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Abstract 1 

Connectomics can be used to investigate functional brain networks in neurodegenerative 2 

diseases including Huntington’s disease (HD). In this developing field, different connectome 3 

construction strategies have emerged in parallel. However, there is a need to understand the 4 

influences of different strategies on subsequent analyses when constructing a connectome. This 5 

study systematically compares connectome construction strategies based on their biological 6 

relevance to functional networks in neurodegeneration. 7 

We asked which functional connectome construction strategy was best able to 8 

discriminate HD gene carriers from healthy controls, and how such a strategy affected modular 9 

organization of the network. The major factors compared were principal component-based 10 

correction versus wavelet decomposition for physiological noise correction, the type of 11 

parcellation atlas (functional, structural and multi-modal), weighted versus binarized networks, 12 

and unthresholded versus proportionally thresholded networks. We found that principal 13 

component-based correction generated the most discriminatory connectomes, while 14 

binarization and proportional thresholding did not increase discrimination between HD gene 15 

carriers and healthy controls. When a functional parcellation atlas was used, the highest 16 

discrimination rates were obtained. We observed that the group differences in modular 17 

organization of the functional connectome were greatly affected by binarization and 18 

thresholding, showing no consistent pattern of modularity. 19 

This study suggests that functional connectome construction strategies using principal 20 

component-based correction and weighted unthresholded connectivity matrices may 21 

outperform other strategies. 22 
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Introduction 1 

Functional and structural brain networks can be constructed using resting state fMRI and 2 

diffusion tractography respectively. For functional connectomics, different methodologies have 3 

been used to construct and compare brain networks (Sporns, 2011). Amongst these factors some 4 

of the important choices are the type of physiological noise correction (Marchitelli et al., 2016), 5 

the size and nature of the parcellation atlas (Arslan et al., 2017), and the application of 6 

thresholding and binarization of connectivity matrices (Garrison et al., 2015). However, 7 

comparative studies of the interactions of these factors when constructing the connectome have 8 

not been performed. Understanding the effects of connectome construction strategies is 9 

important to provide insights when developing a standard for the field. 10 

One difficulty in evaluating connectome construction strategies is the lack of a gold 11 

standard. To overcome this, we set out to investigate how different strategies affect the ability 12 

of using a constructed connectome to distinguish between Huntington’s disease (HD) gene 13 

carriers and healthy controls. HD is an autosomal dominant neurodegenerative disease, and is 14 

fully penetrant in those with greater than 39 cytosine-adenine-guanine (CAG) repeat expansions 15 

in the HD gene on chromosome 4, see McColgan 2018 for a review (McColgan and Tabrizi, 16 

2018). Thus HD gene testing allows us to identify with certainty those who will develop the 17 

disease. In this context, genetic testing can be used as a diagnostic gold standard. This then 18 

allowed us to evaluate connectome construction strategies in their ability to discriminate 19 

between HD and healthy controls.  20 

Options for physiological noise correction include band pass filtering and regression of 21 

white matter, CSF and global signal. More recently, due to concerns regarding global signal 22 

regression (Carbonell, Bellec and Shmuel, 2014) more conservative approaches use only the 23 

principal components of white matter and CSF signals. This approach was developed as the 24 

anatomical CompCor method (Behzadi et al., 2007) and is implemented in the freely available 25 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 6, 2018. ; https://doi.org/10.1101/385385doi: bioRxiv preprint 

https://doi.org/10.1101/385385


5 

Conn functional connectivity toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). Wavelet 1 

decomposition can also remove signal attributable to physiological noise. Here, the signal is 2 

broken down into its underlying constituent frequencies by scaling and shifting of a brief 3 

oscillation, a so-called wavelet. By applying the maximal overlap discrete wavelet transform 4 

(MODWT) with Daubechies wavelets (Daubechies, 1988) to the raw rs-fMRI time series, 5 

correlation matrices are formed. Brainwaver is a freely available R-based package that can be 6 

used to perform such a wavelet decomposition (Achard et al., 2006). 7 

Following physiological noise correction, the brain is parcellated into discrete regions, 8 

such that each brain region acts as a node in the network and the temporal correlations of the 9 

fMRI time series between regions act as functional connections or edges. Atlases can be defined 10 

anatomically, such as the Desikan-Killiany atlas where labeling is inferred from anatomic 11 

curvature (Desikan et al., 2006). Functional atlases can also be defined based on resting state 12 

connectivity (Yeo et al., 2011). More recently multimodal atlases have been developed, such 13 

as the Glasser atlas (Glasser et al., 2016), which is based on task fMRI, rs-fMRI, and 14 

cytoarchitectonic features. However, currently there is no consensus in the literature as to the 15 

optimal strategy for brain parcellation (Arslan et al., 2017). 16 

Following the parcellation of the brain into various nodes or brain regions, thresholding 17 

is often performed in order to remove spurious connections. Binarization can also be carried 18 

out, such that the connection is either present or absent with the magnitude of the temporal 19 

correlation ignored. As there is no consensus about what threshold value to use, often a range 20 

of different thresholds are applied (Bullmore and Sporns, 2009). A variety of different threshold 21 

approaches have been described in the literature including absolute, proportional, consistency 22 

and consensus thresholding, but no optimal method has been identified (Qi et al., 2015). When 23 

thresholding is applied, it is often combined with a minimum spanning tree to retrieve the 24 

backbone of the graph (Alexander-Bloch et al., 2010), which is a subgraph with minimal 25 
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connection weights, while ensuring all nodes are connected to the network. Alternatively, 1 

thresholding can be avoided by using weighted connectivity matrices, using the raw correlations 2 

(Bullmore and Sporns, 2009). 3 

Machine learning tools such as support vector machines can determine a discrimination 4 

rate between two groups, as implemented in for example the Pattern Recognition for 5 

Neuroimaging Toolbox, PRoNTo (Schrouff et al., 2013). This has been used previously to 6 

classify structural networks from different Brain-derived Neurotrophic Factor (BDNF) 7 

genotypes from healthy subjects (Ziegler et al., 2013).  8 

Modularity is a measure of functional segregation and represents how well the network 9 

can be divided into distinct cooperating units, also called modules or communities (Rubinov 10 

and Sporns, 2010). In neurodegeneration, changes occur in the modular organization of the 11 

brain (McColgan et al., 2015) and therefore this is a complementary way to assess the effect of 12 

pathology on the brain network.  13 

Here we set out to address two specific questions: first, which functional connectome 14 

construction is most able to discriminate HD gene carriers from healthy controls? Second, how 15 

does the method of functional connectome construction affect determination of modular 16 

organization? For both research questions, we undertook a systematic comparison considering 17 

different factors and their interactions. These factors were principal component-based 18 

correction versus wavelet decomposition for physiological noise correction, the type of 19 

parcellation atlas (functional, structural and multi-modal), weighted versus binarized networks, 20 

and unthresholded versus proportional thresholded networks, resulting in a systematic 21 

comparison of 66 connectome construction strategies (Figure 1). 22 

To our knowledge, there is no systematic comparison of the effect of all factors 23 

mentioned above on functional brain networks, especially not applied in a clinical population. 24 

While optimization of connectome construction protocol has been done before, it mainly 25 
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focused on one single factor, for instance the effect of thresholding, ignoring other influences 1 

(Garrison et al., 2015). As these factors could have critical interactions in determining an 2 

optimal strategy, a systematic comparison can be particularly valuable. 3 

  4 
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Materials and Methods 1 

Cohort 2 

We assembled a cohort that comprised HD gene carriers and healthy controls from the final 3 

visit (2014) of the prospective Track-On HD study (Klöppel et al., 2015). From a total of 243 4 

eligible participants, 78 participants were excluded due to poor quality rs-fMRI data (Klöppel 5 

et al., 2015). If not further specified, the remaining cohort of 165 participants was used in full. 6 

For the classification analysis, a subdivision was taken, so that the number of participants in 7 

each group was equal. Participants were pairwise matched for age and gender, so that each 8 

match consisted of one HD gene carrier and one healthy control participant from the same 9 

gender and with an age difference spanning less than 1 year. This strategy yielded 49 HD gene 10 

carriers and 49 HC (Table 1), without significant differences in age (2 tail t-test, p=0.93), gender 11 

(a priori equal), education (WMW, p=0.38) and study site (Chi-square, p=0.91). This 12 

subdivision is further referred to as a pairwise matched cohort. An alternative and less stringent 13 

cohort subdivision was also performed, in which cohorts were selected by median age, see 14 

Supplementary Methods. 15 

 16 

MRI acquisition 17 

T1-weighted and rs-fMRI data were acquired on two different 3T MRI scanner systems (Philips 18 

Achieva at Leiden and Vancouver and Siemens TIM Trio at London and Paris). Scanning time 19 

was approximately 12 min for the T1-weighted acquisitions and 8 min for the rs-fMRI. For the 20 

rs-fMRI T2*-weighted echo planar imaging sequence with a repetition time of 3 s was used, 21 

resulting in 165 whole-brain time series. For both Siemens and Philips scans the voxel size was 22 

3.3 x 3.3 x 3.3 mm3. Detailed information on parameters and control procedures are provided 23 

in the Track-On HD study (Klöppel et al., 2015; McColgan et al., 2017). 24 
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Data Pre-processing 1 

Pre-processing of the structural and functional MRI data was performed with MATLAB 2 

R2016a, making use of SPM8 (Friston et al., 2011) and Conn (Whitfield-Gabrieli and Nieto-3 

Castanon, 2012). Each stage of the pre-processing was subjected to the quality control 4 

procedures of Track-On HD (Klöppel et al., 2015). T1-weighted images were segmented using 5 

three different parcellation atlases: a combined functional atlas containing cortical (Yeo et al., 6 

2011) and sub-cortical regions (Choi, Yeo and Buckner, 2012), a structural atlas (Romero-7 

Garcia et al., 2012) and a multi-modal atlas (Glasser et al., 2016). Atlases were registered to 8 

the anatomical image using NiftiReg (Modat et al., 2010). For the Romero atlas the globus 9 

pallidus, amygdala, nucleus accumbens and cerebellum were excluded. The functional, 10 

structural and multi-modal parcellation strategies entailed 121 ROIs, 316 ROIs and 360 ROIs 11 

respectively. 12 

Functional images were realigned, then corrected for estimated head movement, and 13 

coregistered to the new anatomical image. For each participant, a regional mean time series of 14 

the resting-state were obtained by averaging the fMRI time series over each voxel of a ROI. 15 

Physiological noise correction was then performed as detailed below. 16 

 17 

Physiological noise correction 18 

To perform a wavelet decomposition, six motion parameters were first linearly regressed out 19 

from the time series (Achard et al., 2006). Residuals were decomposed with Brainwaver 20 

(http://cran.r-project.org/web/packages/brainwaver/index.html) in RStudio 0.98.1078, using 21 

Daubechies wavelets, and the correlation matrix generated in the 4th wavelet scale (0.03-0.06 22 

Hz) was retrieved for further analysis, in keeping with the literature (Achard et al., 2006). The 23 

use of higher frequencies from lower wavelet scales has been reported (Richiardi et al., 2011; 24 

Vértes et al., 2016). However, frequencies of 0.1-0.5 Hz are thought to originate from 25 
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respiration (Cordes et al., 2001) and thus, to make an unbiased comparison with bandpass-1 

filtering used in CompCor, the lowest wavelet scale corresponding to a frequency below 0.1 Hz 2 

was used. 3 

An alternative physiological noise correction was performed using Conn 4 

(http://www.conn-toolbox.org). Using a CompCor method (Behzadi et al., 2007), regression of 5 

the first 5 principal components of the white matter and cerebrospinal fluid (CSF) signal was 6 

performed along with 6 movement parameters (Whitfield-Gabrieli and Nieto-Castanon, 2012). 7 

Global signal regression was not performed. Subsequently, a bandpass filter of 0.01-0.10 Hz 8 

was applied. Bivariate correlations were retrieved after a Fisher transform was performed to 9 

improve the normality assumption of the distribution of the correlation coefficients (Whitfield-10 

Gabrieli and Nieto-Castanon, 2012). 11 

 12 

Connectome construction strategies 13 

First, a minimum spanning tree (MST) algorithm was applied to the raw weighted and 14 

unthresholded connectivity matrices (CM) to retrieve a maximally sparse matrix while ensuring 15 

all nodes are connected to the network. This means that graph subset is the matrix backbone 16 

that has a minimum possible edge weight and does not include cycles. Subsequently, 17 

connections were added back to the network in decreasing strength to obtain weighted 18 

proportionally thresholded CM with a density of 5%, 10%, 15%, 20% and 25%. The second 19 

series of 5 CM was obtained by binarization of the weighted and proportionally thresholded 20 

CM (Rubinov and Sporns, 2010). This resulted in 1 weighted and unthresholded; 5 weighted 21 

and proportionally thresholded; and 5 thresholded and binarized CM in total. Because these 11 22 

CM were used for each of three parcellation atlases and two physiological noise correction 23 

methods resulting in 66 connectomes per participant in total (see also Figure 1). 24 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 6, 2018. ; https://doi.org/10.1101/385385doi: bioRxiv preprint 

https://doi.org/10.1101/385385


11 

Classification with support vector machine 1 

For each of the connectome as described above, the connectomes of pairwise matched HD gene 2 

carriers and healthy controls were classified using Pattern Recognition for Neuroimaging 3 

Toolbox v2.01 (PRoNTo), http://www.mlnl.cs.ucl.ac.uk/pronto (Schrouff et al., 2013). Leave-4 

one-out cross-validation (100 permutations) was applied. A post-hoc analysis was performed 5 

to assess effects of overall functional connectivity and motion (see Supplementary Methods). 6 

 7 

Modularity 8 

For each connectome construction strategy, the community affiliation vector was computed for 9 

the group averaged CM of HD gene carriers and for the group averaged CM of HC, using the 10 

Louvain algorithm for community detection (Blondel et al., 2008). 250 iterations were 11 

performed with a resolution parameter γ = 1 (default), followed by a consensus clustering 12 

(Lancichinetti and Fortunato, 2012). The modules for brain networks were visualized with 13 

BrainNet Viewer (Xia, Wang and He, 2013). Two related measures of modularity are the 14 

participation coefficient (PC); a measure that quantifies how evenly the node’s connections are 15 

distributed across modules (Sporns and Betzel, 2016) and within module Z-score; a way to 16 

express intra-modular connectivity (Fornito, Zalesky and Breakspear, 2015). The rationale for 17 

using these measures was that it allows a quantitative comparison of the hubness of networks 18 

in addition to a qualitative description of a network using modularity, which are both important 19 

in functional imaging (Power and Schlaggar, 2013). PC and within module Z-score were 20 

computed as implemented in the Brain Connectivity Toolbox version 2017-01 21 

(https://sites.google.com/site/bctnet/). For these measures, differences between HD gene 22 

carriers and HC were assessed using permutation testing (10 000 iterations). Age, gender, site 23 

of acquisition, education and overall functional connectivity (FC) were regressed out as 24 

covariates and false discovery rate (FDR) correction was applied. The nodes that were identified 25 
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as significant (p-value<0.05, FDR corrected) for the PC and within module Z-score separately 1 

were contrasted in both the number as location of these nodes across the different connectome 2 

construction strategies. Nodes were visualized with BrainNet Viewer (Xia, Wang and He, 3 

2013).  4 
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Results 1 

Classification of HD gene carriers and healthy controls 2 

The first aim of this study was to assess which functional connectome construction method was 3 

most discriminative for a machine learning classification of HD gene carriers and healthy 4 

controls (HC). Regardless of thresholding or binarization, the classification for the pairwise 5 

matched cohort yielded a higher area under the curve (AUC) for physiological noise correction 6 

performed using Conn connectomes, ranging from 0.58 to 0.78, compared to Brainwaver 7 

connectomes, ranging from 0.32 to 0.57 (Figure 2). The AUC using the functional, multi-modal 8 

or structural parcellation atlas were 0.78, 0.70 and 0.65 respectively. For weighted matrices the 9 

functional atlas consistently gave for each threshold a higher AUC compared to the other 10 

atlases. The AUC for the functional atlas using Conn ranged from 0.69 to 0.78, compared to a 11 

range of 0.60 to 0.70 for the multi-modal and 0.59 to 0.65 for the structural atlas. For binarized 12 

matrices using Conn the AUC for the functional atlas ranged from 0.64 to 0.71, while the AUC 13 

ranges for the multi-modal and the structural atlas were 0.58 to 0.68 and 0.58 to 0.63 14 

respectively. Therefore, thresholding or binarization had a minimal effect on the AUC.  15 

There were no group differences in age, gender, acquisition site or education (Table 1). 16 

A replication was also performed using an alternative subdivision strategy in which a selection 17 

of cohorts was made based on median age instead of pairwise matching for gender and age. 18 

This replication showed similar patterns, with Conn connectomes showing an AUC ranging 19 

from 0.56 to 0.70, compared to Brainwaver connectomes yielding 0.32 to 0.52 (Supplementary 20 

Figure 1). Overall functional connectivity (van den Heuvel et al., 2017) was corrected by 21 

rescaling all elements of a matrix with respect to their contribution to overall functional 22 

connectivity on group level (Supplementary Figures 2-4). After application of this correction, 23 

the same patterns in the results were obtained for classification, with Conn connectomes 24 

yielding an AUC from 0.57 to 0.76 and Brainwaver connectomes 0.32 to 0.57 (Supplementary 25 
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Figure 5). Exclusion of outliers in terms of mean framewise displacement did not have a 1 

considerable effect on the classification, with the AUC for Conn connectomes ranging from 2 

0.56 to 0.73 compared to Brainwaver connectomes ranging from 0.30 to 0.51 (Supplementary 3 

Figures 6-7). 4 

  5 

Effect on modular organization 6 

We then investigated how modular organization was affected by different connectome 7 

construction methods. The assignment of each node to a module was qualitatively compared 8 

and quantitative group differences in participation coefficient (PC) and within module-Z score 9 

were also investigated (see Materials and Methods). 10 

Across all atlases, the nodes of modules for the Brainwaver connectomes showed less 11 

spatial proximity compared to Conn connectomes. For Brainwaver connectomes, nodes of the 12 

same module were more dispersed for both HD and healthy controls when compared to Conn 13 

connectomes (Figure 3). The Supplementary Materials include all lists of the module 14 

assignments for the three atlases (see also corresponding Supplementary Figures 9-11). The 15 

most important effect of physiological noise correction on modularity was observed in the 16 

functional atlas: for healthy controls, Brainwaver connectomes provided dispersed modules that 17 

were highly different in number and location across thresholds, while Conn connectomes 18 

showed nodes in spatial proximity that had a consistent modularity across thresholds (Figure 19 

4). In addition, the functional atlas also gave rise to modules that were less demarcated due to 20 

its lower resolution (121 ROIs), compared to the structural and multi-modal atlases (316 and 21 

360 ROIs, see Figure 5). 22 

 23 

For quantitative assessment of modularity, nodes that were significantly different 24 

(p<0.05, FDR corrected) between HD and healthy controls were summed with respect to 25 
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participation coefficient (PC) and within module-Z score. Table 2 shows that the type of 1 

physiological noise correction, the parcellation atlas, thresholding and binarization all had an 2 

important effect on modularity group differences. 3 

First, the effect of thresholding and binarization was investigated for Conn connectomes 4 

using the multi-modal atlas. The weighted connectomes showed 46 significant nodes for PC at 5 

a threshold of 5% and only 1 node at threshold 10% and zero at thresholds of 15%, 20% or 25% 6 

(Figure 6a). After binarization an irregular pattern across the thresholds in both the number and 7 

location of significant nodes was observed, which showed that binarization had a substantial 8 

effect on group differences in modularity (Figure 6b). 9 

In addition to the influence of binarization and thresholding, the effect of physiological 10 

noise correction was also examined. For the structural atlas, Brainwaver connectomes showed 11 

the following number of PC significant differences: 107 nodes at 5%, 4 nodes at 10%, 155 12 

nodes at 15%, 215 at 20% and no nodes were significant at a threshold of 25%, or when no 13 

threshold was applied. Conn showed 10 nodes at a threshold of 5% and 10%, zero nodes at 15% 14 

and 20%, 26 nodes at 25% and no nodes were found significant when no threshold was applied 15 

(Figure 6c-d). 16 

In order to distinguish between the number of significant nodes and their location, the 17 

within module Z-score using the functional atlas was further investigated because both types of 18 

physiological noise correction yielded a similar number of nodes. Brainwaver showed 3 nodes 19 

at 5%, 4 nodes at 10%, 3 nodes at 15%, 15 nodes at 20% and 25%, and 10 nodes were found 20 

significant when no threshold was applied. Conn showed 9 nodes at 5%, 10 nodes at 10%, 11 21 

nodes at 15%, 21 nodes at 20% and 25%, and 9 nodes when no threshold was applied. 22 

Regarding the location of significant nodes, there was no overlap when comparing Brainwaver 23 

and Conn connectomes. When no threshold was applied, the 10 nodes detected in the 24 

Brainwaver connectome did not overlap with the 9 nodes detected in the Conn connectome. 25 
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There was also no overlap in the nodes at the thresholds 5%, 10%, 15% or 25%. Only at a 1 

threshold of 20% one single node (showed in yellow) was in common from 15 and 21 nodes 2 

detected using Brainwaver and Conn connectomes respectively (Figure 6e-f). 3 

 4 

Discussion 5 

The aim of this work was to perform a systematic comparison of connectome construction 6 

strategies to provide recommendations for representing functional networks in 7 

neurodegeneration. The following aspects of connectome construction strategies were 8 

investigated: principal component-based physiological noise correction versus wavelet 9 

decomposition, the type of parcellation atlas (functional, structural and multi-modal), weighted 10 

versus binarized networks, and unthresholded versus proportionally thresholded networks. 11 

For the classification of HD gene carriers and healthy controls, the connectomes making 12 

use of principal component-based physiological noise correction yielded higher discrimination 13 

rates compared to a physiological noise correction with wavelet decomposition. When a 14 

functional atlas was used in combination with principal component-based correction, the 15 

highest discrimination rates were obtained. The operation of thresholding or binarization did 16 

not enhance classification performance. The classification was not driven by group differences 17 

in gender, age, education, site of acquisition, overall functional connectivity or motion. The 18 

findings were consistent across two strategies of cohort subdivision ensuring equal sample size. 19 

The modular organization was most anatomically coherent and consistent across 20 

thresholds when using principal component-based physiological noise correction. Connectomes 21 

obtained after wavelet decomposition for physiological noise correction resulted in dispersed 22 

modules, and these modules were different again across thresholds when a functional atlas was 23 

used. While this could represent complete modular breakdown in HD, the observation of 24 
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dispersed modules in healthy controls does not support this (Sporns, 2011), suggesting this is 1 

methodological rather than biological.  2 

Group differences in modular organization in terms of participation coefficient and 3 

within module Z-score were highly affected by the type of physiological noise correction and 4 

by the threshold applied, whether or not combined with binarization. There was no relationship 5 

between the percentage of thresholding and the number of nodes that were significantly 6 

different between HD gene carriers and healthy controls. Moreover, steep changes in both the 7 

number of nodes and their location were observed when incrementally increasing the threshold.  8 

Whereas thresholding and binarization did not increase the ability to discriminate 9 

between groups when classifying, these operations showed a strong effect on identification of 10 

modular group differences. This was not keeping in with former findings of the reliability of 11 

modular organization in thresholded matrices, be it with a larger sparsity (He et al., 2009; 12 

Meunier, 2009), but was in agreement with the caution around thresholding (Scheinost et al., 13 

2012; Garrison et al., 2015), and the relevance of weaker connections (Gallos, Makse and 14 

Sigman, 2012; Santarnecchi et al., 2014; Goulas, Schaefer and Margulies, 2015). These 15 

findings together suggest that thresholding, whether or not combined with binarization, has a 16 

risk to introduce artificial group differences, especially when considering that there is no 17 

standard to choose the threshold. One way to overcome the arbitrariness of choosing a threshold 18 

and to enhance the reliable detection of network group differences, may be the use of 19 

unthresholded weighted matrices. 20 

While machine learning can have high diagnostic accuracy in schizophrenia 21 

(Davatzikos et al., 2005) or Alzheimer’s disease (Klöppel et al., 2008), it is of limited utility 22 

because the diagnosis can usually be made clinically in such cases. However, if the diagnosis 23 

is known a priori, machine learning can be useful to indicate which imaging methodology 24 

yields the highest discrimination rate. In the present study, the diagnosis of Huntington’s 25 
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disease was made with genetic testing so could be used as a gold standard, and so machine 1 

learning can indicate the most reliable connectome construction strategy. However, the 2 

robustness of the use of machine learning in connectomics is under further investigation (Brown 3 

and Hamarneh, 2016). The use of proposed null models for brain networks (Rubinov and 4 

Sporns, 2011; Hosseini and Kesler, 2013), test-retest analysis (Du et al., 2015; Marchitelli et 5 

al., 2016), exploring different confidence measures of classification prediction (Gammerman 6 

and Vovk, 2007; Nouretdinov et al., 2011), different types of datasets and the use of different 7 

types of machine learning algorithms such as Scikit-learn or its recent neuroimaging equivalent 8 

Nilearn (Abraham et al., 2014), are all but a few methods to assess the generality of application 9 

of machine learning in connectomics. 10 

The assessment of modular organization is complimentary to machine learning 11 

classification, as it enables direct mapping of modules on the brain. For both of these 12 

methodologies, the functional atlas gave rise to the highest classification performances, and it 13 

was also the most stable atlas across thresholds in terms of modularity for Conn based 14 

connectomes. Potentially, this is due to the size of the atlas. This is important as currently there 15 

is no consensus on the most reliable type of parcellation atlas (Arslan et al., 2017). Another 16 

explanation for the performance of the functional atlas could be that the multi-modal and 17 

structural atlas did not include sub-cortical regions, as for instance is the case for the multi-18 

modal Brainnetome atlas (Fan et al., 2016). However, the specific way how an atlas is 19 

composed, remains an issue for its application. For example, Arslan and colleagues cautioned 20 

that the Glasser multi-modal atlas may be positively biased toward the specific modalities (task 21 

fMRI, myelin content) used for its composition (Arslan et al., 2017), and other atlases may 22 

suffer from the same biases. Recently, gradient-weighted Markov Random Field models have 23 

been used to account for these biases by detecting changes in functional connectivity 24 
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similarities, showing that these multiresolution parcellations may be more homogenous than 1 

other multimodal atlases, including the Glasser atlas (Schaefer et al., 2017).  2 

One limitation of our study is that it does not provide a standard to assess which 3 

construction provides the best topological organization of the connectome. While replication of 4 

our findings in other neurodegenerative diseases will be necessary to generalize our current 5 

findings to a broader field, the strength of Huntington’s disease as a model for 6 

neurodegenerative diseases is that the diagnosis is technically robust and accurate. This implies 7 

that cohort of HD gene carriers consisted of both participants with manifest symptoms and 8 

participants at a pre-manifest stage, sometimes decades before the onset of disease. When 9 

assessing group differences in functional connectomes of HD gene carriers and controls, genetic 10 

testing thus served as a gold standard. 11 

Our work suggests that principal component-based physiological noise correction 12 

outperformed wavelet decomposition. An in depth analysis of these and other types of 13 

physiological noise correction, such as Bayesian methods (Särkkä et al., 2012) or independent 14 

component analysis (Griffanti et al., 2014) is beyond the scope of this study. The novelty in 15 

this systematic comparison is that it combined the strengths of machine learning and 16 

investigation of modular organization. Our work also considered a variety of factors from 17 

different levels (type of parcellation atlas, physiological noise correction, choice of threshold 18 

and binarization) in connectome construction to assess their mutual effects on the connectome, 19 

instead of limiting the investigation to a single factor alone. A reproducibility analysis of our 20 

methodology would be welcome, to verify how consistent the results are across different 21 

datasets.   22 
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Conclusions 1 

We performed a systematic comparison of various connectome construction strategies based on 2 

resting state fMRI data from TrackOn-HD project. Principal component-based physiological 3 

noise correction resulted in a higher group discrimination rate, and the use of a functional atlas 4 

outperformed other atlases. We showed that the type of physiological noise correction, the 5 

parcellation atlas, thresholding and binarization all have a substantial effect on the detection of 6 

group differences based on modularity. This raises important methodological concerns for 7 

functional connectomics in general. The results of the present study support the use of 8 

unthresholded and weighted matrices in combination with principal component-based noise 9 

correction methods. While the use of a functional atlas may provide more consistent results, a 10 

meticulously made trade-off with higher resolution atlases may also be necessary. 11 

  12 
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Tables 1 

Table 1: Cohort demographics. Values are mean (standard deviation) or n/n. See text for 2 

composition strategy. 3 

 HD gene carrier Control Statistical test P-value 

Total cohort after quality control     

N 86 79 ─ ─ 

Age (SD) 45.8 (9.1) 51.7 (9.9) 2 sample t-test, 2 tailed <0.01*** 

Gender (F/M) 41/45 47/32 Chi-square 0.12 

Education (2/3/4/5/6) 6/22/21/36/1 

10/16/28/23/

2 Wilcoxon-Mann-Whitney test 0.30 

Study site (N) 

   (Leiden/London/Paris/Vancouver) 21/22/25/18 24/16/24/15 Chi-square 0.77 

Pairwise matched cohort     

N 49 49 ─ ─ 

Age (SD) 48.2 (7.9) 48.4 (8.0) 2 sample t-test, 2 tailed 0.93 

Gender (F/M) 28/21 28/21 ─ ─ 

Education (2/3/4/5/6) 3/10/17/19/0 7/9/18/13/2 Wilcoxon-Mann-Whitney test 0.38 

Study site (N) 

   (Leiden/London/Paris/Vancouver) 15/11/14/9 12/13/14/10 Chi-square 0.91 

 4 

Table 2: Number of nodes with a different modularity property for Brainwaver and Conn 5 

connectomes. For each connectome construction strategy, the connectomes were assessed for 6 

differences in participation coefficient (PC) or within module Z-score (Z-score) between HD 7 

gene carriers and healthy controls with permutation testing (10 000 iterations). The sums of all 8 

significant nodes (p-value < 0.05, FDR corrected) are reported, regardless of the direction of 9 

the effect. 10 

 11 

5 10 15 20 25 5 10 15 20 25 none

Z-score 8 9 36 42 32 16 1 6 37 1 85

PC 32 18 182 243 25 107 4 155 215 0 0

Z-score 2 5 1 5 8 3 4 3 15 15 10

PC 2 0 0 1 1 0 0 16 0 0 0

Z-score 0 0 2 0 0 0 0 1 0 0 3

PC 0 0 0 0 0 0 0 0 0 0 0

44 32 221 291 66 126 9 181 267 16 98

Z-score 12 20 3 0 0 23 3 27 17 10 3

PC 13 0 0 0 14 10 10 0 0 26 0

Z-score 6 10 18 11 5 9 10 11 21 21 9

PC 20 12 16 29 18 21 10 14 10 10 0

Z-score 35 30 30 33 24 35 46 33 27 32 19

PC 45 11 0 159 80 46 1 0 0 0 0

131 83 67 232 141 144 80 85 75 99 31

Brain-

waver

Conn

Total differences

Total differences

Multi-

modal atlas

Threshold (%)

Binarized connectomes Weighted connectomes

Structural      

atlas

Functional      

atlas

Structural      

atlas

Functional      

atlas

Multi-

modal atlas
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Figures 1 

Figure 1: Overview systematic comparison of connectome construction strategies. Rs-2 

fMRI was obtained from 86 HD gene carriers and 79 healthy controls. Functional images were 3 

realigned and then coregistered to anatomical images. ROIs of three parcellation atlases were 4 

coregistered to the new anatomical images. For the use of each atlas a wavelet decomposition 5 

or component-based correction was applied for physiological noise correction. This resulted in 6 

weighted unthresholded matrices, whereof the minimum spanning tree (MST) is retrieved and 7 

subsequently, the strongest connections are added back to obtain a range of proportionally 8 

thresholded matrices. Finally, each of these thresholded matrices have been binarized. The 9 

following pictures are adapted from original publications: MRI acquisition (McColgan, 10 

Gregory, et al. 2017); functional (Yeo et al. 2011), structural (Romero-Garcia et al. 2012) and 11 

multi-modal (Glasser et al. 2016) parcellation atlas. HC: healthy controls. HD: Huntington’s 12 

disease. MST: minimum spanning tree algorithm. ROI: region of interest. rs-fMRI: resting-state 13 

functional Magnetic Resonance Imaging. SPM8: statistical parametric mapping. T1WI: T1-14 

weighted imaging. 15 

 16 

Figure 2: AUC for pairwise matched cohort. The connectivity matrices of 49 HD gene 17 

carriers and 49 healthy controls pairwise, matched for gender and age, are classified with 18 

PRoNTo in a leave-one-out cross-validation. The area under the curve (AUC) is obtained for 19 

each of 66 connectome construction strategies. The structural atlas is based on anatomical 20 

demarcations (Romero-Garcia et al. 2012), the functional atlas is based on intrinsic connectivity 21 

of brain regions (Yeo et al. 2011), and the multi-modal atlas made use of both criteria (Glasser 22 

et al. 2016). Physiological noise correction was either performed with Conn, which is a 23 

component based correction (Whitfield-Gabrieli & Nieto-Castanon 2012), or with Brainwaver, 24 

which makes use of a wavelet decomposition (Achard et al. 2006). A proportional threshold 25 

was applied on weighted (A) or binarized (B) connectivity matrices. 26 

 27 

Figure 3: The nodes of the modules are more dispersed for Brainwaver connectomes, 28 

while anatomically coherent for Conn connectomes. The visualization of the group 29 

community affiliation vector for the HD gene carriers and healthy controls is based on weighted 30 

unthresholded matrices. In all instances, 3 modules were detected by the Louvain community 31 

detection algorithm. For Conn connectomes these modules seem to correspond with a posterior 32 

(red), fronto-temporal (green) and fronto-parietal network (yellow). 33 

 34 

Figure 4: The modular organization is inconsistent in healthy controls across thresholds 35 

for Brainwaver connectomes, while consistent for Conn connectomes. The modules 36 

detected in weighted connectomes are visualized. A functional atlas was used for both types of 37 

physiological noise correction. 38 

 39 

Figure 5: Comparison of modularity on HD gene carrier group level across atlases. The 40 

visualization of the group community affiliation vector for the HD gene carriers and healthy 41 

controls is based on weighted unthresholded matrices. There were 4 modules detected using the 42 

functional atlas (121 ROI), and 3 in the structural and multi-modal atlas (316 and 360 ROI). 43 

The distribution of the nodes of a module is less informative in a lower resolution atlas 44 

compared to higher resolution. 45 

 46 

Figure 6: Number and location of nodes that differ modularity between HD and healthy 47 

controls are substantially effected by thresholding, binarization and type of physiological 48 

noise correction. The number of nodes that had differences in participation coefficient (PC) or 49 
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28 

module Z-score (Z-score) between HD gene carriers and healthy controls, are visualized in a 1 

dorsal view (permutation testing, p-value < 0.05, FDR corrected). This number is for each 2 

comparison given in the bottom right corner. Binarization and thresholding have a strong 3 

influence on detection of group difference: example shown for weighted connectivity matrices 4 

(A) and the binarized equivalent (B) using a multi-modal atlas. Connectomes after wavelet 5 

decomposition (Brainwaver) versus component-based correction (Conn) for physiological 6 

noise lead to substantially different outcomes (C and D): example shown for weighted matrices, 7 

using a structural atlas. When number of detected nodes are comparable, connectomes corrected 8 

with Brainwaver or Conn do not lead to overlap in location (E and F): example shown for a 9 

functional atlas, using weighted matrices. From all pairwise comparisons between E and F, only 10 

1 single node is in common between two methods of physiological noise correction (yellow 11 

node, at threshold of 20%). For full results, see Table 2. 12 
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