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Abstract

Background

Unplanned readmission of a hospitalized patient is an extremely undesirable outcome as
the patient may have been exposed to additional risks. The rates of unplanned
readmission are, therefore, regarded as an important performance indicator for the
medical quality of a hospital and healthcare system. Identifying high-risk patients likely
to suffer from readmission before release benefits both the patients and the medical
providers. The emergence of machine learning to detect hidden patterns in complex,
multi-dimensional datasets provides unparalleled opportunities to develop efficient
discharge decision-making support system for physicians.

Methods and Findings

We used supervised machine learning approaches for ICU readmission prediction. We
used machine learning methods on comprehensive, longitudinal clinical data from the
MIMIC-III to predict the ICU readmission of patients within 30 days of their discharge.
We have utilized recent machine learning techniques such as Recurrent Neural Networks
(RNN) with Long Short-Term Memory (LSTM), by this we have been able incorporate
the multivariate features of EHRs and capture sudden fluctuations in chart event
features (e.g. glucose and heart rate) that are significant in time series with temporal
dependencies, which cannot be properly captured by traditional static models, but can
be captured by our proposed deep neural network based model. We incorporate
multiple types of features including chart events, demographic, and ICD9 embeddings.
Our machine learning models identifies ICU readmissions at a higher sensitivity rate
(0.742) and an improved Area Under the Curve (0.791) compared with traditional
methods. We also illustrate the importance of each portion of the features and different
combinations of the models to verify the effectiveness of the proposed model.
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Conclusion

Our manuscript highlights the ability of machine learning models to improve our ICU
decision making accuracy, and is a real-world example of precision medicine in hospitals.
These data-driven results enable clinicians to make assisted decisions within their
patient cohorts. This knowledge could have immediate implications for hospitals by
improving the detection of possible readmission. We anticipate that machine learning
models will improve patient counseling, hospital administration, allocation of healthcare
resources and ultimately individualized clinical care.

Introduction 1

Unplanned hospital readmission is an avoidable waste of medical resources and indicates 2

that patients may have been placed at risk. Therefore, to solve this problem, in 2010, 3

the Affordable Care Act (ACA) created the Hospital Readmissions Reduction Program 4

to penalize the hospitals whose 30-day readmission rates are higher than expected [1]. 5

The financial penalties are given by the Centers for Medicare & Medicaid Services by 6

reducing payments to hospitals [2]. 7

In addition to hospital readmission, intensive care unit (ICU) readmission brings 8

further financial risk, morbidity and mortality risks [3, 4]. Reported by Kaben et al 9

2008, the mortality rates of ICU readmitted patients ranges approximately from 26 % to 10

58 % [5]. That is, premature ward-level care transition or discharge from ICU exposes 11

patients to the risks of unsuitable treatment, which further leads to an avoidable 12

mortality [6]. Surprisingly, even in developed countries, hospitals suffer from high ICU 13

readmission rates, around 10 % patients will be readmitted back to ICU within a 14

hospital stay [3]. Moreover, as reported by Kramer et al. 2013, in the U.S. there is an 15

escalating trend for ICU readmission rates rising from 4.6 % in 1989 to 6.4 % in 2003 [4]. 16

ICU readmission rates, therefore, become one of the critical quality indicators in ICU 17

performance evaluation. 18

According to the recent studies, 27 % to 42 % of ICU readmitted patients are 19

discharged from ICU prematurely [3, 7]. To reduce avoidable ICU readmission, we need 20

to identify patients with a higher risk of ICU readmission [8]. Is this way, the physicians 21

can relocate the additional medical resources for care delivery used in unncessary 22

readmission to put more emphasis on patients with greater needs. Avoiding unnecessary 23

readmission is even more important in the ICU than in the general hospital because 24

ICU resources are relatively scarce. Consequently, an efficient discharge decision-making 25

support system that can assist ICU physicians to identify more accurately those 26

patients with a high risk of hospital readmission would be beneficial. 27

Data-driven predictive models aimed at predicting ICU readmission may be built 28

from many different data sets including administrative claims [9–11], insurance claims, 29

and electronic health records (EHRs). Insurance claims models are not practical for 30

real-time prediction [12]. Electronic health records (EHR) have proved to provide 31

appropriate data for medical strategy design support. A systematic review of 32

readmission prediction models [13], Kansagara et al. summarize 26 unique readmission 33

prediction models of which 23 models rely on EHR. Therefore, the most recent work 34

focuses on predicting all-cause 30-day readmission using EHR data. Jamei et al. [12] 35

proposed an accurate and real-time prediction model based on neural networks trained 36

from EHR data. 37

Even though previous predictive models have been studied to resolve the problem of 38

identifying patients with a high-risk of readmission, these studies have drawbacks. First, 39

the scope of the models is limited in that they are only designed for a specific disease. 40

Most early work focuses on patients with specific diseases like heart failure [14], 41
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HIV [15], and diabetes [16], or treatments like kidney transplants [17]. Second, no 42

model proposed in the literature has been able to predict ICU readmissions to a 43

satisfactory degree yet [18] and the models suffer from low sensitivity of around 0.6 to 44

0.65 [6, 12,18]. Third, the models do not exploit the time series features of EHR into 45

consideration. Intuitively, EHR data has a sequential data structure [19]. Yang et al. 46

embody the time series variables (e.g. average number of days between admissions and 47

number of previous admissions) in their model, but do not consider the sequential data 48

structures, which might lead to information loss [20]. Finally, explaining the reliability 49

and robustness of the model is necessary for clinical applications. Few of the works 50

attempt to understand and interpret the predictive model, especially the approaches 51

that build ”black-box” like neural networks. 52

In this study, we focus on the analysis and prediction of unplanned ICU readmission 53

based on time series data. We propose a recurrent neural network (RNN) architecture 54

with long short-term memory (LSTM) layers to learn a better predictive model that 55

incorporates time-series. We also incorporate low-dimensional representations 56

(embeddings) of medical concepts (e.g. diseases (ICD-9), treatment, laboratory events, 57

etc.) as input of the model [9, 21]. Finally, we test, validate and explain the proposed 58

methods via MIMIC-III dataset [22], containing more than 40,000 patients information 59

and 60,000 ICU admissions records over a 10 year period [22]. We leverage the dataset 60

to provide clinicians with data-driven decision-making support that can help prevent 61

inappropriate discharge or transfer of patients that are high-risk for readmission so that 62

ICU can reduce effectively the risk to the patient of readmission and reduce cost. 63

Methods 64

To accompany this report, and to allow independent replication and extension of our 65

work, we have made the code publicly available for use by non-profit academic 66

researchers 67

(https://github.com/Jeffreylin0925/MIMIC-III_ICU_Readmission_Analysis). 68

The code is part of the supplemental information; it includes the step-by-step 69

instructions of the statistical and machine learning analysis. 70

Dataset Construction 71

The readmission dataset is constructed from the MIMIC-III Critical Care Database. 72

MIMIC-III consists of the health-related EHR data of more than 40,000 patients in the 73

Intensive Care Units (ICU) of the Beth Israel Deaconess Medical Center between 2001 74

and 2012. One patient may have multiple in-hospital records in the dataset. Following 75

the data screening process stated in [19], we first screen out the patients under age 18, 76

and remove the patients who died in the ICU. This results in totally 35,334 patients 77

with 48,393 ICU stays. We then split the processed patients into training(80%), 78

validation(10%)and testing(10%) partitions and conduct a five-fold cross validation. 79

Note that one patient may have multiple records, so the number of items may not equal 80

in each fold. 81

To construct the dataset for ICU readmission, we categorize all selected patients and 82

the corresponding ICU stay records into positive or negative cases. Specifically, the 83

following cases are considered to be positive patient stays: 84

• 35,55 records: the patients were transferred to low-level wards from ICU, but 85

returned to ICU again, 86

• 1,974 records: the patients were transferred to low-level wards from ICU, and died 87

later, 88
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Fig 1. Statistical feature computation. For numerical chart events, we conduct linear
regression on the 48-hour data points, and record the rate and bias value as the feature.
For categorical events, we simply compute the average occurrence of the categories.

• 3,205 records: the patients were discharged, but returned to the ICU within the 89

next 30 days, 90

• 2,556 records: the patients were discharged, and died within the next 30 days. 91

Positive cases are regarded as ones in which the patients could benefit from a 92

prediction of readmission before being transferred or discharged. Negative cases, on the 93

contrast, are those that the patient do not need ICU readmission. Specifically, patients 94

who were transferred or discharged from ICU and did not return and are still alive 95

within the next 30 days are considered to be negative cases. 96

Feature Extraction 97

In this section, we introduce the features we use in ICU Readmission prediction tasks. 98

There are several significant groups of variables for predicting readmission. The first 99

group of variables are chart events. Chart events are recorded from notes of health care 100

providers (e.g., physicians and nurses) and represent the patients’ physiological 101

conditions from experts’ observation and opinions [18]. Second, patient variables, 102

especially chronic diseases, that are found strongly associated with ICU readmission 103

risk [6, 23]. Thirdly, the basic demographic information, such as gender, age, race, that 104

are again demonstrated as important factors in the state of art readmission 105

prediction [12]. 106

In this study, we leverage all of the above-mentioned features and further consider 107

the time series information for the Readmission prediction tasks. Our features consist of 108

chart events, ICD9 embeddings, and demographic information of the patients. To 109

compare the proposed model with some traditional methods like logistic regression, we 110

also extract statistical features from the chart events for usage. 111

Chart Events 112

We extract 17 types of time series chart events within a 48-hour window from the 113

MIMIC-III dataset. The raw features include numerical ones like diastolic blood 114

pressure, and categorical items like capillary refill rate. The detailed feature items and 115

their dimensions are shown in Table 1. We use the median from Wikipedia as the 116

normal value for each chart event. The total dimension of the raw features from the 117

chart events is 59. However, in the raw data for the chart events there are a few records 118

that are missing. To identify the missing positions, we create a 17-dim binary indicator 119

feature and append it to the chart events feature. This feature indicates whether the 120

record of each type of chart event exists. Therefore, the total dimension of chart event 121

feature is 48× 76. 122
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Table 1. 17 Types of Features in Chart Events

Chart Events Dim Normal Chart Events Dim Normal
1. Glascow coma scale eye opening 8 4 Spontaneously 11. Fraction inspired oxygen 1 0.21
2. Glascow coma scale verbal response 12 5 Oriented 12. Oxygen saturation 1 97.5
3. Glascow coma scale motor response 12 6 Obeys Commands 13. Respiratory rate 1 15.0
4. Glascow coma scale total 13 15 14. Body Temperature 1 37.0
5. Capillary refill rate 2 Normal <3 secs 15. pH 1 7.4
6. Diastolic blood pressure 1 70.0 16. Weight 1 80.7
7. Systolic blood pressure 1 105.0 17. Height 1 168.8
8. Mean blood pressure 1 87.5
9. Heart Rate 1 80.0
10. Glucose 1 85.0

*DT: Data Type, Dim: Dimension, Normal: Normal Value

Table 2. Demographic Features

Chart Events Dim Option Chart Events Dim Option
1. Gender 2 Male/Female 2. Age 1 18-120
3. Insurance Type 5 Government, Self, 4. Race 6 Asian, Black, Hispanic,

Medicare, Private, White, Other,
Medicaid No Information

*Dim: Dimension

Demographic features 123

The demographic features we consider consist of the patients’ gender, age, race, and 124

insurance type. The detailed categories and dimensions are summarized in table 2. The 125

reason why we include the insurance type is in case it influences the discharge/transfer 126

rate. For example, although unlikely, an insurance type (uninsured) could lead to 127

insufficient payment and might result in an unexpected discharge. The whole dimension 128

of the demographic features is 14. 129

ICD9 Embeddings 130

In [23], Brown et al (2013) found that chronic diseases are one of the most important 131

factors associated with later readmissions. However, the disease information in a EHR 132

dataset are generally sparse, which makes them a poor foundation for deep learning 133

methods. 134

To deal with the EHR disease data sparsity, we apply the approach presented in [9] 135

to compute the pretrained 300-dim embedding for each ICD9 code recorded for patients. 136

Utilizing a lower dimension embedding of ICD9 will benefit the training by avoiding a 137

sparse representation and applying the information of the relationships among different 138

diseases. For a patient with multiple diseases, we simply take addition of embeddings of 139

all the diseases to form the feature. 140

Times Series Window 141

For temporal information modeling of the time-series ICU records, we apply a 48-hour 142

window for each ICU stay. Specifically, we claim that the data during the last 48 hours 143

before the patient is discharged or transferred are the most informative for readmission 144

prediction. Therefore, we use only the last 48-hour data from each ICU record. To cope 145

with the data missing problem when the length of the record is shorter than 48 hours, 146

we simply replicate the data of the last hour to fill the length gap. 147
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(a)

(b)

Fig 2. (a)A bidirectional LSTM combined with an additional LSTM layer, followed by
a dense decision layer with one output neuron activated by a sigmoid function. The
hidden units of the LSTM layer is 16. (b)1D Multi-filter Convolutional Neural Network.
Given a 48-hour data window of dimension D, we conduct the convolution on the time
axis with filter size 2,3 or 4. The computed feature maps are finally concatenated and
fully connected to a dense decision layer with one output neuron.

Statistical Features 148

For the implementation of the traditional methods, we also extract the statistical 149

features within each 48-hour window. For the numerical chart events, we regress the 48 150

data points linearly and record the rate and the bias in the linear function. For example, 151

after computing the linear function y = ax+ b, we keep the 2-dim features [a,b] as the 152

statistical information of this event. For each categorical event, such as capillary refill 153

rate, we simply use the majority category to represent it. One example of the 154

computation of the statistical features is illustrated in Fig 1. After computing the 155

statistical features, each 48-hour data window will become a single data point, and the 156

dimension of the chart events becomes 71. 157

Model Structure 158

Fig 2 shows the model structure of our system. As shown in Fig 2a, we utilize a 159

bidirectional LSTM combined with an additional LSTM layer, followed by a dense 160

decision layer with one output neuron activated by a sigmoid function. The hidden 161

units of the LSTM layer is 16. Bidirectional LSTM learns the temporal information 162

across the whole training window. In this case, given an ICU stay record with length 163

T = 48, where the observation of each hour is denoted by xt ∈ R1×D, and D is the 164

feature dimension. The output of a single LSTM cell can be computed by the following 165
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equations, 166

it = σ(Wi · [ht−1, xt] + bi)

ft = σ(Wf · [ht−1, xt] + bf )

Ĉt = tanh(WC · [ht−1, xt] + bC

Ct = ft � Ct−1 + it � Ĉt

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot � tanh(Ct)

(1)

The above functions can be simply denoted by ht = LSTM(ht−1, xt). We utilized the 167

hidden value of the last time stamp to predict the readmission possibility, thus the final 168

output after going through the dense layer would be, 169

rT = σ(Wr · h48 + br) (2)

where σ is the indicator of the sigmoid activation function, and the rT represents the 170

prediction of whether this patient with the ICU stay record will have a readmission, 171

ranging from zero to one. The dimension of ht is R1×16, so the Wr ∈ R16×1. We use 172

binary cross entropy loss to update the weights. 173

In additional to a LSTM-based model, we also apply a CNN-based model for 174

exploration as shown in Fig 2b. The CNN structure we build is a multi-filter CNN 175

introduced in [24]. Given a 48-hour data window of dimension D, we conduct the 176

convolution on the time axis with filter size 2,3 or 4. The computed feature maps are 177

finally concatenated and fully connected to a dense decision layer with one output 178

neuron. We also compare the performance of the combination of LSTM and CNN 179

models, and the details will be introduced in the next section. 180

We evaluate the performance of the models by mainly using positive case recall rate 181

(sensitivity) and Area-under-curve of ROC. The reason why this two metrics are 182

important is that, first, recall rate of positive cases plays a more important role in 183

screening patients. In other words, a highly sensitive test indicate that the model can 184

correctly identifies patients with a high risk of readmission. Secondly, AUC under ROC 185

measures the overall performance of the recall with respect to different false positive 186

rate. Models with higher AUC under ROC will demonstrate a more powerful screening 187

capability, benefiting the initial selection of the patient candidates for the physicians. 188

Results 189

In this section, we illustrate the experiments we conducted to evaluate the performance 190

of the model. It consists of traditional statistical approaches like logistic regression, 191

random forest etc. , and deep learning based temporal model like LSTM. We compared 192

the performance obtained by different models and derived the optimal solution of the 193

prediction system. All the models were reimplemented using keras based on the 194

benchmark code of [19]. The learning rate of training was set to 1e−3, and we used 195

Adam optimizer to train the model with beta 0.9. Based on the logic in [25], we trained 196

at most 50 epochs and selected the model with the highest AUC under ROC on the 197

validation partition. During evaluation, we set up the decision threshold as 0.5. 198

Statistical Model 199

We trained four statistical models as our baseline, including Logistic Regression, Naive 200

Bayes, Random Forest and SVM. The feature we utilized is illustrated in section . The 201

results are shown in table 3. SVM outperforms other traditional methods in terms of 202
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(a) (b)

Fig 3. The combination of LSTM and CNN. (a) CNN+LSTM model, and the CNN
follows a multi-filter convolution computation with zero padding to maintain the time
stamp consistency for different groups of feature maps. The following LSTM only
outputs the hidden units of the last time stamp. (b) LSTM+CNN model, and CNN
computes the feature maps without zero padding after receiving the output hidden unit
sequence from LSTM.

(a) (b)

Fig 4. (a) ROC curve of some of the attempted models and features. The color bar is
the error bar of the ROC curve with five-fold cross validation. LSTM-CNN model
performs relatively better than other ones. Better view in color mode. (b)Cumulative
Density Function curve of LSTM-LR-C (blue solid line) and LSTM-C (red dashed line).
It suggests that there are higher portions of patient records in the LSTM-C set which
have at least one chart event with high oscillation. Therefore, compared to Logistic
Regression, the LSTM+CNN model is better for recalling patients with high-oscillated
sequence records.

positive recall and AUC under ROC curve, and Logistic Regression is also suitable for 203

this readmission dataset. 204
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Table 3. Performance Comparison of Different Models and Features

Model Feature Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P
Baseline

LR L48-h STAT + ICD9 0.723 0.902 0.382 0.736 0.670 0.770 0.465
NB L48-h STAT + ICD9 0.744 0.859 0.373 0.814 0.453 0.709 0.458
RF L48-h STAT + ICD9 0.705 0.874 0.345 0.739 0.563 0.714 0.376
SVM L48-h STAT + ICD9 0.711 0.907 0.374 0.714 0.701 0.775 0.456

Feature Selection
LSTM F48-h CE + ICD9 0.687 0.912 0.355 0.676 0.731 0.777 0.481
LSTM L48-h CE + ICD9 0.707 0.911 0.372 0.704 0.717 0.784 0.504
LSTM L48-h CE 0.676 0.876 0.325 0.697 0.593 0.704 0.406
LSTM L48-h CE + ICD9 +D 0.695 0.914 0.363 0.686 0.733 0.787 0.509

Model Selection
CNN L48-h CE + ICD9 0.731 0.902 0.395 0.747 0.665 0.780 0.490
CNN+LSTM L48-h CE + ICD9 0.688 0.915 0.361 0.676 0.739 0.785 0.492
CNN+LSTM L48-h CE + ICD9 + D 0.710 0.910 0.376 0.710 0.710 0.787 0.496
LSTM+CNN L48-h CE + ICD9 0.698 0.914 0.369 0.690 0.729 0.786 0.510
LSTM+CNN L48-h CE + ICD9 + D 0.698 0.916 0.367 0.687 0.742 0.791 0.513

*Acc:Accuracy Pre:Precision Re:Recall A.R: AUC under ROC A.P:AUC under PRC L48:Last 48 hours F48:First 48 hours
CE:chart events STAT:statistical features D:Demographic features

Fig 5. The importance of chart events when predicting the ICU readmission.

Feature Selection 205

We conduct a feature ablation test to evaluate the influence of different portions of 206

features on the system performance. Specifically, we selected the Bidirectional LSTM as 207

our base model, and deployed different combinations of the feature input. As shown in 208

table 3, our results demonstrated that the last-48h features performs relatively better 209

than the first-48h data in terms of positive case recall rate and AUC under ROC. In 210

addition, ICD9 embedding is necessary in predicting the readmission rate. Demographic 211

features will also greatly benefit the performance. Therefore, we claim that the full set 212

of features involving Last-48h chart events and their identifiers, ICD9 embeddings, and 213

demographic information perform the best among all the combinations. 214

Model Selection 215

We attempted multiple model structures including bidirectional LSTM, CNN, and the 216

combinations of them. The detailed combination strategies are illustrated in Fig 4. 217
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Specifically, CNN model is the 1D multi-filter version introduced in last section, and for 218

the CNN+LSTM model, the CNN follows a multi-filter convolution computation with 219

zero padding to maintain the time stamp consistency for different groups of feature 220

maps. The following LSTM only outputs the hidden units of the last time stamp. 221

However, for the LSTM+CNN model, CNN computes the feature maps without zero 222

padding after receiving the output hidden unit sequence from LSTM. Our experiment 223

results showed that LSTM followed by a CNN utilizing all the feature sets obtains a 224

higher positive recall rate and overall prediction performance. The proposed model 225

outperforms the traditional approaches trained with statistical features. The ROC curve 226

of some selected models and features are shown in Fig 4a. 227

Discussion 228

In this section, we interpret our model by feature ablation test, and investigate the most 229

important factors the black-box model learns to predict ICU readmission. Finally, we 230

discover the advantages of the proposed model over traditional linear models by 231

studying the statistics of the true positive sets of each model. 232

Model Interpretation 233

We conducted the feature ablation test on the chart events to explain the proposed 234

model. We selected all the positive cases on the testing partition, and obtained all the 235

true positive samples after running the LSTM+CNN model utilizing all the features. 236

These true positive cases are recalled correctly by our proposed model. For each case, 237

every time we changed only one of the chart events to its normal value, and recorded 238

the number of cases to be predicted false. Then we ranked all the chart events 239

according to the numbers and the results are shown in Fig 5. The y-axis is the 240

prediction result changing ratio when we replace the original feature with normal value. 241

It showed that Glucose are the most important factor learned by the black-box model 242

for readmission prediction, while Capillary Refill Rate, Fraction inspired Oxygen, and 243

Systolic Blood Pressure do not influence the prediction result too much. The changing 244

of the prediction is not dramatic, which may result from the correlation among different 245

factors. The corresponding hypothesis could be further validated by back propagation 246

approach which is left for future work. 247

Comparison with Logistic Regression 248

To verify the advantages of LSTM-based model over the traditional linear model, we 249

investigated the positive patients who are predicted correctly by the LSTM+CNN but 250

misclassified by the logistic regression model. In a randomly selected fold, there are 251

totally 116 positive patients in the testing partition who are only predicted correctly by 252

the LSTM+CNN model. We denote it by LSTM-C set. For another 676 cases predicted 253

correctly by both the LSTM+CNN and Logistic Regression model, we denote the set by 254

LSTM-LR-C. 255

We measured the degree of value oscillation of each numerical chart event by 256

introducing a factor Dnm called average absolute neighbor difference for record n of 257

chart event m. Given a numerical chart event sequence Enm = {xt}, where t ∈ [1, 48], 258

then Dnm can be computed by, 259

Dnm =
1

T − 1

T∑
t=2

|xt − xt−1|, (3)
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(a)

(b)

Fig 6. (a)One selected ICU-study sample with the highest C of heart rate event, and
(b) another sample with the highest C of respiration rate. These patients are predicted
correctly by the LSTM-CNN model, but wrongly by the traditional linear model. The
common character of these two patients is that the abnormal sequences are mostly
oscillated around the normal values of the chart event types. Therefore, linear model
will regress them to normal value with tiny slopes. It suggests that LSTM can better
model the sequence with value oscillation, yielding higher recall rate.

where T equals to the length of one existing record, normally 48 if no missing data. 260

For each chart event, we picked up the patients with the highest Dnm in the LSTM-C 261

set and plotted all the sequence values of the numerical events of this stay. Two of the 262

examples are illustrated in Fig 6. The common character of these two patients is that 263

the abnormal sequence are oscillated around the normal value of the chart event types. 264

Therefore, linear model will regress it to a normal value with tiny slope, losing 265

important factors of readmission prediction: repeated illness and unstable status. 266

To obtain the big picture of LSTM-C and LSTM-LR-C, we computed the highest 267

oscillation of each stay across all the 12 numerical chart events, and compared the value 268

distributions of the two sets. We first estimated the cumulative density function (CDF) 269

Pm of the histogram of each chart event on the whole positive set. Then we remapped 270

each Dnm to the probability pnm, and computed the maximum probability wn for each 271
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record n by, 272

pnm = Pm(Dnm) (4)

273

wn = max
m

pnm (5)

wn represents the highest oscillation among all the chart events for this record. 274

Finally, for both LSTM-C and LSTM-LR-C set, we plotted the CDFs of the 275

estimated histograms of wn in Fig 4b. It suggests that there are higher portions of 276

patient records in the LSTM-C set which have at least one chart event with high 277

oscillation. Therefore, compared to Logistic Regression, the LSTM+CNN model is 278

better for recalling patients with high-oscillated sequence records. 279

Conclusion 280

In this study, we addressed the unplanned ICU readmission prediction by utilizing chart 281

events, demographics and ICD9 embeddings features. Among the data that we used, 282

chart event features are significantly sensitive to time series, and cannot be properly 283

captured by traditional static models (e.g., logistic regression). We proposing a 284

LSTM-CNN based model, which can properly incorporate time series data without 285

information lost. 286

Our model achieved a positive case recall rate (sensitivity) of 0.742, AUROC of 287

0.791, which contribute to the literatures by improving the sensitivity. Moreover, we 288

illustrated the importance of each portions of the features and different combinations of 289

the models to verify the effectiveness of the proposed model. To further understand the 290

focus of the predictive model, we conducted the chart events ablation test to rank the 291

influence of different factors when predicting the ICU readmission. 292

In future work, more validation can be conducted on real data of local hospitals and 293

a better way of explaining the deep models should be discovered. 294
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