
Palantir characterizes cell fate continuities in human hematopoiesis  

 
Manu Setty1, Vaidotas Kiseliovas1, Jacob Levine1, Adam Gayoso1, Linas Mazutis1, Dana Pe’er1,2 

1Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer 
Center, New York, NY, USA. 
2Corresponding Author 

To whom the correspondence must be addressed: peerd@mskcc.org 
 
 

 

Abstract 

Recent studies using single cell RNA-seq (scRNA-seq) data derived from differentiating 

systems have raised fundamental questions regarding the discrete vs continuous nature of both 

differentiation and cell fate.  Here we present Palantir, an algorithm that models  trajectories of 

differentiating cells, which treats cell-fate as a probabilistic process, and leverages entropy to 

measure the changing nature of cell plasticity along the differentiation trajectory.  Palantir 

generates a high resolution pseudotime ordering of cells, and assigns each cell state with its 

probability to differentiate into each terminal state.  We apply Palantir to human bone marrow 

scRNA-seq data and detect key landmarks of hematopoietic differentiation. Palantir’s resolution 

enables identification of key transcription factors driving lineage fate choices, as these TFs 

closely track when cells lose plasticity.  We demonstrate that Palantir is generalizable to diverse 

tissue types and well-suited to resolve less studied differentiating systems.   
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Introduction 

Differentiation is among the most fundamental processes in biology.  The traditional view of cell 

differentiation comprises a series of discrete steps through well-defined stages, through which a 

cell transitions from less-differentiated to a more differentiated state.  Single cell studies 1-6 have 

however demonstrated that in differentiating systems, cell states are observed to reside along 

largely continuous spaces.   Despite the evolution in thinking about differentiation as a 

continuous process, cell fate choices continue to be largely viewed as a series of discrete 

bifurcations, along a developmental trajectory, towards terminal cell states 7-9.  

 

Contrary to this view, studies based upon epigenomic measurements such as DNase-seq and 

ATAC-seq indicate that progressive restriction of the enhancer landscape coupled with pre-

establishment of lineage specifying enhancers in precursors can serve as vehicle for driving 

differentiation, suggesting mechanisms that might underlie a continuous process 5, 10-13. Indeed, 

we observe a lack of well-defined bifurcation points when scRNA-seq profiles are projected 

along the strongest axes of variation (Fig. 1a). Even at the level of individual genes, we observe 

a broad representation of observed gene ratios, rather than bimodal expression states (Fig 1a).  

In support of cell fate choice continuity, a recent study profiling trans-differentiation in mice 

demonstrated that individual clones do not deterministically reach particular differentiated 

states, but rather fate choices are inherently probabilistic in nature 14-16. These data raise 

fundamental questions concerning cell fate determination.  Are cell fates, like cell state 

transitions, continuous? When and how might cell fate choices be made in a continuous model?   

 

Our approach to investigating these fundamental questions is to leverage single cell RNA-seq 

(scRNA-seq) data to model the landscape of differentiation and characterize cell state and fate 

continuities. As differentiation is asynchronous, scRNA-seq derived from a population of 
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differentiating cells yields a snapshot representing the full dynamic range of these cell states. 

Here we present Palantir, an algorithm that models continuity in both cell state and fate choice. 

Palantir takes as input scRNA-seq from a single asynchronous sample and markers 

representing an early cell to generate a pseudo-time ordering of cells and assigns each cell 

state with its probability to differentiate into each potential terminal state.   

 

We applied Palantir to characterize human hematopoietic differentiation using scRNA-seq 

profiles of ~25000 cells enriched for CD34, a marker for hematopoietic stem and progenitor 

cells 17, 18. Palantir identified known terminal states of human hematopoietic differentiation and 

ordered cells along a pseudo-time that recapitulated known marker trends along development.   

Critically, Palantir identified points along the trajectory where the differentiation potential 

drastically shifts; these shifts mark key events in hematopoiesis.  Thus, Palantir provides a 

quantitative approach to characterizing a continuous model of cell fate choice.   

 

Results 

Development as a Markov Process  

Differentiation proceeds through cell divisions and progressive changes in phenotype.  Because 

daughter cells are generally very similar to their mother cells, the population is established by 

incremental divergences, driven by regulatory mechanisms that create paths through the space 

of possible cell states.  Thus, regulation constrains cell states to a low dimensional manifold of 

possible phenotypes 19. Nearest-neighbor graphs, where each node represents a particular cell 

state and edges connect most similar cells, have been widely used to model this manifold  1-3, 20.  
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We therefore use nearest-neighbor graphs to model differentiation in hematopoiesis.  

Importantly, hematopoiesis is asynchronous: a single bone marrow sample contains both the full 

spectrum of cell states occurring in hematopoiesis, and critically, the frequencies of each cell 

state.  We leverage cell state frequencies to inform our model of possible and most likely 

differentiation paths, assuming paths in the neighbor graph represent possible differentiation 

paths. Critically, paths along the neighbor graph do not represent the path of a particular cell, 

but rather represent likely trajectories of cells in the population as they differentiate towards 

terminal states.  Each cell state, represented as a node in the manifold graph, is associated with 

a probability distribution for reaching the terminal states.  We assert that cells traverse the 

manifold in small steps which can be modeled using a Markov chain to represent cell fate 

choices in a probabilistic manner.  

 

Two critical assumptions enable us to model differentiation as a Markov process.  Firstly, 

differentiation progresses from a less differentiated state to a more differentiated state, i.e., cells 

cannot dedifferentiate into earlier states.  While this assumption might be violated in some 

cases, we posit that it is a reasonable first order approximation, particularly in healthy 

differentiation.  Moreover, the assumption that differentiation is unidirectional underlies all 

pseudo-time/trajectory detection algorithms 1, 3, 7, 8.  We note that in aberrant systems such as 

cancer this assumption does not hold and other sources of information, such as mutations, are 

needed to guide the directionality.  

 

A second assumption enables us to model differentiation as a Markov chain.  For any node in 

the manifold graph, the probability of traversing to any of its neighbors is independent of its 

history, i.e. the path taken to reach that state.  Note that for a particular cell, the cell’s previous 

developmental history is likely to be encoded in its epigenetic profile and will likely impact cell 

fate choices. However, nodes in the graph manifold are cell states representing multiple 
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histories and potential trajectories rather than the developmental path of an individual cell. The 

distribution and frequencies of all observed cells informs the basic structure and connectivity 

among nodes in the graph manifold.   

 

The Palantir Algorithm  

Given scRNA-seq collected from a sample of differentiating cells and the expression profile of 

an early cell, Palantir provides (1) an ordering of cells along a pseudo-time; (2) characterization 

of terminal differentiated states; (3) and assigns each cell a probability distribution representing 

the cell’s branch probability (BP) for reaching each of the terminal states.   

 

First, we represent the phenotypic manifold using a nearest-neighbor graph that connects each 

cell to its most similar cells (Supp. Fig. 1a, Methods).  Key to Palantir’s success is good graph 

construction so that edges connect between cells in similar developmental states and longer 

paths correspond to developmental trajectories.  Therefore, we use diffusion maps 21 to focus 

on developmental trends and avoid spurious edges resulting from the sparsity and noise in 

scRNA-seq.  Projecting the data onto the top diffusion components effectively focus edges in 

directions with high cell density and reweighs similarity along these directions (Supp. Fig. 1a). 

 

Diffusion maps have been previously used to study differentiation in single cell data 2, 3 and are 

particularly adept at capturing differentiation trajectories 3, 22, 23.   Typically, diffusion maps have 

been used to characterize pseudo-time ordering of cells by constructing separate trajectories for 

each major axes of variation based on individual diffusion components (DCs) 23, 24.  While a 

single DC can offer a reasonable approximation of a trajectory towards a specific fate, we often 

observe many too many relationships between DCs and trajectories leading to each terminal 

fate (Supp. Fig. 2). Therefore, Palantir takes multiple DCs into account when computing the 
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pseudo-time ordering of cells and uses shortest paths from a user defined early cell in the 

neighbor-graph to initiate pseudo-time. Pseudo-time is iteratively refined by means of shortest 

path distances from waypoints, a set of cells sampled to span the differentiation landscape 

(Supp. Fig. 1b-c) 1, 2.  The computed pseudo-time does not represent a single trajectory, but 

rather assigns each cell their relative distance from an initial early cell, regardless of their 

lineage or terminal fates.   

 

We combine the neighbor graph and pseudo-time to construct a Markov chain that models 

differentiation as a stochastic process, where a cell reaches one or more terminal states through 

a series of steps in the manifold (Fig. 1b).  Pseudo-time provides directionality that is used to 

orient edges in the neighbor graph in a manner consistent with the ordering (Supp. Fig. 1d-e).  

For each directed edge we assign a transition probability, representing the probability of 

reaching cell 𝑗 from cell 𝑖 in one step.  The probability of reaching a more distant cell is 

computed over the course of many steps and will be high if many paths connect them i.e. high 

probability reflects a high density of observed intermediary cell states. This is computed by 

exponentiating the Markov matrix 𝑡 times, where 𝑡 represents the length of the path (Supp. Fig. 

1f).  The exponentiated Markov matrix directly computes the probability of a random walk over 

longer paths transitioning between more distant cell states.   Thus, while each single step is 

stochastic, at longer distances the manifold graph structure implicitly encodes the 

developmental trajectories.  

 

Moreover, the Markov chain can be used to infer the terminal states directly from the data.  In 

the Markov chain, random walks are directed towards the mature states and converge onto 

terminal states. Thus, Palantir identifies terminal states as boundary cells (extrema of diffusion 

components), that are also outliers in the stationary distribution, i.e. the states into which the 

random walks likely converge (Fig. 1c).   Once the terminal states are identified we convert the 
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Markov chain into an absorbing Markov chain by setting the terminal states as absorbing states 

i.e., a state with no outgoing edges.    

  

In an absorbing Markov chain, a random walk from any state will continue until it reaches a 

terminal absorbing state.  Each individual path through the Markov chain is associated with a 

probability computed as the product of the individual transition probabilities for each step taken 

along the path.  For any intermediate cell state 𝑖 and terminal state 𝑗, we can integrate over all 

possible paths (weighted by their probability) between 𝑖 and 𝑗, thus computing the probability a 

cell starting at 𝑖 will terminate at 𝑗.  For each cell 𝑖, we can compute a vector of branch 

probabilities to reach each of the possible terminal states (Supp. Fig. 1f,g). We define its 

differentiation potential to be the entropy over the branch probabilities, providing a novel 

quantitative metric for its plasticity (Fig. 1d, Supp. Fig 1h).  

 

Palantir assigns each cell both a pseudo-time (representing its relative distance from the start) 

and branch probabilities to all of the terminal states.  Thus, unlike using diffusion components to 

order cells (where the order of cells changes across components), Palantir’s pseudo-time 

provides a single unified ordering of cells, across all lineages. This unified framework enables 

precise alignment, characterization and comparison of gene expression dynamics along 

different lineages, without having to sub-select cells of one or many lineages (Methods). From 

this pseudo-time ordering we compute gene expression trends using generalized additive 

models (GAMs), weighing each cell’s contribution based on branch probabilities (Fig 1e, Supp. 

Fig. 3, Methods). GAMs are particularly suitable for deriving a robust estimate of non-linear 

trends and estimating the standard error of prediction 25.  
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Landscape of early human hematopoiesis 

Hematopoiesis is a well-studied biological process with established markers to facilitate 

identification of lineages and terminal cell states 17, 26.  Moreover, hematopoietic differentiation is 

asynchronous with the full spectrum of cell states represented in a single bone marrow sample.  

For these reasons, many pseudo-time algorithms have been developed using hematopoiesis as 

a model system 2, 7, 9.   While scRNA-seq has been extensively used to study hematopoiesis in 

mouse 6, 27, we chose to investigate the earliest stages of human hematopoiesis, since  single 

cell studies are particularly empowering in a system where perturbations are not possible.  

 

Hematopoiesis has classically been characterized as a series of bifurcations leading to mature, 

terminal cell states 17, 28, 29.  However, recent studies using scRNA-seq and scATAC-seq 

profiling of sorted populations suggest fate decisions in hematopoiesis is a continuous process 

4, 5, raising a debate regarding the discrete versus continuous nature of differentiation in 

hematopoiesis. Despite the depth of our understanding of hematopoiesis, fundamental 

questions about how cell fate choice is determined at the earliest stages of human 

hematopoiesis, and the degree of plasticity in early progenitor cells, remain unanswered. To 

better investigate cell fate choices in early human hematopoiesis, we enriched for CD34+ cells 

using Fluorescent-Activated Cell Sorting (FACS) and generated approximately 25,000 single 

cell transcriptome profiles of CD34+ cells from three human bone marrow donors using 10X 

Chromium (Methods).   

 

We first clustered the scRNA-seq profiles (Supp. Fig. 4a) using PhenoGraph 20. To associate 

each cluster with a particular cell type / lineage we used correlation between cluster medians 

and bulk sorted populations 30, 31 (Supp. Fig. 4b,c). We identified the full complement of 

hematopoietic cells, including hematopoietic stem and progenitors, as well as cells committed to 
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lymphoid, erythroid, monocytic, classical and plasmacytoid dendritic cell (cDCs & pDCs 

respectively) lineages and megakaryocytes (Fig. 2a-b, Supp. Fig. 4). Stem and precursor cells 

comprised ~63% of the total sorted cells. Lineage committed cells were also detected because 

of imperfect sorting for CD34 (which was measured to be 90% pure) and temporal discordance 

between mRNA and protein; surface protein levels lag changes in mRNA levels. 

 

Application of Palantir to hematopoiesis data recapitulates expected trends  

We applied Palantir to the CD34+ hematopoiesis data, selecting one of the CD34 high cells as 

the start cell (Methods). We analyzed each of the three replicates separately to evaluate the 

robustness and reproducibility of the results. Based on the stationary distribution of the Markov 

chain, Palantir correctly identified all expected cell types, including: monocytes, erythroid cells, 

megakaryocytes, lymphoid progenitors and the two dendritic cell populations as terminal states. 

(Fig. 2b,c). The trajectory identified by Palantir begins at the HSCs and ends at the terminal 

differentiated cell types, following the expected progression (Fig. 2c).  We observed a large 

degree of plasticity: cells at the beginning of the trajectory have potential to reach the full set of 

terminal states, with a gradual loss in this potential as they commit towards a particular lineage 

(Fig. 2d-e). 

  

To evaluate the resulting trajectories, we computed gene expression trends of key markers that 

characterize commitment towards specific lineages (Fig. 2f). As expected, CD34 shows a 

decreasing trend in all lineages consistent with  previous reports of CD34 downregulation as 

cells commit towards specific lineages 17. Consistent with well characterized trends, lineage 

specific factors such as CD79A, GATA1 and IRF8 are selectively upregulated in the lymphoid, 

erythroid and DC cell lineages respectively. In contrast to these genes, MPO shows an initial 

upward trend across all lineages, followed by a specific upregulation in the monocyte lineage 
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(Fig. 2f). Finally, CD41 has been identified as a marker for early erythroid and megakaryocytic 

precursors with a continued upregulation in the megakaryocytic lineages 32.  

 

We next evaluated Palantir’s robustness and reproducibility. Our experiments demonstrate that 

both pseudo-time and differentiation potential (DP) are robust to a wide range of input 

parameters including the number of neighbors for graph construction, number of diffusion 

components and different sampling of waypoints (Supp. Fig. 5, Methods). We also compared 

Palantir results between independent replicates (Methods) and observe that the pseudo-time 

and DP are highly correlated between independent runs of Palantir, each applied to datasets 

derived from different bone marrow donors. (Supp. Figs 6, 7, 8).  Additionally, the gene 

expression trends are reproducible across the replicates (Supp. Fig. 7a). These findings 

collectively suggest that Palantir results are robust, reproducible, and correctly identify the gene 

expression dynamics in early hematopoiesis.  

 

Hematopoiesis data supports a hierarchical and continuous model of cell fate 

choice 

Classically, hematopoiesis has been thought be a series of bifurcations through well-defined 

stages 17, 28, 29. However, these results were largely based on either a small number of markers 

or bulk measurements of sorted populations 17, 31. Recent studies point to a consensus 

supporting a more continuous model of hematopoiesis but disagree on whether differentiation 

proceeds in a hierarchical or non-hierarchical manner. On the one hand, a number of single-cell 

studies 4, 6 have hypothesized that hematopoietic decision making process is continuous but 

lacks hierarchy. These studies however were based on sorted populations and hence might 

have missed intermediate cell stages and more importantly did not retain the relative 

proportions of the different cell types.  On the other hand, lineage-tracing studies of murine 
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hematopoiesis 33 support a hierarchical model of development with a more stepwise loss in 

potential as stem cells differentiate into specific cell types.  

 

Our Palantir framework and the CD34+ data allow us to query early differentiation in human 

hematopoiesis where genetic perturbation studies are impossible. Key to our approach is 

comparing the change in differentiation potential (DP), across different lineages. DP shows a 

decreasing trend along any given lineage, as cells specialize and lose their ability to commit to 

other lineages (Supp. Fig. 9a-d). Tracking branch probabilities (BPs) and DP along pseudo-time 

enables us to  determine when and in what manner these probabilities change for each of the 

terminal fates.  Our results suggest continuity in the early hematopoietic lineage commitment 

process: DP remains consistently high throughout early hematopoiesis, with gradual losses in 

potential as cells differentiate towards specific lineages (Fig. 3a, Supp. Fig. 9e). 

 

Importantly, we note that the rate of change in DP varies greatly along pseudo-time and across 

the different lineages (Fig 3a, Supp. Fig. 9e, Methods). If lineage commitment was non-

hierarchical, we would expect DP along different lineages to simultaneously drop downward at a 

particular point along pseudo-time. Instead, we observe first commitment to the lymphoid 

lineage, followed by commitment to erythroid/megakaryocytic lineages and finally we observe 

cells differentiating towards the myeloid lineages (Fig 3a, Supp. Fig. 9e),  supporting a 

hierarchical nature of human hematopoietic lineage commitment.  Our results also suggest that 

lineage choice between either the monocytic or one of the two DC lineages precedes fate 

choice between the two DC lineages (Supp. Fig. 9e). Together, these results suggest that 

differentiation in early human hematopoiesis exhibits hierarchy. 
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Differentiation potential identifies landmarks of early hematopoietic 

differentiation 

During differentiation, cells lose their fullest multipotent potential as they commit towards 

particular lineages. Differentiation potential (DP) represents a quantitative measure of a cell’s 

plasticity or potential to differentiate into different lineages. DP can thus detect when cell fate 

specification changes. We observe points along the differentiation axis (pseudo-time) where 

substantial changes in DP occur and posit that these changes in DP reflect key molecular and 

cellular events driving differentiation. Indeed, most of these changes coincide with commitment 

to different lineages (Fig. 3a left panel, Supp. Fig. 9), Curiously, we observe a substantial 

decrease in DP in early hematopoietic differentiation (Fig 3a top right panel) not associated with 

commitment towards any specific lineage.  

 

The DP metric reflects the graph structure, which in turn is constructed based on genome-wide 

similarities between cells.  Hence to gain insight into this drop in DP, we sought to characterize 

gene expression trends in proximity to this event.   We clustered genes based upon their 

temporal trends along the pseudo-time, assuming genes involved in coherent biological 

processes likely share similar expression dynamics and subsequently used gene ontology 

enrichment  to annotate the resulting clusters (Methods).   

  

The strongest changes we observed involved: (1) aerobic and mitochondrial respiration related 

genes (clusters with increasing trends) and conversely (2) hypoxic genes (clusters with 

decreasing trends) (Supp. Fig. 10a). To better visualize and quantify the correspondence 

between these gene trends and DP, we compared the mean expression of hypoxic genes with 

genes involved in mitochondrial respiration along equal sized bins (Fig. 3b, top panel).  As 

shown in Fig. 3b, decrease in DP strongly correlates with both an increased expression of 
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mitochondrial genes and a decreased expression of hypoxic genes.  These data suggest a 

decrease in DP at the earliest stages of hematopoiesis corresponds with a change in metabolic 

state of the cells, occurring before they begin to commit towards lineages (Fig. 3b, top panel). 

 

Previous studies have shown that hematopoietic stem cells (HSCs) are inherently quiescent, 

slow cycling in nature, and reside in specialized hypoxic niches in the bone marrow 34, 35. 

Hematopoietic differentiation requires an exit from quiescent long-term HSCs (LT-HSCs) to a 

metabolically active short-term HSCs (ST-HSCs), a process termed the metabolic switch 34, 35. 

The complement of cell types into which a cell can differentiate is thought to remain unaltered 

during the transition of LT-HSCs to ST-HSCs. Consistent with these studies, we show that the 

change in DP correlates with the metabolic switch reproducibly and independently in each of the 

three replicate samples (Fig. 3b, Supp. Fig. 11). DP change is also correlated with expression 

dynamics of THY1(CD90), a well characterized marker of transition between LT-HSCs to ST-

HSCs (Supp. Fig. 10b) 36. Moreover, change in DP is also accompanied by increased 

expression of early myeloid-erythroid-lymphoid genes in comparison to genes that are 

characteristic of hematopoietic stem cells (Fig. 3b, Supp. Fig. 11). These results demonstrate 

that DP, as computed by Palantir directly from the data with no use of prior knowledge, can 

identify key differentiation events, such as metabolic switch, even when these are unrelated to 

specific branching in cell fate.  

 

Differentiation potential along erythroid commitment 

We next characterized DP changes along lineage commitment using erythropoiesis, a process 

that produces red blood cells as a case study. Erythrocytes are derived from megakaryocyte-

erythroid precursors (MEPs), lineage precursors of both megakaryocytes and erythrocytes 37. 

We observe a sharp decrease in DP along erythroid commitment after the initial, metabolically-
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related entropy change during early hematopoiesis (Fig 3a). To identify gene sets concordant 

with this decrease in DP along erythroid differentiation, we repeated the temporal trend-based 

gene set analysis as before (Supp. Fig. 10c). 

  

During early hematopoiesis, we observe an increased expression of gene markers across all 

differentiated cell types (Fig 3b). Gene expression trends in cells demonstrating commitment 

towards erythroid lineage (increasing BP toward erythroid cell fate) are associated with 

continued upregulation of early erythroid genes, accompanied by a downregulation of the early 

myeloid genes (Fig. 3c), demonstrating a reconfiguration of the expression program toward 

erythroid lineage. As expected for maturing red blood cells, this decrease in DP also coincides 

with upregulation of gene sets  involved in heme metabolism and oxygen response (Fig. 3c). 

 

We posited that the transcription factors (TFs) most closely correlated with the BP towards the 

erythroid fate are likely key regulators of this process.  Hence, we systematically correlated all 

TFs with erythroid BP and found the most correlated TFs to be TAL1, KLF1 and GATA1 

(Pearson correlation > 0.99) (Fig 3d, Supp. Fig. 10d (Cluster 0)). We note that each of these 

factors have been shown to play a central role in erythropoiesis. TAL1 is  known to enhance 

erythroid potential 38. KLF1 is a known regulator of early erythroid precursor genes, as well as a 

suppressor of the megakaryocyte lineage 39. Finally, loss of GATA1 leads to complete loss of 

erythropoiesis 40.  Thus, we find remarkable correspondence between erythroid BP, computed 

based on all genes with no prior knowledge, and expression trends of known key regulators of 

erythropoiesis.    

 

Palantir provides a high resolution cell ordering along differentiation, allowing us to characterize 

the order and timing of events along erythropoiesis.  We find that upregulation of KLF1 is 

followed by upregulation of KLF3, a known target of KLF1 and a stabilizer of the erythroid gene 
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expression program (Fig. 3d, middle panel, Supp. Fig. 10d (Cluster 6)) 41. Finally, globin genes 

such as HBB are upregulated in the final wave conferring functional identity to red blood cells 

(Fig. 3d, right pane, Supp. Fig. 10d (Cluster 8)).   Taken together, the timing of gene 

upregulation along the erythropoietic trajectory strongly suggests that specification and 

commitment to erythroid lineage occurs not equipotentially, but in stages of coordinated 

upregulation of genes.  

 

Transcriptional regulation of erythroid commitment 

Given the strong correspondence between key erythroid TF expression and erythroid BP, we 

next sought to use Palantir to identify factors that influence lineage fate choices. We reasoned 

that a TF that influences lineage decisions should satisfy the following criteria: (a) The factor 

should be expressed prior to phenotypic specification i.e., before the lineage decision is made, 

(b) The factor should correlate with lineage specification i.e., upregulation of the factor during 

the early phase of specification should be correlated with increasing lineage probability and (c) 

The factor should be downregulated in alternate lineages.  

 

Considering the specific case of myeloid-versus-erythroid lineage decision, mutual antagonism 

of GATA1 and PU.1 has been proposed as the primary mechanism. Specifically,  PU.1 and 

GATA1 drive myeloid and erythroid specification respectively 42, 43. Our data supports PU.1 as a 

myeloid specifier: (a) PU.1 is expressed in early hematopoietic stem cells, (b) PU.1 shows an 

increasing trend along myeloid lineages and (c) PU.1 is downregulated in the erythroid lineage 

(Fig. 4a, Supp. Fig. 12a).  On the other hand, GATA1 expression is not detected in early cells 

and is only expressed in the erythroid lineage after the cell fate decision has been made (Fig. 

4a). Therefore, it is unlikely that GATA1 plays a role in the erythroid fate decision, a finding 
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consistent with recent studies based on time-lapse microscopy 44. Hence, we sought to discover 

alternative factors that could antagonize PU.1 and drive cells towards the erythroid lineage.  

 

To do so, we undertook a systematic evaluation of all the TFs expressed in the erythroid lineage 

that satisfy the criteria articulated above. For each TF, we computed the correlation of its 

expression trend with the increase in erythroid BP during lineage specification and also 

considered its expression in the early hematopoietic cells (Methods). We found that GATA2, 

LYL1 and MXD4 all exhibit high correlation with erythroid commitment and are expressed at 

high levels in the precursor cells (Supp. Fig. 12b). GATA2 has the highest correlation and is the 

highest expressed amongst these factors. Moreover, GATA2 belongs to the same TF family as 

GATA1 and two factors share the same binding motif.  We note that GATA1 and PU.1 are 

thought to drive respective lineage commitment by an antagonistic mechanism of binding to 

each other’s promoters 42, 43 and hence GATA2 could function as a PU.1 agonist using the same 

mechanism.  In fact, switching of GATA factors is a well characterized mechanism during 

erythroid differentiation and our data again supports this: GATA2 is upregulated earlier than 

GATA1 and then decreases along with GATA1 upregulation (Fig. 4a). Thus, our high resolution 

temporal model suggests that GATA2 drives erythroid lineage specification by antagonizing 

PU.1, with GATA1 taking over from GATA2 during lineage commitment.  We therefore chose 

GATA2 as a candidate PU.1 agonist and erythroid lineage specifier.  

 

We leveraged changes in the DP to investigate the timing of the decrease in cell plasticity and 

its interplay with the changes in TF expression driving lineage specification.  Previous studies 

have shown that gene expression ratios between competing TF pairs, rather than TF expression 

alone, can be critical determinants of lineage specification 45. TF ratios can specify different 

lineages by either directly repressing the factor in the pair or by activating a repressor of the 

other factor 42, 43, 46. While average GATA2 levels remain relatively constant during early 
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hematopoiesis (Supp. Fig. 12c), the multi-dimensional nature of our single-cell data enables us 

to examine how ratios between TF pairs might change during the course of differentiation.  

Indeed, we observe that the decrease in ratio of PU.1/GATA2 expression precedes the drop in 

DP (Supp. Fig. 12d).  This suggests that as the balance of expression between PU.1 and 

GATA2 tilts towards GATA2 dominance, regulatory mechanisms initiate gene expression 

programs that confer erythroid fate and indeed the expression ratio of PU.1/GATA2 is correlated 

with DP change along the erythroid lineage (Fig. 4c, blue line).  

 

To gain a better understanding of the downstream impacts of the PU.1/GATA2 ratio (and DP 

change), we set out to characterize the behavior of PU.1 and GATA2 target genes along the 

erythroid lineage. Concordant behavior of multiple target genes not only mitigates individual 

gene measurement noise in scRNA-seq, but also provides a functional readout of the TF 

activity. We note that the targets of a TF largely depend on the tissue or cell type. Therefore, we 

leveraged previously published bulk ATAC-seq data 12 from sorted Erythroid cells for GATA2 

targets and GMP cells for PU.1 targets to determine TF activities at single cell level (Fig. 4b, 

Methods). The expression of TF targets has been shown to be strongly correlated with 

sequence affinity of the TF to its targets  11. Therefore, we identified TF binding sites and targets 

from ATAC-seq data 47 and computed the correlation between predicted sequence affinity and 

target expression to infer TF activities for each factor and cell (Supp. Fig. 12e, Methods). In line 

with the expression ratios, we observe that the change in PU.1 and GATA activity difference 

precedes the change in DP (Supp. Fig. 12d). We note that the activity difference is also strongly 

correlated with the decrease in DP along the erythroid lineage (Fig. 4c, green line). Our findings 

are independently reproducible across the three replicates (Supp. Fig. 12f-g). Together, these 

results provide further evidence that GATA2, rather than GATA1, functions as a mutual agonist 

of PU.1 to achieve erythroid specification.  
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Application of Palantir to mouse hematopoiesis and colon differentiation  

Palantir is ideally suited for our CD34+ human hematopoiesis dataset, which was heavily 

enriched for early multipotent precursors, providing sufficient early cells for fine resolution 

mapping of lineage fate decisions. We wanted to test Palantir in a more challenging setting, 

where there is a paucity of early cells and potential bias induced by cell sorting. We therefore 

selected a mouse hematopoiesis dataset that profiled Lin-c-Kit+Sca-1+ cells using MARS-seq2 6. 

This study specifically sorted cells for different precursor populations (monocytes, neutrophils, 

basophils, DCs, erythrocytes and megakaryocytes), but excluded the most multipotent stem 

cells, thus creating a challenge to correctly resolve branching probabilities (note paucity of early 

cells in Fig. 5a). In addition to functioning as a test case, this dataset also allows a qualitative 

comparison between human and mouse hematopoiesis.  

 

Provided only with few multipotent precursor cells, Palantir was still able to correctly identify the 

different terminal states and estimate pseudo-time and DP characterizing mouse hematopoiesis 

(Fig. 5b-c, Supp. Fig. 13a, Methods). We observe that the peak DP is not at the beginning (Fig. 

5d) and attribute this to the paucity of multipotent cell populations - which affects the accuracy 

and resolution of the multipotent cells at the beginning. Despite these limitations, we observe a 

clear hierarchical structure in lineage specification (Fig. 5d), consistent with recent lineage 

tracing experiments 33. The hierarchical structure is similar to human hematopoiesis, with 

commitment to erythroid lineage followed by specification of the different myeloid lineages (Fig. 

5d).  As further support of Palantir’s model, the expression trends of a key erythroid and myeloid 

genes, Mpo and Klf1 are consistent with their role in respective lineages (Fig. 5e) 39 and follow 

similar patterns to their behavior in human hematopoiesis (Fig. 2f, 3d), demonstrating the 

robustness of Palantir to altered composition of differentiating cell types.  
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To test the generalization of Palantir to non-hematopoietic datasets, we applied Palantir to 

scRNA-seq dataset of mouse colon differentiation generated using the InDrop platform 48. Lgr5+ 

stem cells were shown to differentiate to colonocytes, tuft cells, goblet cells and Reg4+ goblet 

cells (Fig. 5f). Palantir automatically identified the two goblet populations and colonocytes as 

terminal states but failed to identify Tuft cells as a terminal state. Tuft cells were not identified as 

a separate terminal state since this population of cells is not completely mature and closer to 

Lgr5+ cells compared to the other terminal cell types. (Fig. 5f-g).  By manually setting Tuft cells 

as one of the terminal states, Palantir correctly identified the pseudo-time ordering, hierarchical 

relationships and order of lineage commitment in mouse colon differentiation: lineage 

specification of colonocytes is followed by lineage specification towards the goblet cell 

populations (Fig. 5g-i, Supp. Fig 13b) 49.  Additionally, gene expression trends recapitulate 

expected behaviors along different lineages:  Clca1 is specifically upregulated in the goblet cell 

lineage; Car1 shows an initial upregulation in the colonocytes followed by a marginal 

downregulation, accurately capturing the behavior of these genes along the respective lineages; 

Muc1 shows stronger upregulation in Reg4+ goblet cells  and Lgr5, the stem cell marker shows 

a downward trend across all lineages (Fig. 5j, Supp. Fig. 13c) 48.  To evaluate Palantir’s 

robustness to missing terminal states, we also ran Palantir without manual intervention, i.e. 

when Tuft cells were not used as one of the terminal states.  The BP changes and expression 

trends along lineages other than Tuft were not significantly altered (Correlation: 0.98; Supp. Fig. 

13d), demonstrating that Palantir is robust to missing populations and mislabeled cells.  These 

results demonstrate that continuities in cell fate choices are widespread across various 

biological systems and Palantir is uniquely positioned to model these continuities and thus 

enables characterization of lineage decisions across diverse datasets, including correctly 

recapitulating the dynamics of key TFs that regulate these processes.   
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Comparison of Palantir to other pseudotime algorithms 

Palantir is designed to investigate cell plasticity and fate decisions, based upon a continuous, 

probabilistic model for a cell’s potential to reach different cell fates. While significant advances 

have been made for resolving pseudo-time ordering of cells, state of the art pseudo-time 

algorithms continue to model differentiation as a series of discrete, deterministic bifurcations, 

predominantly approximated by clustering the data 7, 8. To benchmark its performance and 

outputs, we compared Palantir to leading and widely used pseudo-time algorithms such as 

Slingshot8, Partition Based Graph Abstraction 7, Monocle9, and diffusion maps 3.  We used our 

human hematopoiesis data to compare the different algorithms and evaluate their ability to 

characterize a complex differentiating system. 

 

Diffusion maps are widely applied for pseudo-time ordering of cells by projecting cells along 

individual components to determine pseudo-time for a lineage. Gene expression trends are then 

estimated by using a sliding window approach along these projections 23, 24.  There are three key 

limitations to this approach: First, projection of cells onto a single diffusion component does not 

always generate an accurate ordering of cells along a lineage. Second, diffusion maps generate 

a projection of all cells along each component and therefore segmentation of the data (e.g. 

based on clustering) is necessary to determine gene expression dynamics. Finally, projection of 

cells along different components does not allow for a direct comparison of dynamics between 

two different lineages.  

 

In particular, our data demonstrate that only the monocytic and lymphoid lineages can be 

unambiguously explained by a single diffusion component; all other lineages require multiple 

components to accurately determine pseudo-time (Supp. Fig. 2b). Bearing these limits in mind, 

we used projection of lymphoid lineage cells to characterize the effect of using individual 
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diffusion components for determining pseudo-time and gene expression trends (Supp. Fig. 

14a(i)). Projections along this component amplify the already-significant density differences in 

the data (Supp. Fig. 14a(i)).  Sliding window approaches are particularly sensitive to density 

differences and as a result, the expression trend estimates are not reliable. In this particular 

case, loss of resolution in the sliding window approach prevents an accurate characterization of 

key TFs such as PU.1 (Supp. Fig. 14a(ii)), which has been shown to play a key role in lymphoid 

specification 50.  

 

We next compared our results to Monocle2, a widely used trajectory detection algorithm 9, which 

uses reverse graph embedding to simultaneously learn the principle curve explaining the 

manifold of the data and projections of cells onto the curves. Monocle2 applied to human 

hematopoiesis using default parameters identified six distinct states in the data, but we could 

not attribute specific cell types to any of these states based on expression of marker genes 

(Supp. Fig. 14b(i-ii)). Moreover, key canonical markers for progenitors (CD34), myeloid (MPO, 

IRF8) and B-cell lineages (CD79B) are spread across all projections with no trend or coherence.  

Thus, Monocole2 failed to correctly compute pseudo-time, identify terminal fates and generate 

expression trends on this data.  We note that in the original publication, Monocle2 was 

demonstrated on a small dataset, with well distinguished, sorted populations, rather than a 

complex differentiating system.  

 

We next applied Partition Based Graph Abstraction (PAGA) 7 to the human hematopoiesis data. 

PAGA aims to reconcile pseudo-time by approximate graph abstraction and is particularly adept 

at characterizing large datasets with different complexities 7. PAGA partially succeeds in 

recovering the different hematopoietic lineages and their relationships (Supp. Fig. 14c). 

However, PAGA embeds the megakaryocyte lineage cells into the erythroid cell lineage and is 

unable to distinguish between the two DC lineages (Supp. Fig. 14c(ii)). The abstracted graph 
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constructed by PAGA represents the lineage decision process, thus the strong interconnectivity 

among clusters representing the intermediate states provides further evidence for lack of well-

defined bifurcations in human hematopoiesis (Supp. Fig. 14c(ii)). PAGA uses a sliding window 

to infer gene expression trends and requires a manual specification of clusters that contribute to 

a particular lineage. As demonstrated above, the sliding window approaches are sensitive to 

density differences in the data and do not generate sufficiently reliable estimates to characterize 

key events along lineage commitment (Supp. Fig. 14c(iii)).  

 

Next, we applied Slingshot 8, an algorithm that clusters the data and constructs a minimum 

spanning tree (MST) through the clusters to identify the different lineages and pseudo-time. 

Slingshot does not make explicit recommendations for dimensionality reduction and clustering 

algorithms, both required as input. Therefore, to maximize similarity to Palantir, we applied 

Slingshot to the hematopoiesis data using diffusion maps 21 and Phenograph 20 clusters as input 

and recovered four lineages from the data (monocyte, lymphoid, erythroid and DC) with (Supp. 

Fig. 14d(i)). Similar to PAGA, Slingshot fails to distinguish between the two DC clusters (since 

they are clustered together) and embeds megakaryocyte population to be a stage along 

erythroid lineage, even though these are clustered separately (Supp. Fig. 14d(i), Supp. Fig 4a). 

Slingshot relies centrally on clustering and consequently cells committing towards Myeloid 

lineage are included as part of the lymphoid lineage (Supp. Fig. 14d(i) - Lineage 2). This results 

in an unexpected downward trend in CD79B along this lineage (Supp. Fig. 14d(ii)). Since the 

gene expression trends for the two DC lineages are identical, we cannot distinguish between 

expression dynamics of key DC TFs such as CEBPG (Supp. Fig. 14d(ii)).  

 

A recently published approach, population balance analysis (PBA) 14, 15 presents a framework to 

characterize differentiation using spectral graph theory to solve a system of differential 

equations representing the dynamics of maturation along a lineage. In practice, this translates to 
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using Markov chains for characterizing differentiation, providing further support for this approach 

to model differentiation. We note that PBA requires extensive use of prior knowledge to infer the 

proliferation and loss rates for each state (cell) in the system, which form the fundamental basis 

for the Markov chain construction. In the particular case of mouse hematopoiesis, the rates  for 

the different lineages were estimated separately using data from multiple fate mapping studies 

14. In addition, PBA requires explicit specification of the terminal states in the system a priori. 

We could not apply PBA to human hematopoiesis owing to paucity of such fate mapping studies 

in human.  In contrast, Palantir requires only specification of an early cell and can automatically 

construct the Markov chain and determine the set of terminal states based on single cell RNA-

seq measurements alone. This unbiased approach to characterizing  differentiating systems is a 

key strength of Palantir’s utility and applicability to model tissue systems without established 

lineages.  

 

We find that Palantir substantially outperforms the other algorithms in identifying the terminal 

states and recapitulating gene expression trends along differentiation.  Importantly, none of the 

algorithms discussed above explicitly model and quantify the plasticity and branch probabilities 

resulting from continuities in cell fate choices.  Taken together, only Palantir could accurately 

associate expression changes in key transcription factors with changes in commitment to the 

lineages these regulate.  

Discussion 
scRNA-seq datasets have provided strong support for a continuous model of differentiation and 

emerging evidence suggests cell fate choice is likewise continuous in nature.  We have 

developed Palantir, the first algorithm to model these continuities by determining, for each cell 

state, branch probabilities for each lineage, and quantifying the differential potential along the 

differentiation landscape.  Palantir is robust to different parameters, reproducible across 
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replicates, and generalizes to diverse datasets.  We applied Palantir to study human 

hematopoiesis, based on human bone-marrow data, enriched for stem and precursor 

populations.  Palantir’s high resolution mapping of cells along distinct differentiation trajectories 

allowed us to characterize both the order and timing of key regulatory factors driving lineage 

choices.  Our findings clarified cell fate choice in human hematopoiesis is a hierarchical 

process.   

 

Key to the high resolution of Palantir pseudo-time is the use of multiple diffusion components 

and neighbor graphs to measure distances between cells in this embedded space (Supp. Fig. 

15a-c). This high-resolution ordering enables Markov chain construction, which is central to both 

identifying terminal states and modeling continuities in lineage choices. Palantir’s unified 

framework of modeling continuities in cell state and fate choices allows us to identify key 

landmarks along hematopoiesis such as the metabolic switch in stem cells and gain insights into 

lineage decisions by comparing gene expression dynamics across lineages. Palantir 

outperforms other pseudo-time algorithms, which largely treat lineage choices as discrete 

bifurcations, in recovering gene expression trends and lineage relationships that are more 

consistent with known human hematopoiesis biology. The unbiased sorting of stem and 

precursor cells from bone marrow was critically important to characterize lineage choices in 

early human hematopoiesis at high resolution. However, Palantir can robustly recover 

expression trends in datasets where the precursors populations are not enriched.  

 

While we have demonstrated the capabilities of Palantir in the well characterized hematopoiesis 

system, with the launch of the Human Cell Atlas Project 51, we anticipate that Palantir will be a 

valuable discovery tool for many less characterized systems.  A key requisite for the success of 

Palantir is the presence of the full dynamic range of differentiating cells, made possible by the 

asynchronous nature of differentiation in certain tissues such as bone marrow, colon and 
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olfactory epithelium 8, 27, 48. We note that this feature is not present in embryogenesis  which is 

typically studied based on time course experiments 24, 52, 53. Characterization of the order and 

timing of events in such systems will require an explicit modeling of connectivity between the 

time points and correction of confounding factors introduced by measuring batches 

independently 54.  

 

The most important assumption made by pseudo-time algorithms, including Palantir, is that 

differentiation is unidirectional from immature precursor cells to functionally mature cells. While 

this is a reasonable assumption in healthy differentiation, it has been demonstrated to be 

violated in systems such as tissue regeneration 55 and in cancer 56.  However, if cells 

dedifferentiate or trans-differentiate to a state which is transcriptionally identical to an earlier 

state, scRNA-seq data alone is insufficient to characterize the differentiation paths. Recent 

advances  in in-vivo lineage tracing technologies  are starting to provide ground truth for lineage 

relationships 57, 58. However, these require genetically modified model systems and hence are 

unsuitable to study cancer progression, metastasis and healthy development in human tissues.  

As an alternative, one could use mutations, rapidly occurring in most cancers, to gain 

directionality and lineage information in the human system.  Moreover, recent studies 59 have 

demonstrated that somatic mutations occur at a rate that allows for lineage tracing in healthy 

human tissues based on these mutations.  The ability to simultaneously profile the 

transcriptome and DNA 60 has great potential to elucidate disease initiation and progression by 

extending Palantir to incorporate lineage information to model cell fate decisions.  
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scRNA-seq of CD34+ human bone marrow cells 
Cryopreserved bone marrow stem/progenitor CD34+ cells from healthy donors were purchased 

from AllCells, LLC. (Cat. No. ABM022F) and stored in vapor phase nitrogen until use. Typical for 

scRNA-seq, a vial was removed from the storage and immediately thawed at 37°C in a water 

bath for 2-3 minutes. Next, vial content (1ml) was transferred to a 50ml conical tube. In order to 

prevent osmotic lysis and ensure gradual loss of cryoprotectant, 1ml of warm media (IMDM with 

10% FBS supplement) was added dropwise, while gently shaking the tube. Then the cell 

suspension was serially diluted 5 times with 1:1 volume additions of complete growth media with 

2 minutes wait between additions. Final ~32ml volume of cell suspension was pelleted at 300rcf 

for 5 minutes. After removing supernatant, cells were washed twice in ice cold 1X PBS with 

0.04% (wt/vol) BSA supplement to remove traces of media. Cell concentration and viability was 

determined with Countess II automatic cell counter employing trypan blue staining method.  

 

Single cell RNA sequencing was performed with 10X genomics system using Chromium Single 

Cell 3` Library and Gel Bead Kit V2 (Cat. No. 120234). Briefly, 8700 cells (viability 90-97%) 

were loaded per reaction, targeting recovery of 5000 cells with 3.9% multiplet rate. After reverse 

transcription reaction emulsions were broken, barcoded cDNA was purified with DynaBeads, 

followed by 12 cycles of PCR amplification. The resulting amplified cDNA was sufficient to 

construct NGS libraries, which were sequenced on Illumina HiSeq 2500 system (HiSeq SBS V4 

chemistry kit).  

 

Single cell RNA-seq data processing 

Data preprocessing 

Data derived from each replicate was processed independently. Single cell RNA-seq data was 

preprocessed using the SEQC pipeline 30 using hg38 human genome and the default SEQC 
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parameters for 10X to obtain the molecule count matrix. The SEQC pipeline aligns the reads to 

the genome; corrects barcode and UMI errors; resolves multi-mapping reads and generates a 

molecule count matrix 30. SEQC also performs a number of filtering steps: (a) Identification of 

true cells from cumulative distribution of molecule counts per barcode, (b) removal of apoptotic 

cells identified at cells with >20% of molecules derived from the mitochondria and (c) removal of 

low complexity cells identified as cells where the detected molecules are aligned to a small 

subset of genes 30. In addition, cells with less than 1000 molecules detected were filtered out. 

Finally, genes that were detected in at least 10 cells were retained for downstream analysis. 

 

The filtered count matrix was normalized by dividing the counts of each cell by the total 

molecule counts detected in that particular cell. The normalized matrix was multiplied by the 

median of total molecules across cells to avoid numerical issues 61. Normalized data was log 

transformed with a pseudocount of 0.1.  

 

Cell cycle correction 

Expression of cell cycle genes can confound the ordering of cells in a differentiation trajectory. 

and hence we applied f-scLVM 62, 63 to factor out the cell-cycle effect across all cells. Normalized 

and log transformed data  was used as input to f-scLVM correction with default parameters. The 

following gene ontology annotations were used to annotate the cell cycle effect: GO:0000279 M 

phase, GO:0006260 DNA replication, GO:0007059 chromosome segregation, GO:0000087 M 

phase of mitotic cell cycle, GO:0048285 organelle fission. 

 

Following  cell cycle correction, PCA was performed keeping the top 300 components and 

diffusion maps were computed using the PCs as input 21. See section “Adaptive anisotropic 

kernel” under the Palantir algorithm description for details on constructing the diffusion maps.  
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Annotation of cell types and filtering of mature populations 

Gene expression profiles from sorted bulk hematopoietic populations were used to annotate the 

cell types 30, 31. Cell cycle corrected data was clustered with Phenograph 20 using default 

parameters and the top 300 principle components as inputs.  Cluster centroids were determined 

for each cluster and the expression of each gene was standardized. Bulk expression data was 

downloaded from the Dmap portal (http://portals.broadinstitute.org/dmap/home) and expression 

of each cell type was standardized. For each cluster, average correlation across bulk replicates 

was computed for each cell type and the cell type with the highest correlation was used to 

annotate the cluster (Supp. Fig. 4c).  Note, the inferred cell types are used only for interpretation 

and not used by Palantir.   

 

To limit the data to cell types undergoing differentiation in the bone marrow, clusters that were 

annotated as T-cells and mature granulocytes were filtered out. T cells were filtered out, since 

these  migrate from the periphery and  do not differentiate in the bone marrow. Mature 

granulocytes were filtered out since no coherent precursor population was identified in the data.   

 

tSNE visualization 

tSNE maps 64 were generated using diffusion components scaled by the Eigenvalues as inputs 

rather than principal components of the data and perplexity set to 150. The scaling of 

Eigenvectors ensures less sensitivity to outliers in the data and is performed as follow:  

 
𝑒%_'()*+, = 	

𝜆*
1 − 𝜆*

𝑒% 
(1) 
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This scaling is equivalent to estimating diffusion distances from 1, 2. … ∞ steps. See section 

“Measuring distances between cells in the phenotypic manifold” under the Palantir algorithm 

description for details on scaling and its impact on the representation. The number of 

components were chosen based on the Eigen gap of the Eigenvalue decomposition of the 

diffusion operator. The set of diffusion components is the same set used for running Palantir. 

Using diffusion components as inputs led to maps more representative of differentiation when 

compared to the maps generated on principal components or force directed graphs (Supp. Fig. 

16).  We found that force directed graphs represent the distinct mature populations better and 

provide less resolution in the regions of manifold where lineage decisions are being made. An 

example of generating tSNE maps using diffusion components is available here: 

http://nbviewer.jupyter.org/github/dpeerlab/Palantir/blob/master/notebooks/Palantir_sample_not

ebook.ipynb 

 

Differential expression of genes 

Differentially expressed genes between clusters were determined using MAST 65. MAST was 

run using default parameters with normalized counts (without log transform) as the input. Genes 

with FDR corrected p-value < 1e-2 and absolute log fold change > 1.25 were considered 

significantly different. 
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The Palantir algorithm  

 
Constructing a nearest neighbor graph representing the phenotypic manifold 

Palantir first constructs a nearest-neighbor graph representing the phenotypic manifold, where 

each cell is connected to its most similar cells.  Key to the success of this approach is that the 

resulting graph neighbors consist of cells in similar developmental states and that longer paths 

correspond to developmental trajectories.  Given the extensive degree of sparsity and noise in 

scRNA-seq, finding nearest neighbors in the raw data using a simple similarity metric is likely to 

accumulate spurious connections and obscure the structure we are seeking. 

  

To construct the neighbor graph based on robust trends in the data, Palantir uses diffusion 

maps 21, which project the data onto a low dimensional manifold that approximates the 

differentiation landscape. Diffusion maps have been previously used to study differentiation in 

single cell data 2, 3 and are particularly adept at capturing differentiation.  Diffusion maps 

generate a low-dimensional embedding by approximating all possible paths via random walks 

through the graph, which effectively capture the major axes of variation in the data (Supp. Fig. 

1). 

 

The first step in constructing diffusion maps is to define a measure of similarity between cells. 

Following 66, we use an adaptive (width) Gaussian kernel to convert distances into affinities, so 

that similarity between two cells decreases exponentially with their distance. Typically, an 

isotropic or non-adaptive Gaussian kernel is used to measure the similarity with an inherent 

assumption the density of the data is uniform along the trajectory. However previous single cell 

studies have shown that while differentiation trajectories are continuous, they are punctuated by 

large changes in densities 1, 2 possibly representing meta-stable states.  A non-adaptive kernel 

would be strongly biased by the densest regions.  The adaptive kernel 66corrects for the 
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densities by using the distance to the 𝑙34 nearest neighbor as a scaling factor, thus equalizing 

the effective number of neighbors for each cell. 

 

Formally, given a dataset, 𝑿 ∈ 𝑹8×: , with N cells and M genes, a k-nearest neighbor graph, 

G< 	∈ 	ℝ8×8 is constructed using the Euclidean distance. The distances are converted to 

affinities using the adaptive kernel as defined below. 

 

The scaling factor of cell 𝑖 is determined by 

 𝜎% = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜	𝑙34	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟	(𝑙 < 𝑘) 
 

(2) 
 

Given this, the similarity measure between two cells 𝑖 and 𝑗 is given by  

 
𝐾N𝒙𝒊, 𝒙𝒋S =

1

T2𝜋N𝜎% + 𝜎XST
Y
Z
exp ^−

1
2
N𝒙𝒊 − 𝒙𝒋SN𝒙𝒊 − 𝒙𝒋S

_

𝜎% + 𝜎X
` 

 

(3) 
 

 

Where 𝒙𝒊	 is the vector of gene expression for cell 𝑖. Thus, the above adaptive anisotropic kernel 

is used to define an affinity matrix, 𝐊 ∈ 	ℝ8×8 from the data. We then compute the Laplacian of 

the affinity matrix 𝐊 to derive the diffusion operator 𝐓 ∈ ℝ8×8, where 𝑇%X represents the 

probability of reaching cell j from cell 𝑖 in one step.  The Eigenvectors of the diffusion operator 𝐓 

are termed diffusion components and these represent major axes of variation in the underlying 

manifold from which the data was sampled.  The top diffusion components (Eigenvectors of 𝐓) 

define  a non-linear low dimensional embedding that  approximates the phenotypic manifold of 

the data (Supp.  Fig. 2) 21. 
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Pseudo-time ordering of cells 

Once the manifold is constructed, the next step is to infer a pseudo-time for all cells in the data.   

The computed pseudo-time does not represent a single trajectory, but rather assigns each cell 

their relative distance from a starting cell, regardless of their lineage or terminal fates.  Typically, 

diffusion maps have been used to characterize pseudo-time ordering of cells, constructing 

separate trajectories for each major axes of variation, based on individual diffusion components 

(DCs) 3, 23, 24.  While a single DC can sometimes offer a reasonable approximation of an ordering 

towards a specific fate, we often observe many to many relationships between DCs and 

ordering leading to each terminal fate (Supp. Fig. 2).  Therefore, Palantir takes multiple DCs into 

account when computing the pseudo-time of cells.  

  

The embedded space (diffusion map) is used as an approximation of the differentiation 

landscape. Palantir uses Euclidean distance at multiple scales or multi-scale distance 

(elaborated below) in this embedded space to construct a more reliable nearest-neighbor graph, 

Gd ∈ 	ℝ8×8 that filters out much of the noise in the original neighbor graph G< (Supp. Fig 1a).  

Then  pseudo-time is determined using shortest path distances in the graph	Gd (Supp. Fig. 1b), 

since shortest path lengths better approximate the geodesic distances in the manifold 67.  

 

The extremes of the diffusion components determine the boundaries of the phenotypic space 

and the start cell is defined as the boundary cell closest to the user defined starting point. Then,  

pseudo-time is initialized as the shortest path distances from this start cell.   A shortcoming of 

shortest path distance is that it tends to accumulate noise with increasing distances 1, 2, thus, 

similarly to 1, 2, waypoints are used to refine the pseudo-time, defining the ordering based on a 

weighted vote of waypoints.  Waypoints act as guides: the waypoint closest to the cell gets the 
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highest vote in determining the position of the cell along pseudo-time.   Thus, the success of 

Palantir requires that all regions of the manifold are well covered by waypoints that can guide 

the positioning of cells in their respective regions.  

 

Our previous pseudo-time algorithms 1, 2 used a random sample of cells as waypoints. However, 

random sampling does not successfully cover the landscape in complex datasets, with multiple 

branches and the variable densities of cells along different lineages. Therefore, Palantir uses 

max-min sampling 68, an iterative procedure to choose waypoints that spread over and 

represent the entire manifold, rather than representing only the regions of high density. 

 

In summary, the positioning is initialized based on shortest path distances from the start cell and 

is iteratively refined using the waypoints to fine tune the distances of the cells within the region 

of each waypoint.  A weighted average across all waypoints is used to ensure the computation 

of a consistent global structure.  Convergence of this procedure defines a final pseudo-time 

ordering of cells (Supp. Fig. 1c).  Below we provide more detail:  

 

Measuring distances between cells using multi-scale distance 

Let the manifold be represented by 𝐄 ∈ 	ℝ8×f where L is the dimension of the embedding with 

𝐿	 < 𝑀. The dimension L of the embedding is chosen using an Eigen gap among the top 

Eigenvectors. Let 𝜆Y, 𝜆Z, . . . 𝜆f be the corresponding Eigenvalues associated with diffusion 

components that define the manifold.  
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Given this, the distance between cells 𝑖 and, 𝑗 known as the diffusion distance, is defined by 

 
𝐷𝐷3N𝑒%, 𝑒XS

Z
= 	j𝜆*Z3N𝑒𝑖(𝑙) − 𝑒𝑗(𝑙)S

Z
f

*kY

 
 

(4) 
 

where t is the number of steps through the graph and 𝑒𝑖(𝑙) is the embedding of cell 𝑖 along 

diffusion component l.   Different stages of differentiation happen at different rates and occur at 

different densities in the population, thus a single t is unsuitable across the entire population.  

To avoid setting a particular t, in a similar manner to 3, we use multi-scale distance that 

accounts for all scales: 

 
𝑀𝑆N𝑒%, 𝑒XS

Z =jj𝜆*Z3N𝑒%(*) − 𝑒X(*)S
Z

f

*kY

m

3kY

 

 

 
(5) 

 

By definition, 1	 > 	𝜆Y > 	𝜆Z >. . . > 	𝜆f > 0, thus Equation (5) can be rewritten as 

 
𝑀𝑆N𝑒%, 𝑒XS

Z =jp
𝜆*

1 − 𝜆*
q
Z

N𝑒%(*) − 𝑒X(*)S
Z

f

*kY

 

 

 
(6) 

 

The use of multi-scale distance avoids the selection of an additional parameter (t) and also 

renders the distance robust to different choices of L (Supp. Fig. 17a-b), robust to outlier cells 

and density differences. 

 

Max-min Waypoint sampling 

Max-min sampling is an iterative procedure, where at each iteration, the chosen waypoint 

maximizes the minimum distance to the set of current waypoints 68, thus covering a new region 

of the manifold. Palantir uses max-min sampling along each diffusion component to sample 

waypoints.  
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Let 𝐄(*)	be the 𝑙34 diffusion component. Max-min sampling is initialized with a randomly sampled 

cell from the diffusion component: 𝑊𝑆	(*) 	= 	𝑅𝑎𝑛𝑑𝑜𝑚(𝑁, 1). Distances along the component to 

the current waypoint set are computed for all the cells 

 𝑤𝑑%X = x𝑒%
(*) − 𝑒X

(*)y
Z
∀	𝑗 ∈ 𝑊𝑆	(*) 

 

(7) 
 

For each cell 𝑖, minimum of the current waypoint distances is computed 

 𝑚𝑑% = 𝑚𝑖𝑛N𝑤𝑑%XS|	𝑗 ∈ 𝑊𝑆	(*) 
 

(8) 
 

The cell with the maximum of these minimum distances is added to the waypoint set 

 𝑊𝑆	(*) = 	|x𝑊𝑆	(*),			argmin(𝐦𝐝)y 
 

(9) 
 

This procedure is repeated until the desired number of waypoints is sampled along the 

component and then repeated for all components. Union of the waypoints sampled along all 

diffusion components represents the final waypoint set, 𝑊𝑆. An example of waypoint sampling 

along a component is shown in Supp. Fig. 17c. 
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Iterative pseudo-time computation  

Palantir begins with designating a start cell based on a user defined starting point.   It is 

assumed that the starting cell would reside at the boundary of the manifold, that is a cell that 

projects onto an extreme endpoint along of one of the diffusion components. First, the set of 

boundary cells is determined using 

 
𝐶 =|Nargmin	𝐄(*), argmax	𝐄(*)S

�

*kY

 

 

(10) 
 

The extreme cell closest to the user input early cell 𝑠 is then used as the start of the pseudo-

time, 𝑠′. 

 𝑠� = argmin
%∈�

𝑀𝑆(𝑒', 𝑒%) 

 

(11) 
 

The pseudo-time, 𝜏%
(�), is initialized as the shortest path distances from the start cell 𝑠′.  Shortest 

path distances are computed from each of the waypoints to all cells (Supp. Fig. 17d). These 

distances are then aligned to the start cell distances to compute waypoint perspectives (Supp. 

Fig. 17e). The pseudo-time is then updated as the weighted average of the different waypoint 

perspectives, ensuring that the pseudo-time of a cell is most strongly influenced by the 

waypoints closest to it, while maintaining a consistent global structure. 

 

Formally, let 𝐷�%	be the shortest path distance of cell 𝑖 from to waypoint 𝑤. The perspective of a 

cell 𝑖 relative to waypoint 𝑤 is the distance of from early cell 𝑠′. is computed as 

 
𝑉�% ∶= �

𝜏�
(�) + 𝐷�%			if	𝜏%

(�) > 𝜏�
(�)

𝜏�
(�) − 𝐷�%								otherwise

 

 

 
(12) 
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Note that the perspective of the early cell  𝑠′ is the initial ordering 𝛕(𝟎)	itself. 

 

The weighted average of waypoint perspectives is used to refine the pseudo-time, using an 

exponential weighting scheme where the weight is inversely proportional to the distance 

between the waypoint and the cell. . The weights are determined as follows 

 
𝑊�% = 𝑒𝑥𝑝 �

−𝐷�%Z

𝜎 � j 𝑒𝑥𝑝 �
−𝐷��Z

𝜎 �
�kY:8

�  

 

 
(13) 

 

where 𝜎 is the standard deviation of distance matrix 𝐃. This defines the weight matrix 𝐖 ∈

𝑅¡¢×8.  The weighted average is then calculated by 

 𝜏%
(Y) = j 𝑉�% ∗𝑊�%

�∈¢¤

 

 

(14) 
 

 

Note that the waypoints themselves are also cells and thus their relative distance to the start cell 

is modified and updated by this procedure. The updated ordering is then iteratively refined until 

convergence to obtain a final pseudo-time, 𝛕 (Supp. Fig. 1c). 

 

Inferring the Terminal Fates and differentiation potential 

Modeling Differentiation as an Absorbing Markov Chain  

Consider the neighbor-graph spanning the waypoints, G′d ∈ Gd. Differentiation is modeled as a 

stochastic process, implemented as a Markov chain, where a cell reaches one or more terminal 

states through a series of steps in the manifold (Fig. 1b), based on the assumption that paths in 

the neighbor-graph Gd correspond to possible differentiation paths.  However, differentiation is a 
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directed process, from a less differentiated to a more differentiated state, whereas G′d is an 

undirected graph.  

 
The inferred pseudo-time 𝛕 provides directionality that can be used to orient neighboring edges 

in G′d, thus allowing construction of a directed graph for the Markov chain. A naïve approach 

would prune all edges that violate the pseudo-time order to prevent de-differentiation paths.  

However, there is uncertainty in the pseudo-time estimate of the cells and therefore we use the 

estimated scaling factor for each cell in Equation 2 as a measure of the uncertainty in the 

pseudo-time estimate. Specifically, an undirected edge between cell 𝑖 and its neighbor cell 𝑗 is 

converted to a directed edge from cell 𝑖 to cell 𝑗 if 𝜏% < 𝜏X. The edge between cell 𝑖 to cell 𝑗 is 

pruned if 𝜏% > 𝜏X and the distance between the two cells exceeds the scaling factor of cell 𝑖 

determined using Equation 2 (Supp. Fig. 1d-h).  

 
Formally, undirected graph in the manifold, Gd is converted to directed graph, G¥ ∈ 	ℝ8×8using 

 

                         	𝐺𝐷𝑖𝑗 = §
𝐺′𝐸𝑖𝑗	𝑖𝑓	𝜏𝑖 < 	 𝜏𝑗

𝐺′𝐸𝑖𝑗𝑖𝑓	𝜏𝑖 > 	 𝜏𝑗𝑎𝑛𝑑	𝜏𝑖 − 𝜏𝑗 < 	 𝜎𝑖
0	𝑖𝑓	𝜏𝑖 > 	 𝜏𝑗𝑎𝑛𝑑	𝜏𝑖 − 𝜏𝑗 > 𝜎𝑖

 

 

 
(15) 

 

These distances are then converted to transition probabilities to construct the Markov chain. 

First, distances are transformed to an affinity matrix 𝐙 ∈ 	ℝ¡¢×¡¢  using the kernel defined in 

Equation (3) where 𝑛𝑊 is the number of waypoints. These affinities can be converted to 

probability matrix by dividing each affinity by the degree of the node in 𝐙 representing that cell. 

 
𝑃%X =

𝑍%X
∑ 𝑍%��

 

 

 
(16) 

 

The transition probability matrix P represents the Markov chain of the manifold, where 

𝑃%X	represents the probability of reaching a cell in state 𝑗 from a cell in state 𝑖 in one step.  As a 
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first degree of approximation, our approach assumes that this probability of transition 

corresponds to the degree of cell state similarity between 𝑖 and 𝑗. While development is a 

closely regulated process, at these very close distances, stochastic molecular processes of 

degradation and transcription likely play a significant role in. At longer distances, the regulatory 

processes driving development are implicitly encoded in the defined structure of the manifold 

graph G¥.  That is, the probability of reaching a cell in state 𝑗 from a more distinct cell in state 𝑖 

is computed over the course of many steps and will be high if many paths connect them, i.e., 

there is high density of observed intermediary cell states between them.    

 

By definition terminal states are not expected to differentiate further, thus to ensure that the 

random walks terminate when a terminal state is reached, all outgoing edges are removed from 

terminal states.  Terminal states can be externally defined based on prior knowledge or can be 

computationally derived directly from the Markov chain using no additional knowledge, as we 

describe below.   Given a set of terminal states 𝑇𝑆, we convert the Markov chain 𝐏 into an 

absorbing Markov chain 𝐀 by setting the terminal states as absorbing states i.e., a state with no 

outgoing edges. 

 𝐴%X = 0|	𝑖 ∈ 𝑇𝑆; 𝑗 = 1. . 𝑛𝑊 
 

(17) 
 

Identifying Terminal States  

The graph structure and its associated Markov chain can be used to infer the terminal states 

directly from the data, using only the initial starting point as prior information.  In the Markov 

chain 𝐏, random walks tend to move in the direction of the terminal states.  Since a pseudo-time 
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underlies the Markov chain, we expect random walks to converge into the terminal states at the 

boundaries of the manifold.  If the graph construction were perfect, we expect that these 

terminal states have no outgoing edges and thus be absorbing states.   However, the chain was 

constructed with implicit uncertainty (e.g. the backward edges within the range of the scaling 

factor) and is therefore imperfect.   Nevertheless, as the random walks are directed towards the 

terminal states, the steady state distribution of the Markov chain is expected to impart high 

probabilities to terminal states and states proximal to them as opposed to the intermediate 

states.  Thus, Palantir identifies terminal states as extrema of diffusion components (boundary 

cells, 𝐶), that are also outliers in the steady state distribution of the Markov chain (Supp. Fig. 

18).  

 

The stationary distribution is the probability distribution over the states of the Markov chain that 

remains invariant as time progresses, i.e. the steady state distribution. Formally, if 𝛑	represents 

the stationary distribution, then 𝛑 = 𝐏 ∗ 	𝛑. The first left Eigen vector of the Markov chain 𝐏 

represents the stationary distribution and is thus easy to compute. The outliers in this 

distribution can be identified using the Gaussian percent point function (i.e., inverse of the 

cumulative distribution function) using the median absolute deviation of the stationary 

distribution as the scale. Median absolute deviation is a robust measure of variance in univariate 

data 69. Let 𝛑	represent the stationary distribution. The median absolute deviation is computed 

as  

 𝑠𝑐 = MedianN𝜋% − Median(𝛑	)S 
 

(18) 
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The outliers are identified as  

 𝑇𝑆()¡,' = {𝑖|𝜋% > gaussian_ppf(0.9999,Median(𝛑	), 𝑠𝑐)} 
 

(19) 
 

 

This threshold robustly identifies the different terminal states across the different data sets. The 

set of states in 𝑇𝑆()¡,' that are also diffusion component extremes are chosen as the terminal 

states of the system (Supp. Fig. 18, Fig 1c). 

 𝑇𝑆 =¹N𝑇𝑆()¡,', 𝐶S 

 

(20) 
 

Cell fate/differentiation potential characterization 

Random walks through the Markov chain between intermediate and terminal states can be used 

to compute the probability of a cell starting at an intermediate state reaching the corresponding 

terminal state.   For each cell, we wish to calculate its branch probability vector 𝐁𝒊, denoting the 

probabilities it might reach each of 𝑏 absorbing terminal states.  An advantage in modeling 

differentiation as an absorbing Markov chain is that the branch probabilities can be computed as 

follows:  

 

The absorbing Markov chain 𝐀 can be represented as  

 𝐀 = »𝐐 𝐑
0 𝐈 ¿ 

(21) 
 

Where 𝐐 is a (𝑛𝑊 − 𝑏) × (𝑛𝑊 − 𝑏) matrix of transition probabilities between intermediate 

states, 𝐑 is a (𝑛𝑊 − 𝑏) × 𝑏 matrix of probabilities between intermediate states and terminal 

states and 𝐈 is a 𝑏 × 𝑏 identity matrix. 
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Next the fundamental matrix 𝐅  is computed using 

 𝐅 = 	(𝐈 − 𝐐)Á𝟏 
 

(22) 
 

𝐹%X represents the probability of reaching intermediate state 𝑗 from another intermediate state 𝑖 

in 1, 2, . . . ∞ steps 

 

The fundamental matrix is then used to compute the differentiation probabilities 

 𝐁 = 	𝐅 ∗ 𝐑 
 

(23) 
 

where 𝐵%X	represents the probability of cell in intermediate state 𝑖 reaching the terminal state 𝑗 in 

1, 2, . . . ∞ steps. 𝐁𝒊	is a multinomial probability distribution such that ∑ 𝐵%X = 1X . The branch 

probabilities of terminal states are set as follows. 

 𝐵%X = Æ1	𝑖𝑓	𝑖 == 𝑗
0	𝑖𝑓	𝑖 <> 𝑗					 

(24) 
 

 

The waypoint branch probabilities are projected onto all the cells using weighting scheme 

defined in Equation (14) 

 𝐵%X = j 𝐵�X ∗𝑊�%
�∈¢¤

 

 

(25) 
 

 

Finally, we define the differentiation potential of each state to be the entropy of the branch 

probability vector 𝐁𝒊	and this captures the degree of uncertainty in final terminal state (Fig. 1d). 
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Differentiation potential is a quantitative measure of the cell fate plasticity and represents the 

potential set of terminal states that a cell in an intermediate state can reach. Greater the 

entropy, higher is the number of terminal states the can potentially be reached by the cell in a 

particular state. As a result, the cells at the beginning of the pseudo-time are associated with the 

highest differentiation potential (entropy) (Fig. d(1)) whereas cells close to terminal states have 

the lowest differentiation potential (Fig. d(3, 7)). Crucially, differentiation potential captures the 

continuity in cell fate determination (Fig. 1d(2, 4-6)) and is a better representation of the 

differentiation processes as opposed to well-defined branch points. In summary, Palantir 

characterizes the continuity in both cell state and cell fate by modeling differentiation as a 

stochastic process.  
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Gene expression trends along lineages 

Palantir’s pseudotime represents an ordering over all cells across all lineages and provides the  

position of all the cells relative to the start cell. In addition, Palantir branch probabilities 

represent the probability of a cell, in any state, to reaching each of the terminal states. 

Therefore, Palantir’s ordering and branch probabilities represent a unified framework that 

enables computation and comparison of gene expression trends across the different lineages. 

This framework is used to compute gene expression trends for each lineage as follows: rather 

than segmenting the cells that belong to each lineage, the trend is computed using all the cells, 

each weighted by its probability to belong to that particular lineage. Cells that are not committed 

to a particular lineage can provide input to multiple lineages, whereas low probabilities naturally 

exclude cells that belong to unrelated lineages.   

 

We take two approaches to improve the robustness and resolution of the computed trends: 

MAGIC 66 to impute missing values and generalized additive models 25 to determine robust 

trends.  Gene expression trends are computed using MAGIC imputed 66 data to prevent 

dropouts from adversely affecting the trends. MAGIC imputes missing values for each cell 

based on cells that are most similar to it by using the covariate relationships between genes. 

Sliding window approaches on the other hand, average expression over many cells in a 

univariate manner, regardless of other genes. MAGIC, like Palantir is also based on diffusion 

maps and we use the same diffusion operator for both MAGIC and Palantir.  We note that  
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imputed data is only used to compute the expression trends after Palantir pseudo-time and 

branch probabilities  have been computed using the non-imputed data.  

 

Sliding window approaches are sensitive to density differences even with imputed data (Supp. 

Fig. 15d). We therefore used generalized additive models (GAMs) to determine gene 

expression trends along each lineage (Supp. Fig. 3), increasing robustness and rendering 

trends less sensitive to changes in cell density along the lineage. The gene expression trend for 

gene g and branch b is fit using 

 𝑦È% = 𝛽Ê + 𝑓(𝜏%)	𝑓𝑜𝑟	𝑖	 ∈ 𝐵%Ë > 0	 (26) 
 

where 𝑦È%	is the expression of gene g in cell i and 𝜏% is the pseudotime ordering of cell i. Cubic 

splines are used as the smoothing functions since they are effective in capturing non-linear 

relationships 25.  

 

The pseudotime is then divided into 500 equally sized bins and the smooth trend is derived by 

using the fit from Equation 25 to predict the expression of the gene at each bin (Supp. Fig. 3). 

The standard deviations of expression along each bin is determined by the standard deviation of 

the residuals of the fit and is computed as follows 

 

𝑆𝐸N𝑦ÌÍS = Î1 +
1
𝑛 +

N𝜏Ì − 𝜏̅S
Z

∑ N𝜏X − 𝜏̅S
Z¡

XkY

 

(27) 
 

where 𝑦ÌÍ is the predicted expression at bin p and 𝜏̅ is the average pseudo-time across all cells. 

The computation and plotting of gene expression trends are demonstrated here: 

http://nbviewer.jupyter.org/github/dpeerlab/Palantir/blob/master/notebooks/Palantir_sample_not

ebook.ipynb 
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Single cell transcription factor activities 

Bulk ATAC-seq data processing 

Bulk ATAC-seq data was downloaded from GEO (GSE75384) Reads were aligned to hg38 

genome using bowtie2. PCR duplicates were removed using samtools, rmdup. Reads with 

fragment size < 150 bp, representing TF binding events 70 were retained for downstream 

analysis. After size selection, reads were pooled from all cell types and replicates. Only the first 

read from the pair was used for peak calling since a single transposase nick is sufficient proof 

for exposed chromatin 70.  Peak calling was performed using macs2 with a permissive p-value 

threshold of 1e-5 and with the parameter “nomodel” turned on to prevent shifting of positive and 

negative reads towards each other  47. IDR 71 was then used to identify reproducible peaks for 

each cell type: IDR was performed on each pair of available replicates and a peak was assigned 

to a cell type if the peak passed IDR < 0.1 in at least 50% of the replicate comparisons. 

 

Motif discovery 

SeqGL 47 was run separately for each cell type  with default parameters using  the reproducible 

peaks for the respective cell type. SeqGL outputs a predicted sequence affinity for each TF, 

peak pair. The sequence affinity represents a quantitative measure of the k-mer sequence 

preferences: a higher value represents a greater chance that the TF binds at the genomic 

location spanned by the ATAC-seq peak. 
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Single cell TF activity 

ATAC-seq peaks were assigned to the gene with the nearest transcription start site, which is a 

reasonable approximation of enhancer target assignment in the absence of chromosome 

interaction data 11.  Sequence affinities for all TF-gene pairs were determined by aggregating 

the affinities across all peaks assigned to gene. Recent studies have shown that these affinities 

correlate strongly with expression change of the targets indicating that the sequence affinities 

approximate the regulatory effect of a TF on its target 11. Therefore, correlation between target 

expression and predicted TF sequence affinity  was used as the TF activity for each cell (Fig. 

4b). The activities were determined separately for promoter peaks (peaks within 2kb of the 

transcription start site) and enhancer peaks (peaks at distance > 2kb of the transcription start 

site). As a demonstration of the importance of cell type context for determining TF targets, 

Supp. Fig. 12h shows TF activity trends for Runx in different cell types. The targets of Runx, a 

transcriptional activator, show higher expression in the corresponding cell type, demonstrating 

the accuracy of computing TF activities using correlation between target expression and 

predicted sequence affinities  

 

Subsampled data used for figure 1 

A dataset was generated using the human CD34+ hematopoiesis dataset by waypoint sampling 

of cells from erythroid and myeloid lineages (clusters 0, 1, 2, 3, 4, 6, 7, 8 - Supp. Fig. 4a). tSNE 

map was generated as described in “Single cell RNA-seq data preprocessing” and the 

projection of stem cells was manually adjusted for cleaner visualization. 
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Application of Palantir to CD34+ cells 
 
Palantir was applied to each replicate separately using 1200 waypoints and one of the CD34+ 

cells as the start cell. The parameter k was set to 10% of the total number of cells in the data. 

The results however are stable to the choice of k (Supp. Fig. 5). The number of diffusion 

components were chosen based on the Eigen gap of the Eigenvector decomposition of the 

diffusion operator. The results are stable to choice of the number of diffusion components and 

the choice of waypoints (Supp. Fig. 5). 

 

Robustness of Palantir results to parameters 

Palantir has the following parameters or variables: (a) 𝑘, number of neighbors for nearest 

neighbor graph, (b) Waypoint samples and (c) Number of diffusion components, which by 

default is determined based on the Eigen gap.   Palantir’s robustness to these parameters was 

tested using data from replicate 1 of the CD34+ bone marrow data. Palantir was run with 

different parameters and the robustness of the results was measured using Pearson correlation 

of both pseudo-time and differentiation potential  between a given pair of Palantir runs. The 

same start cell was used as input for each run.  

 

Robustness to 𝑘was tested by fixing the number of diffusion components, waypoints and 

terminal states. Robustness to number of diffusion components was tested by using fixing 𝑘, 

waypoints and terminal states. Robustness to waypoint sampling was tested by fixing 𝑘and the 

number of diffusion components. Palantir results are very robust to all the different parameter 

settings (Supp. Fig. 5).  
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Comparison of Palantir results across replicates 

Palantir results, specifically pseudo-time and differentiation potential, from one replicate are 

projected onto cells from a second replicate using mutually nearest neighbors (Supp. Fig. 8). 

The projected results are then correlated with Palantir results derived de novo from the second 

replicate to measure reproducibility of Palantir results across the replicates.  

 

Let 𝑁1and 𝑁2be the number of the cells in replicate 1 and 2 respectively. As a first step, the 

count matrices of both replicates are combined to create a unified molecule count matrix using 

genes detected in both replicates. This matrix is normalized as described in “Single cell RNA-

seq analysis: Data preprocessing” and log transformed with a pseudo count of 0.1, followed by 

PCA. Principal component space of the combined count matrix is used to determine the k-

nearest replicate 1 neighbors of replicate 2. This neighborhood graph can be represented by an 

adjacency matrix 𝐷ZY ∈ 𝑅8Ð×8Ñwhere 𝐷%XZY is the distance between cell i of replicate 2 and cell j 

of replicate 1 if i and j are neighbors. Similarly let 𝐷YZ ∈ 𝑅8Ñ×8Ðrepresent the adjacency matrix 

of replicate 2 neighbors of replicate 1.  

 

Mutually nearest neighbors between the two replicates is computed as below 

 
𝑀𝑁𝑁 = Ò𝐷ZY ⊙ 𝐷YZÔ  

(27) 
 

where 𝑀𝑁𝑁	 ∈ 𝑅8Ð×8Ñ  and ⊙ is the Hadamard product or element-wise multiplication operator. 

 

The distances of the 𝑀𝑁𝑁 adjacency matrix is converted to an affinity matrix using Equation 13. 

 
𝑊%X = 	𝑒𝑥𝑝N−𝑀𝑁𝑁%XZS/ j 𝑒𝑥𝑝(−𝑀𝑁𝑁%�Z )

�kY:8Ð

 
(28) 
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Palantir results of replicate 1 are projected on to the cells of replicate 2 using the weights 

computed in Equation 28. The projected results are thus a weighted average of the mutually 

nearest neighbors of each cell. 

 

Let 𝜏Ö+ÌY and 𝜏Ö+ÌZ be the de novo pseudotime ordering of replicates 1 and 2 

respectively. The projected pseudo-time  is computed as follows 

 𝜏Ö+ÌZ_Ì×ÊX+(3+, = 𝑊 ∗ 𝜏Ö+ÌY	 (29) 
 

Pearson correlation between 𝜏Ö+ÌZ_Ì×ÊX+(3+,and 𝜏Ö+ÌZ gives a measure of reproducibility of 

Palantir pseudo-time. Similarly, the projected differentiation potential is computed as follow 

 𝐸Ö+ÌZ_Ì×ÊX+(3+, = 𝑊 ∗ 𝐸Ö+ÌY	 (30) 
 

Similar to the pseudo-time, Pearson correlation between 𝐸Ö+ÌZ_Ì×ÊX+(3+,and 𝐸Ö+ÌZgives a 

measure of reproducibility of the differentiation potential. 

 

Clustering of gene expression trends 
 

Genes were selected based on significant differential expression as determined by MAST (FDR 

corrected p-value < 1e-2 and absolute log fold change > 1.25). Genes that were significantly 

high or low in stem and precursor cell clusters (0 or 1: 2176 genes) (Supp. Fig. 4a) were used 

for analysis in Fig. 3b and genes that were significantly high or low in early cell and erythroid cell 

clusters (0, 1, 2 or 8: 3322 genes) (Supp. Fig. 4a) were used analysis in Fig. 3c-d. Gene 

expression trends were z-transformed to put them on the same scale and clustered using 

Phenograph 20 (Supp. Fig. 10). A high-value of 𝑘 (150) was used to avoid over-fragmentation of 

the gene trend clusters. The within cluster sum-of-squares each trend cluster was significantly 
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lower for clusters derived from Phenograph when compared to trend matching techniques such 

as dynamic time warping. Gene ontology analysis was performed to annotate each cluster, 

measuring enrichment using the hypergeometric test. The following gene sets from Molecular 

Signature Database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb/index.jsp) were 

tested: (a) c5 GO biological process gene set, (b) H hallmark gene sets and (c) c2 canonical 

pathway gene sets. 

 

In order to compare the change of differentiation potential relative to gene expression changes, 

cells were divided into equal sized bins along the Palantir pseudotime ordering. Mean 

expression of genes from the relevant clusters were determined to generate the histograms in 

Fig 3. The point of maximal differentiation potential change was determined using the second 

derivative. Stem and precursor cells (clusters 0 and 1) were used for analysis in Fig. 3b 

whereas these cells along the erythroid lineage (clusters 0, 2 and 8) were used for analysis in 

Fig. 3c-e. Similar analysis was performed for replicates 2 and 3 using the genes that were 

differential in replicate 1 (Supp. Fig. 11).  

 

The computation and plotting of gene expression trend clustering for a particular lineage is 

shown here : 

http://nbviewer.jupyter.org/github/dpeerlab/Palantir/blob/master/notebooks/Palantir_sample_not

ebook.ipynb 
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GATA2 identification 
 

We downloaded the list of human TFs from AnimalTFDb 72. TFs that were significantly high in 

one of the erythroid clusters (clusters 2 or 8 - Supp. Fig. 4a) were annotated as erythroid TFs. 

We reason that a TF that potentially plays a role in lineage specification should correlate with 

the branch probability during the specification phase i.e., when the branch probability begins to 

increase along pseudo-time. We used the second derivative of the erythroid probability trend to 

approximate the point along the pseudo-time where there is a switch from lineage specification 

to functional commitment, since the second derivative indicates the point of maximal change in 

the trend (Supp. Fig. 12b).  

 

We computed the correlation between TF expression trend and the erythroid probability trend 

for each erythroid TF defined  above (Supp. Fig. 12b). To avoid down-weighting TFs that are 

potentially downregulated following commitment, during the functional specification phase, we 

computed the correlation until the point of maximal differentiation potential change (and not 

along the entire pseudo-time). Only TFs with both a high correlation and with sufficiently high 

expression levels in early cells were considered candidate erythroid specifiers. The comparison 

of branch probability correlation and mean expression in stem cell cluster (cluster 0 - Supp. Fig. 

4a) shows that GATA2 is a clear outlier (Supp. Fig. 12b). GATA2 is also the only factor with high 

correlation and high progenitor  cell expression for which a motif was identified in bulk ATAC-

seq data. 
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Additional datasets 

Mouse hematopoiesis dataset 

Mouse hematopoiesis dataset 6 was downloaded and preprocessed using the procedure 

outlined in scanpy (https://github.com/theislab/paga/blob/master/blood/paul15/paul15.ipynb). A 

cluster of cells annotated as DCs were projected as a clear outlier along a diffusion component 

without a well-defined differentiation path (likely due to insufficient cell sampling) and therefore 

were excluded from the analysis.  PCA was performed on the preprocessed data and 

components that explain 85% of the variance were used for generating diffusion maps as 

described in “The Palantir algorithm”. Eigen gap suggested use of 7 diffusion components, but 

13 components were used instead to ensure inclusion of all  cell types. Note that the 

frequencies of some of the populations such as basophils is extremely low necessitating the 

inclusion of additional components.  

 

Palantir was run using one of the cells annotated as MEPs since these are the most primitive 

cells present in the data. Palantir automatically determined the different terminal states and 

determined pseudotime ordering, differentiation potential and branch probabilities. 

Differentiation potential trends and gene expression trends were generated as described in 

“Gene expression trends” section.  

 

Mouse colon data 

Raw counts for the mouse colon dataset 48 was downloaded from GEO (GSE102698 - 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102698). Cells with low molecule 

count (<1000) and high mitochondrial molecule fraction (>0.2) were excluded from the analysis. 

Immune cells were also excluded since they are not relevant for differentiation . Data was 

normalized as described in “single cell data preprocessing”. Phenograph clustering of data 
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revealed a cluster of cells with low molecule count distribution, which  was excluded from the 

analysis. To maintain consistency with the analysis in the original publication, the data was not 

log transformed and was restricted to genes used by the authors. The gene list was downloaded 

from Flowrepository (http://flowrepository.org/id/FR-FCM-ZYAG).  

 

As before, PCA was performed to reduce the data to 20 components (explaining 85% of the 

variance) and diffusion maps were computed using PCs as the input. Palantir was run using one 

of the Lgr5+ stem cells as the start. Palantir automatically identified colonocytes, goblet cells 

and Reg4+ goblet cells as the terminal states but failed to identify Tuft cells as one of the 

terminal states. Tuft cells are very similar in their expression profiles to the early cells and thus 

there was not sufficient variability for the small number of Tuft cells to be projected onto a 

distinct diffusion component (note, we believe greater cell numbers would have resolved this). 

The results in Fig. 5b were generated by manually setting Tuft cells as one of the terminal 

states.  

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385328doi: bioRxiv preprint 

https://doi.org/10.1101/385328
http://creativecommons.org/licenses/by-nc-nd/4.0/


Performance of competing methods on the CD34+ marrow data 
 
Supp. Fig. 14 details the performance of popular pseudotime  methods like Diffusion Maps, 

Slingshot, Graph Abstraction, Monocle 2 on the CD34+ marrow data.  

 

Diffusion maps 

Individual diffusion components which explain ordering along a particular lineage were identified 

using correlation of the projections along the component with Palantir pseudotime although 

typically this is performed by visual inspection. Gene expression trends were computed by a 

sliding a window spanning 1% of cells along the diffusion component to compute the mean and 

the standard deviation (Supp. Fig. 14a). 

 

Monocle 2 

Monocle 2 uses a reverse graph embedding which simultaneously learns a principal graph that 

approximates the low dimensional manifold and projection of cells onto this graph to reconstruct 

single cell trajectories 9. 

 

Monocle 2 was run with default parameters for UMI counts specified in the Monocle vignette 

(Supp. Fig. 14b). Specifically, Monocle 2 was run to embed the data into two dimensions. The 

structure and the states identified by Monocle 2 do not reconcile with the results obtained using 

Palantir, Slingshot and PAGA, nor with published hematopoiesis literature. The expression of 

marker genes on the embedding did not clearly indicate clear lineages or expression trends  

and therefore the trends for different lineage were not presented  for Monocle. 
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Partition based Graph Abstraction (PAGA) 

PAGA aims to reconcile clustering and trajectory inference and is particularly adept to scaling to 

large number of cells 7. PAGA generates an abstracted graph representing the differentiation 

tree underlying the data. The gene expression trends are fit by computing a pseudo time 

ordering for each lineage separately using diffusion pseudo time and then a moving average 

along the resulting pseudotime  of cells. PAGA was run using default preprocessing steps 

outlined in https://github.com/theislab/paga/blob/master/blood/paul15/paul15.ipynb with log 

transformation of the normalized data (Supp. Fig. 14c).  

 

Slingshot 

Slingshot takes as input a clustering and low dimensional embedding of the data 8. Slingshot 

first determines a minimum spanning tree through the clusters to identify the overall branch 

structure of the data. Slingshot then fits principle curves for each branch/ lineage and uses 

orthogonal projections against these principle curves to determine the pseudotime ordering. 

Finally, Slingshot uses GAMs with loess fits to determine gene expression trends. 

 

Slingshot was run with the clusters obtained from Phenograph (Supp. Fig. 4a) and diffusion 

components (Supp. Fig. 2b) generated using the adaptive kernel for comparison (Supp. Fig. 

14d) using default parameters. 
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Software availability 
Palantir is available as a python module here: http://github.com/dpeerlab/Palantir/. A jupyter 

notebook detailing the workflow including data preprocessing, running Palantir along with a 

demonstration of various plots and visualizations is available at 

http://nbviewer.jupyter.org/github/dpeerlab/Palantir/blob/master/notebooks/Palantir_sample_not

ebook.ipynb  
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Fig 1: Palantir determines continuities in cell state transitions and cell fate 

choices in differentiation 

(a) Top panel: Plots showing the projection of CD34+ cells from human bone marrow along 

diffusion components.  Cells are colored by Phenograph clusters (Supp. Fig. 4a). Arrows 

highlight the decision making regions and show the pervasive lack of well-defined branch points, 

highlighting the continuity in cell fate choices. 

Bottom panel: Scatter plots showing gene expression for gene pairs involved in lineage 

decisions for the same cells in the corresponding top panel.  

(b-d) A cartoon illustration of Palantir constructs and outputs, based on toy subsampled dataset 

from CD34+ human hematopoiesis data.  Plotted is the phenotypic manifold: each dot 

represents a cell, embedded into diffusion space, based on the first 3 components and 

visualized using tSNE applied to the embedded space.  

(b) Cells are colored based on pseudo-time, with a cartoon illustration of constructing a Markov 

chain over the phenotypic manifold.  

(c) Each cell is colored based on the stationary distribution of the Markov chain constructed in 

(b) demonstrating clear outliers in the mature states. Outliers of the stationary distribution that 

are also boundary states (circles) are selected as terminal states.  

(d)  Cells colored based on differentiation potential. Specific examples are highlighted to show 

the relationship between pseudo-time, differentiation potential and branch probabilities: For 

each highlighted cell, a histogram represent the branch probabilities, color coded in a manner 

corresponding to each of the 3 terminal states. Earliest cells have the highest differentiation 

potential (1) with a gradual decrease as cells move towards commitment (2-3).  Modeling of cell 

fate choices as probabilities provides a representation of the continuity in cell fate choices (4-7). 
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(e) Plot showing the expression of a branch A specific gene along pseudo-time. Each dot 

represents a cell, with the x-axis representing pseudo-time, y-axis the gene expression and  

colored by probability of the cell reaching branch A.  The black line represents the computed 

gene expression trend for this data (left panel).  (Right panel) The expression trend for the same 

gene plotted for each of the 3 lineages. The unified framework of pseudo-time and branch 

probabilities enable characterization of gene expression dynamics across a common axis.  
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Fig 2: Differentiation landscape of early human hematopoiesis using CD34+ cells  

Data shown for CD34+ cells from human bone marrow, replicate 1.  

(a) Heatmap showing the differentially expressed genes (based on MAST 65) between 

PhenoGraph 20 clusters. Each row represents a gene and each column represents a cell.  Cells 

are ordered by cluster (listed at the bottom), top row represents cluster label, color coded in a 

consistent scheme throughout the rest of the figures and annotated on the bottom. tSNE maps 

show expression patterns for characteristic markers of different cell lineages.  In each map, cells 

are colored based on expression of the labeled gene, blue for low expression and red for high 

expression.  
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(b-d) tSNE maps of full scRNA-seq human hematopoiesis dataset, replicate 1. The results were 

generated using one of the HSCs as a start cell and the terminal cells were determined 

automatically. 

(b) Cells colored based on cluster label, color coded consistently with (a) and cell-type 

annotation is determined through correlation with bulk sorted populations. (c) Cells colored by 

Palantir pseudo-time and (d) Cells colored by Palantir differentiation potential (DP) 

(e) Histogram representation of branch probabilities of example cells highlighted in (d), each bar 

is color coded based on (b): (1) Early cells are capable of differentiating to all lineages, reflected 

as  non-zero branch probabilities for all  lineages. (2-3) lymphoid and erythroid lineages (2-3). 

monocyte and DC lineages (4-7). Note the gradual change in branch probabilities indicating 

continuity in cell fate.  

(f) Gene expression trends for characteristic genes for the different lineages, plotted as 

illustrated in Supp. Fig 3: CD34, a marker of stem and precursor cells is downregulated across 

all lineages; MPO, a myeloid marker shows an initial upregulation in all lineages and is 

downregulated in non-myeloid lineages; IRF8, CD79A and GATA1, lineage markers for DCs, 

CLPs and erythroid cells are upregulated in specifically in the corresponding lineages and 

CD41, a megakaryocyte marker shows an initial upregulated in the erythroid progenitors 

followed by a upregulation in the megakaryocytic lineage cells.  
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Fig 3: Palantir differentiation potential identifies landmarks of hematopoietic 

differentiation  

Data  represents results for CD34+ cells from human bone marrow, replicate 1, as in Figure 2.  

(a) Plots showing differentiation potential along pseudo-time.  (i) Each dot represents a cell, 

color coded based on clusters in Fig 2b.  X-axis is pseudo-time and Y-axis is DP. DP shows a 

decreasing trend as cells commit to different lineages. (ii) Similar plots, zooming into the early 

hematopoietic cells.  

(b) (i) Plot showing the average expression (y-axis, left) for  early hematopoietic cells of hypoxic 

genes (blue) and mitochondrial genes (green) in equal sized bins  along Palantir pseudo-time 

(x-axis). Dotted black line represents DP (y-axis, right), plotted along the corresponding pseudo-

time. Arrow indicates the point of maximal DP change. DP drop corresponds to the region 

where expression of mitochondrial genes exceeds the  expression of hypoxic genes. (ii) Similar 

to top panel, comparing the expression of stem cell genes (blue) and mature cell lineage 

specifying genes (green), with DP shown in black.  

(c) Similar to (b), plots showing the expression of different sets of genes, binning the cells along 

erythroid lineage.  

(i) Plots showing average expression of early myeloid genes (blue) and early erythroid genes 

(green). DP in each bin is shown in black. The point of maximal DP change correlates with 

higher expression of  erythroid genes.  

(ii) Similar to top panel, with the genes involved in functional specification of erythroid function 

shown in in green. 

(d) Top panel: Gene expression trends (see methods for computation) of key erythroid TFs: 

TAL1, KLF1 and GATA1 which are the most correlated with erythroid branch probability (shown 

in black). Trends are plotted in blue with shaded region representing 1 standard deviation.  

Bottom panel: Gene expression trends of KLF3 and HBB. 
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Fig 4: Transcriptional regulation of erythroid differentiation 

Data represents Palantir results for CD34+ cells from human bone marrow, replicate 1. 

(a) Gene expression trends for PU.1, GATA1 and GATA2 in the myeloid and erythroid lineages. 

The trends are color coded based on Fig. 2b.  

(b) Schematic representation of single cell TF activity inference using scRNA-seq data and 

ATAC-seq data from bulk sorted populations. ATAC-seq data is used to identify cell-type 

specific TF targets and TF activity in each cell is inferred by measuring the correlation between 

predicted TF sequence affinity of the targets with their expression.  
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(c) Trend plots showing the dynamics of PU.1 - GATA2 expression ratio (blue), PU.1 - GATA2 

TF activity difference (green) along the erythroid lineage. DP change along the same lineage is 

shown in black. Change in PU.1 - GATA2 expression ratios and TF activity differences strongly 

correlate with DP change along erythroid lineage.  
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Fig 5: Palantir generalizes to mouse hematopoiesis and colon differentiation 

datasets 

(a) tSNE map of mouse hematopoiesis data generated by scRNA-seq of sorted precursor 

populations 6. Cell are color coded based on clusters generated by 6. Notice the paucity of well-

defined stem cell population.  
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(b-c) Cells colored by Palantir pseudo-time and differentiation potential generated using an early 

cell as the start.  

(d) Plot showing the DP trends along pseudo-time for the different lineages. Trends are color 

coded based on clusters in Fig 5a. The changes highlight the hierarchical nature of murine 

hematopoiesis with commitment towards the erythroid lineage (green) followed by commitment 

towards the different myeloid lineages. 

(e) Gene expression trends of Mpo and Klf1, myeloid and erythroid factors respectively, 

recapitulate their expected behavior and are consistent with their dynamics in human 

hematopoiesis.  

(f) tSNE map of scRNA-seq dataset of epithelial enriched cells from the mouse colon 48. Cells 

are color coded based on Phenograph clusters. 

(g-h) Cells colored Palantir pseudo-time and DP generated using one of the Lgr5+ stem cells as 

the start cell. Results were generated by manually setting the tuft cells as one of the terminal 

states.  

(i) Plot showing the DP trends  for all the lineages. Trends are color coded based on clusters in 

Fig. 5f. The DP trends recapitulate the known hierarchy of lineage specification with 

specification of colonocytes (green) following by differentiation towards the two goblet cell 

populations (blue).  

(j) Gene expression trends of Clca1 and Car1 across different lineages.  
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Supp. Fig. 1: Palantir algorithm outline 

Illustration of steps in the Palantir algorithm, using the same data as Fig 1b. 

(a) High dimensional representation of the data, each dot represents a cell plotted based on  

expression of CD34 (x-axis), MPO (y-axis) and GATA1 (z-axis) (left panel). Right panel: Same 

tSNE plot as Fig. 1b generated using the diffusion components of the cells in the left panel.  

(b) Illustration of shortest path from blue cell to the orange cell.  

(c) Cells colored by Palantir pseudo-time.  

(d-e) Illustration of Markov chain construction.  

(d) Edges in the undirected graph can take cells both forward and back along pseudo-time. (e) 

The scaling factor associated with each cell (Equation 2)  can be used as measure of 

uncertainty in the pseudo-time estimate (left panel).  Edges that go backward beyond the 

pseudo-time uncertainty are pruned and the retained edges are converted to directed edges 

(right panel).  

(f) Heatmaps showing the evolution of absorbing Markov chain and branch probabilities for 

random walks of different lengths. (Left panel: 1 step, middle panel: 1...500 steps and right 

panel: 1. . .∞	steps). For each panel, rows and columns in the Markov chain heatmap  represent 

all non-terminal cells ordered by Palantir pseudo-time. The value (𝑖, 𝑗)	 represents the probability 

of cell 𝑖 reaching cell 𝑗	in the specified number of steps. Rows in  the branch probabilities 

heatmap represent non-terminal cells and the columns represent the terminal states.  The value 

(𝑖, 𝑗)	 represents the probability of cell in non-terminal state  𝑖 reaching terminal state 𝑗 in the 

specified number of steps. The position of the individual cells highlighted in 1a are shown on the 

left. 

(g - h) Cells colored by Palantir branch probabilities and differentiation potential.  
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Supp. Fig. 2: Diffusion components are not sufficient to represent pseudo-time  

for all lineages 

(a) tSNE plots of the subsampled dataset used in Fig. 1 and Supp.Fig. 1, colored by diffusion 

components.  

(b) tSNE plots for CD34+ cells presented in figure 2, colored by diffusion components.  

Green arrows indicate the lineages for which ordering can be determined using a single 

component, whereas the ordering of the remaining lineages requires two or more components. 
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Supp. Fig. 3: Characterizing gene expression dynamics. The characterization of 

gene expression dynamics is illustrated with two examples: HBB, a gene expressed 

specifically in the erythroid lineage (left panels) and SPI1, a gene with higher expression 

in the monocytic lineage (right panels) 
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(a) Plots showing the MAGIC 66 imputed expression (y-axis) of HBB and SPI1 respectively along 

Palantir pseudo-time (x-axis). Cells are colored by the erythroid and monocyte branch 

probabilities respectively.   

(b) Same as (a) with the trend fit computed using Generalized Additive Models (GAMs) 25 shown 

in black. 

Each cell is weighted by the branch probability and thus no pre-selection of cells is necessary 

for computing trends along a particular lineage.  

(c) Same as (b) with standard deviations of the fit shown in dotted lines.  

(d) The expression trends are represented as a smooth fit with the standard deviation of the fit 

shown in a lighter shade. 

(e) Gene expression trends for HBB and SPI1 for the erythroid and myeloid lineages. For any 

gene, trends can be computed across all lineages since Palantir determines a single pseudo-

time across lineages.  
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Supp. Fig. 4: Cell lineages identified in CD34+ human bone marrow cells 

(a) Replicate 1 CD34+ cells from human bone marrow colored by Phenograph clusters using 

the scheme presented in Fig. 2b.  

(b) Replicate 2 and 3 cells, colored by expression of lineage characteristic genes (Fig. 2f) 

demonstrating that the spectrum of lineages identified from CD34+ bone marrow cells is 

consistent across three independent human donors. 

(c) Heatmap of the correlation between bulk sorted expression profiles generated using 

microarrays and scRNA-seq profiles (Replicate 1). Rows represents single cell and columns 

represent bulk samples. Cells are ordered as in Fig. 2a. Median expression profiles from cell 

clusters (a) were correlated with bulk expression profiles to annotate clusters with cell types. 
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Supp. Fig. 5: Palantir results are robust to different input parameters 

Palantir robustness was measured by testing a range of different parameters using replicate 1 

as the test bed. The results between two different runs were compared by determining the 

Pearson correlation between pseudo-time and differentiation potential. Each heatmap 
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represents the correlation of either pseudo-time or DP between a pair of Palantir runs. Palantir 

results robust for  

(a) Different waypoint sampling with fixed number of waypoints, diffusion components and k for 

kNN graph construction 

(b) Different k for kNN graph construction with a fixed set of waypoints, diffusion components 

and terminal states 

(c) Different number of diffusion components with a fixed set of waypoints, k for kNN graph 

construction and terminal states 
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Supp. Fig. 6: Palantir is  reproducible across human bone marrow replicates 

(a) Cells plotted on tSNE based on diffusion components and colored by Palantir branch 

probabilities for Replicate 1.  

(b-c) Cells plotted on tSNE based on diffusion components and colored by Palantir results: 

pseudo-time, differentiation potential and branch probabilities for replicates 2 and 3.  
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Supp. Fig. 7: Reproducibility of Palantir pseudo-time and differentiation potential 

across replicates 

(a) tSNE plots highlighting the different cell populations in replicate 2 (left) and replicate 3 (right). 

Cells are colored by Phenograph clusters and colors were chosen to maintain consistency with 

replicate 1 (Fig. 2b).  

(b) De-novo Palantir results for replicates 2 and 3 generated using one of the HSCs as the start 

cell. 

 

The reproducibility of Palantir results was further tested by projecting Palantir results of one 

replicate to a second replicate and comparing the projected results with those generated de-

novo using the second replicate.  

(c) Replicate 1 Palantir results projected onto the replicates 2 and 3. The projections were 

determined  mutually nearest neighbors between replicate 1 and replicate 2 (or 3), see 

methods. The pseudo-time  and differentiation potential of cells in replicate 2 (or 3) were 

computed as weighted average of the pseudo-time and differentiation potential respectively of 

replicate 1 mutually nearest neighbors.  

(d) Plots showing the correlation between de-novo and projected Palantir results. The cells are 

colored by clusters as in (a). 

(e) Same as d, with cells colored by density. 
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Supp. Fig. 8: Reproducibility of gene expression dynamics across replicates 

Plots showing reproducibility of expression trends of key lineage marker genes across the three 

replicates. The relevant lineages for each gene are bounded by dotted rectangles.  
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Supp. Fig. 9: Illustration of Differentiation potential.  

(a) tSNE plots highlight the cells of the erythroid lineage (left) and monocyte lineage 

(right). Cells are colored by Phenograph clusters as in Fig. 2b.  

(b) Plots of  DP (y-axis) along pseudo-time (x-axis). Each dot is a cell, color coded by the 

cluster. Representative cells  are highlighted and numbered for each lineage.  

(c) Histogram representation of the branch probabilities of the cells highlighted in (b), bars are 

colored coded by clusters in Fig. 2b.  As cells commit towards a particular lineage, they also 

lose the ability to differentiate to other lineages. This is reflected in the gradual increase in 

probability of reaching the corresponding terminal state accompanied by a decrease in 

probability of reaching all other lineages.  

(d) Same as (b), with trend plot of the DP along the corresponding lineages shown in black. The 

position along the ordering with the first substantial drop in DP corresponds to lineage 

specification and this downward trend continues until the cells are committed to the lineage and 

have completely lost the ability to differentiate to any other lineages.  

(e) Plots showing the DP along pseudo-time for all the lineages, for the three replicates.  The 

positions of significant DP changes are staggered along the pseudo-time indicating a 

hierarchical commitment of HSCs to different lineages. Cells first commit towards CLP (beige), 

followed by erythroid and megakaryocytic lineages (green, orange) and finally the myeloid 

lineages: monocyte (red) and DCs (blues).  
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Supp. Fig. 10: Clustering of gene expression trends in early and erythroid cells 

(a) Plots showing cluster results of expression trends of genes that are significantly high or low 

in early hematopoietic clusters (0 and 1 in Supp. Fig. 4a). Each grey line represents the 

expression trend of a particular gene. Solid blue line represents the mean expression trend of 

the cluster and dotted blues lines represent the standard deviation.  Each panel is labeled with 

enriched gene ontology terms.  

(b) Similar to Fig. 3b with the bar plot representing the mean expression of Thy1 in the bins. 

(c) Same as a - for genes significantly high or low in the clusters that correspond to the erythroid 

lineage (clusters 0, 1, 2 and 8 in Supp. Fig. 4a).  

(d) Average gene expression trends of heme metabolism clusters (0, 6 and 8 in b). Erythroid 

branch probability shown in black. Cluster 0 genes correlates the most with erythroid branch 

probability and are enriched with key erythroid TFs. Cluster 6 genes include KLF3. Cluster 8 

contains genes such as HBB, that confer functional identity to erythroid cells. 
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Supp. Fig. 11: Palantir differentiation potential identifies landmarks of 

hematopoietic differentiation (Replication of results in Fig. 3) 

Plots showing the reproducibility of results in Fig. 3 in replicates 2 and 3. Genes identified using 

replicate 1 were used for this analysis.  
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Supp. Fig. 12: Identification of GATA2 as an agonist of PU.1 in driving erythroid 

specification 

(a) tSNE plots showing the expression of PU.1, GATA1 and GATA2 in the three replicates.  
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(b) Top left: Second derivative of erythroid branch probability trend. Dotted black represents the 

inflection point, i.e.,  the point of maximum change. Bottom left: Erythroid branch probability 

trend along Palantir pseudo-time.  

Right panel: Scatter-plot of TF expression trends with erythroid branch trends during the lineage 

specification phase (x-axis) and average TF expression in the early cells (y-axis). Each dot 

represents a TF. GATA2 (labeled) is a clear outlier. 

(c) Gene expression trends of PU.1 and GATA2 in early cells. Black line represents 

differentiation potential. 

(d) Top panel: Plot showing the second derivatives and the inflection points of the PU.1/GATA2 

expression ratio (in blue) and the differentiation potential (in black). The change in expression 

ratio (blue arrow) precedes the change in differentiation potential (black arrow) indicating that 

PU.1/GATA2 ratio is predictive of lineage commitment. Bottom panel: Same as the top panel, 

but showing the TF activity differences between PU.1 and GATA2. 

(e) PU.1 and GATA1 activity trends along erythroid and myeloid lineages. PU.1 activities were  

determined using bulk GMP cells and GATA activities using bulk erythroid cells. PU.1 activity, is 

similar to its expression, showing an increasing trend in the myeloid lineages and  GATA activity 

shows an upregulation specifically in the erythroid lineage. 

(f) Same as Fig. 4a, for replicates 2 and 3 

(g) Same as Fig. 4c, for replicates 2 and 3 

(h) Plots showing the Runx activity trends determined using Runx targets in different sorted 

populations. The activity is high specifically in the cell type from which the targets were derived 

highlighting the cell - type specificity of TF targets and the inferred TF activity. 
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Supp. Fig. 13: Palantir generalizes to mouse hematopoiesis and colon 

differentiation 

(a-b) tSNE plots, with cells colored by Palantir branch probabilities for mouse hematopoiesis 6 

and colon differentiation datasets 48 respectively. 

(c) Gene expression trends for the mouse colon data: Palantir results recapitulate the known 

behavior of key genes along different lineages.  

(d) Plots showing the correlation between Palantir results when Tuft cells (orange) were 

included (x-axis) or excluded as a terminal state (y-axis). Cells are color coded based on 

clusters in Fig. 5a.  
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Supp. Fig. 14: Performance of alternative pseudo-time methods on human 

hematopoiesis data 

(a) Moving average along individual diffusion components: (i)  (left) tSNE plots highlight the cells 

along lymphoid lineage and the pseudo-time  of these cells as determined by projection along 

the 2nd diffusion component (Supp. Fig. 2b). (ii) Histograms showing the density of distribution of 

cells along diffusion component (blue) or Palantir pseudotime (red).  

(iii) Gene expression trends determined by sliding windows (blue) and Palantir (red).  

 

 

(b) Monocle2 generated representation of the human hematopoiesis data, each dot is a cell  

(i) Cells colored by one of 6 Monocle 2 identified states. 

(ii) Cells colored by gene expression of key lineage genes.  

 

(c) Partition based Graph Abstraction (PAGA) applied to human hematopoiesis data 

(i) PAGA representation of the data highlighting key marker genes.  

(ii) Left: Connectivity among the hematopoietic cells as inferred by PAGA. Each dot is a cell 

color coded to represent lineages in Fig. 2b. Grey lines represent edges between two cells. 

Right: PAGA abstract clusters color coded to resemble Phenograph clusters in Fig. 2b. 

Thickness of the connection between clusters represents the strength of connectivity. PAGA 

lacks distinction between the two DC lineages and embeds megakaryocyte lineage to be part of 

erythroid lineage. 

(iii) Gene expression trends of key lineage markers as determined by PAGA. The trends are 

computed using a sliding window, making the estimates highly sensitive to noise in the data. 
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(d) Slingshot applied to human hematopoiesis data, results are presented on tSNE maps 

generated using principal components of the data. 

(i) Cells colored by Slingshot pseudo-time for the four different lineages Slingshot identified. 

Slingshot results lacks distinction between the two DC lineages and embeds megakaryocyte 

lineage to be part of erythroid lineage. 

(ii) Gene expression trends determined by Slingshot (blue) and Palantir (red) with Slingshot 

trends  showing (1) unexpected marginal downregulation of CD79B at the beginning of CLP 

lineage. (2) unexpectedly high upregulation of CD41 along the erythroid lineage since the 

megakaryocytes are included as part of the erythroid lineage and (3) lack of distinction between 

CEBPD dynamics in the two DC lineages since they were embedded as part of the same 

lineage. 
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Supp. Fig. 15: Palantir features key to identifying accurate identification of 

pseudotime ordering and branch probabilities 

(a) Projection of the mouse colon data (Fig. 5) along the first two diffusion components. Each 

dot it a cell and is color coded by clusters in Fig. 5a (left panel) and density (right panel). 

(b) (i) tSNE map highlighting cells of the goblet lineage. Cells are color coded by clusters in Fig. 

5a. 

(ii) Histograms showing the distribution of goblet cells along the pseudo-time derived using 

shortest path distances (top panel) and multi scale distances (bottom panel).  Distribution of 

cells using multiscale distance leads to loss in resolution with increased local concentration of 

goblet cells at the end of the pseudo-time. 
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(c)  (i) tSNE plot showing the expression of MATK along the cells that contribute to the goblet 

cell lineage (left panel).  

(ii) Plots showing MATK expression along pseudo-time where each dot is a cell. 

Top: Cells colored by goblet cell probability. Black line represents the MATK trend obtained by 

GAM fit using goblet cell probabilities as weights for cells. 

Bottom: MATK trend with GAMs fitted on cells ordered by pseudo-time generated using multi 

scale distances. The loss of resolution in pseudo-time results in even GAMs miss trends such 

as MATK downregulation towards the end of goblet lineage. 

(d) (i) tSNE plot highlighting the cells along the lymphoid lineage (clusters 0 and 5 in Supp. Fig, 

4a) colored by lymphoid branch probability from the human hematopoiesis dataset.  

(ii) Top: Plot showing expression of CD79B along Palantir pseudo-time. Each dot is a cell and is 

colored by lymphoid branch probability. Cells that are committing towards other lineages are 

highlighted.  

Bottom: Gene expression trends computed using sliding windows (green), GAMs fit without 

using Palantir probabilities (orange) and GAMs fit using Palantir probabilities (blue). Sliding 

window and GAMs fit without using branch probabilities are heavily influenced by cells 

committing to other lineages leading to incorrect trend estimates.  
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Supp. Fig. 16: Comparison of data visualizations 

tSNE maps generated using (a) scaled diffusion components and (b) principal components. (c) 

Force directed graphs for the same cells. Cells are color coded by clusters in Fig. 2b. 
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Supp. Fig. 17: Multi-scale distances, waypoint sampling and perspectives 

(a) Plots comparing the diffusion distances from an early HSC cell when different number of 

components are used.  

(b) Same as (a), with distances computed using multi-scale distance. 

(c) Plot showing the variable density of cells along a particular diffusion component. Random 

sampling of waypoints samples cells from high density regions while ignoring of low density and 

high variability (green dots). Max-min sampling however samples cells along the entire 

spectrum of the diffusion component and generates a more representative sample of cells (blue 

dots). 

(d) Shortest path distances from a subset of waypoints.  

(d-e) Cells from subsampled dataset (Fig. 1b) colored by shortest path distances and 

perspectives from the highlighted waypoints. 
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Supp. Fig. 18: Identification of terminal states 

(a-b) Diffusion map boundaries and the identified terminal states for replicate 1 of the human 

hematopoiesis data. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385328doi: bioRxiv preprint 

https://doi.org/10.1101/385328
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1. Bendall, S.C. et al. Single-cell trajectory detection uncovers progression and regulatory 
coordination in human B cell development. Cell 157, 714-725 (2014). 

2. Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell 
data. Nature biotechnology 34, 637-645 (2016). 

3. Haghverdi, L., Buttner, M., Wolf, F.A., Buettner, F. & Theis, F.J. Diffusion pseudotime 
robustly reconstructs lineage branching. Nature methods 13, 845-848 (2016). 

4. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous 
process. Nature cell biology 19, 271-281 (2017). 

5. Buenrostro, J.D. et al. Integrated Single-Cell Analysis Maps the Continuous Regulatory 
Landscape of Human Hematopoietic Differentiation. Cell 173, 1535-1548 e1516 (2018). 

6. Paul, F. et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid 
Progenitors. Cell 163, 1663-1677 (2015). 

7. Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell 
transcriptomics. Science 360 (2018). 

8. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell 
transcriptomics. BMC Genomics 19, 477 (2018). 

9. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. 
Nature methods 14, 979-982 (2017). 

10. Stergachis, A.B. et al. Developmental fate and cellular maturity encoded in human 
regulatory DNA landscapes. Cell 154, 888-903 (2013). 

11. Gonzalez, A.J., Setty, M. & Leslie, C.S. Early enhancer establishment and regulatory 
locus complexity shape transcriptional programs in hematopoietic differentiation. Nature 
genetics 47, 1249-1259 (2015). 

12. Corces, M.R. et al. Lineage-specific and single-cell chromatin accessibility charts human 
hematopoiesis and leukemia evolution. Nature genetics 48, 1193-1203 (2016). 

13. Dixon, J.R. et al. Chromatin architecture reorganization during stem cell differentiation. 
Nature 518, 331-336 (2015). 

14. Rodriguez-Fraticelli, A.E. et al. Clonal analysis of lineage fate in native haematopoiesis. 
Nature 553, 212-216 (2018). 

15. Weinreb, C., Wolock, S., Tusi, B.K., Socolovsky, M. & Klein, A.M. Fundamental limits on 
dynamic inference from single-cell snapshots. Proc Natl Acad Sci U S A 115, E2467-
E2476 (2018). 

16. Biddy, B.A., Waye, S.E., Sun, T. & Morris, S.A. Single-cell analysis of clonal dynamics in 
direct lineage reprogramming: a combinatorial indexing method for lineage tracing. 
bioRxiv (2017). 

17. Orkin, S.H. & Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 
132, 631-644 (2008). 

18. Laurenti, E. & Gottgens, B. From haematopoietic stem cells to complex differentiation 
landscapes. Nature 553, 418-426 (2018). 

19. Amir el, A.D. et al. viSNE enables visualization of high dimensional single-cell data and 
reveals phenotypic heterogeneity of leukemia. Nature biotechnology 31, 545-552 (2013). 

20. Levine, J.H. et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like 
Cells that Correlate with Prognosis. Cell 162, 184-197 (2015). 

21. Coifman, R.R. et al. Geometric diffusions as a tool for harmonic analysis and structure 
definition of data: diffusion maps. Proc Natl Acad Sci U S A 102, 7426-7431 (2005). 

22. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 
555, 457-462 (2018). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385328doi: bioRxiv preprint 

https://doi.org/10.1101/385328
http://creativecommons.org/licenses/by-nc-nd/4.0/


23. Haber, A.L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333-
339 (2017). 

24. Ibarra-Soria, X. et al. Defining murine organogenesis at single-cell resolution reveals a 
role for the leukotriene pathway in regulating blood progenitor formation. Nature cell 
biology 20, 127-134 (2018). 

25. Hastie, T.J. & Tibshirani, R.J. Generalized Additive Models. . (Chapman & Hall/CRC, 
1990). 

26. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer 
stem cells. Nature 414, 105-111 (2001). 

27. Dahlin, J.S. et al. A single-cell hematopoietic landscape resolves 8 lineage trajectories 
and defects in Kit mutant mice. Blood 131, e1-e11 (2018). 

28. Morrison, S.J., Uchida, N. & Weissman, I.L. The biology of hematopoietic stem cells. 
Annu Rev Cell Dev Biol 11, 35-71 (1995). 

29. Weissman, I.L., Anderson, D.J. & Gage, F. Stem and progenitor cells: origins, 
phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17, 
387-403 (2001). 

30. Azizi, E. et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor 
Microenvironment. Cell (2018). 

31. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in 
human hematopoiesis. Cell 144, 296-309 (2011). 

32. Psaila, B. et al. Single-cell profiling of human megakaryocyte-erythroid progenitors 
identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol 
17, 83 (2016). 

33. Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. 
Nature 548, 456-460 (2017). 

34. Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for 
cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49-61 (2013). 

35. Yu, W.M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is 
required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62-74 (2013). 

36. Majeti, R., Park, C.Y. & Weissman, I.L. Identification of a hierarchy of multipotent 
hematopoietic progenitors in human cord blood. Cell Stem Cell 1, 635-645 (2007). 

37. Mori, Y. et al. Identification of the human eosinophil lineage-committed progenitor: 
revision of phenotypic definition of the human common myeloid progenitor. J Exp Med 
206, 183-193 (2009). 

38. Ravet, E. et al. Characterization of DNA-binding-dependent and -independent functions 
of SCL/TAL1 during human erythropoiesis. Blood 103, 3326-3335 (2004). 

39. Siatecka, M. & Bieker, J.J. The multifunctional role of EKLF/KLF1 during erythropoiesis. 
Blood 118, 2044-2054 (2011). 

40. Ferreira, R., Ohneda, K., Yamamoto, M. & Philipsen, S. GATA1 function, a paradigm for 
transcription factors in hematopoiesis. Mol Cell Biol 25, 1215-1227 (2005). 

41. Funnell, A.P. et al. Erythroid Kruppel-like factor directly activates the basic Kruppel-like 
factor gene in erythroid cells. Mol Cell Biol 27, 2777-2790 (2007). 

42. Nerlov, C., Querfurth, E., Kulessa, H. & Graf, T. GATA-1 interacts with the myeloid PU.1 
transcription factor and represses PU.1-dependent transcription. Blood 95, 2543-2551 
(2000). 

43. Zhang, P. et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking 
GATA-1 DNA binding. Blood 96, 2641-2648 (2000). 

44. Hoppe, P.S. et al. Early myeloid lineage choice is not initiated by random PU.1 to 
GATA1 protein ratios. Nature 535, 299-302 (2016). 

45. Antebi, Y.E. et al. Mapping differentiation under mixed culture conditions reveals a 
tunable continuum of T cell fates. PLoS biology 11, e1001616 (2013). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385328doi: bioRxiv preprint 

https://doi.org/10.1101/385328
http://creativecommons.org/licenses/by-nc-nd/4.0/


46. Dahl, R., Iyer, S.R., Owens, K.S., Cuylear, D.D. & Simon, M.C. The transcriptional 
repressor GFI-1 antagonizes PU.1 activity through protein-protein interaction. J Biol 
Chem 282, 6473-6483 (2007). 

47. Setty, M. & Leslie, C.S. SeqGL Identifies Context-Dependent Binding Signals in 
Genome-Wide Regulatory Element Maps. PLoS Comput Biol 11, e1004271 (2015). 

48. Herring, C.A. et al. Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and 
Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. Cell Syst 6, 37-51 e39 
(2018). 

49. Li, H. & Jasper, H. Gastrointestinal stem cells in health and disease: from flies to 
humans. Dis Model Mech 9, 487-499 (2016). 

50. Rosenbauer, F. & Tenen, D.G. Transcription factors in myeloid development: balancing 
differentiation with transformation. Nat Rev Immunol 7, 105-117 (2007). 

51. Regev, A. et al. The Human Cell Atlas. Elife 6 (2017). 
52. Farrell, J.A. et al. Single-cell reconstruction of developmental trajectories during 

zebrafish embryogenesis. Science 360 (2018). 
53. Briggs, J.A. et al. The dynamics of gene expression in vertebrate embryogenesis at 

single-cell resolution. Science 360 (2018). 
54. Haghverdi, L., Lun, A.T.L., Morgan, M.D. & Marioni, J.C. Batch effects in single-cell 

RNA-sequencing data are corrected by matching mutual nearest neighbors. Nature 
biotechnology 36, 421-427 (2018). 

55. Kotton, D.N. & Morrisey, E.E. Lung regeneration: mechanisms, applications and 
emerging stem cell populations. Nat Med 20, 822-832 (2014). 

56. Beck, B. & Blanpain, C. Unravelling cancer stem cell potential. Nat Rev Cancer 13, 727-
738 (2013). 

57. Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the 
vertebrate brain. Nature biotechnology 36, 442-450 (2018). 

58. Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using 
CRISPR-Cas9-induced genetic scars. Nature biotechnology 36, 469-473 (2018). 

59. Biezuner, T. et al. A generic, cost-effective, and scalable cell lineage analysis platform. 
Genome Res 26, 1588-1599 (2016). 

60. Macaulay, I.C. et al. G&T-seq: parallel sequencing of single-cell genomes and 
transcriptomes. Nature methods 12, 519-522 (2015). 

61. Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic 
stem cells. Cell 161, 1187-1201 (2015). 

62. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-
sequencing data reveals hidden subpopulations of cells. Nature biotechnology 33, 155-
160 (2015). 

63. Buettner, F., Pratanwanich, N., McCarthy, D.J., Marioni, J.C. & Stegle, O. f-scLVM: 
scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol 18, 212 
(2017). 

64. van der Maaten, L.P.J. & Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. 
Journal of Machine Learning Researc 9, 2579-2605 (2008). 

65. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional 
changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome 
Biol 16, 278 (2015). 

66. van Dijk, D. et al. Recovering Gene Interactions from Single-Cell Data Using Data 
Diffusion. Cell 174, 716-729 e727 (2018). 

67. Tenenbaum, J.B., de Silva, V. & Langford, J.C. A global geometric framework for 
nonlinear dimensionality reduction. Science 290, 2319-2323 (2000). 

68. de Silva, V. & Tenenbaum, J.B. (ed. S. University) (2004). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385328doi: bioRxiv preprint 

https://doi.org/10.1101/385328
http://creativecommons.org/licenses/by-nc-nd/4.0/


69. Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: Do not use 
standard deviation around the mean, use absolute deviation around the median. Journal 
of Experimental Social Psychology 49 (2013). 

70. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y. & Greenleaf, W.J. Transposition 
of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-
binding proteins and nucleosome position. Nature methods 10, 1213-1218 (2013). 

71. Li, Q., Brown, J.B., Huang, H. & Bickle, P.J. Measuring reproducibility of high-throughput 
experiments. The Annals of Applied Statistics 5, 1752-1779 (2011). 

72. Zhang, H.M. et al. AnimalTFDB 2.0: a resource for expression, prediction and functional 
study of animal transcription factors. Nucleic Acids Res 43, D76-81 (2015). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385328doi: bioRxiv preprint 

https://doi.org/10.1101/385328
http://creativecommons.org/licenses/by-nc-nd/4.0/

