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Competitive ecosystems are most commonly described mathematically using MacArthur’s
consumer-resource model, leading to the “Competitive Exclusion Principle” which limits the number
of coexisting competing species to the number of available resources. Nevertheless, several empirical
evidences – such as bacterial community cultures – show that this principle is violated in real ecosys-
tems. Another experimental evidence involving microbial populations that cannot be explained in
this framework is the existence of diauxic (or polyauxic) shifts in microbial growth curves. By in-
troducing adaptive metabolic strategies whose dynamics tends to maximize species’ relative fitness,
we are able to explain both these empirical evidences. Moreover, we show that adaptation and
adaptation time scale play a fundamental role in how the species respond to external perturbations
and volatile resources.

One of the most fascinating aspects of nature is biodi-
versity: from microbial to continental scales we observe
complex communities of hundreds or thousands of species
competing yet coexisting. The scientific community has
long tried to explain such an amazing complexity, but this
task requires the solution of many challenging problems.
One of them is the violation of the so-called “Competitive
Exclusion Principle” (CEP) [1], known in the literature
with many other names like “Gause’s law” or “niche-
dimensionality hypothesis”, which limits the number of
coexisting competing species. In particular, the CEP
states that if m consumers compete (with no predation
between them) for p resources, then they may coexist
only if m ≤ p, otherwise at least m − p of them will go
to extinction. The CEP is indeed found in mathemati-
cal models [2–5], and yet there are many known cases in
nature where the CEP is clearly violated [6, 7]. In partic-
ular, such violations have been recently observed in con-
trolled bacterial community experiments [8–10], where
many species can coexist in the presence of very few re-
sources. It is clear, therefore, that we are missing some-
thing essential in order to explain the high biodiversity
found in many ecological communities.

Competitive ecosystems are generally described math-
ematically using MacArthur’s consumer-resource model
[11–14], which prescribes that for a system of m species
and p resources the population density nσ(t) of species σ
and the concentration ci(t) of resource i evolve following:

ṅσ = nσ

(
p∑
i=1

viασiri(ci)− δσ

)
, (1)

ċi = si −
m∑
σ=1

nσασiri(ci)− µici (2)

(we omit for simplicity the time dependence of both nσ
and ci). Here, δσ is the death rate of species σ, ci rep-
resents the concentration of resource of type i, ri(ci) is

the availability of resource i (which we assume, without
loss of generality, to have the form of a Monod func-
tion, i.e. ri(ci) = ci/(Ki + ci) with Ki > 0, and so
ri(ci) < 1 ∀ci > 0). The ασi are the “metabolic strate-
gies”, i.e. the rates at which species σ uptakes resource
i; the parameters vi are often called “resource values”
and give a measure of how much efficiently a resource
is converted into biomass: the larger vi, the larger the
population growth that is achieved for unit resource and
thus the “more favorable” the resource i is. On the other
hand, si is a constant nutrient supply rate, and the sum in
Eq. (2) represents the action of consumers on resources,
which of course depends on the metabolic strategies ασi.
Finally, µi is the degradation rate of resource i. Eqs. (1)
and (2) lead to the aforementioned exclusion principle.
This is easily seen to hold for Eq. (1): indeed a non-
trivial stationary state is obtained if the m dimensional
vector ~δ (whose components are the death rates δσ) can
be expressed as a suitable linear combination with non-
negative coefficients of the p m-dimensional vectors ~α·i.
If m > p this does not happen unless the vector ~δ lies
in the subspace spanned by the p vectors ~α·i, which oc-
curs with zero probability unless the metabolic strate-
gies are somehow chosen ad hoc [15]. Many different
mechanisms have been proposed in order to explain the
violation of the CEP, ranging from non-equilibrium phe-
nomena (species cannot reach an equilibrium because of
spatio-temporal effects) [6], to the existence of additional
limiting factors like the presence of predators [16, 17],
cross-feeding relationships [18], toxin production [19–21],
and complex or higher-order interactions [22, 23]; see [24]
and [25] for comprehensive reviews. However, none of the
current mathematical models used to describe consumer-
resource population dynamics can explain the violation
of the CEP without some fine tuning of the parameters
[2–5, 15].
In consumer-resource models the metabolic strategies ασi
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are treated as fixed parameters instead of being consid-
ered as dynamic variables (see however [26] for a recent
work where species can instantaneously switch from us-
ing one nutrient to another). There is however incontro-
vertible experimental evidence that microbes’ metabolic
strategies can and do change over time according to their
surrounding environmental conditions. In fact, as early
as the ’40s Jacques Monod [27] observed for the first time
that Escherichia coli and Bacillus subtilis exhibit a par-
ticular growth curve, which he called “diauxie”, when
exposed to an environment containing only two different
sugars. In particular, instead of metabolizing the two
sugars simultaneously, it turned out that bacteria con-
sume them sequentially using first their “favorite” one
(i.e. the one that ensures the highest growth rate) and
once it has been depleted, after a lag phase, they start
growing slower using their “least favorite” one (see the
inset of figure 1). Since then diauxic growth has always
been the subject of thorough empirical study [28–31] with
experiments that generally involve the growth of one mi-
crobe on two resources, and has been observed to happen
widely across different microbial species [32–34]. Many
models have been proposed to describe this phenomenon,
but all are focused on specific gene regulation and expres-
sion mechanisms (they generally involve carbon catabolite
repression [35–37]), and sometimes are tailored in order
to explain the growth of particular bacterial species on
specific resources, involving also enzyme dynamics [38–
41]. Furthermore, as highlighted by Chu and Barnes [41],
it is generally said that the existence of diauxic shifts
is “adaptive”, and the central idea of related modeling
frameworks is that regulatory processes behind diauxic
shifts may be considered as the outcome of some opti-
mization strategy [42]. Overall, it is clear that bacteria
are able to change the gene expression of metabolic path-
ways through which they absorb energy from the envi-
ronment, but a connection between this phenomenon and
consumer-resource ecological modeling is still missing.
Besides to experiments of single species dynamics with
multiple resources, in the last years there has been an
increasing number of works studying microbial commu-
nities, both theoretically and experimentally [8–10, 18].
Some of these studies involved laboratory controlled mi-
crobial communities coming from different type of natu-
ral environments, and have confirmed that complex mi-
crobial communities with many species can be sustained
in laboratory conditions even with few carbon sources, in
apparent violation of the CEP.
It has been recently observed experimentally that the
consumption of resources in an hierarchical order hap-
pens also when microbes live in diverse communities and
that it maintains coexistence in competitive ecosystems
[43]. However, form a theoretical point of view we com-
pletely lack a unifying framework that comprehends both
the existence of diauxic shifts and the violation of the
CEP. In this letter we show that they can be both ex-

plained by allowing the metabolic strategies ασi to be
temporal variables evolving according to an appropri-
ate dynamics that increases the relative fitness of each
species. Using adaptive metabolic strategies allows also
to give a theoretical explanation of the existence of di-
auxic shifts without relying on specific molecular details
involved in the species’ gene regulation and expression
mechanisms.

Adaptive metabolic strategies. We now introduce
our adaptive mechanism: we require that each metabolic
strategy ~ασ evolves in order to maximize its own species’
relative fitness, measured [44, 45] by the growth rate
gσ =

∑p
i=1 viασiri(ci). This can be achieved by requir-

ing that metabolic strategies follow a simple “gradient
ascent” equation:

α̇σi =
1

τσ

∂gσ
∂ασi

, (3)

where in general τσ is the characteristic timescale over
which the metabolic strategy of species σ evolves. Since
δσ is the only characteristic timescale of each species, a
natural choice for τσ is to be proportional to the inverse
of its corresponding death rate, i.e. τσ = (dδσ)−1, where
d regulates adaptation velocity.
However, Eq. (3) is missing an important biological con-
straint, related to intrinsic limitation of the species’ re-
source uptake capabilities. Microbes, in fact, have lim-
ited amounts of energy that they can use to produce the
metabolites necessary for resource uptake, so we must
introduce such constraint in Eq. (3). We thus require
that each species has a maximum amount of energy avail-
able for metabolism, i.e.

∑p
i=1 wiασi(t) := Eσ(t) ≤ E∗σ

where E∗σ is the maximum total resource uptake rate of
species σ; the parameters wi are called “resource costs”
and take into account the fact that each resource could
require more or less energy in order to be metabolized.
Again, since E∗σ is an uptake rate, it is reasonable to re-
quire that it is proportional to the death rate δσ, since it
is the only characteristic timescale of each species (this
is also in accordance to the metabolic theory of ecol-
ogy [46]). We therefore set E∗σ = Qδσ, with Q a pos-
itive real number. The constraint on the species up-
take rate capacities introduces a trade-off between the
use of different resources. In this case it can be shown
that the maximization of each species’ fitness explicitly
depends on all species’ metabolic strategies (see Sup-
plemental Material [47]). In the Supplemental Material
[47] we present a geometrical interpretation of the max-

imization problem given by Eq. (3), i.e. ~̇ασ = ~∇~ασ
gσ

where ~∇~ασ
is the gradient with respect to the compo-

nents of ~ασ. In particular, if we want ~ασ to evolve so
that ϕ(~ασ(t)) :=

∑p
i=1 wiασi(t) − Qδσ ≤ 0, it is suffi-

cient to remove from ~∇~ασ
gσ the component parallel to

~∇~ασ
ϕ(~ασ(t)) as soon as ϕ(~ασ(t)) = 0. Moreover, we also

want to prevent the metabolic strategies from becoming
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negative. Eventually, the final equation for the metabolic
strategies’ dynamics is given by Eq. (4) (see Supplemen-

tal Material [47]), where Θ is Heaviside’s step function,
i.e. Θ(x) = 1 when x ≥ 0 and Θ(x) = 0 otherwise.

α̇σi = ασidδσ

viri −Θ

(
p∑
i=1

wiασi −Qδσ

)
wi∑p

k=1 w
2
kασk

p∑
j=1

vjrjwjασj

 (4)

For the moment we assume that all the degradation rates
µi are null and for the sake of simplicity d = 1, but we
will later discuss the more general case.
Diauxic shifts. If Eq. (4) is used alongside Eqs. (1)
and (2), the simulations of the system’s dynamics are ca-
pable of reproducing diauxic shifts when we expect such
phenomena. Let us in fact consider the typical case stud-
ied in diauxic shift experiments, i.e. one species (m = 1)
with two types of resources (p = 2) supplied only initially
(s1 = s2 = 0 and c1(0), c2(0) 6= 0). Figure 1 shows the
time evolution of the population density of our model in
the case c1(0) > c2(0) and w1/v1 < w2/v2: in this ex-
ample, therefore, resource 2 is the “favorite” one and is
scarce, while resource 1 is the “less preferred” one and is
highly abundant. As we can see the population growth
curve indeed exhibits a diauxic shift (for more informa-
tion see figure S.2 in Supplemental Material [47]).
In this framework it is also possible to estimate the
instant at which the diauxic shift occurs. In particu-
lar from Eq. (4), in the case m = 1 and with initial
conditions such that

∑p
i=1 wiαi < Qδ we can approx-

imate the initial growth of the metabolic strategies as
αi(t) ∼ αi(0) exp(δvirit), where we are assuming that ri
remain constant in this time interval (see figure S.3c in
Supplemental Material [47]). We then call t the solution
of
∑
i=1,2 wiαi(0) exp(δvirit) = Qδ with respect to t, i.e.

the instant at which ϕ(~α(t)) = 0. In figure 1 we have also
added a vertical grey line at t to show where this instant
lies with respect to the population growth curve; as we
can see, it is indeed a good estimate of the instant at
which the species starts growing on the second resource.
Competitive exclusion principle. We now show

that incorporating adaptive strategies in our consumer-
resource model is also a key factor that allows the coex-
istence of multiple species in violation of the CEP.
Recently, Posfai et al. [15] have studied MacArthur’s
consumer-resource model with static metabolic strategies
and the “hard” constraint

∑p
i=1 wiασi = Eσ. They found

that an arbitrary number of species can coexist only if
Eσ/δσ = const. and the rescaled nutrient supply rate vec-
tor ŝi := visi/

∑p
j=1 vjsj belongs to the convex hull of the

rescaled metabolic strategies α̂σi := wiασi/
∑p
j=1 wjασj

(see Supplemental Material [47]). In general, any broader
constraint (like

∑p
i=1 wiασi ≤ Eσ) will lead to the ex-

tinction of at least m − p species, i.e. the system will

FIG. 1: Growth of the population over time using (4) for
the time evolution of the metabolic strategies. In this case
we have used n(0) = 1, ~c(0) = (40, 5), ~s = (0, 0), ~v = (2, 25),

~w = (1, 4), ~α(0) = (1, 1), ~K = (1, 3), Q = 25 and δ = 1;
time is in arbitrary units. The grey vertical line corresponds
to t, the estimate of the instant at which the diauxic shift
occurs (in this case we have t ≈ 0.114, see the discussion for
more details). Inset: Data of experimental measurements of
the growth of Klebsiella oxytoca on glucose and lactose, taken
from [28, figure 11] for comparison only (the parameters have
not been set in order to reproduce the data.

obey the CEP; in this sense the system allows coexis-
tence only when fine-tuned. However, if we allow ασi
to evolve following Eq. (4) the system gains additional
degrees of freedom which make it possible to find steady
states where an arbitrary number of species can coexist,
even when initial conditions are such that ~̂s does not lie
in the convex hull of the rescaled metabolic strategies
~̂ασ·, i.e. the system violates the CEP without having
fine-tuned parameters (see Supplemental Material [47]).
In figure 2 we show the initial and final states of a time
evolution (for more information see figure S.3 in Supple-

mental Material [47]) in the final state ~̂s lies inside of
the rescaled strategies’ convex hull: it is therefore clear
that our model is capable of self-organization, because
the metabolic strategies change in order to put the sys-
tem in the right conditions for coexistence even when
they are initially not satisfied.

An interesting feature of our model is that it predicts
that if one of the available resources, e.g. resource j,
is too “expensive” then adaptation will bring all the j-
th components of the metabolic strategies to zero, i.e.
species will stop using that resource. In fact, the “ex-
pensiveness” of resource i can be measured by wi/vi, i.e.
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FIG. 2: Comparison between the initial (orange) and final
(purple) convex hull of the rescaled metabolic strategies (col-
ored dots) when they are allowed to evolve, using (4) for the
time evolution of ασi. These results have been obtained for
a system with m = 10 and p = 3, so the rescaled metabolic
strategies and nutrient supply rate vector (black star) all lie
on a 2-dimensional simplex (i.e. the triangle in the figure),
where each vertex corresponds to one of the resources; for
more information on the parameters used, and for the plots of
the time evolution of the population densities and metabolic
strategies see figure S.3 in Supplemental Material [47]. As we

can see, in the final state α̂σi have “incorporated” ~̂s in their
convex hull.

the ratio between its cost and its value, and an analyti-
cal analysis of our model with fixed metabolic strategies
leads to the conclusion that in order to have a nontrivial
stationary state we must have wi/vi < Q ∀i (see Supple-
mental Material [47]). However, when Eq. (4) is used the
system behaves interestingly even when there is at least
one j for which wj/vj > Q: in this case, in fact, resource
j becomes too “expensive”, and it is possible to show
that the system “decouples” from that resource, i.e. the
j-th components of all the metabolic strategies become
null (see Supplemental Material and figure S.4 [47]).
Something analogous happens also when we let µi > 0:
in this case at stationarity the convex hull of the rescaled
metabolic strategies will include the vector with compo-
nents s̃i := vi(si − µic∗i )/

∑p
j=1 vj(sj − µjc∗j ) (see Sup-

plemental Material [47]), and if one of the µi is suffi-
ciently large this vector will lie on one of the sides of
the p − 1-dimensional simplex where our system can be
represented. This means that if the degradation rate µj
of resource j becomes too large then again all the j-th
components of the metabolic strategies will become null
(see figures S.5 and S.6 in Supplemental Material [47]).
Therefore, we have that in our model the species will
not waste energy metabolizing resources that are “un-
favorable” (either because they are too “expensive” or
volatile) and will focus their efforts on the more “conve-
nient” ones.

Variable environmental conditions. Having adap-
tive metabolic strategies has positive effects when the
environmental conditions of our system are variable, i.e.
when ~s is a function of time ~s(t). Let us consider a sce-

FIG. 3: Comparison between the evolution of the population
of species σ = 1 with fixed and adaptive metabolic strategies,
when ~s changes in time. We have considered a system with
m = 20, p = 3, and the nutrient supply rate vector switches
at regular intervals between two values, in particular we have
~s(t) = ~sin for a time interval of length τin = 20, then ~s(t) =
~sout for a time interval of length τout = 20 and then back
again to ~sin, where ~sin is drawn inside of the convex hull of
the rescaled metabolic strategies and ~sout is drawn outside
it. For more information on the parameters used and how
~s(t) is defined, see figure S.7 in Supplemental Material [47].
Inset: Evolution of the population of the same species, with
the same parameters and initial conditions, but with τin = 20
and τout = 5.

nario where the nutrient supply rates change periodically;
this can be implemented by shifting ~s between two dif-
ferent values at regular time intervals: one inside the
convex hull of the initial (rescaled) metabolic strategies
and one outside of it. We found that when ~ασ are al-
lowed to evolve, then the species’ populations oscillate
between two values and manage to coexist, while when
the metabolic strategies are fixed in time species go ex-
tinct (see figure 3) and the CEP is recovered. Only when
we let ~s(t) lie outside of the convex hull for a short pe-
riod of time coexistence is possible. Figure 3 shows an
example of such a case (for more details see figure S.7
in Supplemental Material [47]). Also in this case, when
we introduce non-null resource degradation rates we find
again that if µi is sufficiently large with respect to wi/vi,
then all the i-th components of the metabolic strategies
will vanish (see figure S.8 in Supplemental Material [47]).
Therefore, adaptive metabolic strategies allow the species
to efficiently deal with variable environmental conditions,
typical of most natural systems.
Adaptation velocity. A physically relevant parame-

ter characterizing the capacity of the species to adapt to
new environments is d, which as already discussed reg-
ulates the species’ adaptation velocity of the metabolic
strategies. Increasing the value of d leads to metabolic
strategies that evolve more rapidly, and as a consequence
the species’ growth rates will be optimized for a longer
period of time; this means that when d has larger values
the species’ stationary populations will be higher (see fig-
ure S.9 in Supplemental Material [47]), and less variable
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when ~s(t) changes in time (see figure S.10 in Supplemen-
tal Material [47]). On the other hand, if d tends to zero
we recover the case of fixed metabolic strategies and thus
the CEP will be recovered. This means that for different
adaptation velocities the distribution of the stationary
species’ populations can change sensibly and if d is small
enough, for a given extinction threshold, then we can
have that some species go extinct. In other words, if the
adaptation velocity is small enough we can recover the
CEP with our model.
Conclusions. In conclusion, introducing adaptive
metabolic strategies in a MacArthur’s consumer-resource
model evolving so that each species’ growth rate is max-
imized allows us to explain phenomena observed experi-
mentally from the single-species to the community level.
Furthermore, with this hypothesis we can naturally vi-
olate the CEP without any strong assumption on the
parameters of the model, but at the same time we can
explain why competitive exclusion still happens in some
cases. We have therefore shown that having adaptive
metabolic strategies is indeed a determining factor in mi-
crobial communities. Recently, an increasing amount of
attention is being drawn on the study of cross-feeding
relationships between microbial species [18, 48, 49]. A
future development is to generalize our approach to in-
clude also cross-feeding strategies in the model.
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