreover, the size of the database
can be a deterrent for researchers to improve the quality of
taxonomic annotation of the sequences therein. Most of the
detected OTUs in NGS analyses diverge from authoritative
reference sequences from type strains either due to sequenc-
ing biases or missing cultivated representative strains. Be-
side reference sequences, many environmental sequences are
annotated by the universal databases Silva, RDP and Green-
genes based on different taxonomic classification standards,
e.g., Bergey’s Manual, the List of Prokaryotic Names with
Standing Nomenclature (LPSN), International Nucleotide
Sequence Database Collaboration (INSDC). These differ-
ent curation strategies lead to annotation conflicts between
the databases and disagreement between microbiome studies,
which are not biologically explained, rather a consequence of
the database used for annotation.
Different to available universal databases, DAIRYdb
achieved correct taxonomy annotation for ∼90% of species
names on single HVRs and HVR pairs with sequences
present in dairy samples (70). In fact, the DAIRYdb signifi-
cantly reduced conflicting miss-annotated sequences and fa-
cilitated manual curation, while covering the inspected biodi-
versity. The better performance of the DAIRYdb over univer-
sal databases can be explained by the overall reduced num-
ber of sequences, only 10’290, with no conflicting taxon-
omy at all taxonomic ranks. Our results are in disagreement
to the recommendation to use the largest and most diverse
database possible for 16S classification (96). On the oppo-
site, manually curated 16S databases with authoritative full-
length 16S sequences dedicated to the studied environment
enormously improve classification confidence to the species
rank (54, 68, 69). Reducing the number of representative se-
quences to a minimal number in the training set further di-
minishes the risk of highly similar sequences with conflict-
ing taxonomy, thus lowering the performance of the database
used for classification (54, 68).
A certainly valid argument against manually curated
databases is their lack of reproducibility (54). However, an-
notation accuracy achieved with the DAIRYdb significantly
outperformed all universal databases tested here, as well as
the RDP trainset v16, which was shown to have the best
performance among the universal databases (54). The train-
ing sets of the universal databases contained sequences with
missing taxonomic labels at uncertain classifications at any
taxonomic rank with increasing number of blanks at species
levels (54). The consequences are numerous unclassified
OTUs with no biological meaning.
We therefore propose the manually curated DAIRYdb as

a gold standard database for 16S microbiome studies on
cheese and dairy products. The implementation of a curated
database may lead to wider consensus and standardization
processes reducing conflicts in literature due to the use of
different universal databases integrated in different classifi-
cation tools (67, 97).
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