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Abstract  

For most women of reproductive age, assessing menstrual health and fertility usually involves 

regular visits to a gynecologist or another clinician. While these exams provide critical 

information on an individual’s reproductive health status, they typically rely on personal 

memory, and the results are rarely, if ever, assessed at the population level. In recent years, 

mobile apps for menstrual tracking have become very popular, allowing us to evaluate the 

accuracy, reliability and tracking frequency of millions of self-observations, thereby providing 

an unparalleled view, both in detail and scale, on menstrual health and its evolution. We acquired 

self-observation data from two mobile apps dedicated to the application of the sympto-thermal 

fertility awareness method, resulting in a dataset of more than 30 million days of observations 

from over 2.7 million cycles, where up to 40% of the cycles in which users were seeking 

pregnancy had recordings every single day. We used a statistical and modeling approach to 

describe the collected data and investigate ovulation timing. We found that only 24% of 

ovulations occur at days 14 to 15, that ~20% of luteal phases last for only 10 days or shorter, and 

that pre-menstrual light bleeding is associated with earlier temperature drop in the late luteal 

phase. The digital epidemiology approach presented here can help to lead to a better 

understanding of menstrual health and its connection to women’s health overall, which has 

historically been severely understudied. 
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Significance statement 

Over 200 million women track their menstrual cycles using mobile phone apps, but it is unclear 

if these digitally reported data can inform on menstrual health or fertility at the population level. 

Here we acquired and presented self-observation data of over 2.7 million cycles from two 

fertility awareness apps. We used a statistical and modeling approach to evaluate the accuracy, 

reliability and tracking frequency of millions of self-observations. As up to 40% of the cycles in 

which users were seeking pregnancy had recordings every single day, mobile self-tracking 

provides a high resolution and long-term view on individual women’s patterns, with a strong 

potential for improved clinical decision making. 
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Main Text:  

A broad diversity of fertility awareness methods (FAMs) has been developed in the past century 

(1, 2), primarily designed to help couples manage fertility and family planning. Modern methods 

developed in the last quarter of the 20th century take advantage of the precise description of 

menstrual variation of the basal body temperature (BBT) or waking temperature, cervical mucus 

quality and quantity, vaginal sensation, and cervical position (3–6). These methods have defined 

a set of rules that allows the identification of the fertile window around ovulation, so that couples 

can adapt their sexual behavior according to their reproductive objectives (7–9). The sympto-

thermal method, which combines BBT and cervical mucus observations, is arguably amongst the 

most reliable FAM for family planning (1, 2, 4, 10). Recently, a number of mobile apps have 

been developed by private organizations to facilitate FAM tracking. Some of these apps provide 

their users with automatized interpretation with regard to the opening and closing of the fertility 

window (11). Over the past few years, an increasing number of women, estimated at over 200 

million (12), have started using these apps, contributing to the accumulation of menstrual-related 

data from a diverse population of users at different stage of life (Fig. 1A).  

We were interested in evaluating the potential of the collected data for the assessment of 

menstrual health, both at the individual level and at the population level, and to help enable 

better clinical-decision-making processes. We obtained two representative datasets from the apps 

Kindara (K) and Sympto (S) (11) (Fig. S1A,B, Table S1). Both apps offer similar FAM tracking 

options but differ in their design and user experience (Fig. S1AB, Table S2). Some of the key 

differences are (i) the automatic- (S) vs user- (K) interpretation of observations, (ii) the per-cycle 

(S) vs per-user (K) definition of fertility goals users wish to achieve, (iii) the criteria for the onset 

of a new cycle, i.e. fresh bleeding after ovulation (S) vs self-assessed or automatic (K), and (iv) 

the precision at which users can report their observations (SI). 
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We investigated the differences in typical use and tracking behavior of regular FAM 

users during their usual cycles, which we refer to as “standard cycles” (Methods). For an 

idealized ~28-day cycle, FAM-relevant body signs need to be recorded for 8-12 days of each 

cycle, i.e. a tracking frequency of ~ 43%. We found, however, that most regular users report their 

observations for over 16 days per cycle. For cycles in which users choose to record sexual 

intercourse (65% (S) – 75% (K) of standard cycles), tracking frequency is increased, with over 

40% of cycles being tracked every single day when seeking pregnancy (Fig. 1B, S1D), 

sometimes for long intervals (Fig. 1C). 

Confident that users regularly logged observations (Fig. 1B) during standard cycles, we 

sought to characterize general patterns in the observations and frequency of the different FAM 

body signs. As cycle durations vary by several days, as illustrated in Fig. 2A, and given that the 

duration of the luteal phase (after ovulation) has been shown to vary less than the follicular phase 

(before ovulation) (13, 14), we chose to show the ovulation-related observations (BBT, mucus, 

cervix, vaginal sensation) from the end of each cycle (Fig. 2B-D, S2). Consistently with previous 

observations on a cohort of much smaller size (15), we observed a clear shift of about 

0.36°C/0.7°F in BBT between the mid-follicular phase and the mid-luteal phase (Fig 2B, S2A). 

BBT showed a decrease at the end of the cycle, as light bleeding or spotting was reported (Fig. 

2BC).  

In an ovulatory cycle, it is well established that cervical mucus is produced in higher 

quantity and with a higher stretchiness in the days leading up to ovulation (5, 6, 9, 16), which 

seems to be observed by users tracking their cervical mucus (85-90% (S) and 40-45% (K) of 

cycles) (Fig. 2D).  

Previous studies have shown that the combination of BBT and cervical mucus variations 
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were reliable, although not perfect, proxies for the detection of ovulation (8, 16–18). We 

therefore decided to define a mathematical framework (HMM) to derive an estimate of the most 

likely day of ovulation with reliability indicators to reflect the uncertainty of conflicting or 

unexpected observation patterns (Fig. 3A, S3-5, Methods). 

Based on these estimations, we could compare the distribution of cycle length to those of 

estimated day of ovulation and of luteal phase duration (Fig. 3B) for cycles with reliable 

ovulation estimation (109,161 cycles, Methods). We observed an asymmetrical distribution of 

cycle length around the typical 27 to 28 days, with a heavy tail on longer cycles. We found a 

similar asymmetrical distribution for follicular phase duration (or ovulation day), with a median 

value of 16 days, and 90% of ovulations occurring between day 10 and day 24. Only ~24% of 

ovulations occurred on days 14 to 15 of the cycle.  

Luteal phase duration also displayed an asymmetrical distribution, but with a skew for 

smaller values and presenting a smaller standard deviation (Fig. 2BC, S4B). Median values were 

12 (K) and 13 (S) days, which is in line with a previous study that used fertility monitors (19) but 

shorter than values reported in studies that used LH peak for timing of ovulation (14, 20). About 

35% of cycles have a luteal phase duration of 12 to 13 days, while ~20% of cycles had a luteal 

phase duration smaller than or equal to 10 days, which represents a higher proportion than 

reported in a previous epidemiological study (14). We also observed differences between the 

distributions obtained from the two different apps. These differences might be due to biases 

found in the user population, especially for users seeking pregnancy that could be at higher risk 

of sub-fertility if we assume they start tracking after they have already tried to get pregnant for 

several months (Fig S4C). 
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Intrigued by the temporal profile of BBT in the late luteal phase (Fig. 2B), and because 

we observed many cases in which early temperature drops were concomitant with pre-menstrual 

bleeding such as illustrated in Fig. 4A, we further investigated the variations in the timing of the 

end-of-cycle temperature drop and of pre-menstrual bleeding. We defined 4 categories of cycles 

based on the intensity of pre-menstrual bleeding, including a “no bleeding reported” category. 

We found that the greater the pre-menstrual bleeding, the earlier the temperature drop and the 

lower the temperature in the mid/late-luteal phase (Fig. 4B, significantly different BBT 

distributions, t-test, p < 0.05). These observations are consistent with the findings that BBT is 

positively regulated by progesterone and negatively by estrogen (21). Decreasing BBT would 

thus reflect decreasing progesterone levels, which is critical for the timing of endometrial 

shedding (i.e., the menses). These observations could also provide information on how users 

should report the first day of their period and if light bleeding or spotting should be considered as 

part of their period, therefore shortening the luteal phase by another 1 or 2 days. 

This study’s goal was to explore the suitability of datasets collected through two mobile 

applications (Kindara and Sympto) for the assessment of menstrual health in general, both at the 

individual level and at the population level. The most obvious potential limitation of this study 

comes from the origin of the data: a self-selected possibly biased population, limited medical and 

general information on users, irregular observation patterns and little control on assessing the 

validity of the observations, in particular with regard to cervical mucus tracking. While the 

tracking frequency limitation can be alleviated through strict selection of users and cycles 

(Methods), all other limiting factors might have introduced biases in the present analysis. 

Prospective studies on selected cohorts with appropriate follow-up and information provided to 

users will provide higher quality data, which could then be used for comparison.  
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 Based on the current findings, we suggest that self-tracking of FAM-related body signs 

provides an affordable means to evaluate the status and evolution of menstrual health. These 

long term and yet very precise recordings support the idea that the menstrual cycle, like other 

biological rhythms, is a vital sign whose variations inform about overall health status (22, 23). 

The digital epidemiology approach (24), where patients collect data themselves through digital 

means, can in this context represent a powerful method to investigate menstrual health and its 

connection to women’s health at the population level (25) in a field that has historically been 

severely understudied (26). We believe that users of such applications probably already have an 

increased awareness of their cycles, and this study shows that these digitally self-tracked 

observations present an unprecedented opportunity to facilitate the dialog between patients and 

their clinicians, helping them to make informed decisions based on quantified indicators. The 

current and future development of evidence-based digital tools for menstrual health monitoring 

could positively impact women’s health, particularly in areas where access to healthcare is 

limited.  
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Methods 

Extended Materials and Methods can be found in the Supplementary Information (SI). 

Data acquisition 

We obtained two de-identified datasets from the Symptotherm foundation (www.sympto.org) 

and Kindara (www.kindara.com) upon receiving ethical approval from the Canton Geneva 

ethical commission (CCER Genève, Switzerland), study number 2017-02108. Kindara provided 

a representative sample of their overall pool of users with at least 4 logged cycles while Sympto 

provided observations from their long-term users and users who provided their weight, height 

and menarche age.  

 

Selection criteria for users and cycles 

Standard cycles (Sympto: 39,896 cycles; Kindara: 719,182 cycles) denote usual cycles of regular 

users of the apps. Criteria summary:  

- (S&K) not the first cycle of a user nor an on-going cycle  

- (S&K) observation gaps were no longer than 15 days within a given cycle 

- (S&K) at least one FAM body sign (BBT or cervical mucus or cervix position) was recorded 

- (S&K) no mid-cycle period-like bleeding was detected when the cycle was longer than 40 days 

- (S) defined as ovulatory cycles by the STM algorithm of Sympto, i.e. in which the fertile 

window could be closed. 

- (K) at least 8 FAM observations were reported 

- (S) no breastfeeding was reported or peri-menopause was declared 

- (K) cycle length was at least 4 days longer than the total number of days in which bleeding was 

reported 

Cycles with reliable ovulation estimation (Sympto: 28,453 cycles; Kindara: 80,708) 
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Criteria summary: 

- standard cycles 

- detected temperature shift was at least 0.15C (S) or 0.27F (K) (SI). 

- the uncertainty on the ovulation estimation was lower than ±1.5 day (SI). 

- the confidence score, which is related to acceptable amount of missing data in the ovulatory 

period, was equal or higher than 75% (SI). 

 

Observations decoding and ovulation timing estimation with HMM 

The FAM body-signs are considered to reflect the hormonal changes orchestrating the menstrual 

cycles. We were interested in understanding which cycles were reported with observations that 

were consistent with previous literature description and for which it was thus possible to estimate 

timing of ovulation. Hidden Markov Models (HMM) are one of the most suitable mathematical 

frameworks due to its ability to uncover, from observations, latent phenomenon, which are here 

the cascade of hormonal events across the menstrual cycle. Briefly, we defined a 10-states 

HMM, in which each state is a particular phase of the menstrual cycle (Fig. 3A top, S3A, SI), 

and used decoding algorithms (Viterbi – Backward-Forward) to estimate the ovulation time, the 

uncertainty on this estimation, and a confidence score that accounts for missing observation and 

variation in temperature taking times.  

We then established a set of stringent criteria on the uncertainty of the ovulation estimation (≤ 

±1.5 days), the magnitude of the temperature shift (≥ 0.15 C) and the confidence score of the 

observations (≥ 0.75) to discriminate between cycles for which the estimations could be trusted 

(cycles with reliable ovulation estimation) and those where the observations did not allow for a 

reliable estimation of the ovulation day (Fig S4A, SI). These strict criteria lead to the exclusion 
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of ~40% (Sympto) and ~ 89% (Kindara) of the standard cycles that were initially selected. In 

total, 28,453 (Sympto) + 80,708 (Kindara) cycles with reliable ovulation estimation have been 

used for the subsequent analyses (SI).  

 

Model description 

The Hidden Markov Model (HMM) we defined describes a discretization in 10 states of the 

successive hormonal events throughout an ovulatory menstrual cycle. The HMM definition also 

includes the probabilities of observing the different FAM reported body signs in each state 

(emission probabilities) and the probabilities of switching from one state to another (transition 

probabilities). Emission probabilities were chosen to reflect observations previously made in 

studies that tested for ovulation with LH tests or ultrasounds (6, 8, 16), while transition 

probabilities were chosen in a quasi-uniform manner (SI). We found that the ovulation 

estimations were robust to changes in transition probabilities but not to variations in emission 

probabilities (Fig S5, SI), indicating that this simple framework is suitable to detect ovulations in 

cycles of any length, and potentially including pregnancies, relying primarily on users’ 

observations. 

Once the model was defined, we used the Viterbi and the Backward-Forward algorithms (27) to 

calculate the most probable state sequence for each cycle (SI) and thus to have an estimation of 

ovulation timing, i.e. the most likely day of the cycle in which the HMM is in the state 

“ovulation”. We also computed the uncertainty of the estimation, i.e. the standard deviation of 

the distribution of probabilities for the state ‘ovulation’, which can be interpreted as the 

confidence interval in days for the time of ovulation estimation (SI). We also defined a 
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confidence score that accounts for missing observations and variation in temperature taking time 

in a window of ~5 days around the estimated ovulation day (SI). 

 

HMM states 

We defined 10 states as a discretization of the hormonal evolution across the cycle (further 

details in SI) 

HM: onset of the menses and the heavy/medium flow of fresh blood.  

LM: days of light bleeding or spotting that conclude menstruations. 

LE: Low Estrogen.  

HE: High estrogen (HE 

Ovu: Ovulation  

Rise: Temperature rise associated with rise in progesterone production. 

HP: High Progesterone  

EP: Estrogen Peak in luteal phase.  

LP: Low Progesterone.  

End: Artificial state for the end of each cycle.  
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the raw datasets. Aggregated values necessary for the production of the figures are available at 
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1 This repository is currently private and will be made public at publication. 
The datasets have been submitted as a compressed zip file together with this 
manuscript. 
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Figures and figure legends 

 

 
 
Figure 1: Demographics and tracking behavior of users 

(A) Users’ age at registration (top-left), reported height (top-right), weight (bottom-right) and menarche age of 

users.  

(B) Cycle-specific tracking frequencies (top: Sympto, bottom:  Kindara). 39,896 (Sympto) + 719,182 (Kindara) 

standard cycles were used (Methods). Dashed lines indicate median values. 

(C) Menstrual history of two long term Kindara (top) and Sympto (bottom) users. Time is shown in years as relative 
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to the first observation of each user. Top user is seeking to achieve pregnancy and show a long anovulatory episode 

during which her overall temperature profile is lower. She returns to more regular, ovulatory cycles in her last year 

of tracking, as indicated by the bleeding frequency and the temperature profiles. The bottom user has used the app to 

avoid pregnancy and observe her cycle for almost 3 years, before trying to conceive, which she likely achieves after 

9 cycles (her reported reproductive objective switches from “contraception” to “conception” – line “any tracking” at 

the bottom). 9 months later, the user reports bleeding, which likely indicates post-partum bleeding (lochia).  After 

another 9 months, probably as she stops breastfeeding, she logs menstrual observations and returns to using the app 

to avoid pregnancy.  
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Figure 2: User observations overview 

(A) Examples of observations: the 5th tracked cycle (top) and 66th cycle (middle) cycle of two 

different Sympto users. Observations of the 19th cycle (bottom) of a Kindara user.  

(B) ΔBBT (variation from the 25% percentile of temperature in this cycle) values are shown on 

each day of the cycle, from the end of the cycle. Opacity of the dots reflects the number of 

observations. The median value: thick blue line. 10, 25, 75 and 90 percentiles of ΔBBT: 
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translucent blue bands.   

(C) Frequency of bleeding observations, for the end (left) and beginning (right) of cycles. The 

Sympto app only starts a new cycle on the first recording of heavy bleeding (score 3/3, dark red) 

after a post-ovulatory infertile phase, thus all cycles present heavy bleeding at the start of the 

cycle (hashed dark red bar).  

(D) Frequency of cervical mucus observations from the end of cycles (top: S, bottom: K). 

(Kindara) Little quantity of watery mucus (dashed line) and little or medium quantity of egg-

white like mucus (solid line) are considered as ‘low fertility’ mucus (light blue) while large 

quantities of egg-white like and medium or large quantities of watery mucus are considered as 

‘high fertility’ mucus (dark blue) (B-D) 39,896 (S) + 719,182 (K) standard cycles were used 

(Methods) 
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Figure 3: Modeling framework for the estimation of ovulation and menstrual states 

(A) Modeling framework for the estimation of ovulation timing. (Top) Schematics of the 10-states HMM which 

discretizes the menstrual hormonal events (HM: Heavy Menses, LM: Light Menses, LE: Low Estrogen, HE: high 

Estrogen, Ovu: Ovulation, Rise: progesterone/BTT Rise, HP: High Progesterone, EP: Estrogen Peak in luteal phase, 

LP: Low Progesterone). Arrows indicate possible state-transition; arrow thickness is not representative of actual 

transition probabilities (Methods). (Bottom) Examples of menstrual state estimation for the 2rd and 3rd cycle of 2 

users. (Top of each chart) Original user observations as in Fig. 2A. (Middle of each chart) Colored squares HMM-

labeled line) represent the most likely sequence of HMM states given the observations (Methods). (Bottom of each 

chart) Normalized probabilities of each state on each day of the cycle (Methods).  

(B) (Top) Cycle length and estimated ovulation day. (Bottom) Luteal phase duration, computed as the number of 
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days between the ovulation day (excluded) and the1st day of the next cycle (excluded). Vertical lines indicate 

median values. 80,708 (K) + 24,119 (S) cycles with reliable ovulation estimation were used (Methods).  

(C) Average estimated state probabilities by cycle-day counting from estimated ovulation aggregated by total cycle 

length (in bins of 3 units) for all cycles with reliable ovulation estimation.  
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Figure 4: Temperature profiles and bleeding at the end of cycle 

(A) 2nd cycle of a user with an estimated ovulation on day 11, exhibiting a slow temperature decrease throughout 

the luteal phase (top) and corresponding HMM most likely states and probabilities (bottom). 

(B) Average normalized temperature profiles for cycles in which no (blue), light (light red), medium (medium red) 

or heavier (dark red) bleeding was observed at the end of cycles. Bleeding score is computed as the sum of reported 

bleeding within the last 10 days of the cycle (spotting = 0.5 in Kindara). Temperature is normalized by the 25% 

lowest percentile of that cycle (as in Fig 2B). Stars indicate significant differences in distributions between the ‘no 

bleeding’ group and the bleeding groups (t-test, p < 0.05, bleeding group colors). 
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