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Abstract 

Metrics of brain network organization can be derived from neuroimaging data using graph 

theory. We explored the test-retest reliability of graph metrics of functional networks derived 

from resting-state electroencephalogram (EEG) recordings. Data were collected within two 

designs: (1) within sessions (WS) design where EEG data were collected from 18 healthy 

participants in four trials within a few hours and (2) between sessions (BS) design where 

EEG data were collected from 19 healthy participants in three trials on three different days at 

least one week apart. Electrophysiological source activity was reconstructed and functional 

connectivity between pairs of sensors or brain regions was determined in different frequency 

bands. We generated undirected binary graphs and used intra-class correlation coefficient 

(ICC) to estimate reliability. We showed that reliabilities ranged from poor to good. Reliability 

at the sensor-level was significantly higher than source-level. The most reliable graph metric 

at the sensor-level was cost efficiency and at the source-level was global efficiency. At the 

sensor-level: WS reliability was significantly higher than BS reliability; high beta band in WS 

design had the highest reliability; in WS design reliability in gamma band was significantly 

lower than reliability in low and high beta bands. At the source-level: low beta band in BS 

design had the highest reliability; there was no significant main effect of frequency band on 

reliability; reliabilities of WS and BS designs were not significantly different. These results 

suggest that these graph metrics can provide reliable outcomes, depending on how the data 

were collected and analysed. 
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1. Introduction 

The integration of information between functionally specialised and widely distributed brain 

areas is important for complex behaviour (Bressler and Menon 2010; Davis et al. 2012; 

Smith et al. 2015). Functional connectivity reflects the temporal correlations of neural activity 

between brain areas and can be estimated using EEG recordings (Horwitz 2003). Resting-

state brain activity is suggested to exhibit valuable information on how various areas of the 

brain communicate (Deco et al. 2011). Graph Theory is an appropriate framework for the 

mathematical treatment of complex networks. The complex brain networks can be 

represented as graphs in which nodes correspond to the EEG electrodes or brain regions 

and edges to the functional connectivity between them (Bullmore and Sporns 2009; Rubinov 

and Sporns 2010). Graph metrics have been used to quantify the modification of the 

functional organization of the brain by age (Wang et al. 2010), sex (Tian et al. 2011), genetic 

disposition (Fornito et al. 2011), and mental disease (Rubinov et al. 2009; Lynall et al. 2010). 

Before the utility of graph metrics of brain networks derived from EEG data can be fully 

appreciated as biomarkers of brain function, it is important to consider reliability of their 

repeated measurements in the same subjects at different frequency bands. Previous studies 

reported that the reliabilities of the graph metrics of resting-state functional connectivity 

derived from magnetoencephalography (MEG) data at the sensor-level and from functional 

magnetic resonance imaging (fMRI) data range from poor to excellent (Cao et al. 2014; Jin 

et al. 2011; Braun et al. 2012; Deuker et al. 2009). Hardmeier et al. (2014) recorded resting-

state EEG data in three trials separated by one year and reported poor to excellent reliability 

for graph metrics: small world index, normalized clustering coefficient, normalized average 

path length and regional degree in different frequency bands. They computed these metrics 

at the sensor level based on the connectivity measures phase-lag index (PLI) and weighted 

PLI. Recently, Kuntzelman and Miskovic (2017) computed connectivity measures spectral 

coherence and debiased weighted PLI from resting-state EEG data recorded in two trials 

separated by one week. They computed graph metrics: global efficiency, characteristic path 

length, radius, diameter, modularity, transitivity, strength, local efficiency, clustering 

coefficient, betweenness centrality, eigenvector centrality and page-rank centrality at the 

sensor-level. They reported poor to excellent reliability for these metrics in different 

frequency bands. These studies suggest that some graph metrics derived from resting-state 

EEG recordings at the sensor-level can be utilized in a reliable manner in basic and clinical 

research settings. However, the interpretation of connectivity measures from sensor-level 

EEG data is not straightforward. Instead, the electrophysiological sources of sensor-level 
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data can be reconstructed, facilitating a source-level approach in graph theoretical analysis 

of EEG data (Babiloni et al. 2004).  

In this study, we investigated test-retest reliability of graph metrics estimated from resting-

state EEG data at both sensor- and source-levels in both short-term (within a few hours, i.e. 

WS) and long-term (several days apart, i.e. BS) designs at different frequency bands. 

Imaginary coherence was used to construct functional networks because it effectively 

suppresses spurious coherence driven by field spread (Nolte et al. 2008). Undirected binary 

graphs were used to compute graph metrics: betweenness centrality, cost efficiency, 

characteristic path length, global efficiency, local efficiency, clustering coefficient, k-

coreness, and maximized modularity. Test-retest reliability of these graph metrics and also 

mean imaginary coherence was quantified over all pairs of electrodes (sensor-level) or brain 

regions (source-level) using intra-class correlation coefficient (ICC). 

This study is significant for the field of neuroimaging as it will help establish the reliability of 

EEG-based graph metrics in order to incorporate them into future designs and facilitate 

appropriate selection of reliable estimates of functional connectivity. 

2. Materials and Methods 

2.1. Participants 

We used data collected from a total of 23 healthy participants (9 male, 22 right handed, 

mean aged 25 (SD 7) years). EEG was recorded from 18 participants for WS design and 

from 19 participants for BS design, with 14 participants attending both designs. All 

participants gave written informed consent in accordance with the World Medical Association 

Declaration of Helsinki to participate in this study. Ethical approval was provided by the 

University of Adelaide Human Research Ethics Committee. 

2.2. Experimental Design 

For this study, we analysed resting-state EEG data (eyes-open condition). Participants were 

instructed to view a fixation point, remain as still, quiet and relaxed as possible and if 

possible, try and avoid blinking too much. The EEG recordings were part of measurements 

embedded in two studies: a study on effects of continuous theta burst stimulation (cTBS) on 

the brain dynamics (WS and BS) and a study on effects of pain induction on the brain 

dynamics (BS only). Only pre-intervention or sham condition data were used for these 

analyses. In the WS design, for each participant, data were collected in four trials in one day 
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on average 24 (SD 12) minutes apart as a part of a sham cTBS protocol, which does not 

apply current to the scalp or alter neural activity. In the BS design, data were collected from 

each participant at three separate experimental sessions separated by a minimum of 7 days 

(average 31, SD 41 days). 

2.3. EEG acquisition and pre-processing 

We acquired three minutes of continuous resting-state EEG using an ASA-lab EEG system 

(ANT Neuro, Enschede, Netherlands) or a TMSi EEG system (Twente Medical Systems 

International B.V, Oldenzaal, The Netherlands) using a WaveguardTM original cap with 64 

sintered Ag-AgCl electrodes in standard 10-10 positions. Each individual’s test-retest 

session was performed on the same EEG system. Signals were sampled at 2048 Hz, 

amplified 20 times, filtered (high pass, DC; low pass 553 Hz) and referenced to the average 

of all electrodes. Impedance was kept below 5 k and the recorded data were stored on a 

computer for online analysis. EEG data were exported to MATLAB 9.0 (MathWorks, Inc., 

Natick, MA) for pre-processing and analysis. The signal was segmented into epochs of 1 s 

and channel baseline means were removed from the EEG dataset. Channels that were 

disconnected during recording or dominated by exogenous artefact noise were removed, 

and data were filtered using a hamming windowed sinc FIR (Finite Impulse Response) filter 

(1-45 Hz). We detected and excluded epochs contaminated by excessive noise by a 

procedure based on the identification of theshold for the maximum allowed amplitude for the 

EEG signals (>80 µV, total rejection rate was 18%). Fast ICA artefact correction was used in 

order to correct for non-physiological artefacts (e.g. eye blinks and scalp muscle activity) 

(Delorme and Makeig 2004). Following artefact removal, missing channels were interpolated 

using super-fast spherical interpolation. 

2.4. Source reconstruction 

To develop a source reconstruction model a forward model was constructed (see Figure 1). 

The first step in constructing the forward model is to find the brain surface from the subject’s 

MRI. In the absence of individual MRI, detailed anatomical information was incorporated in 

the form of an MRI template. We used ICBM152 template ((Fonov et al. 2011), a non-linear 

average of the MRI images of 152 individual heads) in Montreal Neurological Institute (MNI) 

coordinate. Next, a segmentation procedure was run in which each of the voxels of the 

anatomical MRI was assigned to a tissue class (returning probabilistic gray matter/white 

matter/cerebrospinal fluid (CSF) masks). A volume conduction model specifies how currents 

that are generated by sources in the brain are propagated through the tissues and how 

these result in externally measurable EEG potentials. A volume conduction model was 
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constructed from the geometry of the head using boundary element method (BEM, 

(Geselowitz 1967; Fuchs et al. 2001)) with OpenMEEG software ((Gramfort et al. 2010), 

freely available at http://openmeeg.github.io/). We used a standard EEG electrode 

placement that matched our EEG configuration ((Oostenveld et al. 2011), freely available at 

http://www.fieldtriptoolbox.org/template/electrode) and confirmed that EEG electrodes were 

aligned with the head model. Based on the segmented MRI and restricted to gray matter, the 

brain was discretised into a source grid of 3990 voxels. For each grid point the lead field 

matrix, expressing the forward solution, was calculated and normalized in order to control 

against the power bias towards the centre of the head. The spatially adaptive filters for each 

grid point in each frequency band were computed using partial canonical correlation (PCC) 

method ((Schoffelen et al. 2008), regularization parameter λ = 5%, fixed orientation). This 

was computed based on the cross spectral density matrices (fast Fourier transform multi-

taper approach, smoothing ± 2 Hz, discrete prolate spheroidal sequences as tapers). For our 

source analysis, we used FieldTrip which is a MATLAB software toolbox for EEG and MEG 

analysis (Oostenveld et al. 2011). 

2.5. Connectivity 

We constructed the functional connectivity matrices using imaginary coherence. Denote the 

l-th segment of the i-th time course by xi;l and its Fourier transform by Xi;l. The output of the 

PCC implementation contains the single trial estimates of amplitude and phase (Fourier 

coefficients). The cross spectral matrix is defined as 

𝑆𝑖,𝑗 =
1

𝐿
∑ 𝑋𝑖,𝑙

∗ 𝑋𝑗,𝑙

𝐾

𝑙=1

    (1) 

where (.)* denotes complex conjugation and L denotes the number of segments. Coherency 

between the i-th and j-th times series is defined as 

𝐶𝑖,𝑗 =
𝑆𝑖,𝑗

√𝑆𝑖,𝑖𝑆𝑗,𝑗

          (2) 

In order to define ROIs for source-level analysis, we first tesselated the cortical mesh within 

Brainstorm application (Tadel et al. 2011) using the Desikan-Killiany atlas (Desikan et al. 

2006). This mesh was then co-registered to FieldTrip template mesh using the minimum 

Euclidean distance approach. We computed the absolute value of imaginary coherence 

between two ROIs p and q as 
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𝐺𝑝.𝑞 = |𝜁 (𝐶𝑖𝑝,𝑗𝑞
)|    (3) 

where 𝜁(. ) denotes the imaginary part and ip-th and jq-th voxels are at the geometric centres 

of p and q, respectively. Centre voxels refer to those voxels that have minimum Euclidean 

distance with all other voxels within the ROI. Finally, matrix G is divided by its standard 

deviation using Jackknife method to produce a connectivity matrix. Similarly, at the sensor-

level, the absolute value of imaginary coherence between each two sensors was computed. 

2.6. Graph theory analysis 

We thresholded the connectivity matrices and constructed binary undirected networks. The 

connectivity matrices were tested over a range of different thresholds to cancel the issue of 

semi-arbitrary thresholding (Langer et al., 2013). Network density is defined as the 

percentage of the connections (edges) that remain after thresholding. The network density 

was changed to control the threshold levels. The connection density of 10% was tested as 

this was reported to provide an optimal trade-off between reducing spurious connections and 

retaining true connections providing biologically plausible information about the brain 

functional networks (Dosenbach et al. 2010; Lord et al. 2012; Pedersen et al. 2015; Cocchi 

et al. 2015). For the graph theory analysis, we used Brain Connectivity Toolbox (BCT, 

(Rubinov and Sporns 2010), freely available at https://sites.google.com/site/bctnet/Home). 

The following graph metrics were computed for each subject for frequency bands theta (4-7 

Hz), alpha (8-13 Hz), low beta (14-20 Hz), high beta (21-30 Hz) and gamma (31-45 Hz). We 

subsequently explored the effects of density on reliability by estimating all of these graph 

metrics at connection densities of 5% and 15%. 

2.6.1. Global efficiency 

Global efficiency is defined as the average inverse shortest path length and can be regarded 

as a measure of global integration (Latora and Marchiori 2001). 

2.6.2. Local efficiency 

Local efficiency is defined as the efficiency of the local sub-graph of a given node that 

contains only the direct neighbours of the node. It is a measure of local connectedness 

(Latora and Marchiori 2001). 
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2.6.3. Betweenness centrality 

Betweenness centrality is defined as the number of shortest paths that run through a given 

node. When averaged over all nodes, it is a measure of the influence of a node over 

information ow among other nodes in the network (Freeman 1977). 

2.6.4. Cost efficiency 

Cost efficiency is evaluated as 

             κ = Eg – K                 (4) 

where Eg denotes global efficiency and K denotes network density (Achard and Bullmore 

2007). 

2.6.5. k-coreness 

The k-core is defined as the largest subgraph comprising nodes of degree at least k. The 

coreness of a node is k if the node belongs to the k-core but not to the (k+1)-core (Hagmann 

et al. 2008). 

2.6.6. Maximized modularity 

The optimal community structure is a sub-division of the network into non-overlapping 

groups of nodes in a way that maximizes the number of within-groups edges and minimizes 

the number of between-groups edges. Modularity is a statistic that quantifies the degree to 

which the network may be sub-divided into such structure (Newman 2006). 

2.6.7. Characteristic path length 

Characteristic path length is defined as the average shortest path length in the network. The 

shortest path length between two nodes is the minimum number of edges between two 

nodes (Sporns et al. 2004). 

2.6.8. Clustering coefficient 

Clustering coefficient is defined as the proportion of the nearest neighbours of a given node 

that are connected to each other. It is a measure of local connectedness (Rubinov and 

Sporns 2010; Watts and Strogatz 1998). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2018. ; https://doi.org/10.1101/385302doi: bioRxiv preprint 

https://doi.org/10.1101/385302
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

2.7. Statistical analysis 

The graph metrics were log-transformed prior to analyses to achieve normality. For each 

graph metric derived from the first EEG trial of the WS design, we tested for statistical 

differences between frequency bands at density 10% using repeated ANOVA. 

ICC (two-way mixed single measures: testing for consistency) was estimated as a measure 

of test-retest reliability between the trials for each design (BS or WS) and each graph metric 

at each frequency band and density at both sensor and source-levels as defined in (Shrout 

and Fleiss 1979). Additionally, the ICCs were estimated based on the average of the 

elements of the connectivity matrix (mean imaginary coherence) independently of the 

density level. The negative ICCs were set to zero as suggested in other test retest studies 

using ICC (Braun et al. 2012; Kong et al. 2007). Each ICC was categorized into a value of 

>0.75 as “excellent”, 0.60-0.74 as “good”, 0.40-0.59 as “fair” and <0.40 as “poor” reliability 

(Cicchetti 1994).  

ICCs were reported descriptively also using ANOVA models to test the effects of different 

factors on test-retest reliability of the metrics. Where Mauchly’s test indicated that the 

assumption of sphericity was violated, Greenhouse-Geisser tests were reported. All 

statistical analyses were performed using IBM SPSS Statistics 24 and MATLAB 9.0. 

Significance was measured at p<0.05. 

3. Results 

3.1. Sensor-level 

3.1.1. Comparison of the metrics between frequency bands 

There was a significant main effect of frequency band on cost efficiency, global and local 

efficiency, clustering coefficient, k-coreness and mean imaginary coherence (see Table 1). 

Bonferroni post hoc tests revealed that: cost efficiency in theta band was significantly lower 

than cost efficiency in the alpha (p=0.04) and gamma (p=0.02) bands; global efficiency in 

theta band was significantly lower than global efficiency in the alpha (p=0.01) and gamma 

(p=0.01) bands; global efficiency in low beta band was significantly lower than global 

efficiency in alpha band (p=0.01); local efficiency in theta band was significantly lower than 

local efficiency in the high beta (p=0.02) and gamma (p=0.03) bands; clustering coefficient in 

theta band was significantly lower than in the high beta (p=0.01) and gamma (p=0.01) 

bands. k-coreness in alpha band was significantly higher than k-coreness in the theta 
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(p=0.04) and gamma (p=0.02) bands; mean imaginary coherence in alpha band was 

significantly higher than mean imaginary coherence in the theta (p<0.001), low beta 

(p<0.001), high beta (p<0.001) and gamma (p<0.001) bands. There was no significant main 

effect of frequency band on betweenness centrality, characteristic path length and 

maximized modularity. 

3.1.2. Range of reliabilities 

The ICC values for the graph metrics range from 0 to 0.48 (mean 0.25, SD 0.12) for WS 

design, and range from 0 to 0.41 (mean 0.13, SD 0.12) for BS design, indicating poor to fair 

reliability. The ICC values for mean imaginary coherence range from 0.17 to 0.71 (mean 

0.42, SD 0.22) for WS design, and range from 0.30 to 0.49 (mean 0.41, SD 0.07) for BS 

design, indicating poor to good reliability (see Figure 2). 

3.1.3. Comparison of reliabilities between frequency bands 

Reliability varied over different frequency bands. The lowest mean ICC over all metrics in 

each of WS and BS designs in each frequency band was found in the low beta frequency 

band of the BS design (0.12±0.13(SD)), while the highest mean ICC was found in the high 

beta frequency band in the WS design (0.36±0.17(SD)) followed by alpha band in the WS 

design (0.33±0.12(SD)). Accordingly, an ANOVA model that treated the different frequency 

bands as within-subjects factor was used. There was a significant main effect of frequency 

band in WS design (F(4,32)=8.24,p=0.01). Bonferroni post hoc tests revealed that in WS 

design mean ICC in gamma band was significantly lower than mean ICC in the low beta 

band (p=0.01) and high beta band (p=0.03). No significant main effect of frequency band 

was observed for BS design (F(4,32)=1.89,p=0.14). 

3.1.4. Comparison of reliabilities between different metrics 

Reliability also varied between different metrics. The lowest mean ICC over all frequency 

bands in each of WS and BS designs was found for maximized modularity in the WS design 

(0.20±0.07(SD)), indicating poor reliability and the highest mean ICC was found for mean 

imaginary coherence in the WS design (0.4±0.22(SD)) indicating fair reliability. The most 

reliable graph metric was found to be cost efficiency in WS design (0.26±0.17(SD)). The 

mean ICC over all frequency bands and designs for graph metrics (0.15±0.14(SD)) was 

lower than for mean imaginary coherence (0.35±0.21(SD)). 
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3.1.5. BS versus WS reliability 

Additionally, we compared the reliability of the metrics for WS design versus BS design. The 

mean ICC over all frequency bands and metrics of the WS design (0.27±0.14(SD)) was 

higher than BS design (0.16±0.15(SD)). A two factor repeated measures ANOVA with 

frequency band as a within-subjects factor and WS versus BS design as a group factor 

showed that WS reliabilities were significantly higher than the BS reliabilities 

(F(1,16)=7.28,p=0.02); excluding the ICCs of mean imaginary coherence (F(1,14)=49.27, 

p<0.001). 

3.1.6. Effects of network density on reliability 

All the graph metrics were initially estimated in networks of 10% density. We subsequently 

explored the effects of density on reliability by estimating all metrics in networks with 

densities 5% and 15% (see Figure 3). There was a significant main effect of density in WS 

design (F(2,14)=7.12,p=0.01). Bonferroni post hoc tests revealed that reliability at 15% 

density was significantly lower than at 10% (p=0.048). In the BS design, there was no 

significant main effect of connection density (F(2,14)=1.79,p=0.23). 

3.2. Source-level 

3.2.1. Comparison of the metrics between frequency bands 

There was no main effect of frequency band on the graph metrics (See Table 1). However, 

there was a significant main effect of frequency band on mean imaginary coherence. 

Bonferroni post hoc tests revealed that the mean imaginary coherence in alpha band was 

significantly higher than mean imaginary coherence in the theta (p=0.02), low beta (p=0.01) 

and gamma (p < 001) bands and mean imaginary coherence in the gamma band was 

significantly lower than in the high beta band (p=0.02). 

3.2.2. Range of reliabilities 

The ICC values for the graph metrics range from 0 to 0.26 (mean 0.03, SD 0.06) for WS 

design and range from 0 to 0.28 (mean 0.07, SD 0.07) for BS design, indicating poor 

reliability. The ICC values for mean imaginary coherence range from 0.23 to 0.49 (mean 

0.31, SD 0.10) for WS design and range from 0.10 to 0.30 (mean 0.23, SD 0.81) for BS 

design indicating poor to fair reliability (Figure 4). 
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3.2.3. Comparison of reliabilities between frequency bands 

Reliability varied over different frequency bands. The lowest mean ICC over all metrics in 

each of WS and BS designs in each frequency band was found in the high beta frequency 

band of the WS design (0.03±0.08(SD)). The highest mean ICC was found in the low beta 

frequency band in the BS design (0.12±0.09(SD)) followed by alpha band in WS design 

(0.05±0.04(SD)). Accordingly, an ANOVA model that treated the different frequency bands 

as within-subjects factor was used. No significant main effect of frequency band was 

observed for WS design (F(2.31,18.48)=1.38,p=0.28). Similarly, no significant main effect of 

frequency band was observed for BS design (F(4,32)=0.66,p=0.63). 

3.2.4. Comparison of reliabilities between different metrics 

Reliability also varied between different metrics. The lowest mean ICC over all frequencies in 

each of WS and BS designs was found for clustering coefficient in the WS design 

(0.002±0.002(SD)) and the highest mean ICC was found for mean imaginary coherence in 

the WS design (0.31±0.10(SD)). The most reliable graph metric was found to be global 

efficiency in BS design (0.04±0.08(SD)). The mean ICC over all frequency bands and 

designs for graph metrics (0.04±0.07(SD)) was lower than for mean imaginary coherence 

(0.22±0.14(SD)). 

3.2.5. BS versus WS reliability 

Additionally, the reliability of the metrics was compared for WS design versus BS design. 

The mean ICC over all frequency bands and metrics in the BS design (0.09±0.08(SD)) was 

higher than WS design (0.06±0.11(SD)); however, a two factor repeated measures ANOVA 

with frequency band as a within-subjects factor and WS versus BS design as a group factor 

showed that the reliabilities of WS design were not significantly different from the BS 

reliabilities (F(1,16)=0.44,p=0.516); excluding the ICCs of mean imaginary coherence 

(F(2.54,35.55)=2.02,p=0.14). 

3.2.6. Effects of network density on reliability 

Again, the effects of density on reliability were explored (see Figure 5). No significant main 

effect of connection density for WS design was observed (F(1.16,8.13)=2.73,p=0.135). For 

BS design, there was a significant main effect of density (F(2,14)=7.26,p=0.01). Bonferroni 

post hoc tests revealed that reliability at 15% density was significantly lower than at 10% 

(p=0.04). 
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3.3. Comparison of sensor-level and source-level reliabilities 

The reliability of the sensor-level versus source-level metrics was compared at 10% density 

(see Figure 6). The mean ICC over all frequency bands, metrics and designs at the sensor-

level (0.21±0.15(SD)) was higher than source-level (0.08±0.10(SD)). A two factor repeated 

measures ANOVA with frequency band and sensor/source-level as within-subjects factors 

and WS versus BS design as a group factor showed that sensor-level reliabilities were 

significantly higher than the source-level reliabilities (F(1,16)=101.56, p<0.001). 

4. Discussion 

The main purpose of our study was to quantify the reliability of sensor- and source-space 

graph metrics derived from resting-state EEG. We were particularly interested in comparing 

reliability of the graph metrics derived from data collected within a few hours with those 

derived from data collected at least a week apart. Using EEG data enabled us to also 

compare reliabilities at different frequency bands. Overall, we observed poor to good 

reliabilities for the mean imaginary coherence and eight graph metrics. For sensor-level 

outcomes, we observed levels of reliability that were comparable to those derived from 

resting-state EEG and MEG at the sensor-level in previous studies (Jin et al. 2011; Deuker 

et al. 2009; Hardmeier et al. 2014; Kuntzelman and Miskovic 2017). To our knowledge, the 

present study is the first analysis of test-retest reliability of graph metrics at both sensor- and 

source-levels derived from EEG data with both WS and BS designs. 

The graph metrics varied across different frequency bands. This may suggest frequency-

specific network organization and imply various functional roles for different frequency 

bands. The highest reliability averaged over all metrics at the sensor-level was found in the 

high beta frequency followed by alpha frequency band in the WS design. At the source-level 

the highest reliability averaged over all metrics was found in the low beta band in the BS 

design followed by alpha band in the WS design. This is in agreement with (Jin et al. 2011) 

which suggested that alpha and beta frequency bands provide the most reliable graph 

metrics in the resting-state. At the sensor-level in the WS design, reliability in the gamma 

band was significantly lower than low and high beta bands. This is consistent with findings in 

(Jin et al. 2011; Deuker et al. 2009) that the resting-state graph metrics are least reliable in 

the gamma band. 
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Characteristic path length (at the source-level) was found to be the least reliable graph 

metric, which is consistent with previous reports (Cao et al. 2014). Consistent with (Braun et 

al. 2012), the most reliable graph metric was found to be cost efficiency measured at the 

sensor-level. This potentially shows that this metric quantifies aspects of brain function that 

can be more reliably estimated using resting-state EEG. 

It is expected that the greater the time between EEG data collection sessions, the larger the 

possibility of change in functional network organization of the brain and hence the lower the 

reliability of graph metrics. Accordingly, we found that the WS reliabilities were significantly 

higher than the BS reliabilities at the sensor-level, but interestingly, not significantly different 

at the source-level. We also showed that our sensor level reliabilities were significantly 

higher than the source-level reliabilities. An important concern when estimating functional 

brain network metrics from EEG recordings is the mixing of brain sources resulting in 

spurious results. Source mixing occurs at the sensor-level to a higher extent than at the 

source-level and is typically quite stable across participants and repeated measurements. As 

suggested by (Colclough et al. 2016), this is potentially one of the reasons sensor-level 

reliabilities were higher than the source-level reliabilities. 

A potential contributor to the low reliability of some metrics in our study might be the 

relatively short EEG recording duration. Three-minute recording, as in the present study, 

might not be enough to provide reliable graph metrics. However, using four minutes of data, 

it was suggested that in general, duration of resting-state EEG makes little difference on 

reliability of the graph metrics (Kuntzelman and Miskovic 2017). Additionally, there are 

potential problems with recording EEG for long durations. During resting-state participants 

are required to maintain a constant state of arousal while refraining from moving. However, 

maintaining this state becomes more difficult with increased recording duration. 

A limitation of our study is that our source-level results are specific to the methods we used 

for source reconstruction. We only looked at one (common) source reconstruction method. 

There is a large list of combinations of patient and EEG-setup, functional connectivity 

measures and network metrics and this study adds information on a portion. Mahjoory et al. 

(2017) reported a high level of variability in the functional connectivity estimates derived from 

common source reconstruction methods. Future work should compare the reliabilities of 

graph metrics obtained using different source reconstruction methods. A potential strength of 

the present study compared to previous literature is the relatively high number of trials, both 

in the BS and WS designs. However, the limitations include the relatively low density of EEG 

sensors compared to other similar studies (Deuker et al. 2009; Kuntzelman and Miskovic 
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2017) and low sample size. Our sample size and sensor density are commonly implemented 

in various research settings, and therefore are particularly relevant. Nevertheless, increasing 

the number of participants and utilizing higher density of EEG electrodes may yield better 

reliability, and this needs to be examined in future work. Another limitation of our study is 

that we used binary rather than weighted networks which might result in ignoring important 

information (Rubinov and Sporns 2011) and affect our results. Different EEG systems may 

have also influenced the outcome. However, different research laboratories use various 

systems; hence our results will be of interest to the research community. We reconstructed 

over 3000 sources from 64 electrodes. Future studies should consider changing the number 

of sources in order to cancel the effects of local under- or over-fitting. The use of a sham 

condition, which is considered to be a resting-state no-task condition in this study, may also 

have affected the outcome measures through placebo effects. Finally, the data in this study 

was not collected specifically for the intended analysis. Even though the data were collected 

in pre-intervention or sham intervention conditions in the original studies it is possible that 

carry over effects from the real (cTBS or pain) arms of the studies influenced the measures 

reported here. However, this is unlikely given that there was at least a seven-day period 

between conditions and there is no evidence to suggest any induced changes can last for so 

long (Huang et al. 2005; Nyfleler et al. 2006, 2009; Schabrun et al. 2015; Torta et al. 2017). 

However, it is important to repeat this study on datasets designed specifically for the 

intended analysis to confirm that reliability estimates were not affected by these 

experimental factors. 

In conclusion, the connectivity and graph metrics derived from resting-state EEG data can 

provide robust results, although this differs depending on the frequency band, graph metric 

of interest, choice of sensor-level or source-level, and whether measurements are made 

within or between sessions. Sensor-level reliabilities were found to be higher than source-

level reliabilities, particularly in the within-session design. Our source-level results highlight 

the need to take caution when interpreting source-level outcomes. Further work is needed to 

determine methodological approaches that could improve reliability of source measures, and 

to identify the factors responsible for intra-individual differences in EEG graph metrics. 
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Figures and Tables 

Table 1: Main effect of frequency band on different metrics. Bold font indicates significance 

(p<0.05). 

 sensor-level 

F-ratio 

sensor-level 

p-value 

source-level 

F-ratio 

Source-level 

p-value 

Betweenness centrality 1.02 0.38 0.91 0.47 

Cost efficiency 3.41 0.01 2.56 0.07 

Characteristic path 

length 

2.46 0.06 0.86 0.49 

Global efficiency 5.77 0.004 2.52 0.07 

Local efficiency 4.58 0.01 1.29 0.28 

Clustering coefficient 5.41 0.01 0.97 0.43 

K-coreness 10.61 0.01 0.62 0.65 

Maximized modularity 1.07 0.37 1.28 0.33 

Mean imaginary 

coherence 

32.31 <0.001 11.27 <0.001 
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Figure 1: Schematic of the quantitative analysis. 
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Figure 2: Test-retest reliability (ICC) of different metrics in (a) WS and (b) BS designs at the 

sensor-level in theta, alpha, low beta, high beta and gamma frequency bands.

 

(a)  

 

 

 (b) 
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Figure 3: Mean test-retest reliability (ICC) over all the metrics at densities 5%, 10% and 15% 

in different frequency bands at the sensor-level in the WS and BS designs. 
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Figure 4: Test-retest reliability (ICC) of different metrics in (a) WS and (b) BS designs at the 

source-level in theta, alpha, low beta, high beta and gamma frequency bands.
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Figure 5: Mean test-retest reliability (ICC) over all the metrics at densities 5%, 10% and 15% 

in different frequency bands at the source-level in WS and BS designs. 
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Figure 6: Mean test-retest reliability (ICC) over all the metrics at 10% density in different 

frequency bands at the sensor- and source-levels for WS and BS designs. 
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