1 Host cell metabolism contributes to delayed-death kinetics of apicoplast inhibitors in

- 2 Toxoplasma gondii
- 3
- 4 Katherine Amberg-Johnson^a, Ellen Yeh^{abcd#}
- 5
- 6 ^aDepartment of Microbiology & Immunology, Stanford University, California, USA
- 7 ^bDepartment of Biochemistry, Stanford University, California, USA
- 8 ^cDepartment of Pathology, Stanford University, California, USA
- 9 ^dChan Zuckerburg Biohub, San Francisco, California, USA
- 10
- 11 Running Head: Effect of Apicoplast Inhibitors on Toxoplasma gondii
- 12
- 13 [#]Address correspondence to Ellen Yeh, ellenyeh@stanford.edu.
- 14

15 Abstract

16 Toxoplasma gondii and related human parasites contain an essential plastid 17 organelle called the apicoplast. Clinically-used antibiotics and other inhibitors that 18 disrupt apicoplast biogenesis cause a mysterious "delayed-death" phenotype, in which 19 parasite growth is unaffected during the first lytic cycle of inhibitor treatment but is 20 severely inhibited in the second lytic cycle even after drug removal. Critical to 21 understanding the complex downstream cellular effects of these drug classes is the timing 22 of apicoplast loss during inhibitor treatment and how it relates to this peculiar growth 23 phenotype. Here we show that, upon treatment with diverse classes of apicoplast

24	inhibitors, newly-replicated T. gondii parasites in the first lytic cycle initially form
25	apicoplasts with defects in protein import or genome replication and eventually fail to
26	inherit the apicoplast altogether. Despite the accumulation of parasites with defective or
27	missing apicoplasts, growth is unaffected during the first lytic cycle, as previously
28	observed. Strikingly, concomitant inhibition of host cell isoprenoid biosynthesis results in
29	growth inhibition in the first lytic cycle and unmasks the apicoplast defects. These results
30	suggest that defects in and even complete loss of the apicoplast in T. gondii are partially
31	rescued by scavenging of host cell metabolites leading to death that is delayed. Our
32	findings uncover host cell interactions that can alleviate apicoplast inhibition and
33	highlight key differences in "delayed-death" inhibitors between T. gondii and
34	Plasmodium falciparum.
35	

36 Introduction

37 The Apicomplexan phylum contains human and animal parasites including 38 Toxoplasma gondii, which cause opportunistic infections, and Plasmodium spp., which 39 cause malaria. These parasites contain an essential plastid organelle called the apicoplast 40 that is derived from secondary endosymbiosis of a red alga (1-3). While the apicoplast is 41 no longer photosynthetic, it houses essential pathways for biosynthesis of fatty acids, 42 heme, iron-sulfur clusters, and isoprenoid precursors (4-6). Apicoplast ribosome 43 inhibitors, such as clindamycin and doxycycline, are used clinically for treatment of acute 44 toxoplasmosis and malaria chemoprophylaxis, respectively (7, 8). In both T. gondii 45 tachyzoites and blood-stage P. falciparum, these inhibitors cause a peculiar "delayed-46 death" phenotype in vitro: Treatment with inhibitors during the first lytic cycle has no

47	effect on parasite replication, egress of daughter parasites from the first host cell, or
48	reinfection of new host cells. However, parasites subsequently fail to replicate in the
49	second lytic cycle, even if the inhibitor is removed (9-11). In addition to structurally-
50	diverse antibiotics targeting the prokaryotic ribosome, inhibitors of DNA gyrase
51	(ciprofloxacin) and the apicoplast membrane metalloprotease FtsH1 (actinonin) also
52	cause delayed death in T. gondii, indicating that drug properties do not account for the
53	delayed growth inhibition and that delayed death is likely a result of complex
54	downstream cellular effects of apicoplast inhibitors (9, 10, 12, 13).
55	Each of these apicoplast inhibitors causes defects in apicoplast biogenesis-its
56	growth, division, and inheritance, leading to the formation of <i>T. gondii</i> parasites that are
57	missing the apicoplast entirely (10, 12, 13). It is therefore surprising that these drug-
58	treated parasites replicate to wild-type levels in the first lytic cycle during inhibitor
59	treatment, as defects in or loss of the apicoplast should render parasites unable to produce
60	essential apicoplast-derived metabolites (14). How parasites are able to compensate for
61	this loss during the first lytic cycle remains poorly understood. Of note, growth kinetics
62	resembling delayed death have also been observed for inhibitors that block apicoplast
63	metabolic function and genetic disruption of proteins required for apicoplast biogenesis
64	or metabolism, suggesting that inhibiting production of essential apicoplast metabolites
65	may be the common perturbation leading to delayed death in <i>T. gondii</i> (5, 15-18).
66	A number of models have been proposed to explain how apicoplast defects lead to
67	delayed death. One model proposes that apicoplast metabolites are only required for the
68	successful establishment of a parasitophorous vacuole (PV) but are dispensable during
69	intravacuolar replication (9). Another model proposes that growth of parasites with

70	defective apicoplasts during the first lytic cycle is supported by sister parasites with
71	functioning apicoplasts in the same vacuole (19). These models, however, are
72	inconsistent with experiments in which clindamycin-treated parasites were manually
73	released from the host cell prior to completion of the first lytic cycle, separated from
74	sister parasites, and allowed to establish a new infection. These drug-treated,
75	prematurely-lysed parasites were able to establish a new PV and replicate, albeit at
76	reduced rates that depended on the duration of drug treatment and number of replications
77	in the previous vacuole (9). These parasites also eventually fail to replicate in the third or,
78	with continued manual release, later lytic cycles (9), suggesting that the "delay" in
79	growth inhibition is not strictly tied to lytic cycles. Thus neither of the proposed models
80	is sufficient to explain the delayed-death phenotype.
81	Several key questions remain. First, what is the timing of apicoplast biogenesis
82	defects and loss upon treatment with apicoplast inhibitors? Apicoplast loss is an
83	important downstream cellular consequence of these inhibitors but has not been
84	quantified during a full lytic cycle. Second, do apicoplast inhibitors with distinct
85	molecular targets lead to different rates of apicoplast loss? While the literature would
86	suggest similar phenotypes between diverse classes of apicoplast inhibitors, this has yet
87	to be confirmed with a side-by-side comparison. Third, what is the role of the host cell in
88	delayed death? We hypothesize that, since <i>T. gondii</i> replicates in a metabolically active
89	host cell, host metabolites may compensate for apicoplast inhibition. Fourth, how do the
90	downstream cellular effects of apicoplast inhibition differ between T. gondii and P.
91	falciparum? Their distinct replication cycles, differences in their host cell metabolic
92	activity, and the overlapping but distinct inhibitor classes that cause delayed death in

93 these parasites suggest different mechanisms underlie the seemingly similar delayed94 growth kinetics.

95	To address these questions, we validated an apicoplast marker to monitor
96	apicoplast biogenesis defects and loss and show that multiple classes of apicoplast
97	inhibitors cause gradual accumulation of parasites with disrupted or missing apicoplasts.
98	Interestingly, the delayed-death growth kinetics caused by these apicoplast inhibitors is
99	modulated by an inhibitor of host cell isoprenoid biosynthesis. These results clarify the
100	complex downstream cellular effects of apicoplast inhibition in T. gondii and their
101	similarities and differences to that in <i>P. falciparum</i> .
102	
103	Results
104	Apicoplast inhibitors cause reduced or absent FNR-RFP, an apicoplast marker.
105	We selected three inhibitors that are well-documented to cause delayed-death in
106	T. gondii and have strong evidence for their target in the apicoplast: actinonin (membrane
107	metalloprotease FtsH1), clindamycin (ribosome), and ciprofloxacin (DNA gyrase) (5, 10,
108	12, 13, 20). During treatment with these compounds, the apicoplast had been previously
109	observed by microscopy of T. gondii RH parasites expressing an apicoplast-targeted
110	ferredoxin NADP+ reductase fused to red fluorescence protein (FNR-RFP) (12, 18, 21-
111	24). In these experiments, treatment with apicoplast inhibitors leads to vacuoles with
112	some parasites missing FNR-RFP fluorescence (10, 12, 18). While these studies
113	suggested that the inhibitors lead to disruption of apicoplast biogenesis, it was unclear
114	how exactly FNR-RFP fluorescence corresponded to apicoplast presence. Furthermore,
115	since these studies used microscopy, they could only count apicoplasts in vacuoles

116 containing <8 parasites, corresponding to no more than 3 replications out of >6 total 117 replications during the lytic cycle (10, 12, 18). To clarify these initial observations, we 118 sought to develop a quantitative method to monitor apicoplast loss through a full lytic 119 cycle. Because microscopy of large vacuoles with 8+ parasites is difficult, we used flow 120 cytometry to count and quantify the FNR-RFP fluorescence of individual extracellular 121 parasites after host cell egress.

122 We compared FNR-RFP fluorescence with the presence of the apicoplast genome, 123 a known apicoplast marker. Briefly, parasites were treated with actinonin, clindamycin, 124 or ciprofloxacin for a single lytic cycle. After natural egress from the first lytic cycle, 125 egressed parasites were collected and their FNR-RFP fluorescence was quantified by 126 flow cytometry (Fig 1A-B). While untreated parasites retained high levels of FNR-RFP 127 fluorescence, treatment with each apicoplast inhibitor generated two populations of 128 parasites: one devoid of FNR-RFP fluorescence [FNR-RFP(-)] and one in which FNR-129 RFP was detectable but with a mean fluorescence intensity 25-75% less than that of the 130 untreated population [FNR-RFP(reduced)]. We sorted these two populations and 131 quantified their apicoplast:nuclear genome ratio by qPCR (Fig 1C). The apicoplast 132 genome was at reduced levels compared to untreated parasites but still detectable in 133 FNR-RFP(reduced) parasites. In contrast, the apicoplast genome was below the detection 134 limit in FNR-RFP(-) parasites, consistent with loss of the apicoplast in FNR-RFP(-) 135 parasites. These results validate the use of the FNR-RFP fluorescence as a marker for 136 apicoplast presence. It also suggests that, while the FNR-RFP(reduced) cells still contain 137 the apicoplast, the apicoplast is defective given the reduced levels of FNR-RFP

138 fluorescence, lower apicoplast genome copy number, and failure of both populations to

139 grow in the next lytic cycle (10, 12, 13).

140

141 Apicoplast loss occurs gradually during the first lytic cycle.

142 During the *T. gondii* lytic cycle, a single parasite undergoes >6 synchronous 143 rounds of binary division forming >64 daughter parasites within a vacuole in the host cell 144 (25). Apicoplast growth, division, and inheritance is coordinated with parasite replication 145 leading to exactly one apicoplast per parasite (26). Because parasites grow to wild-type 146 levels during the first lytic cycle during treatment, we were surprised to find that the large 147 majority of parasites had either disrupted or undetectable apicoplasts at this time point 148 (Fig 1A-C). We therefore further characterized the timing of apicoplast disruption during 149 the first lytic cycle.

150 T. gondii parasites were treated with apicoplast biogenesis inhibitors and parasites 151 were harvested after 6, 12, 24, 36, or 48 hours of treatment (Fig 2A). At each time point, 152 we manually released parasites from host cells and assessed apicoplast status based on (1) 153 apicoplast genome levels; (2) import of endogenous nuclear-encoded apicoplast proteins 154 (27); (3) the mean FNR-RFP florescence intensity of the population retaining detectable 155 FNR-RFP signal and (4) the percentage of cells containing detectable FNR-RFP (only 156 apicoplast genome levels were assessed at 6h time point). 157 In the first 12 hours of the lytic cycle, T. gondii parasites invade host cells, 158 establish a new PV, and divide once or twice. During this time, the only apicoplast defect 159 observed is a slight reduction in the levels of the apicoplast genome for parasites treated 160 with actinonin and ciprofloxacin (Fig 2B). After 24 hours, parasites have completed 3-4

161	divisions and reductions in levels of the apicoplast genome are detected for all apicoplast
162	inhibitors (Fig 2B). Also at this time point, other apicoplast defects start to appear. We
163	observed that drug-treated parasites begin to accumulate full-length Cpn60 (FL) (Fig 2C),
164	indicating a defect in apicoplast protein import. The FNR-RFP fluorescence of parasites
165	expressing measurable FNR-RFP, starts to dim for parasites treated with actinonin and
166	clindamycin (Fig 2D). Lastly, FNR-RFP(-) parasites start to emerge in samples treated
167	with actinonin (Fig 2E). These defects continue to accumulate for all drug-treated
168	parasites. By 48 hours, T. gondii has completed 6-8 divisions and egressed from the host
169	cell. At this time point, the apicoplast genome levels are reduced to 8-22% (Fig 2B), the
170	proportion of (FL) TgCpn60 has increased (Fig 2C), the mean levels of FNR-RFP
171	fluorescence in the FNR-RFP(reduced) population is 25-50%, and 25-50% of parasites
172	lose FNR-RFP fluorescence all together (FNR-RFP(-)) compared to untreated control
173	parasites. Overall, we observe that T. gondii parasites treated with apicoplast inhibitors
174	exhibit apicoplast biogenesis defects as early as the 2 nd parasite replication and the
175	severity of these defects worsen throughout the first lytic cycle of treatment, despite
176	normal growth.
177	
178	Host isoprenoids are necessary for growth in the first lytic cycle upon treatment

179 with apicoplast inhibitors.

Because *T. gondii* parasites treated with apicoplast inhibitors accumulate apicoplast biogenesis defects and lose their apicoplast long before growth inhibition is observed (Fig 2D-E), we sought to determine whether the scavenging of host cell metabolites can compensate for the loss of one or more apicoplast metabolic functions.

184 Isoprenoid biosynthesis is an essential function of the apicoplast (5, 6), and scavenging of 185 host cell isoprenoids by T. gondii has already been shown (28). Therefore parasites were 186 co-treated with apicoplast inhibitors and atorvastatin, a specific inhibitor of host cell 187 isoprenoid biosynthesis. As seen previously, treatment with 13 μ M atorvastatin alone did 188 not affect parasite growth, suggesting that in the presence of an intact apicoplast host cell 189 isoprenoid biosynthesis is not essential (Fig 3, Supplemental Fig 1) (28). However, unlike 190 atorvastatin or apicoplast inhibitors alone, the combination of atorvastatin with actinonin, 191 clindamycin, or ciprofloxacin caused parasite growth inhibition within the first lytic cycle 192 (Fig 3, Supplemental Fig 1). Instead of growing to wild-type levels during a full 48-hour 193 lytic cycle, growth defects are detectable starting 24 hours after treatment (Fig 3, 194 Supplemental Fig 1). After 48 hours, parasites co-treated with atorvastatin and apicoplast 195 inhibitors show 30-50% growth compared to parasites treated with apicoplast inhibitors 196 only (Fig 3). The minimum inhibitory concentration (MIC) of apicoplast inhibitors for 197 growth inhibition was similar in the presence and absence of atorvastatin, indicating that 198 atorvastatin's potential effect on host cell permeability did not result in off-target effects 199 (MIC = 20μ M actinonin +/- atorvastatin; MIC = 4 nM clindamycin +/- atorvastatin). 200 Rather, the altered kinetics of growth inhibition suggest that, with loss of apicoplast 201 function, parasites either require host isoprenoid biosynthesis after 24 hours or deplete 202 host isoprenoid reservoirs after 24 hours. We favor the former model since pretreatment 203 of host cells with atorvastatin for 24 hours prior to infection with T. gondii showed 204 similar results (Supplementary Figure 2).

205

206 Discussion

207 Our findings suggest the following model for the downstream cellular effects of 208 apicoplast inhibitors in *T. gondii*. First, several classes of apicoplast inhibitors cause 209 accumulation of apicoplast biogenesis defects and eventual apicoplast loss. We detect 210 these defects beginning as early as the 2nd parasite replication in the first lytic cycle, 211 preceding growth defects in the second lytic cycle.

Second, apicoplast biogenesis defects disrupt its biosynthetic functions important both for intravacuolar growth and likely establishment of infection in new host cells. This model predicts that direct inhibition of apicoplast biosynthetic pathways, without disrupting its biogenesis, will also cause delayed death, consistent with prior observations in the literature (16, 17).

217 Third, scavenging of host cell metabolites in the first lytic cycle can substitute for 218 metabolites normally biosynthesized in the apicoplast. We specifically tested the 219 scavenging of host cell isoprenoids, which was required 24 hours into the first lytic cycle. 220 Host fatty acids and heme may also compensate for loss of these apicoplast biosynthetic 221 functions, although we were unable to directly test these pathways given the lack of 222 specific inhibitors. Overall, we propose that host cell metabolites support the growth of T. 223 *gondii* during the first lytic cycle of apicoplast inhibition. Our results add to a growing 224 body of work indicating that access to host metabolites regulates the essentiality of 225 parasite metabolic pathways and the organelles that provide them (28-32). 226 Finally, host cell metabolites cannot compensate for the apicoplast indefinitely, 227 since parasites treated with apicoplast inhibitors ultimately fail to replicate in later lytic

cycles. It is possible that metabolites sourced from the apicoplast are required at the

229 beginning of the lytic cycle for PV formation and host cell remodeling. If this is true, then

230 drug-treated parasites prematurely lysed from host cells may continue to grow in 231 subsequent lytic cycles because the apicoplast is still partially functional at these early 232 time points. Alternatively, a combination of host cell scavenging and accrued apicoplast 233 metabolites may be sufficient during the first lytic cell but ultimately become depleted in 234 subsequent lytic cycles. More experiments are required to differentiate between these 235 scenarios, and ultimately reveal the essential products of the *T. gondii* apicoplast. 236 These downstream cellular effects of apicoplast biogenesis inhibitors in T. gondii 237 differ from the known effects in *P. falciparum* in significant ways. First, we show that *T*. 238 gondii parasites lacking apicoplasts accumulate over multiple parasite replications during 239 the first lytic cycle. In contrast, blood-stage P. falciparum only undergoes a single round 240 of parasite replication during each host lytic cycle, and apicoplast biogenesis is largely 241 unaffected by treatment with apicoplast translation inhibitors during the first lytic cycle (a 242 small reduction in apicoplast genome copies is sometimes observed) (11, 33). Second, we 243 show that T. gondii parasites lacking apicoplasts are viable during the first lytic cycle, 244 and apicoplast loss and parasite growth inhibition are temporally separated. In contrast, 245 *P. falciparum* growth inhibition occurs concurrently with apicoplast biogenesis defects in 246 the second lytic cycle most likely because apicoplast loss cannot be overcome by 247 scavenging of host cell metabolites (6, 11). We suspect this is due to the different 248 metabolic activities of their respective host cells: while P. falciparum grows in relatively 249 inert red blood cells, *T. gondii* makes its home in metabolically-active host cells. Third, 250 while all known apicoplast inhibitors cause delayed death in *T. gondii*, only the subset of 251 apicoplast inhibitors that disrupt apicoplast genome expression cause delayed death in P. 252 falciparum (12). The common defect leading to delayed death in T. gondii appears to be

253	loss of apicoplast metabolic function, while the common defect in <i>P. falciparum</i> delayed
254	death is loss of apicoplast genome expression. While it is possible that different
255	molecular targets account for these different inhibitor phenotypes, all apicoplast
256	inhibitors used in this study have strong evidence for the same target in both organisms
257	(10, 12, 13, 33). Instead, these different downstream cellular effects of apicoplast
258	inhibitors likely reflect the different biology of the parasites and their dependence on
259	apicoplast metabolic function.
260	
261	
262	Materials and methods
263	Chemicals
264	Actinonin was purchased from Sigma Aldrich and 25 mM aliquots were prepared
265	in ethanol. Clindamycin was purchased from Sigma Aldrich and 5 μ M aliquots were
266	prepared in water. Ciprofloxacin was purchased from Sigma Aldrich and 50 μ M aliquots
267	were prepared in water. Atorvastatin was a gift from the Smolke lab at Stanford and 50
268	μM aliquots were prepared in DMSO.
269	
270	Toxoplasma gondii culture
271	T. gondii RH FNR-RFP (26) was a gift from Boris Striepen (University of
272	Pennsylvania). Parasites were maintained by passage through confluent monolayers of
273	human foreskin fibroblasts (HFFs) host cells. HFFs were cultured in DMEM (Invitrogen)
274	supplemented with 10% FBS (Fetal Plex Animal Serum from Gemini, West Sacramento,
275	CA), 2 mM L-glutamine (Gemini), and 100 µg penicillin and 100 µg streptomycin per

mL (Gibco Life Technologies), maintained at 37 C and 5% CO₂. Parasites were harvested
for assays by syringe lysis of infected HFF monolayers.

278

279 Growth inhibition assays

280 1.5 million extracellular tachyzoites were counted by flow cytometry and allowed

to infect T25 flasks containing confluent human foreskin fibroblasts (HFFs). This amount

of parasites was chosen because it leads to lysis of the host monolayer after a 48-hour

283 lytic cycle. Infected cells were then incubated with either no apicoplast inhibitor, 40 µM

actinonin, 100 nM clindamycin, or 25 µM ciprofloxacin. When included, 13 µM

atorvastatin was used. At designated time points during the first lytic cycle, parasites

were released from HFFs using syringe lysis and either counted using flow cytometry

287 (BD Accuri C6 Sampler) or collected for qPCR (Applied Biosystem 7900HT) or

288 immunoblot. All time course experiments were repeated with at least 2 biological

replicates.

290

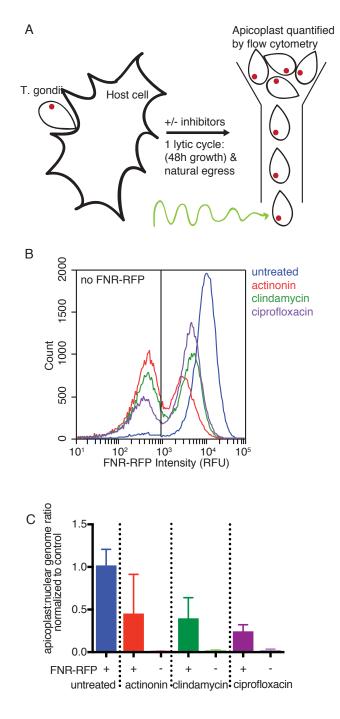
291 Flow cytometry and sorting

Fluorescence activated cell sorting (Sony) was performed on FNR-RFP parasites
grown for a full lytic cycle in either no drug, 40 µM actinonin, 100 nM clindamycin, or
25 µM ciprofloxacin. Untagged parasites were used to gate on the FNR-RFP(-) cells. One
million cells were sorted from each population and frozen down for subsequent analysis.
Flow cytometry (BD Accuri C6 Sampler) was performed to count parasites and
quantify FNR-RFP fluorescence. Untagged parasites were used to gate on the FNR-RFP() cells. At each time point, syringe lysed cells were washed, resuspended in PBS, and 10

- 299 µL fixed volumes were quantified. Samples were always resuspended in PBS directly
- 300 prior to measurement in the flow cytometer.
- 301
- 302 Quantitative real-time PCR
- 303 At each time point, syringe lysed parasites (1mL of culture, representing $1/4^{\text{th}}$ of
- 304 the total sample) was collected, spun down, and frozen prior to analysis. DNA was
- 305 purified using DNAeasy Blood and Tissue (Qiagen, Germany). Primers were designed to
- 306 target genes found on the apicoplast or nuclear genome: tufA (apicoplast) 5'-
- 307 TGGAGCCGCACAAATGGAT-3'/5'-CTTTAGTTTGTGGCATTGGCCC-3' and actin
- 308 (nuclear) 5'- GCGCGACATCAAGGAGAAGC-3'/5'-CATCGGGCAATTCATAGGAC-
- 309 3' (34). Reactions contained template DNA, 0.15 μ M of each primer, and 1x SYBR
- 310 Green I Master mix (Roche). qPCR reactions were performed at 56C primer annealing
- and 65C template extension for 35 cycles on a Applied Biosystem 7900HT system.
- 312 Relative quantification of target genes was determined (35). For each time point, the
- 313 apicoplast:nuclear genome ratio was calculated relative to the appropriate control
- 314 collected at the same time. The apicoplast:nuclear genome ratio was measured by qPCR
- two times.
- 316

317 Immunoblot

- Syringe lysed parasites (1mL of culture, representing 1/4th of total sample) were
 washed with PBS and frozen down in 1x NuPAGE LDS Sample Buffer (Invitrogen) prior
 to analysis. Proteins were separated by electrophoresis on 4–12% Bis-Tris gel
- 321 (Invitrogen) and transferred to a nitrocellulose membrane. After blocking, membranes

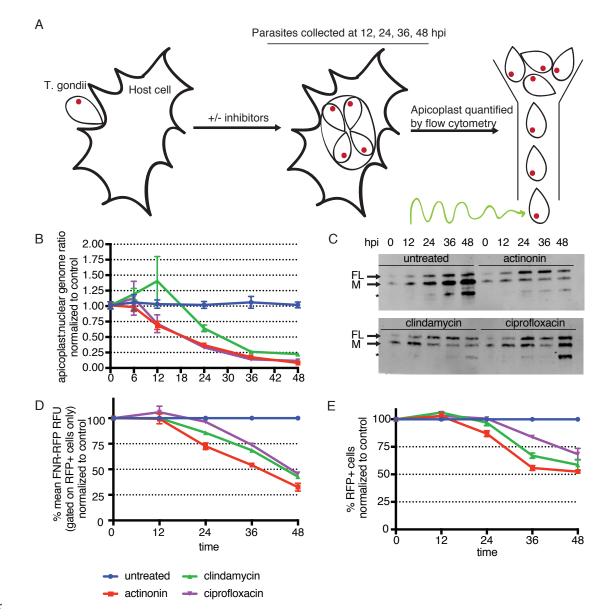

322	were probed with 1:5000 polyclonal rabbit anti-TgCpn60 (gift from Boris Striepen,
323	University of Pennsylvania) and 1:10,000 IRDye 800RD donkey anti-rabbit (LiCor
324	Bioscience, Lincoln, NE). Fluorescence antibody-bound proteins were detected with
325	Odyssey Imager (LiCor Biosciences). Immunoblots were performed 2 times.
326	
327	Statistical Analysis
328	When applicable, data was analyzed using Graph Pad Prism software and
329	expressed as mean values \pm standard error of the mean (SEM). Basic experiments were
330	repeated at least twice including both positive and negative controls. Biological replicates
331	were performed on different days or on independent cultures while technical replicates
332	were performed using cells from the same culture. Experiments were not blinded. All
333	new reagents were validated prior to use. All qPCR primers were assessed for single
334	amplicon.
335	
336	Acknowledgements
337	We thank Dr. Boris Striepen for providing the <i>T. gondii</i> FNR-RFP and the <i>Tg</i> Cpn60
338	antibody. This project has been funded with federal funds from the NIH under Award

339 Numbers 1K08AI097239 (EY), 1DP5OD012119 (EY), and T32GM007276 (KAJ).

- 340 Funding was also provided by the Burroughs-Wellcome Fund (EY), Chan-Zuckerberg
- 341 Biohub (EY), and the Stanford Bio-X SIGF William and Lynda Steere Fellowship (KAJ).
- 342 The funders had no role in study design, data collection and interpretation, or the decision
- to submit the work for publication.

344

346 Figures and Figure Legends



348 Figure 1: Apicoplast inhibition causes reduced or absent FNR-RFP which is

349 correlated with apicoplast genome levels. (A) Schematic of experimental procedure. T.

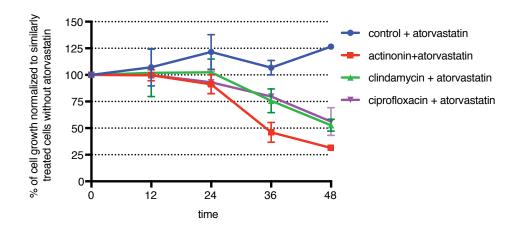
350 *gondii* is allowed to infect host cells for a single lytic cycle in the presence or absence of

- apicoplast inhibitors. Resulting parasites are collected and analyzed by flow cytometry.
- 352 (B) Representative histogram of FNR-RFP fluorescence intensity of parasites after a
- 353 single lytic cycle of growth in the presence or absence of apicoplast inhibitors (blue =
- untreated, red = actinonin, green = clindamycin, purple = ciprofloxacin). Non-fluorescent
- 355 gate was drawn based off of parasites that did not express FNR-RFP or any other
- 356 fluorescent marker. (C) Apicoplast:nuclear genome ratio of sorted parasites after a single
- 357 lytic cycle of growth in the presence or absence of apicoplast inhibitors. Gates to sort
- 358 FNR-RFP(+) or FNR-RFP(-) parasites were drawn based on parasites that did not express
- 359 FNR-RFP. Data is representative of two biological replicates performed in technical
- 360 triplicate. Error bars represent the standard error of the mean (SEM).

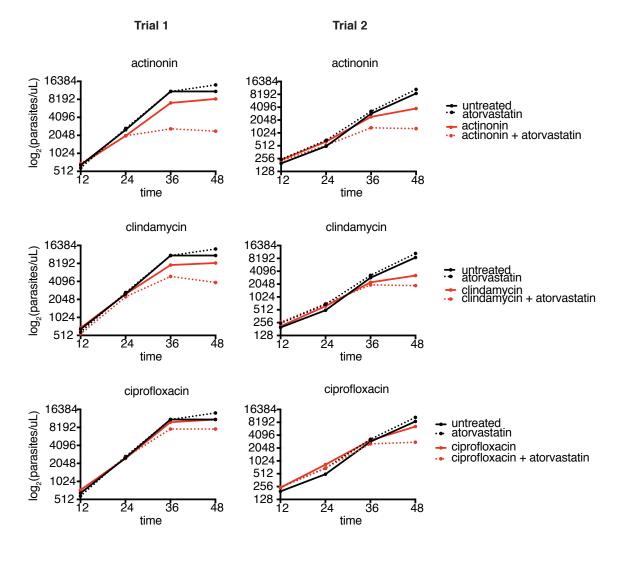
365 Figure 2: Apicoplast loss occurs gradually over the first lytic cycle of treatment. (A)

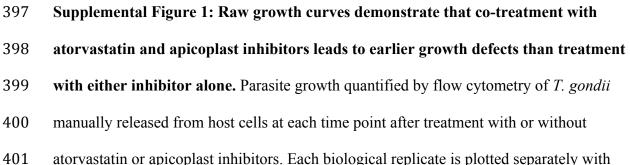
366 Schematic of experimental procedure. *T. gondii* parasites are allowed to infect host cells

367 and grow in the presence or absence of apicoplast inhibitors (blue = untreated, red =

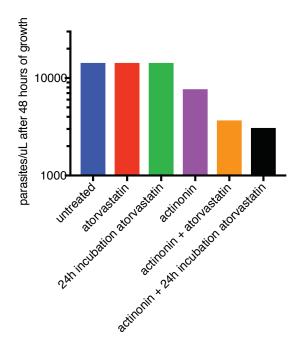

actinonin, green = clindamycin, purple = ciprofloxacin). At 6, 12, 24, 36, or 48 hours,

369 parasites are manually released from host cells. Because host cell lysis occurs between 36


and 48 hours, parasites analyzed at these time points may reflect growth in the second


371	lvtic cvcl	e (B)) Apico	plast:nuclear	genome ratio	at all time	points	Data is rer	resentative
0.1		(-)	, p - • •		5-1101110 10010		p 0 11100.	2000 10 10	

- 372 of two biological replicates performed in technical triplicate. Error bars represent the
- 373 standard error of the mean (SEM). (C) Western blot of TgCpn60 from 12-48 hours. FL
- 374 indicates the full-length protein prior to transit-peptide cleavage. M indicates the mature
- 375 protein after import into the apicoplast and transit peptide cleavage (27). Data is
- 376 representative of two biological replicates. (D) The mean FNR-RFP florescence of
- 377 parasites with detectable FNR-RFP florescence, normalized to control untreated
- 378 parasites, from 12-48 hours. Data is representative of two biological replicates. Error bars
- 379 represent the SEM. (E) Percent of cells with detectable FNR-RFP fluorescence,
- 380 normalized to control untreated parasites, from 12-48 hours. Data is representative of two
- 381 biological replicates. Error bars represent the standard error of the mean (SEM).



385 Figure 3: Inhibition of host isoprenoid biosynthesis with atorvastatin results in 386 growth kinetics that deviate from delayed death. (A) Parasite growth quantified by 387 flow cytometry of *T. gondii* manually released from host cells at each time point after 388 treatment with atorvastatin and in the presence or absence of apicoplast drugs (blue = 389 untreated, red = actinonin, green = clindamycin, purple = ciprofloxacin). Growth is 390 normalized to that of parasites treated with the same apicoplast inhibitor but in the 391 absence of atorvastatin at each time point. Data is representative of two biological 392 replicates. Error bars represent the standard error of the mean (SEM). Because host cell 393 lysis occurs between 36 and 48 hours, parasites analyzed at these time points may reflect 394 growth in the second lytic cycle. 395

402 the respective controls from that experiment.

403

404 Supplementary Figure 2: Pre-incubation of host cells with atorvastatin for 24 hours

- 405 prior to infection does not exacerbate growth defect of cells co-treated with
- 406 **atorvastatin and apicoplast inhibitors.** 1.5 million parasites were allowed to infect T25
- 407 flasks containing confluent human foreskin fibroblasts (HFFs) that were either untreated
- 408 or pre-incubated with atorvastatin for 24 hours prior to infection. Infected cells were then
- 409 incubated with either no inhibitor, atorvastatin only, actinonin only or
- 410 actinonin+atorvastatin. Parasite growth at the end of a 48 hour lytic cycle was quantified
- 411 by flow cytometry. Results are from a single biological replicate.
- 412

413 References

Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJ, Palmer
 JD, Roos DS. 1997. A plastid of probable green algal origin in Apicomplexan
 parasites. Science 275:1485-9.

417	2.	McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. 1996. Plastid in
418		human parasites. Nature 381:482.
419	3.	Janouskovec J, Horak A, Obornik M, Lukes J, Keeling PJ. 2010. A common red
420		algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc
421		Natl Acad Sci U S A 107:10949-54.
422	4.	Mazumdar J, H. Wilson E, Masek K, A. Hunter C, Striepen B. 2006. Apicoplast
423		fatty acid synthesis is essential for organelle biogenesis and parasite survival in
424		Toxoplasma gondii . Proceedings of the National Academy of
425		Sciences 103:13192-13197.
426	5.	Nair SC, Brooks CF, Goodman CD, Strurm A, McFadden GI, Sundriyal S, Anglin
427		JL, Song Y, Moreno SNJ, Striepen B. 2011. Apicoplast isoprenoid precursor
428		synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma
429		gondii. The Journal of Experimental Medicine 208:1547-1559.
430	6.	Yeh E, DeRisi JL. 2011. Chemical rescue of malaria parasites lacking an
431		apicoplast defines organelle function in blood-stage Plasmodium falciparum.
432		PLoS Biol 9:e1001138.
433	7.	Rolston KV. 1991. Treatment of acute toxoplasmosis with oral clindamycin. Eur J
434		Clin Microbiol Infect Dis 10:181-3.
435	8.	Geary TG, Jensen JB. 1983. Effects of antibiotics on Plasmodium falciparum in
436		vitro. Am J Trop Med Hyg 32:221-5.
437	9.	Fichera ME, Bhopale MK, Roos DS. 1995. In vitro assays elucidate peculiar
438		kinetics of clindamycin action against Toxoplasma gondii. Antimicrob Agents
439		Chemother 39:1530-7.
440	10.	Fichera ME, Roos DS. 1997. A plastid organelle as a drug target in apicomplexan
441		parasites. Nature 390:407-9.
442	11.	Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ. 2006.
443		Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium
444		falciparum. Antimicrob Agents Chemother 50:3124-31.
445	12.	Amberg-Johnson K, Hari SB, Ganesan SM, Lorenzi HA, Sauer RT, Niles JC, Yeh
446		E. 2017. Small molecule inhibition of apicomplexan FtsH1 disrupts plastid
447		biogenesis in human pathogens. 6.
448	13.	Camps M, Arrizabalaga G, Boothroyd J. 2002. An rRNA mutation identifies the
449		apicoplast as the target for clindamycin in Toxoplasma gondii. Mol Microbiol
450		43:1309-18.
451	14.	Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ,
452		Tonkin CJ, Roos DS, McFadden GI. 2004. Tropical infectious diseases: metabolic
453		maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol
454		2:203-16.
455	15.	Martins-Duarte ES, Carias M, Vommaro R, Surolia N, de Souza W. 2016.
456		Apicoplast fatty acid synthesis is essential for pellicle formation at the end of
457	16	cytokinesis in Toxoplasma gondii. J Cell Sci 129:3320-31.
458	16.	McLeod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, Mack DG,
459		Roberts CW, Samuel BU, Lyons RE, Dorris M, Milhous WK, Rice DW. 2001.
460		Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii
461		by inhibition of apicomplexan Fab I. Int J Parasitol 31:109-13.

462 463	17.	Mazumdar J, E HW, Masek K, C AH, Striepen B. 2006. Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma
464		gondii. Proc Natl Acad Sci U S A 103:13192-7.
465	18.	Reiff SB, Vaishnava S, Striepen B. 2012. The HU protein is important for
466		apicoplast genome maintenance and inheritance in Toxoplasma gondii. Eukaryot
467		Cell 11:905-15.
468	19.	Frenal K, Jacot D, Hammoudi PM, Graindorge A, Maco B, Soldati-Favre D.
469		2017. Myosin-dependent cell-cell communication controls synchronicity of
470		division in acute and chronic stages of Toxoplasma gondii. 8:15710.
471	20.	Crawford MJ, Thomsen-Zieger N, Ray M, Schachtner J, Roos DS, Seeber F.
472		2006. Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo
473		synthesis in the apicoplast. Embo j 25:3214-22.
474	21.	Agrawal S, Chung DW, Ponts N, van Dooren GG, Prudhomme J, Brooks CF,
475		Rodrigues EM, Tan JC, Ferdig MT, Striepen B, Le Roch KG. 2013. An apicoplast
476		localized ubiquitylation system is required for the import of nuclear-encoded
477		plastid proteins. PLoS Pathog 9:e1003426.
478	22.	Sheiner L, Fellows JD, Ovciarikova J, Brooks CF, Agrawal S, Holmes ZC, Bietz
479		I, Flinner N, Heiny S, Mirus O, Przyborski JM, Striepen B. 2015. Toxoplasma
480		gondii Toc75 Functions in Import of Stromal but not Peripheral Apicoplast
481		Proteins. Traffic 16:1254-69.
482	23.	van Dooren GG, Reiff SB, Tomova C, Meissner M, Humbel BM, Striepen B.
483		2009. A novel dynamin-related protein has been recruited for apicoplast fission in
484		Toxoplasma gondii. Curr Biol 19:267-76.
485	24.	van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B. 2008.
486		Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl
487		Acad Sci U S A 105:13574-9.
488	25.	Black MW, Boothroyd JC. 2000. Lytic cycle of Toxoplasma gondii. Microbiol
489		Mol Biol Rev 64:607-23.
490	26.	Stripen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F, Roos DS. 2000. The
491		plastid of toxoplasma gondii is divided by association with centrosomes. The
492		Journal of Cell Biology 151:1423-1434.
493	27.	Agrawal S, van Dooren GG, Beatty WL, Striepen B. 2009. Genetic evidence that
494		an endosymbiont-derived endoplasmic reticulum-associated protein degradation
495		(ERAD) system functions in import of apicoplast proteins. J Biol Chem
496		284:33683-91.
497	28.	Li ZH, Ramakrishnan S, Striepen B, Moreno SN. 2013. Toxoplasma gondii relies
498		on both host and parasite isoprenoids and can be rendered sensitive to
499		atorvastatin. PLoS Pathog 9:e1003665.
500	29.	Lim L, McFadden GI. 2010. The evolution, metabolism and functions of the
501		apicoplast. Philos Trans R Soc Lond B Biol Sci 365:749-63.
502	30.	Bisanz C, Bastien O, Grando D, Jouhet J, Marechal E, Cesbron-Delauw MF.
503		2006. Toxoplasma gondii acyl-lipid metabolism: de novo synthesis from
504		apicoplast-generated fatty acids versus scavenging of host cell precursors.
505		Biochem J 394:197-205.
506	31.	Coppens I. 2006. Contribution of host lipids to Toxoplasma pathogenesis. Cell
507		Microbiol 8:1-9.

508 509	32.	Hu X, Binns D, Reese ML. 2017. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem
510		292:11009-11020.
511	33.	Dahl EL, Rosenthal PJ. 2007. Multiple antibiotics exert delayed effects against
512		the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother 51:3485-
513		90.
514	34.	Lamarque MH, Roques M, Kong-Hap M, Tonkin ML, Rugarabamu G, Marq JB,
515		Penarete-Vargas DM, Boulanger MJ, Soldati-Favre D, Lebrun M. 2014. Plasticity
516		and redundancy among AMA-RON pairs ensure host cell entry of Toxoplasma
517		parasites. Nat Commun 5:4098.
518	35.	Pfaffl MW. 2001. A new mathematical model for relative quantification in real-
519		time RT-PCR. Nucleic Acids Res 29:e45.
520		