1	Just the Two of Us? A Family of <i>Pseudomonas</i>
2	Megaplasmids Offers a Rare Glimpse Into the Evolution of
3	Large Mobile Elements
4	
5	
6	Brian A. Smith ¹ *, Courtney Leligdon ¹ , and David A. Baltrus ^{1,2}
7	
8	
9	¹ School of Plant Sciences, University of Arizona, Tucson, AZ, USA
10	² School of Animal and Comparative Biomedical Sciences, University of Arizona,
11	Tucson, AZ, USA
12	
13	*corresponding author
14	basmith@email.arizona.edu
15	
16	
17	

18 Abstract

19 Pseudomonads are ubiquitous group of environmental proteobacteria, well known 20 for their roles in biogeochemical cycling, in the breakdown of xenobiotic materials, 21 as plant growth promoters, and as pathogens of a variety of host organisms. We 22 have previously identified a large megaplasmid present within one isolate the plant 23 pathogen *Pseudomonas syringae*, and here we report that a second member of this 24 megaplasmid family is found within an environmental Pseudomonad isolate most 25 closely related to *P. putida*. Many of the shared genes are involved in critical cellular 26 processes like replication, transcription, translation, and DNA repair. We argue that 27 presence of these shared pathways sheds new light on discussions about the types 28 of genes that undergo horizontal gene transfer (i.e. the complexity hypothesis) as 29 well as the evolution of pangenomes. Furthermore, although both megaplasmids 30 display a high level of synteny, genes that are shared differ by over 30% on average 31 at the amino acid level. This combination of conservation in gene order despite 32 divergence in gene sequence suggests that this Pseudomonad megaplasmid family is 33 relatively old, that gene order is under strong selection within this family, and that 34 there are likely many more members of this megaplasmid family waiting to be found 35 in nature.

37 Introduction

Horizontal Gene Transfer (HGT) of megaplasmids can rapidly create dramatic 38 39 phenotypic differences between otherwise closely related bacterial strains, with 40 potential for over a thousand genes to be gained by a strain in a single event. 41 Although there have been numerous attempts to identify overarching themes for the 42 evolutionary effects of HGT based on types of genes and pathways transferred, such 43 efforts have often neglected to incorporate intrinsic characteristics of megaplasmids ¹⁻⁶. Furthermore, since secondary replicons are prone to rapid reshuffling of gene 44 45 order as well as extensive gains and losses of loci, it has traditionally been 46 challenging to analyze past evolutionary dynamics to understand overall historical 47 pressures acting on this class of mobile elements⁷⁻¹⁴. More thorough investigation of evolutionary dynamics within relatively large plasmid families could therefore 48 49 provide new viewpoints into the evolutionary effects of gene transfer and may also 50 enable broader generalizations about selective forces driving the composition and 51 overall structure of megaplasmids, chromids, and second chromosomes. 52 53 Megaplasmids are generally characterized as low copy extrachromosomal replicons 54 >350kb in size and which are dispensable to the bacterial cell under a subset of 55 conditions¹⁴. As with many plasmid families, they have often been identified because 56 they impart beneficial phenotypes such as resistance to antimicrobial compounds or 57 introduce novel catabolic pathways into host cells¹⁴. Given their size and gene 58 content, it is possible that megaplasmids possess greater potential for generating

59 evolutionary costs than smaller plasmids when transferred to naive hosts^{15,16}.

However, efforts to identify shared genes and pathways across megaplasmids and to
use this information to make predictions about potential systems level conflicts
have been hampered by poor sampling across novel megaplasmid families ¹⁴.
Identification of additional examples can help to fill this gap in current knowledge
and may uncover new evolutionary trends that govern megaplasmid-chromosomal
interactions.

66

67 Consideration of megaplasmids may uniquely inform general discussions about 68 evolutionary effects HGT in ways that have been overlooked by analyses focusing 69 simply on distributions of genes and pathways maintained after transfers and 70 without considering timing of HGT or linkage between loci. For instance, many of 71 the earliest discussions concerning evolutionary constrains of HGT, the so called 72 "complexity hypothesis", found that loci associated with "more complex" cellular processes undergo lower rates of transfer than other genes^{4,17}. Interpretations of 73 74 these patterns have changed through time with examples of horizontally acquired 75 informational genes, suggesting that it is actually the shape of protein interaction 76 networks that are critical for maintenance after gene transfer. ^{4,18-22}. However. 77 larger mobile elements like megaplasmids can contain genes encoding proteins and 78 pathways that could be classified as "complex" (i.e. proteins involved in translation) 79 and which have the potential to interact with numerous chromosomally encoded 80 pathways^{14,23}. Likewise, a variety of recent papers have focused on selective forces 81 (or lack thereof) governing microbial pangenomes^{1-3,24}. These discussions have 82 largely focused on population level distributions for single genes that compose a

83	pangenome, but by their nature intrinsically fail to consider linkage of genes on
84	plasmids that are frequently acquired and lost. While many genes within the
85	pangenome may indeed be 'adaptive', such a viewpoint overlooks the idea that no
86	single gene need be adaptive for the bacterial cell if selection acts at the level of
87	plasmid transfer and hundreds of genes that could be linked to that process. More
88	thorough characterization of multiple megaplasmid families and identification of
89	new megaplasmids will enable identification of the types of genes and pathways
90	canonically associated with these large vectors and patterns that emerge can be
91	incorporated into greater discussions of the general role of HGT across bacterial
92	species.
93	
94	Previously we have described a megaplasmid, pMPPla0107, found within one isolate
94 95	Previously we have described a megaplasmid, pMPPla0107, found within one isolate of the phytopathogen <i>Pseudomonas syringae</i> ²³ . pMPPla107 is self-transmissible
95	of the phytopathogen <i>Pseudomonas syringae</i> ²³ . pMPPla107 is self-transmissible
95 96	of the phytopathogen <i>Pseudomonas syringae</i> ²³ . pMPPla107 is self-transmissible across the <i>Pseudomonas</i> phylogeny, harbors numerous loci that could be annotated
95 96 97	of the phytopathogen <i>Pseudomonas syringae</i> ²³ . pMPPla107 is self-transmissible across the <i>Pseudomonas</i> phylogeny, harbors numerous loci that could be annotated as "housekeeping" genes, and it is stably maintained within recipient cells ^{23,25,26} . We
95 96 97 98	of the phytopathogen <i>Pseudomonas syringae</i> ²³ . pMPPla107 is self-transmissible across the <i>Pseudomonas</i> phylogeny, harbors numerous loci that could be annotated as "housekeeping" genes, and it is stably maintained within recipient cells ^{23,25,26} . We have also demonstrated that acquisition of this megaplasmid through HGT also
95 96 97 98 99	of the phytopathogen <i>Pseudomonas syringae</i> ²³ . pMPPla107 is self-transmissible across the <i>Pseudomonas</i> phylogeny, harbors numerous loci that could be annotated as "housekeeping" genes, and it is stably maintained within recipient cells ^{23,25,26} . We have also demonstrated that acquisition of this megaplasmid through HGT also imparts significant phenotypic costs to recipient cells, likely mediated by
95 96 97 98 99 100	of the phytopathogen <i>Pseudomonas syringae</i> ²³ . pMPPla107 is self-transmissible across the <i>Pseudomonas</i> phylogeny, harbors numerous loci that could be annotated as "housekeeping" genes, and it is stably maintained within recipient cells ^{23,25,26} . We have also demonstrated that acquisition of this megaplasmid through HGT also imparts significant phenotypic costs to recipient cells, likely mediated by detrimental interactions between chromosomal and plasmid encoded proteins ²⁶ . It
95 96 97 98 99 100 101	of the phytopathogen <i>Pseudomonas syringae</i> ²³ . pMPPla107 is self-transmissible across the <i>Pseudomonas</i> phylogeny, harbors numerous loci that could be annotated as "housekeeping" genes, and it is stably maintained within recipient cells ^{23,25,26} . We have also demonstrated that acquisition of this megaplasmid through HGT also imparts significant phenotypic costs to recipient cells, likely mediated by detrimental interactions between chromosomal and plasmid encoded proteins ²⁶ . It is unclear if pMPPla107 is the only megaplasmid of its kind and size with

105 Here we identify a new megaplasmid, pBASL58, related to pMPPla107 and use 106 molecular and computational approaches to characterize this megaplasmid family 107 more broadly. We show that, while these megaplasmids are similar in size, genetic 108 structure, nucleotide bias, and functionality, there is a high level of divergence 109 across shared orthologous gene groups, a dissimilar cargo region, and differing 110 CRISPR loci. This overall level of divergence suggests that both members of this 111 megaplasmid family have been independently evolving for a relatively long period 112 of time. Even more, we find that these divergent orthologous pathways demonstrate 113 high levels of synteny in the context of overall plasmid structure; suggesting that 114 conservation of gene orientation and order is under relatively strong selective 115 pressures. Lastly, characterization of these plasmids allows for a chance to 116 emphasize that pathways found on both megaplasmids are likely involved in 117 important cellular processes like nucleotide synthesis and DNA replication, which 118 highlights new discussion points to add to the complexity hypothesis as well as the 119 adaptive nature of pangenomes. 120 121 Methods 122 123 Identification of pBASL58

124 Initial BLASTp searches coupled with inspection of contigs from a draft genome

- assembly of *Pseudmonas* sp. Leaf58²⁷ suggested that this strain could contain a
- 126 megaplasmid related to pMPPla017, represented within contig
- 127 Ga0102293_111 within the draft genome assembly containing 18 contigs total

128	(Genbank accession GCA_001422615.1). An isolate of <i>Pseudomonas</i> sp. Leaf58 was
129	obtained from DSMZ (DSM-102683), and a single colony was picked from a culture
130	from the freeze-dried ampule plated on unsupplemented LB media. To test for
131	circularization of contig Ga0102293_111, primers (BAS 17-31) were designed to
132	amplify off of the edges of the contig and overlap each other. An approximate 1.5kb
133	size PCR product was amplified from an overnight culture of this strain grown in KB
134	media, demonstrating circularization of this contig. Sanger sequencing of this PCR
135	fragment demonstrated that the initial draft contig contained a missassembly, and
136	so this sequence was corrected by hand, and the contig as reoriented and used in all
137	analyses in this manuscript. Sequence of this contig can be found at Figshare
138	(doi: <u>10.6084/m9.figshare.6914033</u>). For consistency of analyses throughout the
139	manuscript we reannotated the megaplasmid sequence with Prokka v1.12 using
140	default parameters, and this annotation can also be found at Figshare
141	(doi: <u>10.6084/m9.figshare.6914033</u>).
142	
143	Genome Sequencing, assembly, and annotations of Pseudomonas sp. Leaf58
144	As further evidence of the existence of a megaplasmid in Leaf58, we generated a
145	complete genome assembly for this strain (currently found at Figshare
146	(doi: <u>10.6084/m9.figshare.6914033</u>), Genbank accession TBD). After revival from
147	the Baltrus lab stock, a single colony <i>Pseudomonas</i> sp. Leaf58 was picked to an
148	overnight culture in KB media, and grown in a shaking incubator at 27°C. After
149	approximately 24 hours, DNA was extracted from this culture using a Promega
150	Wizard kit. A rapid sequencing library was created using this DNA, and 169,316

151	reads (933,937,907 total bp, 5,515bp average read size) were generated on an R9.4
152	flowcell using a Rapid sequencing kit (SQK-RAD004). Additionally, 100bp paired
153	end Illumina reads used to generate the original draft genome of this strain were
154	downloaded from the SRA (Accession ERR1103815) ²⁷ . A complete genome
155	sequence for <i>Pseudomonas</i> sp. Leaf58 was generated by combining these short and
156	long reads in Unicycler (version 0.4.4) ²⁸ . This sequence consists of a single
157	chromosome (5,432,868 bp) and the pBASL58 megaplasmid (904,253bp), both of
158	which were circular according to Unicycler.
159	
160	Genome Sequencing, assembly, and annotations of Pla107
161	A single colony of the Baltrus lab stock of <i>Pseudomonas syringae</i> pv. <i>lachrymans</i> 107
162	(MAFF31015) was picked to an overnight culture in KB media, and grown in a
163	shaking incubator at 27oC. After approximately 24 hours, DNA was extracted from
164	this culture using a Promega Wizard kit. Illumina sequencing of was performed by
165	MicrobesNG, and generated 2,771,213 250bp paired end reads (231 median read
166	length after trimming, ~166x coverage of the genome) on an Illumina MiSeq.
167	Assembly was performed using SPAdes v3.10 .1 with default parameters as well as
168	through MicrobeNG's bioinformatics pipeline, which matches the reads to the best
169	reference using Kraken and maps reads back to that reference using BWA-MEM ²⁹ .
170	MicrobeNG also uses <i>de novo</i> assembly with SPAdes. pMPPla107 assembled
171	completely from these reads, and this version of the megaplasmid sequence can be
172	found Figshare (doi: <u>10.6084/m9.figshare.6914033</u>)and was used for all analyses
173	throughout this manuscript. Gene annotation of this version of the megaplasmid

174	sequence was performed with Prokka v1.12 using default parameters. This gene
175	model used for all coding sequence analyses within the manuscript and can be
176	found at Figshare (doi: <u>10.6084/m9.figshare.6914033</u>). We additionally generated
177	long read sequences for Pla107 using a MinION from Oxford Nanopore. A rapid
178	sequencing library was created from an independent genomic isolation of a
179	derivative of Pla107, DBL328, which contains an integrated version of the
180	pMTN1907 marker plasmid and which has been selected to for kanamycin
181	resistance from this marker plasmid. As above, a single colony of this strain was
182	picked to an overnight culture in KB media and DNA was extracted with a Promega
183	Wizard kit. 15,461 reads (139,041,576 total bp, 8,993 average read size) were
184	generated on an R9.4 flowcell using a Rapid sequencing kit (SQK-RAD004). A whole
185	genome assembly was created by combining both MiSeq and MinION reads using
186	Unicycler (version $0.4.4$) ²⁸ with default parameters. This whole genome sequence
187	consists of a circular chromosome (6,075,120 bp), pMPPla107 (971,889 bp, and
188	sequence identical to the assembly from SPADES alone), and two other plasmids,
189	pPla107-1 (62,136 bp) and pPla107-2 (40,720 bp). Three of these sequences
190	(except pPla017-1) were complete and circular contigs according to Unicycler
191	assembly. This assembly was used to update the Genbank version of this genome,
192	and is found at accessions (CP031225, CP031226 CP031227, CP031228). Gene
193	annotations in this Genbank file were generated by NCBI's PGAAP pipeline ³⁰ .
194	

195 Identifying Origins of Replication

196	To identify putative origins of replication for both megaplasmids, we used a
197	modified GC skew script ³¹ to scan the entirety of pMPPla107 and pBASL58 and
198	combined this information with characterization of repetitive motifs that could
199	represent <i>oriV</i> sites. GC skew and repetitive motifs suggest pMPPla107 and
200	pBASL58 have predicted origins of replication within a similar genomic region near
201	partitioning genes (Figure 2). Based on this information we oriented the sequences
202	of pMPPla107 and pBASL58 to begin at the start codon of shared <i>parA</i> -like loci. We
203	chose the <i>parA</i> -like locus as the starting point because it is shared by both
204	sequences, is near the predicted origin of replication, and is predicted to be an
205	important gene for plasmid partitioning.
206	
207	CRISPR Identification
208	CRISPR-Cas and repeat structure annotations were identified using both Prokka
209	annotations and the web tool CRISPRCasFinder ³²⁻³⁴
210	
211	Plasmid Comparisons With BLASTp and MAUVE
212	Amino acid sequence names were changed to numbers in an increasing order using
213	the mod_protein_id.py script. We then used the BLAST 2.6.0+ package ³⁵ . BLASTp
214	parameters were altered to ensure only the top hit was returned and that there
215	were zero overlapping hits. The BLAST command used was:

217 blastp -db [blastdb] -query [query_file] -culling_limit 1 -max_target_seqs 1 -

218 max_hsps 1 -out [out_file] -outfmt 6

220	Data was extracted from the BLAST output at 40, 50, 60, and 70% identity cutoffs
221	and plotted in R using ggplot2.
222	
223	pMPPla107 and pBASL58 sequences were input into Progressive Mauve 2.3.1 to
224	compare megaplasmid sequences within the software Geneious ³⁶ .
225	
226	Gene Mapping Visualization with Circa
227	The BLASTp output data mentioned above was altered in a format to comply with
228	input to Circa using gff_info_extract.py followed by geneid_match.py. The
229	parameters used to generate the Circa map and the Python scripts used to generate
230	the data can be found at the https://github.com/basmith89/megaplasmid_compare.
231	
232	Tetranucleotide frequency Comparisons
233	We performed pairwise comparisons of tetranucleotide frequencies between
234	chromosome sequences and secondary replicon sequences in an all by all method.
235	Tetranucleotide frequencies were calculated with the calc.kmerfreq.pl script created
236	by Mads Albertsen ³⁷ found at <u>https://github.com/MadsAlbertsen/multi-</u>
237	<u>metagenome</u> . Output of this script was plotted using ggplot2 and R^2 values were
238	calculated in R.
239	
240	Functional Comparisons With KEGG, KASS, and UProC

241	We carried out two anal	vses utilizing the I	Kvoto Encyclo	pedia of Genes and Genomes

- 242 (KEGG) database³⁸. Amino acid sequences of coding regions predicted by Prokka
- 243 were input into the protein sequence classification software, UProC³⁹. UProC's
- output is a list of KEGG IDs and counts. We designed a perl script,
- 245 kegg_path_counter.pl, to extract these ID's and counts and associated them with
- 246 KEGG functional pathways. The script and ID key can be found at
- 247 https://github.com/basmith89/megaplasmid_compare. These data were then
- 248 plotted with the Plotly package in R.
- 249
- Amino acid sequences output by Prokka were also run through a Python script to
- 251 produce a list of gene annotations that both megaplasmids have in common
- 252 https://github.com/basmith89/megaplasmid_compare. Amino acid sequences
- 253 from genes on this shared list were then run through KASS (KEGG Automatic
- Annotation Server) to determine what pathways are shared by the megaplasmids⁴⁰.
- 255 Pathways maps were then condensed into one figure by hand.
- 256

257 Results

- 258 A new member of the pMPPla107 megaplasmid family
- pMPPla107 was originally identified from an assembly using both 454 and 30bp
- 260 Ilumina sequencing reads ²³. However, due limitations of these early technologies,
- this assembly of pMPPla107 remained incomplete and consisted of linked scaffolds.
- 262 We therefore utilized updated sequencing and assembly technologies to sequence
- the *P. syringae* genome containing pMPPla107, yielding a complete circular

264	sequence for this megaplasmid (971,889bp compared to 963,598bp in original
265	sequence) (Table 1). Additionally, multiple searches using protein sequences from
266	pMPPla107 consistently yielded high quality matches to the scaffold
267	Ga0102293_111 (referred to as pBASL58 from here on) from a public genome
268	assembly of <i>Pseudomonas</i> sp. Leaf58. This strain was originally isolated as part of a
269	project to thoroughly sample cultureable strains from the phyllosphere of
270	Arabidopsis and is most closely related to <i>P. putida</i> strains ⁴¹ . We independently
271	confirmed circularization (Figure 1) of this contig from Leaf 58, using both PCR and
272	long read nanopore sequencing, definitively showing this contig was indeed a large
273	megaplasmid separate from the chromosome.
274	
275	Dette manufacturi de contain como constato tonta la ci

275 Both megaplasmids contain numerous tRNA loci

276 The size, number of predicted genes, number of tRNAs, and GC content are highly 277 similar between pMPPla107 and the pBASL58 (Table 1). Overall GC content was 278 similar in Leaf58 and *P. syringae lac107*, and the GC content in both pMPPla107 and 279 pBASL58 were lower than their respective chromosomal partners. pBASL58 and 280 pMPPla107 contained 54 and 44 regions annotated as tRNA loci, respectively. 281 pBASL58 encodes 20 unique tRNAs and pMPPla107 encodes 10, some of which 282 were repetitive like tRNA-Glu(ttc) in pBASL58 occurring six times. When observing 283 tRNA amino acid products, pMPPla107 encodes for 16/20 possible amino acids and 284 pBASL58 encodes for 19/20 possible amino acids possibly indicating pBASL58 is 285 less dependent on host tRNAs. In addition to the 16 amino acids produced by 286 pMPPla107, pBASL58 is predicted to code for the ability to charge tRNAs with

tryptophan, glutamate, and aspartate and both plasmids are missing any anticodons

- to produce histidine. These differences could suggest an amino acid preference for
- the maintenance or protein production of the plasmids.
- 290

291 Identifying genomic similarities of pMPPla107 and the Leaf58 plasmid

- Both megaplasmids within this new family are highly syntenic (Figure 3A, with
- 293 Mauve alignment showing that 72.8% (707,677bp out of 971,871bp) of pMPPla107

aligns well with 71.6% (646,763bp out of 903,765bp) of pBASL58 (Supplemental

Figure 1. The regions of highest similarity occur near the origin of replication.

296 Despite overall high levels of synteny, there is a highly dissimilar region

297 (approximately 300kb in size) occurring within the first half of the sequences and a

298 ≈50kb inversion in the last half indicating these megaplasmids have also undergone

299 structural diversification.

300

Even though both megaplasmids display high levels of synteny, preliminary

302 comparisons of protein sequences suggested a relatively high level of divergence

303 between orthologues shared by both megaplasmids (Figures 3B and C). The highest

levels of average amino acid similarity (48.6%) occur near the predicted origin of

305 replication where genes for plasmid replication, partitioning, and conjugation are

306 common. Areas near the terminus still demonstrate strong synteny but have higher

307 divergence in amino acid identity (≈38.2% similarity). These data suggest

308 pMPPla107 and pBASL58 are structurally related to each other and share a common

309 plasmid ancestor, but have experienced independent evolutionary pressures for

310 long enough time for significant diversification to occur within shared protein

- 311 sequences.
- 312

313	To further gauge relationships between both megaplasmids and the chromosomes
314	of their host strains, we compared tetranucleotide frequencies for each of these
315	replicons $^{42-44}$. Pairwise comparisons demonstrated that pMPPla107/pBASL58 (R ²
316	= 0.878) and the <i>P. syringae</i> /Leaf58 (R^2 = 0.889) chromosomes are most similar in
317	frequencies (Figure 4). All remaining pairwise comparisons reported R ² values less
318	than 0.780. pMPPla107 shows the greatest differences in tetranucleotide
319	frequencies when compared to both the <i>P. syringae</i> and the Leaf58 chromosomes
320	with R^2 values of 0.524 and 0.393 respectively. pBASL58 shares slightly more
321	similar frequency preferences indicative of R ² values of 0.780 and 0.695, to <i>P.</i>
322	syringae and Leaf58 chromosomes respectively. This data suggest that mutational
323	biases affecting these secondary replicons are most similar to each other, which
324	suggests that they have not been replicating within these host strains long enough
325	to be subject to amelioration.
326	

327 Housekeeping gene functionality is shared by pBASL58 and pMPPla107

328 Based on the structural similarities established, we hypothesized that pMPPla107

and pBASL58 would share similar functional pathways. UProC called 9% (85) and

330 10% (111) of the predicted coding regions for pBASL58 and pMPPla107,

respectively, indicating the majority of predicted gene functionality is unknown.

Annotation with Prokka returned similar results (13% of genes with annotated

333	functions). The pathways and functions most frequently annotated were replication
334	and repair at 2.3% (22 genes) for pBASL58 and 2.4% (26) for pMPPla107, global
335	and overview maps at 2.1% (20) for pBASL58 and 2.2% (24) times for pMPPla107,
336	and nucleotide metabolism at 1.3% (12) for pBASL58 and 1.8% (19) for pMPPla107
337	(Figure 5). KEGG KASS also predicated that the two megaplasmids share 57.6%
338	(99/172) of annotated genes. Therefore pBASL58 and pMPPIa107 carry 31 and 42
339	unique genes respectively. Again, the overall distribution of gene products present
340	on both megaplasmids tends towards DNA synthesis, DNA repair, and synthesis of
341	deoxyribonucleotide-triphosphates (Supplemental Table 1 and Supplemental Figure
342	3). These shared groups include DNA polymerase III subunits, helicases, primase,
343	ligases, recombination proteins, and exonucleases indicating these megaplasmids
344	encode for pathways associated with their maintenance. Other gene products on
345	these megaplasmids are involved in metabolic pathways such as fatty acid
346	biosynthesis, RNA degradation, Aminoacyl tRNA biosynthesis, and NOD-like
347	receptor signaling pathways. Interestingly, both plasmids also encode for several
348	membrane and multidrug efflux pump genes. Both shared efflux genes belong to the
349	Resistance-Nodulation-Division (RND) family of transporters and are known for
350	their multidrug resistance efflux capabilities indicating potential selective factors
351	enabling maintenance in host cells.
252	

353 Differences of pMPPla107 and the Leaf58 plasmid

354 pBASL58 is predicted to encode a complete CRISPR system from 229-241kb,

including two *cas*, three *csy* genes, and a repeat region that includes 36 repeats and

356	spacers(Figure 6). This CRISPR is located in the region of dissimilarity between
357	pMPPla107 and pBASL58 and is not found in pMPPla107. pBASL58 and pMPPla107
358	do share a (presumably) incomplete CRISPR systems at 436kb and 576kb
359	respectively (Figure 6). These regions include <i>cas3, csy3,</i> and <i>csy4</i> but lack <i>csy1,</i>
360	<i>csy2</i> . pMPPla107 lacks a repeat region altogether associated with this locus while
361	pBASL58 has a repeat region at 720kb encoding 9 repeats and spacers. To our
362	knowledge these are the first complete CRISPR systems located on plasmids found
363	within Proteobacteria.
364	
365	There exists a region of dissimilarity across both megaplasmids, occurring after
366	approximately 170kb (Figure 3), which could be classified as a cargo region. In
367	pMPPla107 this region consists of 468 predicted genes, of which 27 are annotated.
368	18 of these 27 annotated genes can be found in pBASL58 and again encode for genes
369	associated with DNA replication, repair, and metabolism. These genes also include
370	membranous proteins like FtsH, which is known to degrade unnecessary or
371	damaged membrane proteins 45,46 . We have also found that this region can largely
372	be deleted from pMPPla107 during lab adaptation (unpublished) even though the
373	rest of the plasmid is maintained. These data suggest that although this large region
374	may be expendable in some strains, pBASL58 has maintained many of the annotated
375	genes perhaps pointing to their importance in megaplasmid stability or
376	maintenance.
377	

378 Discussion

379	We report a family of divergent, yet syntenic megaplasmids found in single isolates
380	across distinct <i>Pseudomonas</i> species. High levels of synteny are matched by shared
381	signals in both tetranucleotide bias and protein pathway functionality. However,
382	these plasmids hosted by strains that are phylogenetically and geographically
383	separated; <i>Pla</i> 107 (containing pMPPla107) was found within a <i>P. syringae</i> isolate as
384	a causative agent of cucumber disease in Japan, while Leaf58 was found as an
385	epiphyte of <i>Arabidopsis</i> in Switzerland in a strain most closely related to <i>P. putida</i> ⁴¹ .
386	Furthermore, despite high levels of synteny and shared protein functionality,
387	consistently high levels of divergence across shared proteins ($pprox 30\%$) suggest both
388	plasmids have been independently evolving for a relatively long period of time.
389	From this data we infer that multiple additional members of a family of relatively
390	large (\approx 1Mb) "cryptic" megaplasmids likely persist within <i>Pseudomonas</i> strains.
391	
392	That there have been no signs of these megaplasmids in the numerous sequences of
393	pseudomonads closely related to each of these isolates is strong indication that
394	these megaplasmids have been relatively recently acquired by their host strains.
395	This pattern, coupled with high levels of divergence between members of this
396	megaplasmid family, suggest that these replicons likely have a high turnover rate
397	within strains over evolutionary time and may persist within communities through
398	frequent horizontal transfer. In other words, presence of this megaplasmid family
399	may be transient in any given genome, but has likely been maintained within

400 Pseudomonads for a long time. Such a lifestyle is consistent with high levels of

401 conjugation as observed in pMPPla107 under laboratory conditions²⁵.

402

403	Replication, transcription, and translation of horizontally transferred genes are
404	known to incur costs on host cell resources with protein production likely having
405	the greatest effect on fitness ^{15,47-49} . Previous work on pMPPla107 suggests that
406	acquisition of the megaplasmid results in lowered fitness and other phenotypic
407	changes which could be costly in some environments, yet it still transfers readily
408	and is maintained within host cells 25,26 . Such costs could likely be the reason
409	pMPPla107 and pBASL58 encode a large number of genes involved in critical
410	functions regarding plasmid maintenance and transmission as well as potential
411	addiction systems and could enable long-term survival despite a transient lifestyle.
412	In particular, there are various proteins found in pMPPla107 and pBASL58 involved
413	in synthesizing precursors for nucleotides such as: thymidylate synthase, guanylate
414	kinase, ribonucleoside diphosphate reductase, deoxycytidine triphostphate
415	deaminase, and glutamate synthase (Supplemental Table 1 and Supplemental Figure
416	3). The megaplasmids may carry these proteins in order to increase flux to
417	nucleotide synthesis and drive replication and transcription processes to alleviate
418	any physiological costs an additional $pprox 1$ Mb of newly acquired DNA may bring. Many
419	of these genes do not encode for complete pathways, indicating possible parasitic
420	behavior of host resources while ensuring the necessary building blocks for plasmid
421	maintenance are available.

422

Plasmid usage of host tRNA pools has been shown to deplete tRNAs resulting in
reduced growth and fitness^{20,50-52}. The large number of tRNAs and presence of a

425	handful of annotated tRNA ligases encoded on the megaplasmids may serve the
426	purpose of avoiding translational costs due to tRNA depletion or may accommodate
427	codon usage bias between chromosome and megaplasmid. Both megaplasmids are
428	also predicted to encode Mfd, Rep, DnaB, and RecA all known to resolve replication
429	and transcription complex conflicts ensuring successful replicon duplication and
430	transcription ^{53,54} . We hypothesize the megaplasmids maximize their ability to
431	persist by eliminating or compensating for these potential costs by encoding a
432	variety of housekeeping genes coupled with high levels of horizontal transfer
433	through conjugation.
434	
435	Evolutionary relationships between pBASL58 and pMPPla107, their relatively large
436	size and contribution to gene content of single strains, coupled with maintenance of
437	"housekeeping" genes, and high levels of transfer across pseudomonads suggest that
438	this megaplasmid will provide unique insights into an evolutionary argument
439	concerning horizontal transfer referred to as the complexity hypothesis ¹⁷ . The
440	complexity hypothesis has been through multiple revisions, but is currently
441	interpreted as a trend where horizontally transferred genes are less likely to be
442	involved with complex processes (like translation) and maintain a lower number of
443	protein-protein interactions than vertically inherited loci ⁴ . One current limitation of
444	the complexity hypothesis, as highlighted by these megaplasmid families, is that is
445	fails to reconcile gene conservation in the context of highly mobile selfish DNA like
446	plasmids. Both pBASL58 and pMPPa107 contain numerous "complex" genes,
447	including those involved in nucleotide synthesis, DNA replication, and translation

448	and yet these genes are clearly horizontally transferred across strains. Therefore,
449	the presented family of megaplasmids potentially necessitates a caveat to the
450	complexity hypothesis in which "complex" genes can be horizontally transferred
451	frequently but aren't maintained over time, because they are linked together on
452	megaplasmids that require these pathways to ameliorate physiological costs.

454 Likewise, there have been numerous recent discussions about whether bacterial 455 pangenomes are adaptive or neutral. Similar to the complexity hypothesis, these 456 discussions tend to focus on the presence/absence of single genes across a variety of 457 closely related genomes rather than the linked gain/loss of genes that compose a 458 pangenome¹⁻³. To put this in perspective, recent findings suggest that the *P*. 459 syringae pangenome is composed of 77,728 genes, meaning that 1.5% of these are 460 solely present on pMPPI107⁵⁵. Since megaplasmids have the potential to add 461 thousands of genes to a pangenome linked together in a single transfer event⁵⁶, one 462 has to consider that evolutionary pressures may act differentially on subsets of the 463 pangenome. Our data suggest that a majority of genes on these megaplasmids may 464 be either neutral or costly to the host when selection is considered in the context of 465 the host genome. However, a majority of genes linked on the megaplasmid may be 466 selectively beneficial for megaplasmid maintenance and/or transfer regardless of 467 fitness of the host cell. Thus, presence of a majority of genes on the megaplasmid 468 (and which are part of the pangenome) are under selection at some level, but only a 469 minority of these may be beneficial at the level of bacterial strains or populations.

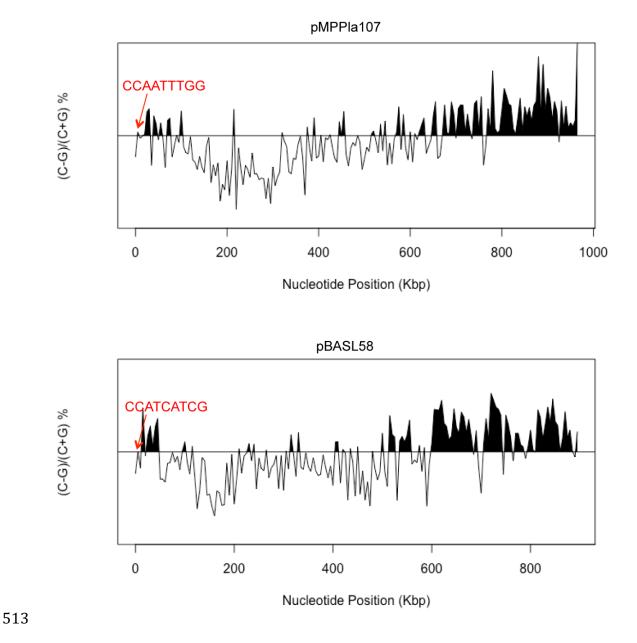
471	CRISPR-Cas systems have become popularized recently because of their utility in
472	genome editing, however, these systems likely originated in bacteria as defense
473	mechanisms against invasion of foreign genetic material ⁵⁷⁻⁶¹ . CRISPR arrays are
474	often carried and transferred by larger plasmids in bacteria and archaea, yet <i>cas</i>
475	genes are rarely found on plasmids ^{62,63} . Here we characterize a potentially shared
476	CRISPR-Cas system bound to the bacterial megaplasmids pMPPla107 and pBASL58.
477	Although pBASL58 encodes a fully intact CRISPR-Cas3 system with a region
478	containing 36 spacers and repeats, this repeat and spacer region are not present
479	within pMPPla107 leading us to believe pMPPla107's system is nonfunctional.
480	Regardless of functionality, it is quite interesting that at least one of these
481	megaplasmids contains an intact CRISPR locus given the widespread idea that these
482	systems are used by bacteria to defend against parasites and mobile elements.
483	Perhaps the presence of a CRISPR system is a beneficial and selective trait for
484	retention of pBASL58 in host cells in that it provides a transferable immune
485	pathway. However, the recent description of CRISPR spacers that target sites on
486	bacterial chromosomes also suggest that these loci may also function in gene
487	regulation ⁶⁴⁻⁶⁷ .

489 Using comparative computational and molecular approaches we have characterized

490 pBASL58, the second member of a family of large megaplasmids found in

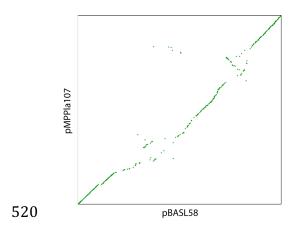

491 Pseudomonads. Conservation of pathway presence and megaplasmid structure

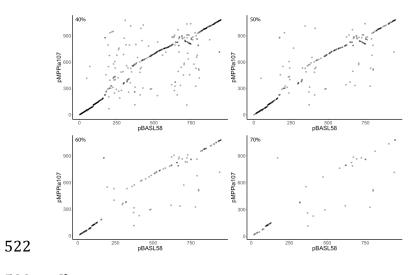
492 strongly suggests that a majority of the sequences on pBASL58 and pMPPla107 have


493 diverged from a common ancestral plasmid. However, the consistent levels of

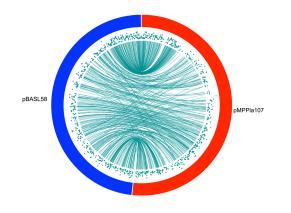
494	divergence between proteins shared by both plasmids suggest that this common
495	ancestral plasmid did not recently exist. Finding two related plasmids with such
496	high level of divergence also highlights the likelihood that other members of this
497	megaplasmid family exist in nature and are waiting to be found. Our work serves as
498	a guide to discover megaplasmid families as well as a foundation of understanding
499	the forces that structure megaplasmid evolution, maintenance, and transfer.
500	
501	
502	
503	

505


- 507 **Figure 1: Confirmation of circular DNA molecule of Leaf58 megaplasmid.**
- 508 Primers designed to amplify the ends of the Leaf58 contig and disregarding the
- 509 misassembled repeat region successfully amplified products of an expected size.
- 510 Three annealing temperatures (53, 55, and 57°C) were used due to difficulties
- 511 amplifying this region.
- 512


514 **Figure 2: Predicted origins of replication occur within a similar region of**

pMPPla107 and pBASL58. GC skew was calculated and is a known predictor of
origins of replication by a dramatic shift in GC content. Repetitive motifs were also
calculated for areas near the predicted origin of replication as repetitive binding
regions occur near replication sites. The most common motif is indicated in red.


519 A)

525 Figure 3: pMPPla107 and pBASL58 share synteny and demonstrate divergence 526 on the amino acid level. A) SynMap output of pMPPla107 vs. pBASL58 sequences 527 suggests highly syntenic megaplasmids. X-axis is pBASL58 gene order where $x_{1...N}$ = 528 gene_{1...N}, and the y-axis is pMPPla107 gene order where $y_{1...N}$ = gene_{1...N}. Completely 529 syntenic sequences would be represented by y= 1x + b. **B-C**) BLAST data was used to 530 plot pMPPla107 vs. pBASL58 synteny and amino acid divergence data together. **B**) 531 The majority of syntenic genes have $\geq 50\%$ sequence identity. BLAST data was 532 plotted in gene order to mimic SynMap's plot with amino acid sequence identity 533 cutoffs at 40%, 50%, 60%, and 70%. The best hit for each pBASL58 gene against 534 pMPPla107 is plotted. Each axis indicates gene position within the corresponding 535 sequence. C) Circa plot using BLAST data indicates higher synteny near the origin, 536 while areas near the terminus are less syntenic an experience more noise. Teal lines 537 connect gene start position on pBASL58 to gene start position on pMPPla107. Teal 538 scatter plots are amino acid sequence identity with 40% = 0 (bottom) and 100% =539 100 (top)

540

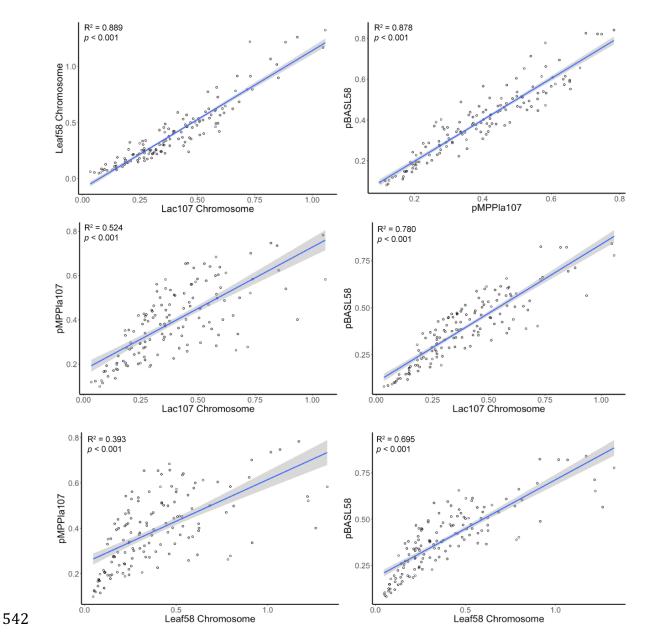
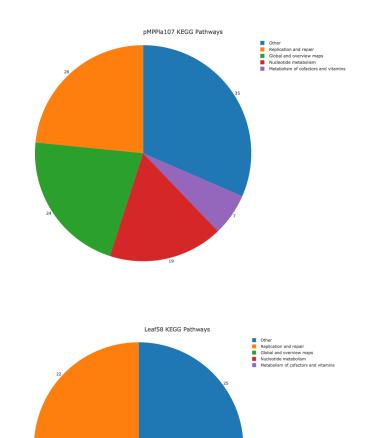
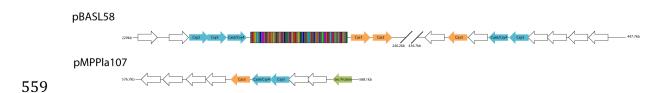



Figure 4: Tetranucleotide frequencies between pMPPla107 and pBASL58
suggest an evolutionary relationship. Nucleotide biases were determined to
demonstrate relatedness of megaplasmid and chromosomal sequences in a pairwise
fashion. The blue line represents the linear regression model with the surrounding
shaded grey area indicating a 95% confidence interval. R² and *p* values are listed for
each comparison.

549

551


550

pMPPla107 and pBASL58 were input into UProC which counts the number of amino

acid sequences that are predicted to belong to a KEGG pathway IDs. KEGG IDs were

- then matched with the correct pathway. All functional groups with < 5 counts were
- 556 grouped into an "other" category.
- 557

560 **Figure 6: CRISPR systems on pBASL58 and pMPPIa107.** pBASL58 encodes two

- 561 CRISPR loci, one of which contains a repeat-spacer regions of 36 repeats.
- 562 pMPPla107 contains a CRISPR locus without any repeat-spacer regions. Direction of
- arrows indicates gene orientation. Arrows are colored as: blue) *cys* genes, orange)
- 564 *cas* genes, green) secretion genes, and white) hypothetical genes. The multicolored
- 565 boxes indicate the repeat-spacer region, where grey boxes are spacers and colored
- 566 boxes are repeats.
- 567
- 568

569

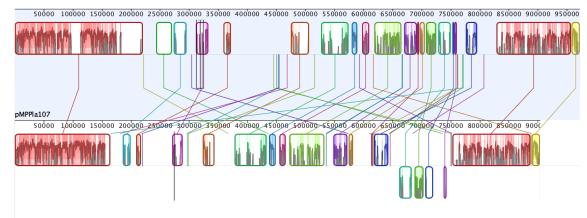
		Genes		570
Name	Size	(CDS)	tRNA	GC Content
pMPPla107	971871	1082	54	52.84
pBASL58	903765	996	44	55.4
Leaf58				
Concatenated	5378738	4847	80	62.35
Lac107				
Concatenated	5936302	5436	58	58.26

571 **Table 1: General features of** *P. syringae* and *Pseudomonas* Leaf58 replicons

572 have similarities. Size, coding regions, tRNAs, and GC content were calculated to

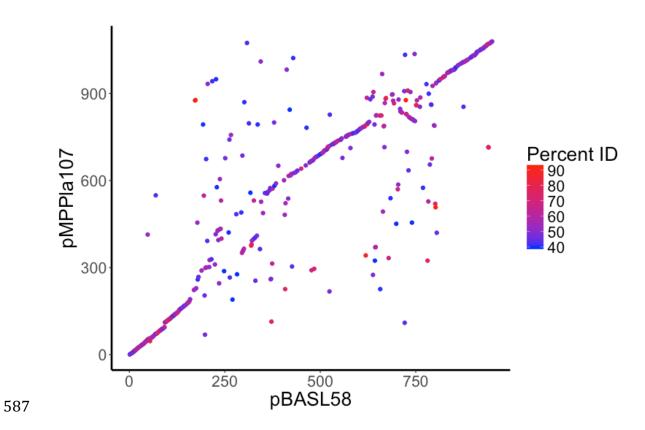
understand the relationship between the four sequences on a broad scale.

574 "Concatenated" indicates that all sequences from the assemblies expect either the

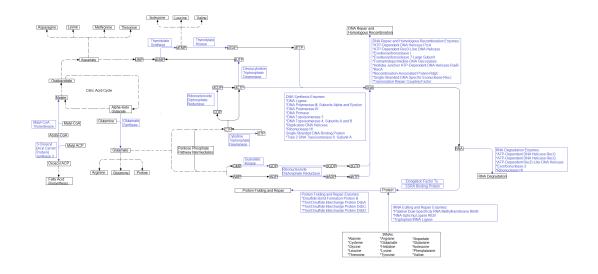

pMPPla107 or pBASL58 replicons to their respective genome were concatenated

576 together.

577


579


580 Supplemental Figures



581 pBASL58

- 582 **Supplemental Figure 1**: MAUVE analysis of pMPPla107 and pBASL58 demonstrate
- 583 local collinear blocks (LCBs) and areas of synteny. Lines connect LCBs with each
- other between megaplasmids. Blocks below the midline for each sequence indicate
- 585 inverted regions. Colored areas within LCBs indicate higher levels of homology
- 586 between sequences.

593

Supplemental Figure 3: Metabolic pathways shared by pBASL58 and pMPPla107.
Output of KEGG/KASS pathways between pBASL58 and pMPPla107 were matched
and are reported by blue pathways with their associated genes. Hashed lines
indicate that no genes were found in pBASL58 or pMPPla107 to be involved with
that metabolic process.

References

604	1.	Vos, M. & Eyre-Walker, A. Are pangenomes adaptive or not? <i>Nature</i>
605	2	<i>Microbiology</i> 2 , 1576–1576 (2017).
606	2.	McInerney, J. O., McNally, A. & O'Connell, M. J. Why prokaryotes have
607	0	pangenomes. <i>Nature Microbiology</i> 2 , 17040 (2017).
608	3.	Shapiro, B. J. The population genetics of pangenomes. <i>Nature Microbiology</i> 2 ,
609	4	1574–1574 (2017).
610	4.	Cohen, O., Gophna, U. & Pupko, T. The complexity hypothesis revisited:
611		connectivity rather than function constitutes a barrier to horizontal gene
612	-	transfer. <i>Mol Biol Evol</i> 28 , 1481–1489 (2011).
613	5.	Lercher, M. J. & Pál, C. Integration of horizontally transferred genes into
614 615		regulatory interaction networks takes many million years. <i>Mol Biol Evol</i> 25 ,
615	6	559–567 (2008). Wellner A. & Conhag II. Neutrality of foreign complex subunits in an
616	6.	Wellner, A. & Gophna, U. Neutrality of foreign complex subunits in an
617 618		experimental model of lateral gene transfer. <i>Mol Biol Evol</i> 25, 1835–1840 (2008).
619	7.	Cooper, V. S., Vohr, S. H., Wrocklage, S. C. & Hatcher, P. J. Why genes evolve
620	/.	faster on secondary chromosomes in bacteria. <i>PLOS Comput Biol</i> 6 ,
621		e1000732 (2010).
622	8.	Choudhary, M., Zanhua, X., Fu, Y. X. & Kaplan, S. Genome analyses of three
623	0.	strains of Rhodobacter sphaeroides: evidence of rapid evolution of
624		chromosome II. Journal of Bacteriology 189 , 1914–1921 (2007).
625	9.	Guo, H., Sun, S., Eardly, B., Finan, T. & Xu, J. Genome variation in the
626	9.	symbiotic nitrogen-fixing bacterium <i>Sinorhizobium meliloti</i> . <i>Genome</i> 52 ,
627		862–875 (2009).
628	10.	Epstein, B. <i>et al.</i> Population genomics of the facultatively mutualistic
629	10.	bacteria Sinorhizobium meliloti and S. medicae. PLoS Genet. 8 , e1002868
630		(2012).
631	11.	Holden, M. T. G. <i>et al.</i> Genomic plasticity of the causative agent of
632	11.	melioidosis, <i>Burkholderia pseudomallei</i> . <i>PNAS</i> 101 , 14240–14245 (2004).
633	12.	Holden, M. T. G. <i>et al.</i> The genome of <i>Burkholderia cenocepacia</i> [2315, an
634		epidemic pathogen of cystic fibrosis patients. <i>Journal of Bacteriology</i> 191 ,
635		261–277 (2009).
636	13.	Janssen, P. J. <i>et al.</i> The complete genome sequence of <i>Cupriavidus</i>
637	201	<i>metallidurans</i> strain CH34, a master survivalist in harsh and anthropogenic
638		environments. <i>PLoS ONE</i> 5 , e10433 (2010).
639	14.	diCenzo, G. C. & Finan, T. M. The Divided Bacterial Genome: Structure,
640		Function, and Evolution. <i>Microbiol. Mol. Biol. Rev.</i> 81 , e00019–17 (2017).
641	15.	Baltrus, D. A. Exploring the costs of horizontal gene transfer. <i>Trends in</i>
642		<i>Ecology & Evolution</i> 28 , 489–495 (2013).
643	16.	San Millan, A. & MacLean, R. C. Fitness Costs of Plasmids: a Limit to Plasmid
644		Transmission. <i>Microbiol Spectr</i> 5 , (2017).
645	17.	Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes:
		, , , , , , , , , , , , , , , , , , , ,

646		the complexity hypothesis. <i>PNAS</i> 96, 3801–3806 (1999).
	10	
647	18.	MacLean, R. C. & San Millan, A. Microbial Evolution: Towards Resolving the
648 649	19.	Plasmid Paradox. <i>Curr. Biol.</i> 25, R764–7 (2015).
	19.	Kacar, B., Garmendia, E., Tuncbag, N., Andersson, D. I. & Hughes, D.
650		Functional Constraints on Replacing an Essential Gene with Its Ancient and
651	20	Modern Homologs. <i>MBio</i> 8 , e01276–17 (2017).
652	20.	Harrison, E., Guymer, D., Spiers, A. J., Paterson, S. & Brockhurst, M. A. Parallel
653		compensatory evolution stabilizes plasmids across the parasitism-
654	24	mutualism continuum. <i>Curr. Biol.</i> 25, 2034–2039 (2015).
655	21.	Tett, A. <i>et al.</i> Sequence-based analysis of pQBR103; a representative of a
656		unique, transfer-proficient mega plasmid resident in the microbial
657		community of sugar beet. <i>ISME J</i> 1 , 331–340 (2007).
658	22.	Hall, J. P. J. et al. Environmentally co-occurring mercury resistance plasmids
659		are genetically and phenotypically diverse and confer variable context-
660		dependent fitness effects. Environ. Microbiol. 17, 5008–5022 (2015).
661	23.	Baltrus, D. A. <i>et al.</i> Dynamic Evolution of Pathogenicity Revealed by
662		Sequencing and Comparative Genomics of 19 <i>Pseudomonas syringae</i> Isolates.
663		<i>PLOS Pathog</i> 7 , e1002132 (2011).
664	24.	Andreani, N. A., Hesse, E. & Vos, M. Prokaryote genome fluidity is dependent
665		on effective population size. <i>ISME J</i> 11, 1719–1721 (2017).
666	25.	Romanchuk, A. et al. Bigger is not always better: transmission and fitness
667		burden of ~1MB <i>Pseudomonas syringae</i> megaplasmid pMPPla107. <i>Plasmid</i>
668		73, 16–25 (2014).
669	26.	Dougherty, K. <i>et al.</i> Multiple phenotypic changes associated with large-scale
670		horizontal gene transfer. <i>PLoS ONE</i> 9 , e102170 (2014).
671	27.	Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota.
672		Nature 528, 364–369 (2015).
673	28.	Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving
674		bacterial genome assemblies from short and long sequencing reads. <i>PLOS</i>
675		<i>Comput Biol</i> 13, e1005595 (2017).
676	29.	Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence
677		classification using exact alignments. <i>Genome Biol.</i> 15, R46 (2014).
678	30.	Tatusova, T., DiCuccio, M., acids, A. B. N.2016. NCBI prokaryotic genome
679		annotation pipeline. academic.oup.com
680		
681	31.	Charif, D. & Lobry, J. R. in Structural Approaches to Sequence Evolution 207–
682		232 (Springer, Berlin, Heidelberg, 2007). doi:10.1007/978-3-540-35306-
683		5_10
684	32.	Abby, S. S., Néron, B., Ménager, H., Touchon, M. & Rocha, E. P. C.
685		MacSyFinder: a program to mine genomes for molecular systems with an
686		application to CRISPR-Cas systems. <i>PLoS ONE</i> 9, e110726 (2014).
687	33.	Grissa, I., Vergnaud, G. & Pourcel, C. CRISPRFinder: a web tool to identify
688		clustered regularly interspaced short palindromic repeats. <i>Nucleic Acids Res.</i>
689		35, W52–7 (2007).
690	34.	Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a
691		portable version, enhanced performance and integrates search for Cas

(02		mataina Nucleis Asida Des 00 7526 (2010)
692	25	proteins. <i>Nucleic Acids Res.</i> 99 , 7536 (2018).
693	35.	Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local
694	26	alignment search tool. <i>Journal of Molecular Biology</i> 215 , 403–410 (1990).
695	36.	Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome
696		alignment with gene gain, loss and rearrangement. <i>PLoS ONE</i> 5 , e11147
697	~ -	(2010).
698	37.	Albertsen, M. <i>et al.</i> Genome sequences of rare, uncultured bacteria obtained
699		by differential coverage binning of multiple metagenomes. <i>Nature</i>
700		Biotechnology 31 , 533–538 (2013).
701	38.	Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes.
702		Nucleic Acids Res. 28, 27–30 (2000).
703	39.	Meinicke, P. UProC: tools for ultra-fast protein domain classification.
704		Bioinformatics 31, 1382–1388 (2015).
705	40.	Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an
706		automatic genome annotation and pathway reconstruction server. Nucleic
707		Acids Res. 35, W182–5 (2007).
708	41.	Hesse, C. et al. Genome-based evolutionary history of Pseudomonas spp.
709		Environ. Microbiol. 7, e1002132 (2018).
710	42.	Richter, M. & Rosselló-Móra, R. Shifting the genomic gold standard for the
711		prokaryotic species definition. Proc. Natl. Acad. Sci. U.S.A. 106, 19126–19131
712		(2009).
713	43.	Nishida, H., Abe, R., Nagayama, T. & Yano, K. Genome Signature Difference
714		between Deinococcus radiodurans and Thermus thermophilus. Int J Evol Biol
715		2012, 205274–6 (2012).
716	44.	Teeling, H., Meyerdierks, A., Bauer, M., Amann, R. & Glöckner, F. O.
717		Application of tetranucleotide frequencies for the assignment of genomic
718		fragments. <i>Environ. Microbiol.</i> 6 , 938–947 (2004).
719	45.	Tomoyasu, T. <i>et al.</i> Escherichia coli FtsH is a membrane-bound, ATP-
720		dependent protease which degrades the heat-shock transcription factor
721		sigma 32. <i>EMBO J.</i> 14 , 2551–2560 (1995).
722	46.	Ito, K. & Akiyama, Y. Cellular functions, Mechanism of action, and regulation
723	10.	of <i>ftsH</i> protease. Ann. Rev. Microbiol. 59 , 211–231 (2005).
724	47.	Hall, J. P. J., Brockhurst, M. A. & Harrison, E. Sampling the mobile gene pool:
725	17.	innovation via horizontal gene transfer in bacteria. <i>Philos. Trans. R. Soc.</i>
726		Lond., B, Biol. Sci. 372 , 20160424 (2017).
727	48.	Bragg, J. G. & Wagner, A. Protein material costs: single atoms can make an
728	т 0.	evolutionary difference. <i>Trends Genet.</i> 25, 5–8 (2009).
729	49.	
	49.	Shachrai, I., Zaslaver, A., Alon, U. & Dekel, E. Cost of unneeded proteins in <i>E.</i>
730		<i>coli</i> is reduced after several generations in exponential growth. <i>Molecular</i>
731	50	Cell 38 , 758–767 (2010).
732	50.	Dittmar, K. A., Sørensen, M. A., Elf, J., Ehrenberg, M. & Pan, T. Selective
733		charging of tRNA isoacceptors induced by amino-acid starvation. <i>EMBO Rep.</i>
734	- 4	6, 151–157 (2005).
735	51.	Elf, J., Nilsson, D., Tenson, T. & Ehrenberg, M. Selective charging of tRNA
736		isoacceptors explains patterns of codon usage. <i>Science</i> 300 , 1718–1722
737		(2003).

738 739	52.	Bonomo, J. & Gill, R. T. Amino acid content of recombinant proteins influences the metabolic burden response. <i>Biotechnol. Bioeng.</i> 90, 116–126
740		(2005).
741	53.	Hamperl, S. & Cimprich, K. A. Conflict Resolution in the Genome: How
742		Transcription and Replication Make It Work. <i>Cell</i> 167, 1455–1467 (2016).
743	54.	McGlynn, P., Savery, N. J. & Dillingham, M. S. The conflict between DNA
744		replication and transcription. <i>Mol. Microbiol.</i> 85, 12–20 (2012).
745	55.	Dillion, M. M., Thakur, S., Almeida, R. N. & Guttman, D. S. Recombination of
746		ecologically and evolutionarily significant loci maintains genetic cohesion in
747		the <i>Pseudomonas syringae</i> species complex. <i>bioRxiv</i> 227413 (2017).
748		doi:10.1101/227413
749	56.	Nowell, R. W., Green, S., Laue, B. E. & Sharp, P. M. The extent of genome flux
750	001	and its role in the differentiation of bacterial lineages. <i>Genome Biol Evol</i> 6 ,
751		1514–1529 (2014).
752	57.	Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome
753	57.	engineering with CRISPR-Cas9. <i>Science</i> 346 , 1258096–1258096 (2014).
754	58.	Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-
755	50.	Cas9 for genome engineering. <i>Cell</i> 157, 1262–1278 (2014).
756	59.	Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed
757	57.	adaptive immunity in bacteria and archaea. <i>Nat. Rev. Genet.</i> 11 , 181–190
758		(2010).
759	60.	Deveau, H., Garneau, J. E. & Moineau, S. CRISPR/Cas system and its role in
760	00.	phage-bacteria interactions. Annual Review of Microbiology 64 , 475–493
761		(2010).
762	61.	Makarova, K. S. <i>et al.</i> An updated evolutionary classification of CRISPR-Cas
763	01.	systems. Nat Rev Micro 13 , 722–736 (2015).
764	62.	Lillestøl, R. K. <i>et al.</i> CRISPR families of the crenarchaeal genus <i>Sulfolobus</i> :
765	02.	bidirectional transcription and dynamic properties. <i>Mol. Microbiol.</i> 72 , 259–
766		272 (2009).
767	63.	Godde, J. S. & Bickerton, A. The repetitive DNA elements called CRISPRs and
768	05.	their associated genes: evidence of horizontal transfer among prokaryotes. J.
769		<i>Mol. Evol.</i> 62 , 718–729 (2006).
770	64.	Guan, J., Wang, W., Sun, B. & Fey, P. D. Chromosomal Targeting by the Type
771	01.	III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus.
772		<i>mSphere</i> 2 , e00403–17 (2017).
773	65.	Vercoe, R. B. <i>et al.</i> Cytotoxic chromosomal targeting by CRISPR/Cas systems
774	05.	can reshape bacterial genomes and expel or remodel pathogenicity islands.
775		PLoS Genet. 9, e1003454 (2013).
776	66.	Briner, A. E. <i>et al.</i> Occurrence and Diversity of CRISPR-Cas Systems in the
777	00.	Genus <i>Bifidobacterium</i> . <i>PLoS ONE</i> 10 , e0133661 (2015).
	67	
778 779	67.	Stern, A., Keren, L., Wurtzel, O., Amitai, G. & Sorek, R. Self-targeting by
779 780		CRISPR: gene regulation or autoimmunity? <i>Trends Genet.</i> 26, 335–340
780 781		(2010).
/01		