
Title: 

Assessment of Menstrual Health Status and Evolution through Mobile Apps 
for Fertility Awareness 
 

Authors and affiliations: 

Laura Symul1,2*, Katarzyna Wac1,3, Paula Hillard4, Marcel Salathé2 
 

1 Department of Surgery, Stanford School of Medicine, Stanford University, 300 Pasteur Dr., 
Stanford, California 94305-5317, USA. 
2 Digital Epidemiology Lab, Global Health Institute, School of Life Sciences, École Polytechnique 
Fédérale de Lausanne (EPFL), Campus Biotech, Chemin des mines 9, CH-1202 Geneva, Switzerland. 
3 Quality of Life Technologies lab, Institute of Services Science, Center for Informatics, University of 
Geneva, CUI Battelle bat A, Route de Drize 7, 1227 Carouge, Switzerland. 
4 Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, 300 
Pasteur Dr. HH333, Stanford, California 94305-5317, USA. 

*Correspondence to: lsymul@stanford.edu. 

 
 
  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/385054doi: bioRxiv preprint 

https://doi.org/10.1101/385054
http://creativecommons.org/licenses/by-nd/4.0/


 2

Abstract  

For most women of reproductive age, assessing menstrual health and fertility typically involves regular 

visits to a gynecologist or another clinician. While these evaluations provide critical information on an 

individual’s reproductive health status, they typically rely on memory-based self-reports, and the results 

are rarely, if ever, assessed at the population level. In recent years, mobile apps for menstrual tracking 

have become very popular, allowing us to evaluate the reliability and tracking frequency of millions of 

self-observations, thereby providing an unparalleled view, both in detail and scale, on menstrual health 

and its evolution for large populations. In particular, we were interested in exploring the tracking 

behavior of the app users and their overall observation patterns in an effort to understand if they were 

consistent with previous small-scale medical studies. We also investigated whether their precision 

allowed the detection and estimation of ovulation timing, which is critical for reproductive and 

menstrual health.  Retrospective self-observation data were acquired from two mobile apps dedicated to 

the application of the sympto-thermal fertility awareness method, resulting in a dataset of more than 30 

million days of observations from over 2.7 million cycles. The analysis of the data showed that up to 

40% of the cycles in which users were seeking pregnancy had recordings every single day. With a 

modeling approach using Hidden Markov Models to describe the collected data and estimate ovulation 

timing, it was found that follicular phases average duration and range were larger than previously 

reported, with only 24% of ovulations occurring at days 14 to 15,  while the luteal phase duration and 

range were in line with previous reports, although short luteal phases (10 days or less) were more 

frequently observed (in up to 20% of cycles). The digital epidemiology approach presented here can 

help to lead to a better understanding of menstrual health and its connection to women’s health overall, 

which has historically been severely understudied. 

 
 
Keywords: menstrual cycle, fertility awareness, self-tracking, digital epidemiology, mobile phone apps 
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Introduction 

A broad diversity of fertility awareness methods (FAMs) has been developed in the past century1,2, 

primarily designed to help couples manage fertility and family planning. Modern methods developed in 

the last quarter of the 20th century take advantage of the precise description of menstrual variation of the 

basal body temperature (BBT) or waking temperature, taken with a thermometer with a 0.01C or 0.5F 

precision, cervical mucus quality and quantity, vaginal sensation, and cervical position3–6. These 

methods have defined a set of rules that allows the identification of the fertile window around ovulation, 

so that couples can adapt their sexual behavior according to their reproductive objectives7–9. The 

sympto-thermal method, which combines BBT and cervical mucus observations, is arguably amongst 

the most reliable FAM for family planning1,2,4,10. Recently, a number of mobile apps have been 

developed by private organizations to facilitate FAM tracking. Some of these apps provide their users 

with automatized interpretation with regard to the opening and closing of the fertility window11. Over 

the past few years, an increasing number of women, estimated at over 200 million in 201612, have 

started using these apps, contributing to the accumulation of menstrual-related data (Fig 1) from a 

diverse population of users at different stage of life (Fig. 2A, Table 1, Methods).  

A few studies have evaluated some of these apps in terms of user experience or the accuracy of the 

scientific information provided to their users13,14 or regarding their ability to accurately indicate the 

opening and closing of the fertile window11,15. Other studies16–18 have evaluated the contraceptive 

efficacy of the app Natural Cycles; this app based on a proprietary algorithm only takes body 

temperature into account16–18 and these studies were authored by one of the app founders and did not 

provide a description of the tracked data. In the last two years, only a few studies have used datasets 

from women’s health applications, such as Clue, to describe the association between pre-menstrual 

symptoms and sexually transmitted infections19 or to develop machine learning methods suited to study 

rhythmic human behavior20 or predict pregnancy21. 
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However, fertility awareness body signs, as tracked easily via affordable mobile applications, have not 

yet been extensively described or studied and it is unclear how app users are reporting these signs, as 

well as whether the reported observations are consistent with the conclusions of previous smaller-scale 

medical studies6,22,23. Moreover, there are no statistical framework to detect ovulation from these self-

tracked data, which would be useful to leverage the potential of these data to study fertility, accurately 

predict pregnancy chances and to overall evaluate the potential impact of fluctuating hormones on the 

course of chronic diseases24. 

Here, we were interested in evaluating the potential of the data collected via apps for the 

assessment of menstrual health, both at the individual level and at the population level, and, in the long 

run to help enable better clinical-decision-making processes. Two retrospective datasets that were 

described by the app providers as representative of their active users population (Methods), were 

acquired from the apps Kindara (K) and Sympto (S)11 (Fig. S1A,B, Table 1). Both apps offer free and 

paid versions of their app, but all data used in this study can be tracked on their free version. Privacy 

policies of the two apps explicitly state that users’ data might be transferred to academic institutions for 

research purposes with the motivation to support studies that could potentially accelerate future 

development of fertility awareness methods. Both apps offer similar FAM tracking options but differ in 

their design and user experience (Fig. S1AB, Table 2). Kindara is primarily marketed to women who 

wish to achieve pregnancy and does not provide feedback to users in terms of the opening or closing of 

their fertile window. Sympto is marketed as a family planning tool that can be utilized to plan or avoid a 

pregnancy. The Sympto app provides feedback to their users based on their observations, indicating 

when they are potentially fertile, very fertile or infertile. The key differences between these two apps are 

(i) the automatic- (S) vs user- (K) interpretation of observations, (ii) the per-cycle (S) vs per-user (K) 

definition of fertility goals users wish to achieve, (iii) the criteria for the onset of a new cycle, i.e. fresh 
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bleeding after ovulation (S) vs self-assessed or automatic (K), and (iv) the precision at which users can 

report their observations (Suppl. Mat.). 

 

Results 

 

Users demographics: the typical FAM app user is 30, has a healthy BMI, and lives in a 

European or North American country  

The two apps target different populations. Most Kindara users are based in the US and are trying to 

achieve pregnancy, while Sympto users mainly reside in Europe and use the app primarily to avoid 

pregnancy. Users of these two apps are found in over 150 countries, covering 5 continents, but the vast 

majority of them are located in Europe and in the Americas. User ages span the reproductive life of 

women, from the onset of their sexual activity to menopause, with an overrepresentation of users in their 

late 20s and early 30s (Fig. 2A, left, Table 3). For some users, additional information is available, 

including their birth year, and, for Sympto users only, their reported weight, height and age at menarche 

(Fig 2A, Table 3).  

The height and weight distribution of Sympto users (Fig. 2A, top and bottom right, data not available for 

Kindara users, Table 3) shows median values of 60 kg and 165 cm. Both distributions present peaks at 

round values such as 160 or 165 cm indicating that users often report approximate values (for example, 

160 cm rather than 159 or 161 cm). This has often been observed in previous studies using self-reported 

values and these mild inaccuracies of self-reported values have usually been found to only slightly affect 

the overall distributions 25. The median BMI of Sympto users is around 20, which is considered healthy 

for women (Fig S1C, Table 3). Information such as users’ level of education, marital or social status, 

parity or particular health conditions are unknown. 
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Regular users log their observations at a high frequency.  

The tracking behavior of regular FAM users during their usual cycles, which here are referred to 

as “standard cycles” (Fig 2B, Methods) is highly variable and depends on the family planning objectives 

of the users (Fig 2C). For an idealized ~28-day cycle, FAM-relevant body signs need to be recorded for 

at least 8-12 days of each cycle to detect the changes related to ovulation, i.e. at a tracking frequency of 

at least ~ 43%. However, most users using the apps for their FAM tracking report their observations for 

over 16 days per cycle. In cycles where users choose to record sexual intercourse (65% (S) – 75% (K) of 

standard cycles), tracking frequency is increased, with over 40% of cycles being tracked every single 

day when seeking pregnancy (Fig. 2C, S1D), sometimes for several months or years in a row (Fig. 1). 

Tracking frequencies varied between the two apps (Fig 2C), partly in relationship to the design 

of the apps; Kindara doesn’t provide user interpretation of the fertility window allowing for sporadic 

tracking, whereas missing data in Sympto precludes an accurate fertility assessment, potentially leading 

the user to discontinue use of the app if they are unable or unwilling to track consistently.    

 
Reported fertility awareness body signs show clear patterns at the user population level 

Confident that users regularly logged observations (Fig. 2C) during standard cycles, we sought 

to characterize general patterns in the observations and frequency of the different FAM body signs and 

investigate whether they were consistent with previous studies5,6,9,26,27. As cycle durations vary by 

several days, as illustrated in Fig. 3A, and given that the duration of the luteal phase (after ovulation) has 

been shown to vary less than the follicular phase (before ovulation)28,29, ovulation-related observations 

(BBT, mucus, cervix, vaginal sensation) are shown from the end of each cycle (Fig. 3B-D, S2). A clear 

shift of about 0.36°C/0.7°F in BBT between the mid-follicular phase and the mid-luteal phase is 

observed (Fig 3B, S2A), consistent with previous observations on a cohort of much smaller size26. BBT 

showed a decrease at the end of the cycle, as light bleeding or spotting was reported (Fig. 3BC).  
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In an ovulatory cycle, it is well established that cervical mucus is produced in higher quantity 

and with a higher stretchiness in the days leading up to ovulation5,6,9,27, which seems to be observed by 

users tracking their cervical mucus (85-90% (S) and 40-45% (K) of cycles) (Fig. 3D).  

Estimation of ovulation day reveals the diversity of menstrual timing 

Previous studies have shown that the combination of BBT and cervical mucus variations were 

reliable, although not perfect, proxies for the detection of ovulation8,23,27,30. We therefore decided to 

define a mathematical framework (HMM) to derive an estimate of the most likely day of ovulation with 

reliability indicators to reflect the uncertainty of conflicting or unexpected observation patterns (Fig. 4A, 

S3,4,6, Methods). Missing temperature records have been found to alter the precision of the ovulation 

estimation to a slightly greater extent than missing cervical mucus reports (Fig S6D, Suppl. Mat.). 

These estimations allowed the comparison, for cycles with reliable ovulation estimation (109,161 

cycles, Methods), of the cycle length distribution to those of estimated day of ovulation and of the 

duration of the luteal phase (i.e. post-ovulation) (Fig. 4B). Cycle length distribution is asymmetrical 

around the typical 27 to 28 days, with a heavy tail on longer cycles. Similarly, the distribution of the 

follicular (i.e. prior to ovulation) phase duration (or ovulation time) is asymmetrical as well, with a 

median value of 16 days, and 90% of ovulations occurring between day 10 and day 24. Only ~24% of 

ovulations occurred on days 14 to 15 of the cycle.  

Luteal phase duration distribution, which is also asymmetrical, presents however a skew for 

smaller values and a smaller standard deviation (Fig. 4BC, S4BC). Median values were 12 (K) and 13 

(S) days, which is in line with a previous study that used fertility monitors31 but shorter than values 

reported in studies that used luteinizing hormone (LH) peak for timing of ovulation29,32. About 35% of 

cycles have a luteal phase duration of 12 to 13 days, while ~20% of cycles had a luteal phase duration 

smaller than or equal to 10 days, which represents a higher proportion than reported in a previous 
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epidemiological study29.  

Overall, the comparison with previous studies of the cycle phases duration and range shows that 

the follicular phase and the whole cycle length have higher mean values and larger ranges than what was 

previously observed, while the luteal phase duration and range was closer to those found in previous 

studies28,29,31,33,34 (Fig. S5). The larger observed mean and range of the follicular phase and the cycle 

length can partially be explained by the differences in inclusion/exclusion criteria – for example, some 

previous studies excluded long cycles (Table S9) – and by the ovulation estimation methods, but also 

probably by the fact that this study uses cycles from a much larger population and is thus able to capture 

a higher diversity of menstrual patterns.  

Interestingly, the cycle phases distributions were slightly different when considering the data 

from the two apps. These differences might be due to biases found in the user population, especially for 

users seeking pregnancy that could be at higher risk of sub-fertility if assumed that they start tracking 

after they have already tried to get pregnant for several months (Fig S4C); however, these data on user 

behaviors around fertility seeking are not available for Kindara users.   
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Discussion 

This study’s goal was to describe and explore the suitability of datasets collected through two 

mobile applications (Kindara and Sympto) supporting Fertility Awareness Method (FAM) tracking for 

the assessment of menstrual health in general, both at the individual level and at the population level. 

We found that the average tracking frequency of users that utilize the apps FAM tracking, vs basic 

period tracking, is higher than the minimum required to detect changes associated with ovulation. In 

particular, if users rely on the app for their family planning, i.e. if they log sexual intercourses (protected 

or unprotected), the tracking frequency is increased, with up to 40% of cycles having recordings every 

single day when the user’s objective is to achieve pregnancy.  The reported observations (BBT, cervical 

mucus changes, etc.) are overall aligned with expected patterns of FAM-related body signs, showing 

these apps enable hundreds of thousands of users across Europe and North America to follow their 

fertility and ovulation patterns. However individual cycles often present noisier profiles and missing 

data are a frequent concern. To partly alleviate these issues, the mathematical framework (HMM) used 

in this study discretizes the menstrual cycle in independent successive biologically-relevant states and 

allows the estimation of ovulation timing along with uncertainty indicators. A large variation in the 

ovulation time and in the luteal phase duration was found, with larger ranges than previously described 

in other studies29,31,33,36 that relied on much smaller populations but that used biomarkers which might 

offer a greater precision for the estimation of ovulation time.  

The strength of this study lies in the scale and precision of the datasets, as a variety of fertility 

patterns are captured, and as users track the evolution of their cycles at a high frequency over long 

intervals of time. It also provides a non-proprietary and replicable mathematical method to infer 

biological states, and in particular to estimate the timing of ovulation, from fertility awareness self-

tracked data. The most obvious potential limitation of this study comes from the origin of these 
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retrospective data: a self-selected possibly biased population, limited medical and general information 

on users, irregular observation patterns and little control on assessing the validity of the observations, in 

particular with regard to cervical mucus tracking. While the tracking frequency limitation can be 

alleviated through strict selection of users and cycles (Methods), all other limiting factors might have 

introduced biases in the present analysis. Prospective studies on selected cohorts with appropriate 

follow-up and information provided to users will provide higher quality data, which could then be used 

for comparison.   

 Based on the current findings, it appears that self-tracking of FAM-related body signs provides 

an affordable means to evaluate the status and evolution of menstrual health, given that these 

observations require only a precise thermometer, and that providers of these and of other apps offer free 

simplified versions. These long term and yet very precise recordings support the idea that the menstrual 

cycle, like other biological rhythms, is a vital sign whose variations inform about overall health 

status37,38. The digital epidemiology approach39, where patients collect data themselves through digital 

means, can in this context represent a powerful method to investigate menstrual health and its 

connection to women’s health at the population level34 in a field that has historically been severely 

understudied40.  

We foresee that future studies will use self-tracked data to quantify infertility or daily pregnancy 

chances based on reported FAM body signs and user’s history. Models could also be established to 

investigate potential sub-fertility causes (anovulation, recurrent early pregnancy losses, etc.) based on 

the fertility signs and user’s sexual behavior. More generally, such data and tracking apps, combined 

with tracking of other coexisting symptoms, enable the exploration of the menstrual dimension of the 

course of chronic diseases24,41. Such studies would highly benefit from additional, sometimes already 

existing, tracking options in the apps such as pregnancy validation (for example reports of pregnancy 
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tests results) or a prompt to the user to label a tracking pause such that it can reliably be differentiated 

from a pregnancy.  

It is likely that users of such applications already have an increased awareness of their cycles, 

and this study suggests that these digitally self-tracked observations potentially present an opportunity to 

facilitate the dialog between patients and their clinicians, helping them to make informed decisions 

based on quantified indicators. The current and future development of evidence-based digital tools for 

menstrual health monitoring could positively impact women’s health. 
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Methods 

Extended Materials and Methods can be found in the Supplementary Materials. 

To briefly summarize the methodology used in this study: datasets were first filtered to keep cycles of 

users using the apps for fertility awareness purposes, i.e. identify their fertility window. Data were then 

summarized to describe the overall observation patterns. Finally, a Hidden Markov Model (HMM) was 

defined and used to detect ovulation time and assess the reliability of this estimation. 

Mobile phone applications and data acquisition 

Two de-identified retrospective datasets were acquired from the Symptotherm foundation 

(www.sympto.org; Switzerland) and Kindara (www.kindara.com; US) upon receiving ethical approval 

from the Canton Geneva ethical commission (CCER Genève, Switzerland), study number 2017-02108. 

These two apps were selected as they both ranked high in a study comparing the performances of apps 

marketed to avoid pregnancy using FAMs11, as their privacy policies specified the use of their de-

identified datasets for research purposes and as their user pools were very large or diverse 

geographically and culturally. Sympto has been released in 2008 and is available worldwide in 8 

languages (English, French, German, Italian, Spanish, Polish, Russian and Bulgarian). Kindara has been 

released in 2012 and is available worldwide in English. Both apps de-identified their datasets before 

transferring them to the authors. Both apps are available on iOS and Android platforms and are available 

as free or paid apps. All features used in this study are available in the free versions of the apps. Kindara 

provided a random subset of their overall pool of users with at least 4 logged cycles (199 293 users, 2 

652 889 cycles) while Sympto provided observations from their long-term users (at least 4 cycles 

tracked with the app) and from users who provided their weight, height and menarche age (13 674 users, 

79 535 cycles). A description of the datasets fields is provided in Table 2. 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/385054doi: bioRxiv preprint 

https://doi.org/10.1101/385054
http://creativecommons.org/licenses/by-nd/4.0/


 13

Selection criteria for users and cycles 

Given that these are self-tracked data, missing data is a frequent issue, and many cycles within the 

datasets provided by the app were not suitable for the analyses of this study. First cycles were filtered to 

remove any unfinished or uncomplete cycles or cycles in which fertility awareness body signs were not 

observed. Kept cycles are labelled as “standard cycles” (see flowchart, Fig 2B). Then, the HMM was 

used to estimate ovulation and, for the rest of the analysis, only cycles in which ovulation could reliably 

be estimated were kept (Fig 2B). Below are the inclusion/exclusion criteria for these cycle categories. 

 
Standard cycles (Sympto: 39,896 cycles; Kindara: 719,182 cycles) denote cycles of regular users of the 

apps in which FAM body signs have been logged. Typically, cycles with long tracking gaps or in which 

only the period flow was logged were excluded.  

- (S&K) not the first cycle of a user nor an on-going cycle  

- (S&K) observation gaps were no longer than 15 days within a given cycle 

- (S&K) at least one FAM body sign (BBT or cervical mucus or cervix position) was recorded 

- (S&K) no mid-cycle period-like bleeding was detected when the cycle was longer than 40 days 

- (S) defined as ovulatory cycles by the STM algorithm of Sympto, i.e. in which the fertile window 

could be closed. 

- (K) at least 8 FAM observations were reported 

- (S) no breastfeeding was reported or peri-menopause was declared 

- (K) cycle length was at least 4 days longer than the total number of days in which bleeding was 

reported 

Cycles with reliable ovulation estimation (Sympto: 28,453 cycles; Kindara: 80,708) 

Criteria summary: 

- standard cycles 
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- detected temperature shift was at least 0.15C (S) or 0.27F (K) (Suppl. Mat.). 

- the uncertainty on the ovulation estimation was lower than ±1.5 day (Suppl. Mat.). 

- the confidence score, which is related to acceptable amount of missing data in the ovulatory period, 

was equal or higher than 75% (Suppl. Mat.). 

 

Observations decoding and ovulation timing estimation with HMM 

The FAM body-signs are considered to reflect the hormonal changes orchestrating the menstrual cycles. 

The study was focused on understanding the extent to which these tracked cycles were consistent with 

previously described menstrual cycle physiologic changes, and the extent to which it was thus possible 

for app users to estimate timing of ovulation.  Hidden Markov Models (HMM) are one of the most 

suitable mathematical frameworks to estimate ovulation timing, due to their ability to uncover, from 

observations, latent phenomenon, which in this use include the cascade of hormonal events across the 

menstrual cycle. HMM have also been previously used for analysis of menstrual periodicity20. A 10-

states HMM, in which each state is a particular phase of the menstrual cycle (Fig. 4A top, S3A, Suppl. 

Mat.), was defined, and with decoding algorithms (Viterbi – Backward-Forward) was used to estimate 

the ovulation time, the uncertainty on this estimation, and a confidence score that accounts for missing 

observation and variation in temperature taking times.  

A set of stringent criteria were established, and included: the uncertainty of the ovulation estimation (≤ 

±1.5 days); the magnitude of the temperature shift (≥ 0.15 C); and the confidence score of the 

observations (≥ 0.75) to discriminate between cycles for which the estimations could be trusted (cycles 

with reliable ovulation estimation) and those where the observations did not allow for a reliable 

estimation of the ovulation day (Fig S4A, Suppl. Mat.). These strict criteria lead to the exclusion of 

~40% (Sympto) and ~ 89% (Kindara) of the standard cycles that were initially selected. In total, 28,453 
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(Sympto) + 80,708 (Kindara) cycles with reliable ovulation estimation have been used for the 

subsequent analyses (Suppl. Mat.).  

 

Model description 

The Hidden Markov Model (HMM) as implemented in this study describes a discretization in 10 states 

of the successive hormonal events throughout an ovulatory menstrual cycle. The HMM definition 

includes the probabilities of observing the different FAM reported body signs in each state (emission 

probabilities) and the probabilities of switching from one state to another (transition probabilities). 

Emission probabilities were chosen to reflect observations previously made in studies that tested for 

ovulation with LH tests or ultrasounds6,8,27, while transition probabilities were chosen in a quasi-uniform 

manner (Suppl. Mat.). The ovulation estimations were robust to changes in transition probabilities but 

not to variations in emission probabilities (Fig S6, SI), indicating that this simple framework is suitable 

to detect ovulations in cycles of any length, and potentially including pregnancies, relying primarily on 

users’ observations. 

Once the model was defined, the Viterbi and the Backward-Forward algorithms42 were used to calculate 

the most probable state sequence for each cycle (Suppl. Mat.) and thus to estimate ovulation timing, i.e. 

the most likely day of the cycle in which the HMM is in the state “ovulation”. An uncertainty of the 

estimation has also been computed as the standard deviation of the distribution of probabilities for the 

state ‘ovulation’, which can be interpreted as the confidence interval in days for the time of ovulation 

estimation (Suppl. Mat.). Finally, a confidence score was defined to account for missing observations 

and variation in temperature taking time in a window of ~5 days around the estimated ovulation day 

(Suppl. Mat.). 
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HMM states 

The 10 states, defined as a discretization of the hormonal evolution across the cycle (further details in 

Suppl. Mat.), are: 

HM: onset of the menses and the heavy/medium flow of fresh blood; 

LM: days of light bleeding or spotting that conclude menstruations; 

LE: Low Estrogen; 

HE: High Estrogen; 

Ovu: Ovulation ; 

Rise: Temperature rise associated with rise in progesterone production; 

HP: High Progesterone; 

EP: Estrogen Peak in luteal phase;  

LP: Low Progesterone; 

End: Artificial state for the end of each cycle.  
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Tables and table legends 

 
Table 1: number of observations, cycles and users 

 
 Total # of 

users 
Total # of 
cycles 

Total # of 
days of 
observations 

Avg # of 
cycles per 
users 

Fraction of 
full dataset 
(wrt # of 
users) 

Fraction of 
full dataset 
(wrt # of 
cycles) 

Fraction of 
full dataset 
(wrt # of 
observations) 

Sympto Full dataset   13 674   79 535  1 622 270 5.82    

Standard cycles   5 860   39 896   949 358 6.81 43% 50% 59% 

Cycles with reliable 
ovulation estimation 

  5 116   28 453   670 989 5.56 37% 36% 41% 

Kindara Full dataset   199 293  2 652 889  32 053 183 13.31    

Standard cycles   125 170   719 182  15 987 512 5.75 63% 27% 50% 

Cycles with reliable 
ovulation estimation 

  27 378   80 708  2 248 666 2.95 14% 3% 7% 

Total Full dataset   212 967  2 732 424  33 675 453 12.83    

Standard cycles   131 030   759 078  16 936 870 5.79 62% 28% 50% 

Cycles with reliable 
ovulation estimation 

  32 494   109 161  2 919 655 3.36 15% 4% 9% 

 
Table 1: Number of users, cycles and days of observations. In a single day, a user can log up to 7 
observations, i.e. one in each of the tracking categories available to users, see Table 2. 
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Table 2: Reported observations 
 
 Sympto Kindara 

type unit/categories max precision / 
subcategories 

unit/categories max precision / 
subcategories 

BBT Celsius 0.05 Fahrenheit 0.01 

BBT time daytime 1/2h daytime minute 

questionable 
temp 

(not recorded)  logical   

mucus 
  

NA   NA   

no mucus  no mucus   

little amounts of creamy mucus or not 
very stretchable mucus 

 creamy little/medium/lots 

large amounts of egg-white like, watery, 
very stretchable mucus 

 egg-white like little/medium/lots 

  watery little/medium/lots 

 sticky mucus   sticky little/medium/lots 

cervix 
  

NA  height low/medium/high 

closed, firm, low  firmness firm/medium/soft 

medium   openness closed/medium/open 

open, soft, high       

vaginal 
sensation 
  

NA   NA   

dry   dry   

wet   dry sticky   

very wet   wet moist   

    wet lubricate   

sex 
  

protected   protected   

unprotected   unprotected   

   withdrawal   

    insemination   

 
Table 2: Tracking options available to users of the Sympto and Kindara app. Kindara offers more 
granularity and categories for reporting mucus, cervix and vaginal sensation. Provided that they 
primarily market users who wish to achieve pregnancy, they also offer the option to track insemination. 
Sympto considers withdrawal as unprotected sex and does not offer that option to their user. 
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Table 3: users demographics 
 
 Mean ± standard 

deviation 
Fraction of users with 
available information (%) 

Age 29.9 ± 6.4 (Sympto) 
29.2 ± 5.9 (Kindara) 

81 (Sympto) 
13 (Kindara) 

Age at Menarche 12.9 ± 1.6 (Sympto) 79 (Sympto) 
Height (in cm) 161 ± 21(Sympto) 80 (Sympto) 
Weight (in kg) 62 ± 13 (Sympto) 80 (Sympto) 
BMI 23 ± 5 (Sympto) 80 (Sympto) 
 
Table 3: Users demographic information. 
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Figures and figure legends 

 

 
 

Figure 1: Menstrual history of two app users 
 

Menstrual history of two long term Kindara (A) and Sympto (B) users. Time is shown in years as relative to the first 

observation of each user. Kindara user is seeking to achieve pregnancy and show a long anovulatory episode during which 

her overall temperature profile is lower. She returns to more regular, ovulatory cycles in her last year of tracking, as indicated 

by the bleeding frequency and the temperature profiles. The Sympto user has used the app to avoid pregnancy and observe 

her cycle for almost 3 years, before trying to conceive, which she likely achieves after 9 cycles (her reported reproductive 

objective switches from “contraception” to “conception” – line “any tracking” at the bottom). 9 months later, the user reports 

bleeding, which likely indicates post-partum bleeding (lochia).  After another 9 months, probably as she stops breastfeeding, 

she logs menstrual observations and returns to using the app to avoid pregnancy.  
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Figure 2: Demographics and tracking behavior of users 

 
(A) Users’ age at registration (left), reported height (middle-left), weight (middle-right) and menarche age of users (right). 
  
(B) Cycle selection flowchart. Methods provide extensive description of the inclusion/exclusion criteria. Standard cycles are 
finished, complete cycles, typical of a non-pregnant, non-peri-menopausal, non-nursing user, that have at least 8 days with 
FAM observations (Kindara) or that are detected as ovulatory cycles according to the Sympto implementation of the STM 
rules. Cycles with reliable ovulation estimation are cycles for which the ovulation day could be reliably estimated by the 
HMM framework developed for this study (Methods). 
 
(C) Cycle-specific tracking frequencies (top: Sympto, bottom:  Kindara). 39,896 (Sympto) + 719,182 (Kindara) standard 
cycles were used (Methods). Dashed lines indicate median values. 
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Figure 3: User observations overview 
 

(A) Examples of observations: the 5th tracked cycle (top) and 66th cycle (middle) cycle of two different 

Sympto users. Observations of the 19th cycle (bottom) of a Kindara user.  

(B) ΔBBT (variation from the 25% percentile of temperature in this cycle) values are shown on each day 

of the cycle, from the end of the cycle. Opacity of the dots reflects the number of observations. The 

median value: thick blue line. 10, 25, 75 and 90 percentiles of ΔBBT: translucent blue bands.   
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(C) Frequency of bleeding observations, for the end (left) and beginning (right) of cycles. The Sympto 

app only starts a new cycle on the first recording of heavy bleeding (score 3/3, dark red) after a post-

ovulatory infertile phase, thus all cycles present heavy bleeding at the start of the cycle (hashed dark red 

bar).  

(D) Frequency of cervical mucus observations from the end of cycles (top: S, bottom: K). (Kindara) 

Little quantity of watery mucus (dashed line) and little or medium quantity of egg-white like mucus 

(solid line) are considered as ‘low fertility’ mucus (light blue) while large quantities of egg-white like 

and medium or large quantities of watery mucus are considered as ‘high fertility’ mucus (dark blue) (B-

D) 39,896 (S) + 719,182 (K) standard cycles were used (Methods) 
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Figure 4: Modeling framework for the estimation of ovulation and menstrual states 
 

(A) Modeling framework for the estimation of ovulation timing. (Top) Schematics of the 10-states HMM which discretizes 

the menstrual hormonal events (HM: Heavy Menses, LM: Light Menses, LE: Low Estrogen, HE: high Estrogen, Ovu: 

Ovulation, Rise: progesterone/BTT Rise, HP: High Progesterone, EP: Estrogen Peak in luteal phase, LP: Low Progesterone). 

Arrows indicate possible state-transition; arrow thickness is not representative of actual transition probabilities (Methods). 

(Bottom) Examples of menstrual state estimation for the 2rd and 3rd cycle of 2 users. (Top of each chart) Original user 

observations as in Fig. 2A. (Middle of each chart) Colored squares HMM-labeled line) represent the most likely sequence of 

HMM states given the observations (Methods). (Bottom of each chart) Normalized probabilities of each state on each day of 

the cycle (Methods).  

(B) (Top) Cycle length and estimated ovulation day. (Bottom) Luteal phase duration, computed as the number of days 
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between the ovulation day (excluded) and the1st day of the next cycle (excluded). Vertical lines indicate median values. 

80,708 (K) + 24,119 (S) cycles with reliable ovulation estimation were used (Methods).  

(C) Average estimated state probabilities by cycle-day counting from estimated ovulation aggregated by total cycle length (in 

bins of 3 units) for all cycles with reliable ovulation estimation. 
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