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ABSTRACT  

Context-dependent changes in genetic vulnerabilities are important to understand the 

wiring of cellular pathways and variations in different environmental conditions. 

However, methodological frameworks to investigate the plasticity of genetic networks 

over time or in response to external stresses are lacking. To analyze the plasticity of 

genetic interactions, we performed an arrayed combinatorial RNAi screen in Drosophila 

cells at multiple time points and after pharmacological inhibition of Ras signaling activity. 

Using an image-based morphology assay to capture a broad range of phenotypes, we 

assessed the effect of 12768 pairwise RNAi perturbations in six different conditions. We 

found that genetic interactions form in different trajectories and developed an algorithm, 

termed MODIFI, to analyze how genetic interactions rewire over time. Using this 

framework, we identified more statistically significant interactions compared to end-

points assays and further observed several examples of context-dependent crosstalk 

between signaling pathways such as an interaction between Ras and Rel which is 

dependent on MEK activity. 
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INTRODUCTION 

Gene-gene interactions, the epistatic influences of one gene’s effect on the function of another 

gene, have widespread effects on cellular and organismal phenotypes – ranging from fitness 

defects in unicellular organisms to interactions between germline and somatic variants in cancer 

(Baryshnikova et al., 2013; Billmann and Boutros, 2017; Boone et al., 2007; Burgess, 2016; 

Carter et al., 2017; Ideker and Krogan, 2012; Mani et al., 2008; Phillips, 2008; Taylor and 

Ehrenreich, 2015). In past studies, statistical genetic interactions (also simply referred to as 

genetic interactions) have been defined as an unexpected phenotypic outcome observed upon 

simultaneous perturbations (or knock-outs) of two genes that cannot be explained from the 

genes’ individual effects (Beltrao et al., 2010; Fisher, 1930; Mani et al., 2008).  

Genetic interactions have been discovered using pairwise perturbations of genes, a 

strategy which has been experimentally used at large scale in yeast (Collins et al., 2007; 

Costanzo et al., 2010; Fiedler et al., 2009; Tong et al., 2001a), C. elegans (Lehner et al., 2006), 

Drosophila (Fischer et al., 2015; Horn et al., 2011), E. coli (Babu et al., 2011) and human cells 

(Kampmann et al., 2013; Laufer et al., 2013; Roguev et al., 2013; Shen et al., 2017). To create 

genetic interaction maps, these studies systematically identified positive (e.g. better fitness than 

expected) or negative genetic interactions which can then be used to generate ‘genetic 

interaction profiles’ for each gene. Several studies have shown that profile similarities are a 

powerful predictor for gene function and they have been used to create maps of cellular 

processes at a genome-wide scale (Costanzo et al., 2010, 2016; Fischer et al., 2015; Pan et al., 

2018; Rauscher et al., 2018; Tsherniak et al., 2017; Wang et al., 2017; Yu et al., 2016).  

In addition to univariate phenotypes, such as fitness and growth phenotypes of cells or 

organisms, genetic interactions can be measured for a broader spectrum of phenotypes by 

microscopy and image-analysis (Horn et al., 2011; Laufer et al., 2013; Roguev et al., 2013). 

Importantly, multi-variate phenotypes further opened the possibility to predict the epistatic 

relationship of components in genetic networks by deriving the direction of specific genetic 

interactions (Fischer et al., 2015).  

Most studies of genetic interactions have been performed under ‘static’ environmental 

conditions. In contrast, several studies have analyzed the impact of environmental changes on 

genetic interaction networks. This way, they investigated how interactions differ between 

steady states in different environmental conditions (Bandyopadhyay et al., 2010; Billmann et 

al., 2017; Díaz-Mejía et al., 2018; Guénolé et al., 2013; Martin et al., 2015; St Onge et al., 2007; 

Wong et al., 2015). For example, Bandyopadhyay et al. (2010) defined static, positive and 
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negative differential interactions that vary under changing environmental conditions. And, 

Billmann et al. (2017) used extrinsic and intrinsic changes of Wnt signaling in cultured 

Drosophila cells to map differential genetic interactions using a pathway-directed phenotypic 

readout. These studies showed that upon changes in the environment widespread changes in 

genetic interactions occur.  

Upon treatment, e.g. with small molecules, genetic interactions change over time due to 

time-dependent depletion of components or other changes in the underlying composition of its 

molecular constituents. However, to date little is known about how genetic interaction networks 

‘rewire’ over time and models for their analysis as well as proof-of-principle data sets are 

missing. In this study, we devised an experimental and analytical approach to gain insights into 

higher order (e.g. gene-gene-drug) differential interactions. To analyze how they manifest over 

time we used an image-based, multi-variate phenotypic readout. By combining gene 

combinatorial RNAi with a MEK inhibitor or control treatment, we measured higher order 

chemo-genetic interactions in Drosophila S2 cells.  

In this study, we first performed image-based genome-wide RNAi screens to identify a 

gene set that modulates the phenotypic profiles upon MEK inhibition. To construct the 

differential genetic interaction network, we then created a double-perturbation matrix and 

measured the effect of 12768 gene-gene perturbations under time and treatment differential 

conditions. These perturbations span a previously defined set of 168 x 76 genes and were 

characterized by 16 phenotypic features. Notably, we assessed how each differential interaction 

changes over time and used this information to construct maps of treatment-responsive 

biological modules. Differential interactions mapped the plasticity of Ras signaling and cross-

talk to other signaling pathways, such as Rel and Stat signaling. Our analyses should help to 

better understand the principles of interaction changes in higher order combinations of genetic 

perturbations. 
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RESULTS 

Ras signaling is an important oncogenic pathway and its upstream members Ras and EGFR 

family proteins are frequently mutated in cancer (Rodriguez-Viciana et al., 2005). MEK1/2 (the 

human ortholog of Dsor1) acts downstream of Ras and phosphorylates ERK1/2 (the human 

ortholog of rl) which itself phosphorylates many other proteins (e.g. ETS-family transcription 

factors) mediating mainly proliferative signals (Friedman et al., 2011). The topology of the Ras 

signaling pathway and its key components are largely conserved between human and 

Drosophila (Kolch, 2005; Perrimon, 1994; Wassarman et al., 1995). In Drosophila, the Ras-

pathway has been implicated in the growth of wing imaginal discs, differentiation of 

photoreceptors and hemocyte proliferation and is one of the main mechanisms controlling cell 

proliferation (Asha et al., 2003; D’Neill and Rubin; Prober and Edgar, 2000; Wassarman et al., 

1995). Willoughby et al. (2013) previously compared the effect of multiple MEK-small 

molecule inhibitors in vivo and S2 cell culture and showed that all but one inhibitor significantly 

reduced the levels of phosphorylated rl.  

To recover a broad spectrum of cellular phenotypes upon MEK-inhibition, we used an 

adapted cell morphology assay and automated image analysis in Drosophila cells (Breinig et 

al., 2015; Fischer et al., 2015; Horn et al., 2011). In this assay, we perturbed cells by small 

molecule treatment or genetic perturbagens, before we stopped the cell-based assay by fixation 

and staining for DNA (visualizing the nucleus), actin (visualizing cell adhesion and 

cytoskeleton organization) and a-tubulin (visualizing cell cycle dynamics). Automated high-

throughput microscopy combined with a real-time image analysis framework then scored 

phenotypes on a single-cell level. The resulting multi-variate phenotypic feature vector 

describes the quantitative phenotype resulting from the perturbation (Figure 1A, see Methods), 

also referred to as a phenoprint.  

We confirmed the suitability of this multi-variate cell-based assay to score compound 

induced phenotypes without the need to measure its direct biochemical effect (such as rl 

phosphorylation). We further used the assay to determine the ED50 of the MEK-inhibitor PD-

0325901 on Dmel2 cells (Supplemental Figure S1). These experiments demonstrated that 

Dmel2 cells show a sustained phenotypic response towards PD-0325901. A high correlation 

(Pearson’s correlation coefficient [PCC]=0.81) between small molecule and RNAi perturbation 

of MEK indicates high compound specificity (Supplemental Figure S1). 
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A chemo-genetic screen identifies MEK inhibitor-sensitive genes 

As combinatorial gene perturbation screens scale poorly with the number of genes, we first 

sought genes which phenotypes change in a drug-dependent manner. Previous studies have 

found that gene-gene interactions are enriched for candidate genes that display a phenotype 

itself (Deshpande et al., 2017; Koch et al., 2017). Hence, the identification of genes showing a 

phenotype as a single knockdown will in turn likely enrich combinatorial screens for genes that 

form higher order interactions. To map gene-gene interactions sensitive to MEK inhibition, we 

performed multiple genome-wide RNAi screens under different environmental conditions 

(Figure 1A).  

We used the HD3 RNAi library, which targets 13617 genes (unique FlyBase IDs) in the 

Drosophila genome with two independent double-stranded (ds) RNAs (see Methods). We 

reverse transfected Dmel2 cells with this genome-wide library in 384-well plates and treated 

them after 24 h with the PD-0325901 or DMSO as a control. After 3 additional days, we fixed, 

stained and imaged the cells. We collected data from 360 384-well micro well plates with four 

fields of view per well in three fluorescence channels, generating a dataset of 1.6 Mio. images. 

Screens were conducted in biological replicates. We then used automated image analysis to 

segment ~10000 cells per well and calculated features for individual cells’ nuclear and 

cytoplasm shape, texture, intensity profiles (see Methods, Breinig et al., 2015; Fischer et al., 

2015a; Laufer et al., 2013a). 38 phenotypic features that displayed a high correlation between 

biological replicates were used for further analysis (Supplementary Table S1, replicate 

correlation PCC>0.5).  
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Figure 1. Measuring chemo-genetic interactions by high throughput imaging and RNAi. (A) Schematic representation of the 
workflow. A genome-wide RNAi library covering 13617 unique Drosophila genes with two dsRNA constructs was screened 
in the presence of DMSO (control) or MEKi (PD-0325901) at 1.5 nM. Fixed cells were stained for DNA, actin and a-tubulin 
and imaged at 20x magnification at a resolution of 2048x2048 pixels. Phenotypes were analyzed by automated image analysis 
of cell morphology on a single-cell level using an R/EBImage pipeline. Genes were rank ordered for co-RNAi screening by 
dsRNA score (quality and differential phenotype) and gene annotations (unknown genes favored). (B) Well-level correlation 
of biological replicates. Shown are B-score normalized cell count data (left, PCC=0.64) and nuclear texture scores (right, 
PCC=0.82) exemplarily for the control condition. One outlier was flagged and not plotted for nuclear texture. (C) Comparison 
of induced phenotypes by correlation of feature vectors (Pearson correlation coefficient [PCC] and asymptotic p-value). 
Knockdown of Dsor1 and drk, two known positive regulators of Ras signaling resulted in high (PCC=0.91) positive correlation. 
Knockdown of RasGAP1 (neg. regulator of Ras) and Dsor1 induced inverse correlating feature vectors (PCC=-0.78). dsRNA 
reagents directed against the same gene show a high level of similarity (RasGAP1 design #1 vs. #2, PCC=0.88) (D) Feature 
vectors for selected genes regulating Ras signaling and protein translation. Hierarchical clustering groups genes into regulatory 
units, marked by similar feature profiles. Shown are average B-scores across replicates of 16 representative features. (E) 
Hierarchical clustered matrix of pairwise correlations. Pairwise PCC were calculated for all example genes in (D). Clustering 
genes by their pairwise correlation sorted them into groups of functionally related genes. All data show MEK inhibited 
condition, if not noted otherwise.  
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To assess the quality of our profiling assay we first analyzed overall reproducibility. For 

example, the screens showed a correlation between biological replicates of PCC=0.64 and 

PCC=0.82 for cell count and nuclear texture, respectively (Figure 1B). Phenotype feature 

vectors also reliably separated control RNAi treatments (RasGap1 [RASA3] vs. drk [GRB2], 

multi-variate Z’=0.695, Supplemental Figure S2). In addition, the multi-variate Z’ factor is 

significantly higher than univariate Z’ using cell count only (0.695 > 0.295, p<0.01, Zhang et 

al., 1999). We also found that the phenotypes produced by knockdown of known Ras pathway 

components Dsor1 (MEK1/2) and drk showed a high correlation (PCC=0.91, Figure 1C). 

Accordingly, knockdown of genes with antagonizing biological function like the negative 

regulator of Ras signaling RasGAP1 (RASAL3) and Dsor1 (Feldmann et al., 1999) resulted in 

phenotype vectors that inversely correlate (PCC=-0.78). dsRNA targeting the same gene were 

also highly reproducibly producing similar phenotypic vectors (e.g. PCCRasGAP1=0.88).  

Next, we calculated average phenotype vectors for the core Ras signaling cascade, its 

negative regulator RasGAP1 and genes involved in the translation machinery, as a control 

(Figure 1D). Hierarchical clustering recapitulated known functional relationships of Ras 

pathway components, whereas translational regulators show clearly distinct phenotype vectors 

(Figure 1E). These experiments demonstrated that the morphology assay is able to capture 

functional meaningful phenotype vectors for MEK inhibition, and robustly distinguishes 

control perturbations. It also groups functionally related or antagonistic genes into clusters of 

phenotypic similarity or dissimilarity, respectively. 

In order to generate a focused library to profile gene-gene interactions, we selected a set 

of 168 genes from these screens that showed: (i) high reproducibility between biological 

replicates, (ii) high correlation between sequence independent dsRNA reagents, (iii) 

measurable effects that deviate from the negative controls and (iv) differential phenotypes upon 

Dsor1 inhibition (see Supplemental Table S2). We also prioritized genes that were largely 

uncharacterized (see Methods). The resulting gene list for gene-gene interaction screening 

covers 168 target genes with highly reproducible phenoprints between biological replicates and 

dsRNA reagents (PCC>0.5) that are expressed in Dmel2 cells (log2 (RPKM+0.001) > 0) and 

show phenotypic differences between control and treated conditions. These genes also cover a 

number of signaling pathways including Ras signaling, innate immunity, Wnt signaling, mRNA 

splicing, protein translation, cell cycle regulation, Jak/STAT signaling and Tor signaling (see 

Supplemental Table S3). The query gene set, a subset of the target genes, contained 76 well 

described genes to aid biological interpretability. 
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A time resolved co-RNAi screen to capture differential genetic interactions 

Previous studies defined positive differential, negative differential and stable interactions 

between two genes associated to changes in environmental conditions such as DNA-damage 

(Figure 2A, Bandyopadhyay et al., 2010; St Onge et al., 2007). Positive differential interactions 

are newly forming under stress conditions and mark resistance or other mechanisms counter-

acting the noxious stimulus (e.g. drug treatment). Negative differential interactions, on the 

contrary, mark connections that are required for homeostasis under normal, unperturbed 

conditions but are either obsolete or harmful under stress conditions. Within these studies, the 

wiring diagrams of genetic interaction networks were studied at steady state conditions between 

two end-points. The information gained from observations of isolated gene-gene-drug 

interactions thus missed dynamic responses of differential interactions (Bandyopadhyay et al., 

2010; Ideker and Krogan, 2012; Mani et al., 2008; Martin et al., 2015).  
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Figure 2. Genetic interactions screening using RNAi yields highly reproducible results. (A) Types of differential genetic 
interactions shown between T0 and T1. Alleviating interactions shown in yellow and aggravating interactions shown in blue: 
treatment invariant but time dependent interactions (stable) and interactions which are treatment differential depending on the 
time point (differential). (B) Representation of the combinatorial RNAi (co-RNAi) screening setup. 168 ‘target’ and 76 ‘query’ 
genes were combined to all pairwise combinations and arranged accordingly in 384-well plates. S2 cells were reverse 
transfected with pre-spotted dsRNAs and incubated for 24 h. Cells were treated either with small molecule (MEKi [PD-
0325901], 1.5 nM) or DMSO (solvent control, 0.5 % DMSO) and incubated for additional 48 h, 72 h or 96 h. The assay was 
stopped by fixation and staining of cells. Phenotypes were measured using automated microscopy and image analysis. Genetic 
interactions (π-scores) were called for 16 non-redundant phenotypic features from the combinatorial treatments, separately for 
each treatment and timepoint. MODIFI was applied to identify significant differential genetic interactions. The model is defined 
as π[A,B,time,treatment] ~ s[A,B] * time + d[A,B] * treatment + e[A,B] with π being the measured interaction for a pair of genes A and B 
at a given time and treatment. (C) Quality control of the co-RNAi screen. Scatter plots showing all replicate measurements of 
normalized and processed phenotypic feature data for cell count (PCC=0.95) and cell eccentricity (PCC=0.92). Plates for which 
positive (RasGAP1) and negative (Diap1) controls could not be distinguished (Z’-factor < 0.3) were excluded. Data was 
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normalized for plate and batch effects using median normalization and scaled and centered using Z-score analysis. (D) RNAi 
reagents ranked by dsRNA design correlation. dsRNAs were paired by gene to calculate pairwise correlations along 16 selected 
features. All dsRNAs together showed an average design correlation of PCC=0.77. Figure C and D show data 96 h after MEK 
inhibitor treatment representatively. (E) Assay performance assessed by statistical effect size. The multi-variate Z’-factors 
between the positive control knockdown of RasGAP1 and a negative control knockdown of Pvr (Zhang et al., 1999) were 
calculated for the selected 16 phenotypic features for the MEKi screen after 96 hours. (F) Example of genetic interactions 
observed over time and treatment. Interaction data for the inhibitor treated and control condition are shown for eight selected 
target genes (y-axis) and 10 query genes (x-axis). Genetic interactions shown were calculated for the cell eccentricity feature.  

Next, we aimed to quantitatively analyze differential genetic interactions in a time 

dependent manner and set up an experimental design based on co-RNAi treatment and high-

throughput microscopy (Figure 2B). A combinatorial gene-gene matrix covering 168 target 

genes and 76 query genes was used to measure 12768 genetic interactions under the different 

conditions. The library was screened under MEK (Dsor1) inhibitor and control conditions at 

48, 72 and 96 hours after compound addition. The screen was performed using two sequence-

independent dsRNA design replicates and in two biological replicates for each condition. 

4.4 Mio. fluorescent images were captured, and 155 image features measure the perturbation 

effects for every single cell (see Supplementary Methods). Following automated image 

analysis, we transformed the phenotypic features using the generalized logarithm, normalized, 

centered and scaled them (see Methods). Plates failing technical quality control (Z’-factor 

between RasGAP1 RNAi and Diap1 RNAi < 0.3 and biological correlation < 0.6 PCC for cell 

number) were masked in further analysis. Overall, < 3% of all plates were excluded according 

to these criteria. Most of the 155 features showed a high reproducibility (80 % having a PCC 

greater than 0.6, MEKi condition) (Supplementary Figure S3A). The two features cell count 

(relative cellular fitness) and actin eccentricity (morphology of cells) were among the features 

with the highest replicate correlation (Figure 2C) and are highlighted as exemplary features in 

some of the following visualizations. All features that failed to meet a replicate correlation of 

PCC > 0.6 were removed, leaving 114 features for further analyses (Supplementary Figure 

S3A). In addition, 90 % of sequence-independent dsRNA pairs correlate with a PCC > 0.6 with 

an average correlation of PCC = 0.77 (Figure 2D).  

Since many of the remaining 114 features provide redundant information 

(Supplementary Figure S3B), overlap was reduced by first clustering all features according 

to the pairwise PCC of the genetic interactions. Second, we fixed the first feature (cell number) 

and removed all remaining features that correlated with PCC > 0.7. Third, we selected the next 

most reproducible and biologically interpretable feature and removed all highly correlated 

features; this scheme was iterated until all features were passed. The remaining 16 features (see 

Supplementary Table S4) were selected for further analysis. As a confirmation, we verified 

that cell number and actin eccentricity show a weak correlation (PCC = 0.48) and thus provide 
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independent information (Supplementary Figure S3C). An unbiased information gain 

analysis by stability selection, as carried out in an earlier study (Fischer et al., 2015), validated 

this approach showing that each of the chosen features also delivers independent but 

reproducible information (Supplementary Figure S3D). As they enrich biologically 

interpretable and reproducibly measurable features we, however, kept the features selected by 

correlation-based analyses. An analysis of the multi-variate Z’-factors between RasGAP1, a 

negative regulator of Ras signaling and Pvr, a positive regulator of Ras signaling (Zhang et al., 

1999) revealed a multi-variate Z’ of 0.814, indicating high assay quality (Figure 2E).  

Following quality control, we calculated genetic interaction scores (π-scores) for each 

feature under each condition using a multiplicative model as described previously by Horn et 

al. (Horn et al., 2011, see Methods). Supplementary Figure S4 exemplifies this approach for 

the interaction between two example genes. Overall, we analyzed of 1.3 million gene-gene 

interactions in two conditions, three time points and 16 cellular features. 72922 interactions 

showed a significant deviation from the expected combinatorial phenotype. Only 9090 (12%) 

genetic interactions are measured significantly (moderated t-test [limma], FDR<0.1) for the cell 

number phenotype.  

Next, we systematically analyzed whether: (i) π-score analysis recapitulates earlier 

studies using a morphology readout in Drosophila, (ii) π-scores were reproducible between 

biological replicates, (iii) the interaction profile changed considerably when target and query 

genes switch roles and (iv) interaction profiles were independent for different features. To this 

end we compared gene-gene interactions that overlapped between this and previous studies of 

genetic interactions in Drosophila S2 cell culture (Supplementary Figure 5). We found 

significant agreement between π-scores measured in various features in the different studies 

(FDR<<0.1, for linear dependence between π-scores measured in different studies). We found, 

for example, that the DNA texture feature we used could also explain the phospho-histone H3 

staining used in Fischer et al. (2015). 

Next, we confirmed a high correlation of interactions between biological replicates, as 

illustrated on the phenotypic features ‘DNA eccentricity’ and ‘cell number’ (Supplementary 

Figure S6A, A’). As the combinatorial matrix contained all query genes also in the target gene 

set, we tested whether interaction phenotypes were in accordance regardless of the assignment 

of target and query. In theory, all interactions should be symmetric, and it should not matter 

which gene was assigned as target and which as query. However, in practice target and query 

RNAi reagents were added independently during the experiment which could skew symmetry. 
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Our analysis demonstrated that both combinatorial conditions highly correlate 

(Supplementary Figure 6B, B’, PCC= 0.76 for cell number; PCC=0.75 for actin eccentricity). 

We furthermore confirmed that different features provide independent information about 

genetic interactions as indicated by low correlation (PCC= -0.21 and 0.04, Supplementary 

Figure 6C, C’). 

 

Robust linear modelling of differential genetic interactions across multiple features 

Figure 2F shows an excerpt of the genetic interaction matrices obtained for each treatment and 

time condition. We found that our analyses recapitulated known genetic interactions. For 

example Ras signaling components showed negative interactions with Jak/STAT pathway (e.g. 

Pvr, dos and Sos show negative genetic interactions with dome and Stat92E (STAT5B), Baeg et 

al., 2005; Li et al., 2003; Xu et al., 2011). The observed interactions become stronger over the 

three time points measured, and interactions such as a negative interaction between Ras 

signaling components and Rho1 are stronger upon MEK inhibitor treatment. 

Next, we sought a suitable statistical framework to score significant differential 

interactions. Previous studies employed different statistical tests that score the significance of 

interaction differences between end-point measurements (B-Score, dS-Score, limma based 

moderated t-test, Bandyopadhyay et al., 2010; Bean and Ideker, 2012; Billmann et al., 2017; 

Guénolé et al., 2013). In a pooled genetic interaction screen in human cells, Shen et al. used the 

time dependence of fitness defects to improve statistical power (Shen et al., 2017). Thus, we 

tested whether we can also leverage a time and treatment dependent model (Figure 3A) to 

identify differential genetic interactions more sensitively than time independent statistical 

models (Figure 3B).  
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Figure 3. Robust linear models describe the continuity of genetic interaction rewiring. (A) Derived measures from the 
interaction model: the speed (σ) of interaction development, amplitude (𝛿) of response to MEKi and average initial interaction 
difference. (B) Differential interaction counts depending on sequential data and the statistical model applied. Significant (FDR 
< 0.1) differential interactions were counted when analyzed using conventional linear modeling, robust linear modeling, 
moderate t-test as of R/limma or student’s t-test. End-point, sequential and randomized data were compared. The analysis was 
carried out for all features and accumulated counts are shown. “none” means that all time points were treated as replicates of 
the same measurement. “rand” means that measurements were assigned to random time points and 96 h denotes the data treated 
as end-point measurements of the last time point. All models tested the NULL hypothesis that there is no difference between 
treatments. A two sided welch t-test was used. The robust linear model (rlm) coefficient’s significance was estimated using 
robust f-tests. The linear model (lm) coefficient’s significance was tested by two-way ANOVA. (C) Measurement of sensitivity 
towards MEKi. The sensitivity to Dsor1 inhibition was assessed by comparing 𝛿 between various biological processes. 
Significance was tested by a two-sided Kolmogorov-Smirnov test of the sample against all measured interactions. Resulting p-
values are indicated. 

To this end, we tested whether the development of genetic interactions over time and 

between different conditions could be quantitatively described by a multi factorial linear model. 

This would provide the possibility to (i) quantify the time dependence of an interaction and (ii) 

to measure the phenotypic difference between treatment conditions with high confidence. For 

every gene-gene combination [i, j], we used a two-factor robust linear model, which we termed 

model of differential interactions (MODIFI), to estimate the predictive strength and influence 

of time and differential compound treatment on the π-score. 

𝜋$% = 𝑐$% + 	𝜎$% ∗ 𝑡𝑖𝑚𝑒 + 𝛿$% ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 𝜀$% 
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Therein, the coefficient σij models the time dependence, δ$%  models the quantitative 

offset between treatments, c aids modeling without interpretation as the intercept and the 

residual εij, estimates the error of fit for each combination of the target gene i and the query 

gene j. σ and δ are thus parameter estimates that uniquely describe the behavior of each gene-

gene interaction.  

We found that the robust linear model of serial measurements (MODIFI) identifies the 

most differential interactions (4723 in total, 2.31 % of all possible interactions, FDR<0.1). 

When using only end-point measurements, the robust statistic (rlm) is more sensitive than the 

moderated t-test (limma) used in previous studies to score differential genetic interactions 

(Billmann et al., 2017; Fischer et al., 2015; Laufer et al., 2013) and the two-tailed t-tests of each 

interaction between conditions (1907 vs 874 vs 21 interactions, respectively; Bandyopadhyay 

et al., 2010; Guénolé et al., 2013). We further found that MODIFI increased statistical power 

by identifying 147 % more differential interactions across all features when compared to the 

best end-point measurements (4723 vs 1907; 96h/rlm). We conclude that by employing robust 

statistics MODIFI outperforms conventional models and more accurately estimates the 

parameters d and s. 

Next, we inferred to what extend gene-gene interactions changed due to the MEK 

inhibitor treatment. This parameter (d) serves as a surrogate for the integrated area between the 

trajectories of the two treatments. If d is close to zero, only little changes occur upon treatment 

and vice versa. We found that differential interactions were equally likely to be positive or 

negative differential over all analyzed genes (Figure 3C, grey distribution). Of note, especially 

differential interactions of Rel (NF-kB, downstream effector of the Drosophila Imd signaling 

pathway, Myllymäki et al., 2014), or Ras/Map and Jak/STAT related genes enriched as either 

negative (π-score declines because of MEK inhibition) or positive (π-score rises because of 

MEK inhibition), respectively. This implies that pathways, which are positively regulated by 

MEK, tend to form interactions that are lifted (less aggravating) under MEK inhibition. 

Interactions formed by Rel seem the be negatively enhanced by MEK inhibition. We further 

found no or little significant difference between housekeeping modules (proteasome, 

translation machinery) and all measurements (p>0.1, two-sided KS-test). Taken together, these 

data suggest that components of the same pathway share differential interaction sensitivity and 

directionality in response to Ras pathway inhibition. 
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Differential genetic interactions enrich in stress responsive genes and pathways 

Assessing all interactions for which MODIFI produced a statistically significant fit (FDR<0.1), 

we identified four main types of time and treatment dependent interactions that we expected 

would be recovered by this experiment (also compare Figure 2A). We observed alleviating 

stable interactions when the π-score raised over time and was indifferent between treatments 

(Figure 4A). Positive stable interactions often involve core essential genes whose influence on 

the phenotype (e.g. cell count) is not altered by MEK inhibition. This is, for example, the case 

for mts knockdown (PP2CA, lethal by itself; Snaith et al., 1996) where the simultaneous loss 

of the proteasomal subunit Prosbeta4 (PSMB2, Wójcik and DeMartino, 2002) dominates the 

combinatorial phenotype that cannot be worsened regardless of the treatment. A positive 

interaction that strengthens over time is measured (Figure 4A). Accordingly, we termed it an 

aggravating stable interaction when the π-score declined over time and its trajectories were 

indifferent between treatments (Figure 4B).  
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Figure 4. Genetic interactions rewire over time. (A-D) Examples of time and treatment dependent genetic interactions: (A) 
alleviating-stable interaction of Prosbeta4 (proteasome) and mts (cytoskeleton), treatment invariant and increasing over time, 
(B) aggravating-stable interaction of ksr and rl (both Ras signaling), treatment invariant and decreasing over time, (C) positive 
differential interaction of skd (mediator complex) and Stat92E (STAT receptor), lifted from synthetic lethal to non-interacting 
by treatment, (D) negative differential interaction of Rel (innate immunity) and pnt (Ras signaling), π-scores decreased by the 
treatment. (cell count, FDR < 0.1, robust f.test + Benjamini Hochberg). (E) Interaction counts after MODIFI. Interactions (FDR 
< 0.1) are counted for 16 features, grouped into cell count, shape, texture and intensity within cell and nucleus. (F) Robust 
linear model credibility. Residuals are compared to replicate variance for each time point, exemplarily shown for cell count (F, 
PCC=0.92) and cell eccentricity (F’, PCC=0.96). Trendline indicates good agreement of residuals and variance. (G-H) 
Distribution of aggravating/alleviating stable (G) and positive/negative differential (H) interactions among molecular 
pathways. Binomial testing estimated if counts were expected by chance (*~FDR<0.1). (I) Gene-level interaction counts. 
Counts of significant, unique negative differential interactions compared to counts of positive differential interactions. Dots 
are colored by functional groups. Pathways with the most differential interactions (Tor, Ras, Rel and Jak/STAT signaling) are 
highlighted. (J) Counts of stable interactions are plotted against treatment differential interaction counts. A trendline indicates 
a general linear dependency between stable and differential interaction counts. (G-J) Count data are based on cell number 
feature, significant (FDR < 0.3), MODIFI modelled interactions. 
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 Aggravating stable interactions on cell count often include signaling transducers where 

the loss of one only has a mild phenotype while the double perturbation disturbed homeostasis 

to an extend the cells cannot buffer and synthetic lethality is observed. For example, ksr (KSR1) 

and rl (ERK1/2), two core members of the Ras signaling cascade downstream of Dsor1 

(Morrison, 2001; Wassarman et al., 1995), interact significantly (p~0.0017). This interaction is 

stable upon MEK inhibition and thus appears independent of phospho-rl levels (Figure 4B, 

Supplemental Figure 1). This indicates that ksr and rl form a synthetic sick interaction that 

influences cell viability independent on the Ras signaling phosphorylation cascade. 

We defined interactions as differential when trajectories differed significantly between 

treatments (FDR<0.1). If the π-score is lower under control then under treatment conditions, 

we termed it a positive differential interaction (MEK inhibition lifts the phenotype, Figure 4C) 

and negative differential interaction (MEK inhibition dampens the interaction, Figure 4D) in 

the opposite situation. For instance, skd (MED13, an integral component of the mediator 

complex; Janody et al., 2003) showed a positive differential interaction with Stat92E 

(Drosophila ortholog of human STAT receptor; Bina and Zeidler, 2013) (Figure 4C). Under 

control conditions skd knockdown aggravated the fitness loss induced by Stat92E knockdown. 

This aggravation was attenuated under MEK inhibition. Our data suggest that a synthetic lethal 

relationship connects both genes when they are otherwise unperturbed. Once growth is 

attenuated by pharmacological inhibition of Ras signaling, this interaction is gone.  

In contrast, a negative differential interaction occurred between Rel and pnt. While Rel 

knockdown rescued the fitness-defect induced by pnt knockdown under normal conditions, it 

aggravated the pnt knockdown phenotype after MEK inhibition (Figure 4D). Thus, we 

hypothesize that both, the aggravating interaction between skd and Stat92E and the alleviating 

interaction of Rel and pnt depend on the proper function of Dsor1. Mixed forms, such as 

interactions that deviate strongly in the beginning of an experiment and converge later, were 

also observed. 

To assess whether different features (grouped to meta features) or pathways show 

enrichments in one or the other interaction type, we analyzed enrichment of interaction counts 

over a random distribution. We found considerably more stable than differential interactions 

for all feature (18468 vs. 4723, 16 phenotypic features, Figure 4E). While the distribution of 

negative and positive interactions over all features was symmetric, selected phenotypic features 

capture high numbers of alleviating (nuclear shape) or aggravating (nuclear texture) stable 

interactions.  
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We next sought to validate the linear models to describe time and treatment dependent 

genetic interactions. To this end, we compared the residuals of each fit with the actual 

experimental variance measured at each time point. If the model fails to fit the data 

appropriately (e.g. the comparison does not behave monotonic) one would expect that the 

residuals are unexpectedly greater than the variance. However, analyses of all interactions for 

each phenotypic feature reveals that this is rarely the case (Figure 4F, F’). In most models, 

remaining residuals of fit are explained by the variance between biological replicates (avg. PCC 

= 0.96, R2=0.92). We thus concluded that the π-score dependence on time and treatment can be 

reliably quantified using linear model statistics.  

 Additionally, we found that differential interactions, compared to stable interactions, 

enriched in specific signaling pathways related to MEK inhibition. While, for example, 

ribosome or spliceosome related genes formed mostly alleviating and condition stable 

interactions (Figure 4G), the JNK pathway was enriched for alleviating stable and negative 

differential interactions (Figure 4H). Other pathways, such as Ras signaling, Rel, Mediator 

signaling or Jak/STAT signaling were equally overrepresented in stable and differential 

interactions. Among the pathways tested, the enrichment of stable interactions highlights 

pathways which large impact on the interaction network controlling cell viability. The 

enrichment of differential interactions highlights pathways that are sensitive to MEK inhibition.  

Differential genetic interactions are not equally distributed over all genes that were 

tested. Jak/STAT signaling components (Stat92E, dome, upd3) alongside Ras signaling 

members (drk, rl, dos, Sos, pnt) and, interestingly, Imd signaling (Rel) showed specific 

enrichment of differential interactions (cell count feature, Figure 4I). Specifically, pnt forms 

many positive differential interactions (alleviated upon MEK inhibition) while Pvr is involved 

in many negative differential interactions (aggravated by MEK inhibition). This could be 

attributed to pnt acting as a terminal transcriptional effector of the signal triggered by the 

activated receptor Pvr. We also found that genes, which form more stable genetic interactions 

also enrich differential interactions (compare linear trendline, Figure 4J). However, some 

particular genes are involved in unexpectedly many differential interactions. This indicates that 

a rather specific response to the treatment is reflected in the differential interactions. These data 

demonstrate that time dependent modeling of interaction scores sensitively detects treatment 

differential interactions which enrich in and thus highlight Ras sensitive biological processes. 
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Signaling pathways rewire with different time dependencies   

MODIFI estimates the time dependence (σ) of each differential interaction. This term can be 

interpreted as the slope by which an interaction changes (e.g. strengthens or weakens) over 

time. Depending on the initial difference (compare Figure 3A), π-scores increase or decrease 

over time, diverge or converge. The most abundant interaction in this study describes a 

treatment invariant interaction that could not be measured initially but forms over the course of 

the experiment (78 % of all significant interactions, FDR<0.1).  

In the following analyses, we use genetic interactions based on cell count as an example 

to test whether genes or pathways react at different specific rates. For example, from 48 h to 

96 h after compound addition, genetic interactions with Rel remained stable, whereas 

interactions of Jak/STAT or Ras signaling-related genes changed significantly over time. 

Interactions with housekeeping related genes (proteasomal or ribosomal subunits) show 

phenotypes of an exceptionally high time dependence (Figure 5A). These data indicate that 

interactions of the different biological processes rewire at different rates after perturbation. 
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Figure 5. Timing and initial difference of interactions depend on the biological process and feature. (A) Time dependence (s) 
of interactions stratified by biological process. Boxplots show the median (black bar), the 25th and 75th percentile (box) ± 1.5 
times the interquartile range (whiskers). Points outside that range are plotted individually. Significance is tested by a two-sided 
welch t-test (***: p<<0.001, NS: p>0.05). Data is shown based on significant (FDR < 0.1) cell count based interactions 
involving genes belonging to this process. (B, B’) Median π-score differences stratified by pathway annotation of affected 
genes. All significant (FDR<0.1) time dependent interactions based on cell count feature are summarized by median. 
Interactions formed by genes that are proteasome associated show the highest initial difference and steepest increase over time. 
(C) Initial difference of interaction scores 48 h after treatment stratified by feature. Boxplots show the median (black bar), the 
25th and 75th percentile (box) ±1.5 times the interquartile range (whiskers). Points outside that range are plotted individually. 
All features shown (except nucleus texture) show significantly (p>>0.001, two-sided student’s t-test) higher initial differences 
than cell count based interactions. (D) Median π-score differences for the first and the last measured time point. Trajectories 
for all features are shown over all genes that showed a significantly time dependent interaction (FDR<0.1). Features are 
highlighted by their feature group. All features except nucleus eccentricity measure interaction differences that become more 
profound over time.  

 We also hypothesized that the difference of interaction scores and its time dependence 

could inform about the influence of MEK inhibition on different biological modules or 

phenotypic features. Cell fitness-based interactions formed by proteasome related genes show 

the strongest phenotypic differences between treatments at the initial and last measured time 

point (Figure 5B). This suggests that proteasome related genes are involved in particularly 

strong differential interactions upon MEK inhibition. These interactions interfere with cell 

proliferation early on during our experiment and also become stronger over time. This supports 

reports of synergistic effects between proteasome and MEK inhibition on perturbing cell 

viability (Leow et al., 2013).  
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Next, we hypothesized that phenotypic features measure different initial interaction 

differences and analyzed initial π-score differences between phenotypic features. Especially, 

cell morphology features (nucleus/cell eccentricity) and their variance within the population of 

cells show initial differences that are significantly (p<0.0001) higher than those measured by 

cell count (Figure 5C). Of note, nuclear eccentricity and its variance among the population of 

cells (nucleus eccentricity sd) are also the only initially different features that are masked later 

on. All other phenotypes show an increased interaction difference over time (Figure 5D). Cell 

count shows the smallest interaction differences between the treatments in general, irrespective 

of the time point. Together, these analyses demonstrate that the time dependence of genetic 

interactions is specific to certain biological process. It further highlights that phenotypes beyond 

cell viability capture early differential interactions. 

 

A correlation network of differential interactions maps genes into functional modules 

Next, we analyzed whether interaction networks formed by different biological modules or core 

signaling pathway change systematically over time and treatment. In the following examples 

we used cell eccentricity as an exemplary feature which we found to capture early cellular 

responses. Figure 6A shows how an interaction sub-network including Jak/STAT signaling, 

Ras/Map signaling components and spliceosome related genes rewires over time in reaction to 

MEK inhibition. Core housekeeping modules (ribosome, spliceosome or proteasome) were 

highly interconnected by alleviating stable interactions. In contrast, components of the Ras 

signaling, Jak/STAT signaling or Tor signaling cascade showed aggravating interactions with 

housekeeping modules. We observed that (i) alleviating interactions (π>0) dominate early time 

points, (ii) many initially alleviating interactions reverse over time (π>0 à π<0), (iii) 

differences attributed to the compound treatment become more profound over time. Lastly, we 

noted that genes in proximity tend to have similar interaction patterns coherently changing over 

time and treatment (Supplementary File 1). Previous studies implied that similarities of 

differential genetic interaction profiles can identify functionally related genes (Bean and Ideker, 

2012). Thus, interactions of related genes change coherently upon network perturbation. Hence, 

we defined differential interaction profiles for each target gene. We used the modeled 

interaction difference between treatments over time (δ) to quantify interaction change due to 

Dsor1 inhibition. For every target we calculated δ with every query gene in a vector comprising 

76 measurements for cell eccentricity.  
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Correlations between profiles (Figure 6B) confirmed known functional relationships of 

genes, as for example the profiles of the genes Stat92E and dome, members of the Drosophila 

Jak/STAT pathway, were similar (PCC 0.73) confirming that both genes share biological 

function upon perturbation of Ras signaling (Xu et al., 2011). Furthermore, our analysis showed 

a correlation of differential genetic interactions for all features between Stat92E, dome and Ras 

signaling. Interestingly, the profile of Rel was similar to negative regulators of Ras signaling 

(RasGAP1, PCC 0.38), but was anticorrelated with positive regulators (pnt, PCC -0.37) 

indicating a potential crosstalk between the two pathways. 

We expected that a correlation-based network drawn from differential interaction 

profiles across all phenotypic features reveals modules of functionally related genes. Thus, we 

calculated the pairwise correlation coefficients (PCC) of differential interaction profiles 

(interactions with 76 query genes) including all 16 cellular features of all 176 target genes. We 

visualized resulting positive correlations in a network graph highlighting biological processes 

and candidate genes (Figure 6C, Supplementary File 2). This revealed that correlations of 

differential interaction profiles clustered genes into known pathway modules. Of note, Rel and 

Fur1 (FURIN) and swm (RBM26) showed unexpected correlations with members of the Ras 

signaling cascade (Figure 6B). 

It is expected that genes with similar tasks irrespective of the treatment show similar 

interaction profiles between and within conditions. In contrast, genes with a treatment 

dependent function should lose or gain correlations to other genes when compared between 

treatments (Billmann et al., 2017). To test this, we defined profiles of all interactions across all 

cellular features and time points and correlated them between genes and between conditions. 

Most interaction profile correlations did not differ significantly between conditions, compared 

to within conditions (Supplementary Figure S7). Specifically affected gene pairs were mostly 

Ras signaling components. Interestingly, also profile correlations of Jak/STAT signaling 

components (Stat92E, dome) as well as of the two genes Fur1 and swm differed between and 

within conditions. This provides further clues that Fur1 and swm are implicated Ras signaling. 

Only few, weak interaction profile correlations were higher between than within conditions. 
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Figure 6. A correlation network of differential interactions maps pathways modules. (A) Network of genetic interactions 
between selected genes. The networks include all candidate Ras-signaling (blue), Jak/STAT-signaling (white), Tor-signaling 
(pink), proteasome (red), translation (orange) and splicing (purple) related genes. Significant (FDR<0.1) alleviating interactions 
are shown in yellow. Significant (FDR<0.1) aggravating interactions are shown in blue. All interactions are based on the cell 
eccentricity feature. Interactions become more abundant and stronger over time, more alleviating interactions can be observed 
under MEK inhibition. Ras and Jak/STAT related genes are mostly connected by aggravating interactions. (B) Correlations of 
differential interaction profiles between known regulators and candidate genes. Profiles of all δ-scores along cell eccentricity 
and 76 query genes were constructed for 168 target genes and pairwise correlations were calculated. Shown is the Pearson 
correlation coefficient (PCC) and asymptotic p-value as implemented in the R package Hmisc. All correlations shown are 
significant with an p-value<0.01. Jak/STAT and Ras components show high correlations as expected. Rel appears as negative, 
Fur1 and swm as positive regulators of Ras signaling. (C) Pairwise correlation network of differential interaction profiles across 
all 16 features. Shown are all genes with at least one edge. Edges are drawn if two gene’s δ-profiles correlate with PCC>0.5. 
Nodes are ordered by force directed spring embedded layout. A high degree of clustering of known pathways indicates 
meaningful correlations. 
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Rel and pnt act in a MEK-dependent negative feedback loop 

We have shown that the differential interaction profiles of Rel and pnt were negatively 

correlated, whereas Rel profiles were positively correlated with RasGAP1, a negative regulator 

of Ras (Figure 6B). This suggested that Rel itself might function as a negative regulator of Ras 

signaling. We observed that Rel depletion alone had little impact on cell growth, as compared 

to pnt, but showed a cell length (major axis) phenotype (Figure 7A, Supplementary Figure 

S4). Co-depletion of pnt and Rel altered both cell number and cell length. Under control 

conditions depletion of Rel alleviated the loss of viability and cell length phenotypes after pnt 

knockdown (Figure 7A). This interaction was attenuated under MEK inhibition (Figure 7B) 

when co-depletion of Rel and pnt led to a synthetic lethal phenotype (FDR<0.1, Figure 7C, C’). 

These interactions were observed for both dsRNA designs (PCC=0.88 and 0.96 for Rel and pnt, 

Supplementary Figure 8).  

Pvf2 (orthologue of human VEGF) is up-regulated in the absence of Rel (log2 fold-

change~1.5) (Boutros et al., 2002). The data presented here indicate that a knockdown of Rel 

induced a re-activation of the Ras pathway which is dependent on Dsor1 activity (Figure 7A-

C). We hypothesized that Rel negatively regulates Ras signaling by repressing the expression 

of Pvf2, the ligand activating the Pvr-Ras-phl-Dsor1-rl-pnt signaling cascade after binding to 

Pvr (PDGFR). To test this hypothesis, we performed qPCR analysis of pnt, Rel, Pvf2, sty 

(SPRY2) and RasGAP1 expression levels (Figure 7D, E, Supplementary Figure 8). We first 

confirmed the up-regulation of Rel after depletion of Ras (Figure 7D) and showed that up-

regulation of Rel was suppressed by pnt co-RNAi. Pvr knockdown, as a control for loss-of Ras 

signaling activity, led to a downregulation of pnt and RasGAP1. Pvr knockdown also induced 

a strong upregulation of Rel expression. Finally, co-RNAi of Rel and pnt induced a significant 

increase in Pvf2 expression, not observed by depletion of either gene alone (Figure 7E). The 

Rel/pnt co-RNAi also induced upregulation of negative regulators of Ras signaling sprouty (sty) 

(Casci et al., 1999) and RasGAP1 (Feldmann et al., 1999) (Figure 7E), thereby providing a 

mechanistic explanation how Rel could negatively regulate Ras signaling. 
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Figure 7. Crosstalk of NF-κB and Ras signaling through Rel and pnt. (A) Upon Rel or Rel/pnt knockdown cells behave 
normally, growth is inhibited upon pnt knockdown alone. (B) Dsor1 inhibitor treatment attenuated this alleviating interaction. 
Scale bar=30 µm. Images are pseudo colored, DNA/DAPI = blue, FITC/α-tubulin = green. (C) Quantified negative differential 
interaction between Rel and pnt. The trajectory of the Dsor1 inhibitor treatment is lower than the solvent control condition for 
cell count interaction indicating synthetic lethality under MEK inhibition. (C’) Actin major axis shows a strong positive 
interaction (cells are enlarged like under pnt knockdown). Error of fit is shown as 95 % confidence interval. Significance of 
model fit was analyzed using the Wald test on the robust linear model (R/sfsmisc/f.robftest). (D, E) Expression of candidate 
and marker genes assessed by qPCR (3 days RNAi treatment, n=3, log2 foldRLUC, mean ± s.e.m., t-test) on Dmel2 cells. (D) pnt 
expression is reduced upon pnt and Pvr knockdown. Rel knockdown does not rescue pnt expression. Rel expression is increased 
upon pnt and Pvr knockdown and decreased upon Rel knockdown. Upon pnt and Rel knock down, Rel expression is rescued 
to normal levels. (E) Pvf2 expression is induced only upon Rel/pnt double knockdown. This leads to increased expression of 
sty and RasGAP1. RasGAP1 knockdown increases sty expression and decreases RasGAP1 expression. (D-E) *~p<0.05, 
**~p<0.01. (F) A model summarizes the qPCR results in context of the Ras signaling cascade. Dashed lines are transcriptional 
interactions, solid lines are protein-protein interactions. All black interactions are known, while the green interaction is inferred 
from the data. Blue arrows indicate that Pvf2, sty and RasGAP1 were up-regulated upon Rel/pnt co-knockdown and by that Ras 
pathway activity was restored. A similar pattern could be observed upon RasGAP1 knockdown, which causes intrinsic hyper-
activation of Ras signaling by constitutive Ras activation (measured by upregulation of sty, red arrows).  
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  We hypothesized that this regulatory loop is mediated by the transcriptional regulation 

of Pvf2 and requires Dsor1 mediated Ras signaling activity, as summarized in Figure 7F. These 

changes were observed both at 48h and 96h time-points (Supplementary Figure 9 and 10). 

Interestingly, protein levels of rl were down regulated by pnt-or rl-RNAi and rescued by Rel 

co-RNAi (Supplementary Figure 10F, G). Overall, these experiments provide a mechanistic 

basis how Rel acts as a negative regulator of Ras signaling in a context-dependent manner. 

 

DISCUSSION 

To better understand context-dependent differences in genetic networks upon changes in 

environmental conditions is a current frontier in genetics (Rancati et al., 2018). Many biological 

processes rely on context-dependent changes in genetic requirements, from robustness of cell 

differentiation during development to responses of cancer cells to chemotherapeutic treatments. 

However, only few studies on selected phenotypes have systematically analyzed how 

environmental changes impact genetic interaction networks. Previous studies have analyzed 

genetic networks after activation of the DNA damage response signaling in yeast or changes in 

Wnt signaling activity in Drosophila cells (Bandyopadhyay et al., 2010; Billmann et al., 2017; 

Díaz-Mejía et al., 2018). In these studies, positive and negative differential, and stable 

interactions have been determined based on fitness phenotypes or pathway reporter activity in 

static end-point assays. Aim of the present study was to analyze changes in genetic networks 

that impact a broad spectrum of phenotypes by imaging and multiparametric image analysis 

and to determine how differential interactions change over time after small molecule 

perturbation of the Ras signaling pathway. 

To this end, we established a high throughput image-based assay which enabled us to 

reproducibly measure many phenotypes including cell proliferation and cell morphology which 

are influenced by many cellular processes (Breinig et al., 2015; Fuchs et al., 2010; Horn et al., 

2011). We used this assay to measure genetic interactions between differential treatment 

conditions over the course of three time points. To this end, we assessed the phenotypes of 

76608 di-genic interactions in Drosophila hemocyte-like cells in total. Each interaction was 

characterized by a vector of 16 non-redundant and reproducible phenotypic features. Further, 

we developed MODIFI, a two-factor robust linear model to quantitatively describe the time and 

treatment dependent changes of genetic interactions. MODIFI also allowed us to describe 

whether an interaction is differential between treatments (treatment could predict π-score) or 

time dependent (time predicted the π-score).  
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Our analysis showed that we detected more differential interactions as compared to end-

point measurements or single time point replicates. Enrichment of differential interactions 

among stress responsive pathways and genes underlines their biological relevance. Using this 

approach, we also analyzed the treatment (d) and time (s) dependency of interactions of specific 

genes and pathways. Overall, we found that differential interactions were called with much 

higher confidence when comparing treatment dependent phenotypes along time. Furthermore, 

the measurement of multiple phenotypic features at the same time enabled more detailed 

characterization of the observed differential interaction. We also tested whether the 

establishment of phenotypes is dependent on a gene’s expression level but found no correlation 

of high gene expression and high time dependency (data not shown). Our data further suggests 

that s is influenced by the general resilience of a pathway or signaling module to perturbations. 

This makes it unlikely that the stability or turnover of a single gene’s product is a major driver 

of time-dependent establishment of genetic interactions. We found, for example, that genetic 

interactions of ‘core’ (or housekeeping) modules such as the translation machinery, proteasome 

and others induce phenotypes that are much stronger at later time-points in the experiment. In 

contrast, intra-cellular signaling modules such as signaling and innate immunity ‘rewire’ early 

in the experiment. Our analysis classified genes into categories of genetic interactions that are 

(i) signaling modules central to the cells’ physiological role, (ii) signaling modules required for 

maintaining homeostasis and (iii) resilient ‘core’ modules whose network hubs form 

interactions on a longer timescale. We also found that measuring different phenotypes provided 

more information about the development of interaction differences over varying time scales. 

While the cell count (comparable to yeast colony size) as a phenotype captures cellular 

reactions rather late in the experiment, other phenotypes, such as nuclear morphology or 

cytoskeleton texture, enabled to measure immediate cellular reactions.  

In the chemico-genetic experiments, we found that pathways interacting with Ras 

signaling reacted strongest to the Dsor1/MEK inhibition. To map signaling modules that react 

similarly towards Ras signal perturbation, we correlated d-profiles along all features between 

all target genes. By this means, genes whose interactions change coherently upon Dsor1 

inhibition are grouped into highly inter-connected modules. Consequently, this correlation 

network clusters genes of similar functions in proximity with each other. Each module is also 

characterized by a coherent reaction towards Dsor1 perturbation. Interestingly, rolled (rl), 

Dsor1 and pole hole (phl) (ERK1/2, MEK1/2 and Raf) were not connected to the rest of Ras 

signaling related genes in the correlation network. In contrast, they correlated with Ras when 
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only using interaction profiles of the control treatment, indicating that the chemico-genetic 

analysis identified ‘responsive’ factors that can be uncoupled upon environmental modulation 

of specific signaling modules. 

Our analysis also revealed three genes that unexpectedly connected to Ras signaling: 

Fur1, a serine-type endopeptidase (Kim et al., 2015), swm, involved in mitotic checkpoint 

regulation and hedgehog signaling (Casso et al., 2008; Dong et al., 1997) and Rel (Foley and 

O’Farrell, 2004). The correlation of Fur1 and swm with positive regulators of Ras signaling 

indicates that they respond similarly towards Dsor1 inhibition as Ras pathway members. In 

addition, we identified Rel (NF-κB) as a strong differential genetic interactor, suggesting that 

mitogenic Ras signaling and innate immune pathways are interdependent. Once Rel is lost, cells 

become more dependent on Ras signaling; a phenotype that can be blocked by perturbing Dsor1 

activity chemically or genetically. Already at a low dose, both interferences result in a synthetic 

lethal phenotype that kills Drosophila hemocyte-like cells. Conversely, it was previously 

shown that Ras signaling influences Rel activity by regulation of its negative transcriptional 

regulator pirk (Ragab et al., 2011). We hypothesize that this mutual negative feedback 

regulation could be the basis for a ‘fight’ or ‘flight’ response of the immune cells; balancing an 

immune and proliferative response in the same cell. 

Large-scale studies on gene essentiality have challenged the concept of a static 

repertoire of essential genes. In contrast, loss-of-function screens in different genetic 

background of cancer cells identified ‘core’ and ‘genotype’-dependent sets of essential genes. 

This indicates that essentiality is modulated in a context-dependent manner (Hart et al., 2015; 

McDonald et al., 2017; Rauscher et al., 2018). At this point, our study is the largest exploration 

of gene-gene-drug interactions based on multiparametric, non-essentiality phenotypes. We 

demonstrate how different vulnerabilities for a diverse set of automatically scored phenotypes 

change upon time and environmental conditions. Our modeling approach increases the 

confidence to call differential interactions upon changes of environmental conditions. This 

allows to map a correlation network of cellular modules that react coherently towards the 

external stimulus. We expect that, when further studies of context-dependent genetic 

interactions will be become available, a comparative analysis will provide fundamental insights 

into how different cellular networks react to environmental stimuli with implications for 

therapy resistance and timing of drug treatments. This study introduced an experimental and 

analysis framework to explore time-dependent rewiring of genetic networks which can be used 

to dissect the complexity of biological networks in model organisms and human cells.  
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METHODS 

Genome-wide RNAi library 

We used a genome-wide Drosophila melanogaster dsRNA library (HD3) in this study, as 

previously described (Billmann et al., 2017; Horn et al., 2011). The library contains 28941 

dsRNA reagents targeting 14242 unique gene IDs in the Drosophila melanogaster genome and 

contains two sequence independent reagents targeting 13617 IDs twice and the remaining genes 

once. The reagents were optimized for the BDGP5 mRNA annotations in Drosophila 

melanogaster by for example avoiding CAN repeats and non-unique sequences (off-targets). 

250 ng dsRNA, synthesized as described previously, were aliquoted to 384 Greiner µClear 

plates prior to the image-based assay at a mass of 250 ng/well. A table containing all sequences 

that were used in the genome-wide RNAi screen can be found in Supplementary Table S5. 

Another table containing sequence IDs (HD3) that were used in the combinatorial RNAi screen 

can be found in Supplementary Table S6. 

 

Image-based RNAi screening  

dsRNA reagents dissolved in water were spotted into barcoded 384-well microscopy plates 

(Greiner µ µClear, black, flat-transparent-bottom, Ref: 781092, Greiner Bio One International 

GmbH, Frickenhausen, Germany) to reach a final mass of 250 ng dsRNA per well (5 µl of a 50 

ng/µl solution). Express V medium (Gibco, Ref: 10486-025, Life Technologies GmbH, 

Darmstadt, Germany) with 10 % Glutamax (Gibco, Ref: 35050-061) was pre-warmed to 25 °C 

and 30 µl were dispensed on top of the spotted dsRNA using a MultiDrop Combi dispenser, 

standard cassette (Thermo Fisher Scientific, Ref: 5840400, Life Technologies GmbH, 

Darmstadt, Germany). 

10 µl of pre-diluted Dmel2 cell suspension were seeded to a final concentration of 

9000 cells/well into the prepared assay plates using MultiDrop Combi dispensing under 

constant stirring of the suspension in a sterile spinner flask (Corning, Ref: CLS4500500, 

Kaiserslautern, Germany). After cell addition, the assay plates were heat sealed using a 

PlateLoc (peelable seal, 2.3 sec at 180 °C, Agilent Technologies Deutschland GmbH & Co. 

KG, Waldbronn, Germany) and centrifuged at 140x g for 60 sec. Cells were incubated for 24 h 

at 25 °C without CO2 adjustment. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 4, 2018. ; https://doi.org/10.1101/384800doi: bioRxiv preprint 

https://doi.org/10.1101/384800


 
31 

After 24 h incubation, plates with growing cells were opened and small molecule 

treatment was performed. The concentration of applied compound is outlined with the separate 

experiments in the following paragraphs. Per well 5 µl of a solution containing 5 % DMSO 

(Sigma Aldrich, Ref: 41644-1l, Merck KGaA, Darmstadt, Germany) in medium, or PD-

0325901(Cayman chemical, Ref: CAY-13034-5, Biomol GmbH, Germany) dissolved in 5 % 

DMSO in medium, were added to achieve a final assay concentration of 0.5 % DMSO and 

varying small molecule concentrations. We found that the most drastic phenotypic changes 

among a number of features (examples shown in Supplemental Figure 1G) occurred in a 

concentration window around the drug’s ED50 (1.5 nM, GFP dsRNA treatment was paired with 

compound treatment). Thus, we selected a concentration of 1.5 nM PD-0325901 as an optimal 

condition for the following screening experiments, ranging within an order of magnitude of the 

ED50 known for treatment of mammalian tissue cells cultures (Ciuffreda et al., 2009; 

Hatzivassiliou et al., 2013). After compound addition, plates were sealed again and incubated 

at 25 °C without CO2 adjustment for 48 h, 72 h or 96 h depending on the experiment. 

Assays were stopped after the second incubation period by fixation using a robotics 

procedure on a CyBioWell vario (384-well pipetting head, Analytic Jena AG, Jena, Germany). 

There, supernatant was removed, and cells were washed with 50 µl PBS (Sigma Aldrich, Ref: 

P3813-10PAK) per well. After addition of 40 µl Fix-Perm solution (4% Para-formaldehyde 

(Roth, Ref: 0335.3, Karlsruhe, Germany); 0,3% Triton X-100 (Sigma Aldrich, Ref: T8787-

250ml); 0,1% Tween20 (Sigma Aldrich, Ref: P1379-100ML); 1% BSA (GERBU Biotechnik 

GmbH, Ref: 1507.0100, Heidelberg, Germany), plates were incubated for 60 min at RT and 

then washed twice with 50 µl of PBS. 50 µl of PBS were added again and plates were stored at 

4 °C before staining. For staining, remaining PBS was removed and fixed cells were first 

blocked by adding 30 µl of blocking solution (4% BSA; 0,1% Triton X-100, 0,1% Tween20) 

and incubated for 30 minutes at RT. Next, the blocking buffer was removed and 10 µl of 

staining solution (1:4000 Hoechst (Thermo Scientific, Ref: H1399, Life Technologies GmbH, 

Darmstadt, Germany), 1:1500 primary FITC labelled anti α-tubulin antibody (Sigma Aldrich, 

P1951), 1:6000 Phalloidin-TRITC conjugate (Sigma Aldrich, F2168-.5ml) in 1x blocking 

buffer) were added. After addition of the staining solution plates were incubated for 60 min at 

RT. After staining, 30 µl of PBS were added and the staining solution was removed. After two 

additional washing steps with 50 µl PBS another 50 µl of fresh PBS were added per well and 

stored at 4 °C until imaging. 
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Genome-wide chemico-genetic interaction screening 

We performed genome-wide RNAi screens in combination with drug and solvent control 

treatment to verify dsRNA reagent efficiency, identify candidate genes for combinatorial 

screening and to find which genes react most differentially to the Dsor1 inhibitor (PD-0325901) 

treatment. Four sets of 88 x 384-well Greiner µClear plates were spotted with the HD3 library, 

5 µl of 50 ng/µl dsRNA in each well. The HD3 library is arrayed to target one gene with one 

dsRNA design per well. Two additional plates, containing only controls were added to control 

assay reproducibility, robustness and effect size. Controls were chosen to spread over the 

complete dynamic range of cell fitness. dsRNAs against RLUC and GFP expressing plasmids 

serve as non-targeting negative controls, such that we could control for unspecific dsRNA 

induced phenotypes. dsRNA containing plates were thawed, seeded with cells and left for 24 h 

at 25 °C without CO2 adjustment for incubation prior to drug treatment. Plates were opened and 

5 µl of 15 nM PD-0325901 in 5 % DMSO were added resulting in a final assay concentration 

of 1.5 nM PD-0325901 in 0.5 % DMSO in medium. Cells were left to incubate for another 72 

h at 25 °C without CO2 adjustment prior to fixation, staining and imaging. Images were acquired 

using the standard protocol described below with low illumination timings (DAPI: 100 ms, 

Cy3: 200 ms, FITC: 300 ms). The resulting images were analyzed in line with the acquisition 

using the standard image analysis pipeline and progress was monitored using our automated 

analysis pipeline as described below. 

 

Combinatorial RNAi screening under differential time and treatment conditions 

The design of the library for combinatorial screening is described in a separate paragraph. 168 

genes were chosen for design of a combinatorial RNAi library. The dsRNA sequences that were 

used in the combinatorial library can be found in Supplementary Tables S5 and S6. All used 

labware and reagents, which are not further detailed here have been the same as in previous 

experiments. The library contained 12 batches for screening, each comprising 80 x 384-well 

Greiner µClear plates spotted with 250 ng dsRNA/well dissolved in 5 µl of DNase, RNase free 

water. dsRNAs were obtained from the HD3-library templates and synthesized accordingly. To 

avoid contaminations, all dsRNAs were sterile filtered using Steriflips-0.22µm (Merck 

Millipore, Ref: SCGP00525, Darmstadt, Germany) for the query dsRNAs and 

MultiScreenHTS-GV 0.22 µm filter plates (Merck Millipore, Ref: MSGVN2250) for the target 

dsRNAs. Genes were divided into target and query genes based on prior knowledge on key 

pathway components and screened a matrix of 76 genes combined with 168 genes. All query 
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genes were included in the list of target genes. We screened each target gene in two sequence 

independent designs and each query gene in one design. This way, we screened 25536 dsRNA 

combinations (12768 gene pairs) in each batch. Combinatorial dsRNA spotting was achieved 

with combining the query and target master plates such that 2.5 µl of each query dsRNA were 

spotted onto 2.5 µl target dsRNA using a Beckman FX robotic liquid handling station 

(Beckman Coulter, Krefeld, Germany). In order to control for RNAi induced phenotypes and 

per-plate batch effects control dsRNAs against Dsor1, drk, Diap1, RasGAP1, Pten, pnt, Pvr, 

Rho1 and RLUC expressing plasmid were spotted on each plate and not paired with a second 

query dsRNA perturbation. Two control plates containing only the target gene dsRNA reagents 

with 250 ng dsRNA per well complete one screening batch of 80 plates and controlled for 

screening batch effects. To achieve differential treatment and time resolution, 12 screening 

batches were prepared. They were divided into two groups of six batches, which then were 

treated under different conditions in duplicate. 6 library batches are needed to screen two 

conditions (1.5 nM PD-0325901 and 0.5 % DMSO) at three time points (fixation 48 h, 72 h, 96 

h after small molecule addition), all in all comprising 480 screened plates. The entire 

experiment was repeated twice. This way we screened 960 x 384-well plates. 

The assay workflow followed the same procedures as outlined above. Briefly, 9000 cells 

per well were seeded onto 384-well Greiner µClear plates for microscopy, which were pre-

spotted with a combinatorial dsRNA library. After centrifugation, plates were sealed and left to 

incubate for 24 h at 25 °C prior to compound addition. Therefore, a PD-0325901 dilution (15 

nM in medium with 5 % DMSO), and a 5 % DMSO-only dilution in medium were prepared 

and added to the opened plates. This resulted in either 1.5 nM PD-0325901 or 0.5 % DMSO in-

assay concentrations. Plates were sealed again using a heat sealer and left to incubate until the 

experiment was stopped by fixation after 48 h, 72 h and 96 h, respectively. Stained plates were 

imaged using an InCell Analyzer 2200 automated fluorescence microscope according to the 

protocol described above with 20x magnification, 3 channels per field and 4 fields per well. 

Resulting images were analyzed using the R/EBImage based pipeline described below. 

 

High-throughput imaging 

All plates were imaged using the same protocol. There, an InCell-Analyzer 2200 automated 

fluorescence microscope (GE Healthcare GmbH, Solingen, Germany) with a Nikon SAC 20x 

objective (NA = 0.45) was used. The microscope was adjusted to scan Greiner µClear plates 

by setting the bottom height to 2850 µm and the bottom thickness to 200 µm and the laser 
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autofocus function was applied to identify the well bottoms with attached cells. This Z-position 

was used for image acquisition in three fluorescence channels: Hoechst (excitation: 390±18 nm, 

emission: 435±48 nm) at 400 ms exposure (100 ms in dose response experiments and genome 

wide screens), Cy3 (excitation : 475±28 nm, emission 511±2 nm 3) at 300 ms exposure (200 

ms in dose response experiments and genome wide screens) and FITC (excitation : 542±27 nm, 

emission : 597±45 nm) at 300 ms exposure (300 ms in dose response experiments and genome 

wide screens). Four fields of view were imaged per well at 20x magnification each representing 

a 665.60 µm x 665.60 µm area covered (approx. 20 % of total well area) by 2048 x 2048 pixels. 

For plate handling, the microscope was equipped with a KinedX robotic arm (PAA Scara, Peak 

Analysis & Automation Ltd, Hampshire, UK) allowing a fully automated image acquisition.  

 

Automated image processing and high-throughput image analysis  

Plates were imaged and analyzed in batches of 40 plates and a custom pipeline allowed parallel 

image processing and analysis by bundling images of fields and channels of several wells. 

During imaging an automated pipeline scheduled the processing of image files for each field of 

view through the following analysis workflow, here described representatively for one field. 

Raw images of three channels with a size of 8.4 MB (16-Bit grey scale, 2048 x 2048 pixels) 

per image were captured with the InCell Analyzer 2200 software and saved as TIFF files on a 

server cluster for image processing and analysis. The image processing- and analysis pipeline 

covered two main blocks, first a sequence of pre-processing steps which was followed by 

extraction of phenotypic features from single cells. First, the images were read in and each 

channel was assigned to the subcellular structure that was selectively stained with the above 

described assay (Hoechst: DNA, Phalloidin-Cy3: F-actin, α-tubulin-FITC). To identify cell and 

nuclei boundaries, a duplicate image of each channel is ln transformed, scaled between 0 to 1 

and smoothened by a Gaussian filter using a sigma of one. This reduced optical noise, improved 

the dynamic range and smoothened the image gradients for further segmentation by 

thresholding. For segmentation, the normalized actin and tubulin images were binarized by 

global thresholding. Second, the cell nuclei were identified by applying a local adaptive average 

threshold to binarize the DNA channel nuclei image and assigning objects. The resulting binary 

image was then subjected to morphological operations of opening and hull filling such that 

filled objects with smoothly roundish outlines result. Offsets for segmentation were varied if 

the channels surpassed certain thresholds. If more than 30 nuclei were counted per field, the 

objects were subjected to further propagation of nuclei objects into the an á priori defined cell 
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body mask. Starting from the nucleus objects as seed regions, the cell bodies are segmented by 

propagating the nuclei objects into foreground area (Carpenter et al., 2006). This strategy 

allowed to identify single cells and corresponding nuclei as objects. Using the segmented object 

outlines as masks, features on each object and channel were calculated on the original image 

using the R/Bioconductor package EBImage (Pau et al., 2010). 

Specifically, numeric descriptors for 5 feature classes are defined in the 

computeFeatures function from EBImage (Supplementary Table S1): (i) shape features which 

quantify the shape of cells and nuclei, (ii) basic features that describe the summary statistics, 

such as 5 % quantiles, of pixel intensity within the borders of the object, (iii) moment features 

that describe the spatial orientation of the objects, (iv) Haralick features derived from a pixel 

intensity co-occurrence matrix as texture descriptors (Haralick et al., 1973) and (v) social 

features such as distance to the first 20 nearest neighboring cells. Social features are derived by 

a k-nearest-neighbor search based on the geometric center points of single cells. Single cell data 

were stored and aggregated to well averaged data by calculating the trimmed mean (q=0.01) of 

all cells belonging to all fields of one well and its standard deviation. 

 

Data processing and normalization  

For the analysis of the genome-wide chemico-genetic screens the following analysis strategy 

was pursued: feature data was collected in a data frame containing per-well aggregated values 

as trimmed mean and standard deviation. This data frame was then reformatted to a 4-

dimensional data cube featuring the dimensions: feature, plate, well, screen. Per feature, the 

feature’s minimum value was added to each value prior to logn(x+1) transformation to approach 

the features’ histogram to normal distribution. Following transformation, each plate in each 

screen was normalized separately for each feature by B-Score normalization (Ljosa et al., 2013; 

Mpindi et al., 2015). The B-Score normalization centers and scales the data to be the residuals 

of the median polish divided by the median absolute deviation (mad) across all values of the 

plate and thus be symmetrically centered around zero and scaled in units of the mad. Here, 38 

representative features were chosen based on their biological significance (our ability to refer 

them back to cellular phenotypes) and their biological reproducibility between the two mock 

(DMSO) treated replicate screens and their information content, as measured by added variance 

(Supplementary Table S1).  
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For the combinatorial screens the obtained data frame containing one row for each well 

and columns containing the measured features and well, plate and batch identifier as annotation 

columns. Data acquired from single cells was aggregated by calculating the trimmed mean 

(q=0.01) for each feature extracted in the respective well together with its standard deviation. 

This way, outliers, produced by over or under segmentation of cells, were mostly excluded from 

further analysis. Data was normalized by dividing each feature in each plate by the median of 

the non-targeting control wells (if that was not zero). Further, the values of each feature were 

transformed on a logarithmic scale using the generalized logarithm with c being the 3 % 

quantile of the features value distribution over all values (Caicedo et al., 2017; Fischer et al., 

2015). For each feature, data was subsequently scaled and centered around 0 by using the robust 

Z-transformation, where the feature median is subtracted from each value and the result was 

divided by the median absolute deviation (x’=(x-median(x))/mad(x)). After that, all features 

were in normalized units of median absolute deviation from the median of that feature and 

normalized per plate. The normalized feature vector provided the basis to all further analyses. 

 

Candidate selection for combinatorial RNAi screening  

The metrics used for judging the quality of dsRNA reagents and to assess the gene’s suitability 

for the combinatorial screen are summarized in Supplementary Table S2. For this purpose, 

several metrics have been deployed. Summarized, the applied metrics were used to assesses for 

each individual gene in the genome-wide HD3 library (i) the quality of the RNAi reagent, (ii) 

the effect size of the induced phenotypes under solvent control treatment as well as the 

differential effect size of the differential phenotype between small molecule treatment and 

control conditions, (iii) the quality of the target gene as a candidate for gene-gene-drug 

combinatorial screening. Effect size was quantified using the Euclidean distance 

(5∑ (𝑥$ − 𝑦$)<=
$>?  ) between sample and control measurements under different conditions. 

Quality of dsRNAs was assessed by calculating Pearson correlation coefficients between 

phenotypic profiles of biological and dsRNA design replicates. The quality of genes as 

screening candidates was assessed by gene expression analysis and literature analysis. The Q1 

metric shows the strength of a knockdown induced profile when compared to the non-targeting 

control knockdown (here: GFP). This was calculated as the Z-Score normalized Euclidean 

distance of the genes profile to the control profile and can be used to inform if a phenotype of 

a gene is exceptionally strong or weak. In general, strong phenotypes (Q2) were preferred since 

they were more robust to experimental noise and are likely to engage in many genetic 
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interactions (Costanzo et al., 2010). Q3 gives to what extend the phenotypic profile of those 

genes knockdown changes upon drug treatment. An ideal candidate for drug gene interaction 

screening shows a high value in this metric. Q4 and Q5 allow inferring the reproducibility of 

the measured phenotype by comparing the correlation of two sequence independent dsRNA 

designs targeting one gene and the correlation of one design across screen replicates, 

respectively. There, 7957 genes were targeted by designs whose feature vectors correlate with 

PCC > 0.5 while 17263 designs were reproducible between screens (PCC > 0.5). Q6 was used 

to infer if the respective gene is expressed under the screened conditions (Dmel-2 cells, 4 days 

in culture in Express-V medium). 12567 genes (88 % of all genes screened) had a log2 

normalized read count greater than 0. In contrast, the knowledge sum in Q7 was used to avoid 

over enrichment of well characterized genes in the final combinatorial library. The “unknowne” 

was defined by means of assigning each gene a score describing how well it has been studied 

and characterized. Therefor the Gene Ontology terms associated to each Drosophila gene were 

downloaded from Flybase. In Flybase, each ontology term is annotated with evidence codes as 

provided by the gene ontology consortium (Ashburner et al., 2000). Each of these codes was 

then used to assign weights to the ontology terms for each gene (Supplementary Table S7). 

Ontology terms derived from experimental evidence, such as genetic interactions, direct assays 

or physical interactions were assigned the highest weight while computational annotations were 

weighted the lowest. For each gene, the sum of ontology terms was computed and used as a 

proxy for the current state of its functional characterization. For example, the cell fate 

determining receptor Notch is the most well studied gene with a score of 973, while all genes 

have an average score of 34.7 and the third quartile ends at 41. This means that only a minor 

fraction of genes is as well studied as Notch and most genes can be accounted as uncharacterized 

if their score is beneath 100 (90 % quantile). An example for such a gene is tzn with a knowledge 

sum of 14. Only known fact about tzn is its function as Hydroxyacylglutathione hydrolase in 

response to hypoxia (Alalouf et al., 2010; Jha et al., 2016). For screening, genes with a low 

knowledge sum were preferentially chosen. 

 

Modeling of genetic interactions  

The data frame with normalized feature data per well was reformatted into a 5-dimensional data 

cube representing the experimental design. The dimensions are: target dsRNA (2 entries for 

each gene), query gene, time, treatment and feature. The data cube was further subjected to 

genetic interaction analysis following the protocol established by Bernd Fischer (Fischer et al., 
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2015; Horn et al., 2011; Laufer et al., 2013). There, genetic interactions are defined as the 

residuals of a modified median polish over the double perturbation matrix of one replicate, 

feature, treatment and time point. The median polish presents a robust linear fit (𝑴𝒊𝒋 = 𝒎𝒊 +

𝒏𝒋 + 𝝅𝒊𝒋 + 𝜺) that lifts the main effects (m, n) of each query such that it resembles the value of 

a single gene knockdown. The residuals of this fit scaled by their median absolute deviation are 

defined as π-scores. π-scores further provide us with a quantitative measure of genetic 

interaction following the multiplicative model plus some error term (ε) estimating the 

experimental noise. There, the interaction of two genes is defined as the deviation of the 

measured combined phenotype (Mij) from the expected phenotype for a target- query gene pair 

i and j. The expected phenotype is defined as the product of the two independent single 

knockdown phenotypes. The resulting π-scores are then collected for all replicates (dsRNA and 

experimental, each interaction is measured four times). The significance of their mean over all 

measured scores is estimated by a moderated students t-test as is implemented in the R-package 

limma. There, the t-test is adapted for situations where a small amount of observations is tested 

in many tests, normally causing large test variability, using an empirical Bayes variance 

estimator. P-values were adjusted using the methods of Benjamini Hochberg (Benjamini and 

Hochberg, 1995). From there on, adjusted p-values can be treated as false discovery rates. The 

FDR estimates the chance that the finding was observed by random chance given the entire 

dataset. This described procedure was applied to quantitatively calculate genetic interactions 

for each phenotypic feature. 

 

qPCR analysis  

Quantitative real time PCR (qPCR) was used to analyze the transcriptional response following 

Rel/pnt co-RNAi. To this end, as 5*105 cells / well were seeded in 630 µl ExpressFive (Gibco) 

culture medium and reverse transfected with 14 µg dsRNA. All dsRNAs denoted with #2 were 

used in 3 biological replicates and combinatorial RNAi was achieved by mixing 7 µg of dsRNA 

targeting each gene (Supplementary Table S8). After 72 h incubation (25 °C, no CO2 

adjustment), cells were washed once in 750 µl PBS (Gibco) and lysed in 350 µl RLT buffer 

shipped with the RNAeasy-mini Kit (Qiagen). RNA was then purified from all samples 

according to manufactures standard instructions for spin column purification. An optional 

DNase digestion step was performed using the RNase-Free DNase Set (Qiagen). Samples were 

prepared for qPCR by reverse transcription of 1 µg of RNA using RevertAid H minus First 

strand cDNA Synthesis kit (Thermo scientific) according to the manufactures standard 
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protocol. A qPCR reaction was prepared using PrimaQuant 2x qPCR-Mastermix (Steinbrenner) 

by mixing 5 µl of sample (1:10 diluted cDNA) with 5 µl of Mastermix (including 0,3 µM of 

forward and reverse primer, Supplementary Table S9) on a 384-well qPCR plate (LightCycler 

480 Multiwell Plate 384, white, Roche). The plate was then centrifuged (2 min, 2000 rpm) and 

processed for qPCR in a Roche 480 LightCycler using the following PCR program: (i) 10 min 

at 95 °C, (ii) 15 sec at 95 °C, (iii) 60 sec at 60 °C, repeat step ii) and iii) 40 times and measure 

fluorescence at 494 nm-521 nm during step iii). Melting curve analysis of each sample was 

performed to assess reaction quality. Relative expression of each gene in each sample 

(normalized to rps7 expression) was analysis as log2-foldchange over RLUC dsRNA treated 

samples (Nolan et al., 2006; Schmittgen and Livak, 2008). qPCR primers were designed using 

the GETprime web service (Gubelmann et al., 2011).  

For analysis, all genes in the combinatorial library were annotated manually using FlyBase and 

literature annotations (Marygold et al., 2013). A more detailed description of all methods 

including those for supplementary materials can be found in the Supplementary Methods.  

All code used for the analysis presented in this study is available for download at:  

https://github.com/boutroslab/Supplemental-Material/tree/master/Heigwer_2018 

All raw data is available at:  

https://figshare.com/s/fe82824053056805032e (DOI: 10.6084/m9.figshare.6819557) 
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