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Abstract

Wildfires are becoming more frequent in parts of the globe, but predicting where and

when extreme events occur remains difficult. To explain and predict wildfire extremes

across the contiguous United States, we integrate a 30 year wildfire occurrence record

with meteorological and housing data in spatiotemporal Bayesian models with spatially

varying nonlinear effects. We compared models with different distributions for the

number and sizes of large fires. A zero-inflated negative binomial model for fire counts

and a lognormal model for burn areas provided the best performance. We find that

dryness and air temperature strongly regulate wildfire risk, with precipitation, and

housing density playing weaker roles. Statistically, most of the variability in the chance

of an extreme wildfire results from changes in fire frequency that influence sampling from

the tails of fire size distributions, rather than changes in the underlying distributions of

expected fire sizes. Meteorologically, extreme events occur when conditions are hot and

dry, but the effect of air temperature is spatially variable. This model attains 98.9%

interval coverage for the number of fires in a withheld data set over a five-year prediction

time horizon. We argue that recent wildfire extremes need not be surprising, and future

extremes might be predictable if accurate meteorological forecasts are available to drive

models of fire occurrence and size.
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Introduction1

Wildfire frequency and burned area has increased over the past couple decades in the United2

States (Dennison et al. 2014; Westerling 2016), and elsewhere (Krawchuk et al. 2009; Pechony3

and Shindell 2010). In addition to the ecological and smoke impacts associated with increased4

burned area, there has been an increasing interest in extreme wildfires (Williams 2013) given5

their impact on human lives and infrastructure (Kochi et al. 2010; Diaz 2012). While case6

studies of particular extremes provide insight into what caused past events (Peterson et al.7

2015), predictions of future extremes at a national level could inform disaster related resource8

allocation. Here, we consider an extreme wildfire to be a fire with the largest burned area9

over a bounded spatiotemporal domain, e.g., within a spatial region and a temporal interval.10

Factors driving wildfire extremes vary in space and time (Barbero et al. 2014), but it is11

unclear how best to account for this in a predictive model. Previous efforts have used year or12

region-specific models, aggregating over space or time (Bermudez et al. 2009), temporally or13

spatially explicit models (Mendes et al. 2010), and spatial models with year as a covariate14

(Díaz-Avalos, Juan, and Serra-Saurina 2016). Recently, rich spatiotemporal models have been15

described with linear, spatially constant covariate effects (Serra, Saez, Juan, et al. 2014;16

Serra, Saez, Mateu, et al. 2014). However, linear, spatially constant effects are suboptimal17

over large spatial domains with nonlinear drivers (Fosberg 1978, Goodrick (2002), Preisler et18

al. (2004); Preisler and Westerling 2007; Balshi et al. 2009; Krawchuk et al. 2009; Pechony19

and Shindell 2009; Vilar et al. 2010; Woolford et al. 2011; Woolford et al. 2014). For20

example, global wildfire probability shows a hump-shaped relationship with temperature and21

moisture (Moritz et al. 2012). Interactions among drivers also impose nonlinearity, e.g., in22

hot and dry climates fuel sparsity limits fire spread (McLaughlin and Bowers 1982), but in23

cold and wet climates, fires are energy limited (Krawchuk and Moritz 2011).24

Prediction is also complicated by uncertainty in which distribution(s) to use to assign25

probabilities to extreme events. The generalized Pareto distribution (GPD) has frequently26

been used (Bermudez et al. 2009; Jiang and Zhuang 2011), but the GPD requires a threshold27

to delineate extreme events (Davison and Smith 1990, Coles (2014)). The utility and validity28
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of a threshold for extremes in a heterogeneous region is debatable (Tedim et al. 2018).29

Recently proposed metastatistical extreme value (MEV) approaches do not require such a30

threshold (Marani and Ignaccolo 2015; Zorzetto, Botter, and Marani 2016). In the MEV31

framework, the occurrence and size of future events, and the parameters of their distributions32

are treated as random variables which together imply a distribution for extremes. This33

approach has roots in compound distributions (Dubey 1970; Wiitala 1999), doubly stochastic34

processes (Cox and Isham 1980), superstatistics (Beck and Cohen 2003), and the Bayesian35

posterior predictive distribution (Gelman et al. 2013). The link to Bayesian inference36

is particularly useful, as it provides an easy way to propagate uncertainty forward to to37

predictions of extremes (Coles, Pericchi, and Sisson 2003).38

Here, we extend the MEV perspective to account for non-linear, spatially varying wildfire39

dynamics with the goal of predicting and explaining extreme wildfire events across the40

contiguous United States. We aim to predict occurrence (where and when), and magnitude41

(burn area) of large wildfires at a monthly time scale. Such predictions can be used to42

prioritize reactive fire suppression resources or inform proactive wildfire risk mitigation.43

Methods44

Data description45

We acquired wildfire event data for the contiguous United States from the Monitoring Trends46

in Burn Severity (MTBS, www.mtbs.gov) program (Eidenshink et al. 2007), which includes47

spatiotemporal information on the occurrence of wildfires in the United States from 1984 to48

2015. The MTBS data contain fires greater than 1000 acres in the western U.S. and greater49

than 500 acres in the eastern U.S. For consistency across the U.S., we discarded all records50

in the MTBS data less than 1000 acres, retaining 10,315 fire events (Figure 1A). Each event51

in the MTBS data has a discovery date, spatial point location, and final size.52

To explain fire size and occurrence, we used a combination of meteorological variables53

including humidity, air temperature, precipitation, and wind speed. These variables were54
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Figure 1. A. Fire ignition locations are shown as points across the study region. Colors in

panels B, C, and D show level 1, 2, and 3 ecoregions respectively.

selected on the basis of previous work, and also with an aim to capture directly the effects55

of easily interpretable meteorological quantities. Meteorological layers were acquired from56

the gridMET data (Abatzoglou 2013) that blends monthly high-spatial resolution (~4-km)57

climate data from the Parameter-elevation Relationships on Independent Slopes Model (Daly58

et al. 2008) with high-temporal resolution (hourly) data from the National Land Data59

Assimilation System (NLDAS2) using climatologically aided interpolation. The resultant60

products are a suite of surface meteorological variables summarized at the daily time step61

and at a 4-km pixel resolution. Daily total precipitation, minimum relative humidity, mean62

wind speed, and maximum air temperature were averaged at a monthly time step for each of63

84 Environmental Protection Agency level 3 (L3) ecoregions for each month from 1984 to64

2015 (Omernik 1987; Omernik and Griffith 2014). We also computed cumulative monthly65

precipitation over the previous 12 months for each ecoregion-month combination. We chose66
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to segment the U.S. with level 3 ecoregions as a compromise between the more numerous67

(computationally demanding) level 4 ecoregions, and the coarser level 2 ecoregions.68

We used publicly available housing density estimates that were generated based on the U.S.69

2000 decennial census as explanatory variables that may relate to human ignition pressure70

(Radeloff et al. 2010). These are provided at decadal time steps, and spatially at the level of71

census partial block groups. To generate approximate measures of housing density at monthly72

time intervals, we used a simple linear interpolation over time for each block group, then73

aggregated spatially across block groups to compute mean housing density for each ecoregion74

in each month.75

Model development76

We built two types of models: one describing the occurrence of fires within each L3 ecoregion77

over time (i.e., the total number of fires occurring in each ecoregion for each month from78

1984 - 2015), and another describing the size of each wildfire in each ecoregion and month.79

For occurrence models, the response variable was a count (number of fires), and for burn80

area models, the response was a continuous positive quantity (size of each fire event). We81

used the period from 1984 to 2009 for training, witholding the period from 2010 to 2015 to82

evaluate predictive performance.83

Fire occurrence84

We constructed four models for fire occurrence and compared their predictive performance85

based on test-set log likelihood and posterior predictive checks for the proportion of zeros,86

maximum count, and total count. The models differed in the distributions used in the87

likelihood, representing counts as a Poisson, negative binomial, zero-inflated Poisson, or88

zero-inflated negative binomial random variable. The Poisson distribution is a common choice89

for counts, and the negative binomial distribution provides an alternative that can account90

for overdispersion. The zero-inflated versions of these distributions include a component to91

represent extra zeros, which might be expected to work well if there are independent processes92
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that determine whether nonzero counts are possible (Lambert 1992).93

For spatial units (ecoregions) s = 1, ..., S and time steps (months) t = 1, ..., T , each model94

defines a probability mass function for ns,t: the number of fires over 1000 acres in ecoregion95

s and time step t. For each of the four count distributions under consideration, location96

parameters µs,t and (for zero-inflated models) structural zero inflation parameters πs,t were97

allowed to vary in space and time. We used a log link function to ensure that µs,t > 0, and98

a logit link function to ensure that πs,t ∈ (0, 1). Concatenating over spatial and temporal99

units, so that µ = (µs=1,t=1, µs=2,t=1, ..., µs=S,t=1, µs=S,t=2, ..., µs=S,t=T ), and similarly for π,100

we modeled distributional location and (when applicable) zero inflation parameters as:101

log(µ) = α(µ) + Xβ(µ) + φ(µ) + log(a),

logit(π) = α(π) + Xβ(π) + φ(π),

where α(µ) and α(π) are scalar intercept parameters, X is a known (S × T )× p design matrix,102

where p is the number of input features, β(µ) and β(π) are column vector parameters of length103

p, φ(µ) and φ(π) are column vector parameters of length S × T containing spatiotemporal104

adjustments, and a is a known offset vector of areas for spatial unit s = 1, 2, ..., S, repeated105

T times.106

Burn area107

We developed five candidate models for burn area, each of which specified a different108

distribution for burn areas (Reed and McKelvey 2002; Hernandez et al. 2015), including the109

generalized Pareto (Hosking and Wallis 1987), tapered Pareto (Schoenberg, Peng, and Woods110

2003), lognormal, gamma, and Weibull distributions. We evaluated each model in terms of111

test set log likelihood, and posterior predictive checks for burn area extremes. We defined112

the response yi as the number of acres burned over 1000 for the ith fire event, which occurred113

in spatial unit si and time step ti.114
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Because each burn area distribution has a different parameterization, we included covariate ef-115

fects in a distribution-specific way. For the generalized Pareto distribution (GPD), we assumed116

a positive shape parameter, leading to a Lomax distribution for exceedances (Bermudez et al.117

2009). The GPD and Lomax shape parameters are related by κ(GPD) = 1/κ(L), and the GPD118

scale parameter is related to the Lomax scale and shape parameters by σ(GPD) = σ(L)/κ(L).119

We introduced covariate dependence via the Lomax scale parameter using a log link. For120

event i, log(σ(L)
i ) = α +X(si,ti)β + φsi,ti , where α is an intercept parameter, β is a length121

p vector of coefficients, X(si,ti) is a row vector from X, and φsi,ti is a spatiotemporal ad-122

justment for si and ti. For the tapered Pareto model, we modeled the shape parameter123

as log(κi) = α+X(si,ti)β + φsi,ti . The lognormal model included covariate dependence via124

the location parameter: µi = α +X(si,ti)β + φsi,ti . The gamma model used a log link for125

the expected value: log(E(yi)) = α +X(si,ti)β + φsi,ti . Last, we modeled the Weibull scale126

parameter as log(σi) = α +X(si,ti)β + φsi,ti . More detail on the parameterization of each127

burn area distribution is provided in the Supporting Information.128

Accounting for nonlinear forcing129

The design matrix X was constructed to allow for spatially varying nonlinear effects of130

housing density and meteorological drivers. We used B-splines to account for nonlinearity131

(Figure 2) and allowed the coefficients for each basis vector to vary spatially (Wood 2017).132

First, we constructed univariate B-splines for log housing density, wind speed, same month133

precipitation, previous 12 month precipitation, air temperature, and humidity, with five134

degrees of freedom (including an intercept) for each variable. This step generated 30 basis135

vectors (five for each of six variables).136

To allow for spatial variation in these nonlinear effects, we added interaction effects between137

each of the basis vectors and ecoregions (Brezger and Lang 2006; Kneib, Hothorn, and Tutz138

2009). The hierarchical nesting of ecoregion designations (Figure 1B-D) lends itself to such139

interactions. Conceptually, coefficients in a level 3 ecoregion may be related to coefficients140

in the level 2 ecoregion containing the level 3 region, the level 1 ecoregion containing the141

level 2 region, and a global effect. The coefficient associated with a basis vector for any level142
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Figure 2. Conceptual figure to illustrate the use of B-splines to construct nonlinear functions.

In the left panel, five B-spline vectors are shown, which map values of an input variable (on

the x-axis) to a value on the y-axis. The middle panel shows the same B-spline vectors, but

weighted (multiplied) by real numbers, with the weights illustrated as annotations. These

weighted B-spline vectors are summed to produce the values of a nonlinear function (right

panel).

3 ecoregion is treated as a sum of a global effect, a level 1 ecoregion adjustment, a level 2143

ecoregion adjustment, and a level 3 ecogregion adjustment. Thus, for every univariate basis144

vector, we included interaction effects with ecoregion at each of the three ecoregion levels.145

This allows borrowing of information across space (level 3 ecoregions in a level 2 ecoregion are146

often adjacent), and for regions that are ecologically similar. We also included adjustments147

on the global intercept for each level 1, 2, and 3 ecoregion to account for spatial variation that148

is unrelated to climate or housing density. This specification induces sparsity in X that we149

exploit to increase the efficiency of computing µ and π. In total, X has p = 3,472 columns,150

with 97% zero entries.151

Prior specification152

To avoid overfitting, we used a regularized horseshoe prior on the coefficients associated153

with the spatially varying nonlinear effects described above (Piironen, Vehtari, and others154

2017). This prior places high probability close to zero, while retaining heavy enough tails155

that nonzero coefficients are not shrunk too strongly toward zero. This is consistent with156
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our prior expectation that most of the coefficients associated with the columns in X were157

close to zero. For the zero inflated count models, we used a multivariate horseshoe to allow158

information sharing between the zero inflated and distribution specific location parameters159

(Peltola et al. 2014). For the remaining count models and all burn area models, this160

was a univariate horseshoe prior. Spatiotemporal random effects were constructed using161

a temporally autoregressive, spatially intrinsically autoregressive formulation (Besag and162

Kooperberg 1995; Banerjee, Carlin, and Gelfand 2014). Details of these priors and the163

resulting joint distributions are provided in the Supporting Information.164

Posterior predictive inference and extremes165

We used the posterior predictive distribution to check each model and make inference on166

extremes. The posterior predictive distribution provides a distribution for replications of167

observed data (yrep), and predictions of future data (Gelman et al. 2013). Conceptually, for168

a “good” model, yrep should be similar to observed training data y, and future predictions169

should be similar to future data. Distributions over both quantities can be obtained by170

conditioning y and marginalizing over model parameters θ, e.g., [yrep|y] =
∫

[yrep|θ][θ|y]dθ.171

Posterior predictive distributions facilitate model checks that compare predicted and observed172

test statistics (Gelman, Meng, and Stern 1996). To evaluate whether a model captures173

tail behavior, one can compare an empirical maximum (T (y) = max(y)) to the predicted174

distribution of maxima T (yrep). We also include predictive checks for the proportion of175

zero counts, and totals for count and burn area models. Posterior predictive inference for176

maxima is similar in spirit to the MEV approach. Both obtain a distribution over maxima177

by marginalizing over unknowns including the number of events, size of each event, and178

parameters of their distributions (Marani and Ignaccolo 2015). However, a Bayesian approach179

explicitly conditions on the observed data to obtain a posterior distribution of parameters.180

Seeing this connection is useful in the context of including priors and propagating uncertainty181

to derived parameters, including total burn areas and probabilities of million acre wildfires.182
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Parameter estimation183

We used a combination of variational approximations and Hamiltonian Monte Carlo methods184

to sample from the posterior distributions of count and burn area models. A variational185

approximation (Kucukelbir et al. 2015) was used for count models to quickly identify a186

preferred model and avoid excessive multi-day model runs. Models were fit in the Stan187

probabilistic programming language using the rstan package (Carpenter et al. 2016; Stan188

Development Team 2018). The best performing count model and all burn area models were189

fit using the No-U-Turn Sampler (Hoffman and Gelman 2014). We ran four chains for 1000190

iterations each, and discarded the first 500 iterations as warmup. Convergence was assessed191

using visual inspection of trace plots, with potential scale reduction statistic values R̂ ≥ 1.1192

as an indicator convergence failure (Brooks and Gelman 1998).193

Implementation194

All data processing, model fitting, and visualization were implemented with open source195

software, primarily in the R programming language (R Core Team 2017), and wrapped in196

a reproducible workflow via GNU Make and Docker (Stallman, McGrath, and Smith 2004;197

Boettiger 2015). Data cleaning and transformation required the R packages assertthat (Wick-198

ham 2017a), lubridate (Grolemund and Wickham 2011), Matrix (Bates and Maechler 2018),199

pbapply (Solymos and Zawadzki 2018), splines (R Core Team 2018), tidyverse (Wickham200

2017b), and zoo (Zeileis and Grothendieck 2005). Spatial data were processed with raster201

(Hijmans 2017), rgdal (Bivand, Keitt, and Rowlingson 2018), sf (Pebesma 2018), and spdep202

(Bivand and Piras 2015). Finally, we used cowplot (Wilke 2017), ggrepel (Slowikowski 2018),203

ggthemes (Arnold 2018), patchwork (Pedersen 2017), and RColorBrewer (Neuwirth 2014) for204

visualization. The manuscript was written in R Markdown (Allaire et al. 2018). Analyses205

were run on an Amazon Web Services m5.2xlarge EC2 instance with four physical cores and206

32 GB of RAM, and the whole workflow requires ≈ 72 hours. All code to reproduce the207

analysis is available on GitHub at https://github.com/mbjoseph/wildfire-extremes (Joseph208

2018).209
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Table 1. Performance of count models on the test set in descending order. Posterior means

are provided with standard deviations in parentheses.

Model Holdout log likelihood

ZI Negative binomial -3068 (55)

Negative binomial -3090 (60)

ZI Poisson -3526 (71)

Poisson -4194 (124)

Results210

Wildfire occurrence211

The zero-inflated negative binomial distribution performed best on the held-out test set212

(Table 1), and was able to recover the proportion of zeros, count maxima, and count totals213

in posterior predictive checks for both the training and test data (Figure 3). All of the214

other count models that we considered exhibited lack of fit to at least one of these statistics215

in posterior predictive checks. Hereafter, we report results from the zero-inflated negative216

binomial model.217

Minimum relative humidity and maximum air temperature had the strongest effects on both218

the zero-inflation component and the expected value of the negative binomial component219

(Figure 4, posterior median for ρ: 0.663, 95% credible interval (CI): 0.361 - 0.86). The220

model uncovered unique effects of meteorological variables at level 1, 2, and 3 ecoregions221

(Figure 5). For example, a positive interaction effect between the second air temperature222

basis vector and the L1 Great Plains ecoregions indicates that the expected number of223

wildfires in plains ecoregions with cold conditions is high relative to other ecoregions. The224

Ozark/Ouachita-Appalachian forest and Ozark Highlands were also identified as having225

region-specific temperature effects (Figure 5). Twelve month total precipitation also had226

region specific effects in the Mississippi Alluvial and Southeast Coastal Plains ecoregion,227

where it tended to reduce fire risk (Figure 5). In contrast, increasing cumulative twelve month228

precipitation tended to increase risk in desert ecoregions (Figure 4). Housing density showed229
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Figure 3. Count predictive checks. Row one shows observed count frequencies as black points

and predicted frequencies as lines. Rows two, three, and four show predicted proportions of

zeros, maxima, and sums (respectively) in the training and test data, with empirical values

as dashed lines. Rows two through four facilitate comparison of performance on training and

test sets. Ideally, model predictions cluster around the dashed lines for both the training

(x-axis direction) and test (y-axis direction) sets, leading to a tight cluster of points at the

intersection of the dashed lines.
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Figure 4. Partial effects on the log-transformed negative binomial mean component of the

zero-inflated negative binomial model for each level 3 ecoregion, colored by level 1 ecoregion.

Lines are posterior medians. Results are similar for the zero-inflation component.

a unimodal relationship to expected count (Figure 4), with lower expected counts in sparsely230

populated ecoregions, and higher expected counts with moderately populated ecoregions.231

Posterior 95% credible interval coverage for the number of fires over 1000 acres in the test232

set was 98.9%. The lowest test set interval coverage was 91.7%, in the Cross Timbers L3233

ecoregion. When observed counts fell outside the 95% prediction interval, counts were larger234

than predicted 100% of the time. The largest difference between observed numbers and235

predicted 97.5% posterior quantiles (the upper limit for the 95% credible interval) occurred236

for the Columbia Mountains/Northern Rockies L3 ecoregion in August 2015, when 36 fires237

over 1000 acres occurred and at most 23.025 were predicted. For nearly half of the level238

3 ecoregions (44 of 85), accounting for 40.2% of the land area of the contiguous U.S., the239

zero-inflated negative binomial model had 100% test set prediction interval coverage.240
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Figure 5. Caterpillar plots of zero inflated negative binomial model coefficients, β(µ) (left)

and β(π) (right). Horizontal line segments denote 95% credible intervals. Grey segments

indicate coefficients with a less than 87% posterior probability of being positive or negative,

and colored segments indicate coefficients that are probably positive (red) or negative (blue).

B-spline vectors are indicated by colons, e.g., Humidity:1 indicates the first basis vector

corresponding to humidity. Interactions between variables a and b are represented as Intxn(a

x b). Level 1 ecoregions are represented by L1 ecoregion name, and L2 and L3 indicate

level 2 and 3 ecoregions.

Wildfire burned areas241

The lognormal distribution performed best on the test set (Table 2), and captured tail-242

behavior better than other burn area distributions (Figure 6). The GPD model was too243

heavy-tailed to adequately capture the pattern in the empirical data, predicting fires far244

larger than those observed in the training and test sets (Figure 6). The tapered Pareto245

distribution was too light-tailed (Figure 6). The gamma and Weibull models performed very246

poorly overall on the test set (Table 2), apparently due to a lack of congruence between the247

shapes of these distributions and the actual burn area distribution. Despite a poor fit to the248

bulk of the wildfire burn area distribution, both performed adequately in the upper tails249
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Figure 6. Predictive checks for burn area models. The top row shows predicted density in

color and empirical density for the training set in black, which reveals overall lack of fit for

the gamma and Weibull models. Row two shows the complementary cumulative distribution

function (CCDF) at the tails, with 95% and 50% prediction intervals shown in color and

observed data as black points, which shows that the Generalized Pareto distribution predicts

values that are too extreme. The third and fourth rows show checks for maximum and total

burn areas in the training and test set, with observed values as dashed lines and posterior

draws as colored points. These final two rows facilitate checks for summary statistics on

both the training and test set, with the ideal model generating predictions (colored points)

clustered close to where the dashed lines intersect.
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Table 2. Performance of burn area models on the test set in descending order. Posterior

means are provided with standard deviations in parentheses.

Model Holdout log likelihood

Lognormal -22341 (39)

Generalized Pareto -22375 (42)

Tapered Pareto -22388 (48)

Weibull -23499 (230)

Gamma -26191 (908)

(Figure 6). Hereafter we present results for the lognormal model, which had the highest test250

set log likelihood and captured tail behavior of the empirical fire size distribution.251

Relative humidity was the primary driver of expected burn area for a fire event (Figure 7A).252

The first basis vector for mean daily minimum relative humidity was the only coefficient with253

a 95% credible interval that did not include zero (posterior median: 1.66, 95% CI: (0.57 -254

2.28)). This nonlinear effect can be observed in Figure 7B as an increase in the expected burn255

area below 20% mean daily minimum humidity. This leads to a seasonality gradient among256

ecoregions of expected fire sizes, with little or no seasonal signal in typically humid ecoregions257

such as Marine West Coast Forests of the Pacific Northwest, and seasonal oscillations in258

ecoregions that have periodic fluctuations between dry and humid conditions such as the259

Temperate Sierras (Figure 7C). There was not strong evidence that meteorological variables260

had spatially variable effects on expected wildfire burn area.261

Overall, 95% posterior predictive interval coverage in the test set for burn areas was 92.3%.262

The lowest test set coverage was 0%, for the Eastern Great Lakes Lowlands L3 ecoregion,263

followed by 50%, for the Central California Valley L3 ecoregion, though these ecoregions had264

just 1 and 2 wildfire events in the test set. When observed fire sizes fell outside the 95%265

prediction interval, 23.3% of wildfires were smaller than predicted, and 76.7% of wildfires266

were larger than predicted. The largest discrepancy between the actual size of a wildfire and267

the predicted 97.5% posterior quantile was observed with the Wallow Fire in 2011 which268

burned 563,655 acres, but the predicted upper limit for size was 50,136. We investigate this269
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Figure 7. A. Estimated posterior medians and 95% credible intervals for each of the 3,473

coefficients associated with expected burn area. Only one coefficient - the first basis vector

for humidity - had a 95% credible interval that excluded zero, shown in red. This effect is

visualized in B. Partial effects of mean daily minimum humidity for each level 3 ecoregion,

with posterior medians drawn as lines, and the 95% credible intervals as ribbons. C. Monthly

time series of expected fire sizes for every level 3 ecoregion, faceted and colored by level

1 ecoregions sorted by mean humidity. Lines are posterior medians and ribbons are 95%

credible intervals.

discrepancy further in the case study below. The lognormal burn area model achieved 100%270

interval coverage in 26 of 66 ecoregions that had wildfire events in the test set, accounting271

for 29% of the land area of the contiguous U.S.272

Inference on extremes273

By combining the output of the event count and burn area models, we derived posterior274

prediction intervals for the size of the largest fire in a month for each region (the “burn area275
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maximum”), integrating over uncertainty in the number of fires, as well as the lognormal276

mean and standard deviation for burn area. In the holdout period from 2010 to 2015, a 99%277

prediction interval achieved 77.6% interval coverage, with 13.6% of the burn area maxima278

(109 fire events) being larger than predicted (Figure 8). The model predicted the total area279

burned over the entire contiguous United States in test period from 2010 to 2015 to be280

28,407,396 (95% CI: (18,236,854 - 52,279,618) and the actual value was 26,639,835. While281

fires over a million acres in size have happened historically, all fires in the training and282

test sets were below one million acres. If we extrapolate, the probability that at least one283

fire in the contiguous U.S. exceeded one million acres in the period from 2010 to 2015 was284

estimated to be between 0.171 and 0.661 (95% CI), with a posterior median of 0.33. The285

highest estimated probability for a million acre event was 0.014 (posterior median), with286

a 95% CI of (0, 0.272) seen for the Southwestern Tablelands ecoregion in June 2011. The287

second highest probability for a million acre event was 0.003 (posterior median), with a 95%288

CI of (0, 0.048) seen for the Arizona/New Mexico Mountains ecoregion in June 2011.289

Figure 8. Posterior 99% (light red) and 95% (dark red) prediction intervals for the burn area

of the largest fire event by month and level 3 ecoregion in the test set, shown for ecoregions

with wildfires in more than 20 months. Empirical maxima are shown as black dots.
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Error analysis case study: the 2011 Wallow Fire290

To better understand how well the model could or could not anticipate notable extreme291

events, and why, we used the largest fire in the test set as a case study. The Wallow Fire292

was accidentally ignited on May 29, 2011 by two campers in the L3 Arizona/New Mexico293

Mountains ecoregion. It burned through the month of June and into early July. The model294

underpredicted the total burn area of the Wallow Fire. Integrating over uncertainty in the295

predicted number of fires and expected fire size, the 99% credible interval for the maximum296

fire size for May 2011 was (1,820 - 270,304) acres, but the Wallow Fire is recorded as 563,655297

acres in the MTBS data.298

Figure 9. Posterior median contribution of each input variable to the linear predictor

function of model components for the Arizona/New Mexico Mountains level 3 ecoregion from

2010-2016. A dotted vertical line marks May 2011, when the Wallow Fire ignited. Vertical

positions of colored lines show contributions to the linear predictor function of each model

component.

We evaluated the contribution of each covariate to the linear predictor functions of the three299

model components (lognormal mean for burn areas, negative binomial mean for counts, and300
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the logit probability of the zero-inflation component) to understand why these predictions301

differed. We defined the contribution of a variable as the dot product of the elements in302

the design matrix X corresponding to a particular driver variable (e.g., humidity), and the303

estimated coefficients in β corresponding to that variable. This provides a quantitative304

measure of how each input variable contributes to the linear predictor for an ecoregion, and305

incorporates the overall, level 1, level 2, and level 3 ecoregion adjustments on these effects.306

Humidity is the primary driver of variation in the model’s predictions overall, and June 2011307

- the month after ignition - favored more large fires, with drier, hotter conditions (Figure 9).308

The 99% credible interval for June 2011 was (10,053 - 1,005,827) acres, which contains the309

true value. Evidently, conditions in May that drove (under)predictions of maximum burn310

area were not representative of the conditions over most of the Wallow Fire’s duration. The311

failure of the model to correctly predict the size of the Wallow fire suggests potential avenues312

for improvement, discussed below.313

Discussion314

Extreme wildfires are often devastating, but perhaps they need not be surprising. By allowing315

the non-linear effects of weather and housing density to vary across space, we were able to316

achieve good predictive accuracy for fire extremes over a five-year prediction window. We317

estimate a moderate chance of wildfires larger than what has been observed in recent decades,318

perhaps even over one million acres. Such predictions can support short to medium term319

wildfire management and probabilistic hazard assessment.320

Driving a model with meteorological features raises challenges related to predictive uncertainty321

and covariate shift - a change in the underlying distribution of forcing variables, potentially322

outside of the historic range. Ideally, this uncertainty would be propagated forward in a323

predictive model, possibly through stacking of predictive distributions that are generated from324

multiple models of future climate dynamics (Yao et al. 2017). But, even if one had a perfect325

forecast, novel conditions present a challenge for predictive modeling (Quionero-Candela et326

al. 2009). For example, the High Plains ecoregion had its highest monthly precipitation,327
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lowest 12 month running precipitation, driest, hottest, and windiest conditions in the test set328

period, so that the range of environmental conditions in the training data did not encompass329

the range of future conditions. Extrapolating beyond the range of training inputs is generally330

difficult, but the hierarchical spatial effect specification used here allows partial pooling331

among climatically similar ecoregions that can inform such predictions, unlike models fit332

separately to disjoint spatial regions.333

Human-caused climate change is expected to increase fire activity in the western U.S. (Rogers334

et al. 2011; Westerling et al. 2011; Moritz et al. 2012; Abatzoglou and Williams 2016)335

and elsewhere (Flannigan et al. 2009), which when coupled with the nonlinear effect of336

human-density provides a key inferential wrinkle. While most U.S. ecoregions are increasing337

in human density over time, some of these ecoregions are in the range of values in which338

this increases the expected number of large fires, while others are so populated that further339

increases would reduce the chance of a large fire. The hump-shaped effect of human density340

on the expected number of large fires is likely driven by ignition pressure and fire suppression341

(Balch et al. 2017). As human density increases from zero, ignition pressure increases, but342

eventually landscapes become so urbanized, fragmented, and/or fire-suppressed that wildfire343

risk decreases (Syphard et al. 2007; Bowman et al. 2011; Bistinas et al. 2013; Knorr et al.344

2013; Mcwethy et al. 2013; Syphard et al. 2017; Nagy et al. 2018). At intermediate density,345

wildfire dynamics respond to human ignition and altered fuel distributions (Guyette, Muzika,346

and Dey 2002), but these responses depend on environmental context and characteristics of347

the human population (Marlon et al. 2008; Li et al. 2009). This model indicates that the348

combination of moderate to high human density and dry conditions would nonlinearly increase349

the chance of an extreme fire event. Both human density and dryness are expected to increase350

in the future across large swaths of the U.S. (Lloyd, Sorichetta, and Tatem 2017; Stavros351

et al. 2014, Radeloff et al. (2010)), with potential implications for human mortality, health352

risks from smoke and particulate emission, and the financial burden of wildfire management353

(Reid et al. 2016; Radeloff et al. 2018).354

This work points to promising directions for future predictive efforts. Default choices such as355

Poisson and GPD distributions should be checked against alternative distributions. Further,356
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the predictive skill of this model seems to suggest that ordinary events provide information on357

extremes, which would not be the case if the generative distribution of extremes was completely358

unique. Previous case studies have identified that extremes or anomalies in climatological359

drivers play a role in the evolution of extreme wildfires (Peterson et al. 2015), but for this360

work, monthly averages of climatological drivers over fairly large spatial regions were used,361

which may smooth over anomalous or extreme conditions. Enhancing the spatiotemporal362

resolution of predictive models could better represent climatic and social drivers of fire363

dynamics and provide localized insights into fire dynamics to inform decision-making. This364

raises computational challenges, but recent advances in distributed probabilistic computing365

(Tran et al. 2017), efficient construction of spatiotemporal point processes (Shirota and366

Banerjee 2018), and compact representations of nonlinear spatial interactions (Lee and367

Durbán 2011) may provide solutions.368

The Wallow Fire case study reveals at least one limitation of increasing the spatiotemporal369

resolution. When the model predictions are driven by covariates that are summarized in space370

and time (e.g. a mean across an ecoregion in a month), summary values may not represent371

conditions that are most relevant to an event. With a discrete space-time segmentation,372

events can occur at the boundary of a spatiotemporal unit, e.g., if a fire spreads into an373

adjacent ecoregion or ignites on the last day of the month. Large wildfires can span months,374

and a model that only uses conditions upon ignition to predict total burn area can fail to375

account for conditions that change over the course of the event. Modeling ignitions as a point376

process in continuous space and time (Brillinger, Preisler, and Benoit 2003), and explicitly377

modeling subsequent fire duration and spatial dynamics could better separate conditions that378

ignite fires from those that affect spread. Such an approach might be amenable to including379

information on fuel continuity, which is likely to limit the size of extremely large fires and380

did not factor into the current models predictions (Rollins, Morgan, and Swetnam 2002;381

Hargrove et al. 2000). To the extent that a model reflects the generative process for extreme382

events, the decomposition of contributions to the model’s predictions may provide insight383

into attribution for meteorological and anthropogenic drivers of extremes.384

This paper presents and evaluates a statistical approach to explain and predict extreme385
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wildfires that incorporates spatially varying non-linear dynamics. The model reveals con-386

siderable differences in fire dynamics among ecoregions spanning the mountain west to the387

great plains, deserts, and eastern forests, and suggests a decent chance of very large fires388

exceeding one million acres in the contiguous U.S. Predictive approaches such as this can389

inform decision-making by placing probabilistic bounds on the number of wildfires and their390

sizes, while provide deeper insights into wildfire ecology.391
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Supporting Information

Prior specifications

Prior distributions were chosen to regularize coefficients on the distribution specific means

β(µ) and structural zero parameters β(π). We used a regularized horseshoe prior on these

coefficients, which shrinks irrelevant coefficients towards zero, while regularizing nonzero

coefficients (Piironen, Vehtari, and others 2017). For zero-inflated models, we used a

multivariate version of the regularized horseshoe (Peltola et al. 2014):

β(µ)
j

β
(π)
j

 ∼ N
0,

 τ 2
1 λ̃

2
1,j ρτ1τ2λ̃1,jλ̃2,j

ρτ1τ2λ̃1,jλ̃2,j τ 2
2 λ̃

2
2,j


,

λ̃2
m,j =

c2
mλ

2
j

c2
m + τ 2

mλ
2
j

,

for each response dimension m = 1, 2 and coefficient j = 1, ..., p. Here ρ is a correlation

parameter, τ1 and τ2 are global variance hyperparameters, c1 and c2 are hyperparameters

that determine the amount of shrinkage on the largest coefficients, and λj is a local scale

parameter drawn from a half-Cauchy distribution that control the amount of shrinkage applied

to coefficient j (Piironen, Vehtari, and others 2017). With this prior specification, information

can be shared across the two response dimensions through the correlation parameter ρ, and/or

through the local scale parameters λj . For count models without structural zeros (the Poisson

and negative binomial models), this multivariate prior simplifies to a univariate regularized

horseshoe prior.

Spatiotemporal random effects were constructed using a temporally autoregressive, spatially

intrinsically autoregressive formulation (Besag and Kooperberg 1995; Banerjee, Carlin, and

Gelfand 2014). Temporarily suppressing the superscript that indicates whether the effects

are on µ or π, and denoting column t from an S × T Φ as φt we have:

φt=1 ∼ N(0, (τ (φ)(D−W))−1)
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φt ∼ N(ηφt−1, (τ (φ)(D−W))−1), t = 2, ..., T

where η is a temporal dependence parameter, τ (φ) is a precision parameter, D is an S × S

diagonal matrix with entries corresponding to the number of spatial neighbors for each spatial

unit, and W is an S × S spatial adjacency matrix with nonzero elements only when spatial

unit i is a neighbor of spatial unit j (wi,j = 1 if i is a neighbor of j, and wi,j = 0 otherwise,

including wi,i = 0 for all i). τ (φ) is a precision parameter. We imposed a soft identifiability

constraint that places high prior mass near ∑S
s=1 φ

∗
t,s = 0 for all t.

We applied a univariate regularized horseshoe prior to all β coefficients in burn area models

(Piironen, Vehtari, and others 2017):

βj ∼ N
(
0, τ 2λ̃2

j

)
, λ̃2

j =
c2λ2

j

c2 + τ 2λ2
j

,

Spatiotemporal random effects were constructed in the same way as for the count models.
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Joint distributions

Here we provide the unnormalized posterior densities for each model. Square brackets

represent a probability mass or density function. Parameterizations for model likelihoods are

provided first, followed by the factorization of the joint distribution, with explicit priors.

Poisson wildfire count model

We used the following parameterization of the Poisson distribution:

[n|µ] = µne−µ

n! ,

where µ is the mean and variance.

The unnormalized posterior density of this model is:

[β(µ), α(µ),φ, σ(φ), η,λ, c, τ | N] ∝
S∏
s=1

T∏
t=1

[ns,t|β(µ), α(µ), φs,t]×

[φ1|σ(φ)]
T∏
t=2

[φt|φt−1, σ
(φ), η]×

p∏
j=1

[β(µ)
j |λj, c, τ ][λj]×

[σ(φ)][η][c][τ ][α(µ)]
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=
S∏
s=1

T∏
t=1

Poisson(ns,t|exp(α(µ) + X(s,t)β
(µ) + φs,t))×

Normal(φ1|0, ((σ(φ))−2(D−W))−1)×
T∏
t=2

Normal(φt|ηφt−1, ((σ(φ))−2(D−W))−1)×

p∏
j=1

Normal
(
β

(µ)
j |0,

τ 2c2λ2
j

c2 + τ 2λ2
j

)
× Cauchy+(λj|0, 1)×

Normal+(σ(φ)|0, 12)× Beta(η|1, 1)× Inv-Gamma(c2|2.5, 10)×

Normal+(τ |0, 52)× Normal(α(µ)|0, 52).
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Negative binomial wildfire count model

We used the following parameterization of the negative binomial distribution:

[n|µ, δ] =
(
n+ δ − 1

n

)( µ

µ+ δ

)n( δ

µ+ δ

)δ
,

where µ is the mean, and δ is a dispersion parameter.

The unnormalized posterior density of this model is:

[β(µ), α(µ),φ, σ(φ), η,λ, c, τ, δ | N] ∝
S∏
s=1

T∏
t=1

[ns,t|β(µ), α(µ), φs,t, δ]×

[φ1|σ(φ)]
T∏
t=2

[φt|φt−1, σ
(φ), η]×

p∏
j=1

[β(µ)
j |λj, c, τ ][λj]×

[σ(φ)][η][c][τ ][α(µ)][δ]

=
S∏
s=1

T∏
t=1

Negative Binomial(ns,t|exp(α(µ) + X(s,t)β
(µ) + φs,t), δ)×

Normal(φ1|0, ((σ(φ))−2(D−W))−1)×
T∏
t=2

Normal(φt|ηφt−1, ((σ(φ))−2(D−W))−1)×

p∏
j=1

Normal
(
β

(µ)
j |0,

τ 2c2λ2
j

c2 + τ 2λ2
j

)
× Cauchy+(λj|0, 1)×

Normal+(σ(φ)|0, 12)× Beta(η|1, 1)× Inv-Gamma(c2|2.5, 10)×

Normal+(τ |0, 52)× Normal(α(µ)|0, 52)× Normal+(δ|0, 52).
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Zero-inflated Poisson wildfire count model

We used the following parameterization of the zero-inflated Poisson distribution:

[n|µ, π] = In=0(1− π + πe−µ) + In>0π
µne−µ

n! ,

where µ is the Poisson mean, and 1− π is the probability of an extra zero.

The unnormalized posterior density of this model is:

[β(µ), α(µ),β(π), α(π),φ(µ), σ(φ,µ), η(µ),φ(π), σ(φ,π), η(π),λ, c, τ, ρ | N] ∝
S∏
s=1

T∏
t=1

[ns,t|β(µ), α(µ),β(π), α(π), φ
(µ)
s,t , φ

(π)
s,t ]×

[φ(µ)
1 |σ(φ,µ)]

T∏
t=2

[φ(µ)
t |φ

(µ)
t−1, σ

(φ,µ), η(µ)]×

[φ(π)
1 |σ(φ,π)]

T∏
t=2

[φ(π)
t |φ

(π)
t−1, σ

(φ,π), η(π)]×

p∏
j=1

[β(µ)
j , β

(π)
j |λj, c, τ, ρ][λj]×

[σ(φ,µ)][σ(φ,π)][η(µ)][η(π)][α(µ)][α(π)][ρ]
2∏

m=1
[cm][τm]
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=
S∏
s=1

T∏
t=1

ZIP(ns,t|eα
(µ)+X(s,t)β

(µ)+φ(µ)
s,t , logit−1(α(π) + X(s,t)β

(π) + φ
(π)
s,t ))×

Normal(φ(µ)
1 |0, ((σ(φ,µ))−2(D−W))−1)×

T∏
t=2

Normal(φ(µ)
t |η(µ)φ

(µ)
t−1, ((σ(φ,µ))−2(D−W))−1)×

Normal(φ(π)
1 |0, ((σ(φ,π))−2(D−W))−1)×

T∏
t=2

Normal(φ(π)
t |η(π)φ

(π)
t−1, ((σ(φ,π))−2(D−W))−1)×

p∏
j=1

N

β(µ)

j

β
(π)
j

 ∣∣∣∣0,
 τ 2

1
c2

1λ
2
j

c2
1+τ2

1λ
2
j

ρτ1τ2

√
c2

1λ
2
j

c2
1+τ2

1λ
2
j

√
c2

2λ
2
j

c2
2+τ2

2λ
2
j

ρτ1τ2

√
c2

1λ
2
j

c2
1+τ2

1λ
2
j

√
c2

2λ
2
j

c2
2+τ2

2λ
2
j

τ 2
2

c2
2λ

2
j

c2
2+τ2

2λ
2
j


×

p∏
j=1

Cauchy+(λj|0, 1)×

Normal+(σ(φ,µ)|0, 12)× Normal+(σ(φ,π)|0, 12)×

Beta(η(µ)|1, 1)× Beta(η(π)|1, 1)×

Normal(α(µ)|0, 52)× Normal(α(π)|0, 52)× LKJ(ρ|3)×
2∏

m=1
Inv-Gamma(c2

m|2.5, 10)× Normal+(τm|0, 52).
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Zero-inflated negative binomial wildfire count model

We used the following parameterization of the zero-inflated negative binomial distribution:

[n|µ, δ, π] = In=0(1− π + π
( δ

µ+ δ

)δ
) + In>0

(
n+ δ − 1

n

)( µ

µ+ δ

)n( δ

µ+ δ

)δ
,

where µ is the negative binomial mean, δ is the negative binomial dispersion, and , and 1− π

is the probability of an extra zero.

The unnormalized posterior density of this model is:

[β(µ), α(µ),β(π), α(π),φ(µ), σ(φ,µ), η(µ),φ(π), σ(φ,π), η(π),λ, c, τ, ρ, δ | N] ∝
S∏
s=1

T∏
t=1

[ns,t|β(µ), α(µ),β(π), α(π), φ
(µ)
s,t , φ

(π)
s,t , δ]×

[φ(µ)
1 |σ(φ,µ)]

T∏
t=2

[φ(µ)
t |φ

(µ)
t−1, σ

(φ,µ), η(µ)]×

[φ(π)
1 |σ(φ,π)]

T∏
t=2

[φ(π)
t |φ

(π)
t−1, σ

(φ,π), η(π)]×

p∏
j=1

[β(µ)
j , β

(π)
j |λj, c, τ, ρ][λj]×

[σ(φ,µ)][σ(φ,π)][η(µ)][η(π)][α(µ)][α(π)][ρ][δ]
2∏

m=1
[cm][τm].
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=
S∏
s=1

T∏
t=1

ZINB(ns,t|eα
(µ)+X(s,t)β

(µ)+φ(µ)
s,t , δ, logit−1(α(π) + X(s,t)β

(π) + φ
(π)
s,t ))×

Normal(φ(µ)
1 |0, ((σ(φ,µ))−2(D−W))−1)×

T∏
t=2

Normal(φ(µ)
t |η(µ)φ

(µ)
t−1, ((σ(φ,µ))−2(D−W))−1)×

Normal(φ(π)
1 |0, ((σ(φ,π))−2(D−W))−1)×

T∏
t=2

Normal(φ(π)
t |η(π)φ

(π)
t−1, ((σ(φ,π))−2(D−W))−1)×

p∏
j=1

N

β(µ)

j

β
(π)
j

 ∣∣∣∣0,
 τ 2

1
c2

1λ
2
j

c2
1+τ2

1λ
2
j

ρτ1τ2

√
c2

1λ
2
j

c2
1+τ2

1λ
2
j

√
c2

2λ
2
j

c2
2+τ2

2λ
2
j

ρτ1τ2

√
c2

1λ
2
j

c2
1+τ2

1λ
2
j

√
c2

2λ
2
j

c2
2+τ2

2λ
2
j

τ 2
2

c2
2λ

2
j

c2
2+τ2

2λ
2
j


×

p∏
j=1

Cauchy+(λj|0, 1)×

Normal+(σ(φ,µ)|0, 12)× Normal+(σ(φ,π)|0, 12)×

Beta(η(µ)|1, 1)× Beta(η(π)|1, 1)×

Normal(α(µ)|0, 52)× Normal(α(π)|0, 52)× LKJ(ρ|3)× Normal+(δ|0, 52)×
2∏

m=1
Inv-Gamma(c2

m|2.5, 10)× Normal+(τm|0, 52).
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Generalized Pareto/Lomax burn area model

We used the following parameterization of the GPD/Lomax distribution:

[y|σ, κ] = 1
σ

(
κy

σ
+ 1

)−(κ+1)κ−1

,

where κ is a shape parameter and σ is a scale parameter.

The unnormalized posterior density of this model is:

[β, α,φ, σ(φ), η, κ(L),λ, c, τ | y] ∝
ntot∏
i=1

[yi|β, α, φsi,ti , κ(L)]×

[φ1|σ(φ)]
T∏
t=2

[φt|φt−1, σ
(φ), η]×

p∏
j=1

[βj|λj, c, τ ][λj]×

[α][c][τ ][κ(L)][η][σ(φ)]

=
ntot∏
i=1

Lomax(yi|κ(L), eα+X(si,ti)β+φsi,ti )×

Normal(φ1|0, ((σ(φ))−2(D−W))−1)×
T∏
t=2

Normal(φt|ηφt−1, ((σ(φ))−2(D−W))−1)×

p∏
j=1

Normal
(
βj|0,

τ 2c2λ2
j

c2 + τ 2λ2
j

)
× Cauchy+(λj|0, 1)×

Normal(α|0, 52)× Inv-Gamma(c2|2.5, 10)× Normal+(τ |0, 52)

Normal+(κ(L)|0, 52)× Beta(η|1, 1)× Normal+(σ(φ)|0, 12).
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Tapered Pareto burn area model

We used the following parameterization of the tapered Pareto distribution:

[y|κ, ν] =
(
κ

y
+ 1
ν

)
exp(−x/ν),

where κ is a shape parameter and ν a taper parameter.

The unnormalized posterior density of this model is:

[β, α,φ, σ(φ), η, ν,λ, c, τ | y] ∝
ntot∏
i=1

[yi|β, α, φsi,ti , ν]×

[φ1|σ(φ)]
T∏
t=2

[φt|φt−1, σ
(φ), η]×

p∏
j=1

[βj|λj, c, τ ][λj]×

[α][c][τ ][ν][η][σ(φ)]

=
ntot∏
i=1

Tapered Pareto(yi|eα+X(si,ti)β+φsi,ti , ν)×

Normal(φ1|0, ((σ(φ))−2(D−W))−1)×
T∏
t=2

Normal(φt|ηφt−1, ((σ(φ))−2(D−W))−1)×

p∏
j=1

Normal
(
βj|0,

τ 2c2λ2
j

c2 + τ 2λ2
j

)
× Cauchy+(λj|0, 1)×

Normal(α|0, 52)× Inv-Gamma(c2|2.5, 10)× Normal+(τ |0, 52)×

Cauchy+(ν|0, 1)× Beta(η|1, 1)× Normal+(σ(φ)|0, 12).
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Lognormal burn area model

We used the following parameterization of the lognormal distribution:

[y|µ, σ] = 1
y

1
σ
√

2π
exp

(
− (log(y)− µ)2

2σ2

)
,

where µ and σ are location and scale parameters, respectively.

The unnormalized posterior density of this model is:

[β, α,φ, σ(φ), η, σ,λ, c, τ | y] ∝
ntot∏
i=1

[yi|β, α, φsi,ti , σ]×

[φ1|σ(φ)]
T∏
t=2

[φt|φt−1, σ
(φ), η]×

p∏
j=1

[βj|λj, c, τ ][λj]×

[α][c][τ ][σ][η][σ(φ)]

=
ntot∏
i=1

Lognormal(yi|α + X(si,ti)β + φsi,ti , σ)×

Normal(φ1|0, ((σ(φ))−2(D−W))−1)×
T∏
t=2

Normal(φt|ηφt−1, ((σ(φ))−2(D−W))−1)×

p∏
j=1

Normal
(
βj|0,

τ 2c2λ2
j

c2 + τ 2λ2
j

)
× Cauchy+(λj|0, 1)×

Normal(α|0, 52)× Inv-Gamma(c2|2.5, 10)× Normal+(τ |0, 52)×

Normal+(σ|0, 52)× Beta(η|1, 1)× Normal+(σ(φ)|0, 12).
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Gamma burn area model

We used the following parameterization of the gamma distribution:

[y|κ, σ] = 1
Γ(κ)σκy

κ−1exp(−y/σ),

where κ is a shape parameter and σ a scale parameter.

The unnormalized posterior density of this model is:

[β, α,φ, σ(φ), η, κ,λ, c, τ | y] ∝
ntot∏
i=1

[yi|β, α, φsi,ti , κ]×

[φ1|σ(φ)]
T∏
t=2

[φt|φt−1, σ
(φ), η]×

p∏
j=1

[βj|λj, c, τ ][λj]×

[α][c][τ ][κ][η][σ(φ)]

=
ntot∏
i=1

Gamma(yi|κ, κ/exp(α + X(si,ti)β + φsi,ti))×

Normal(φ1|0, ((σ(φ))−2(D−W))−1)×
T∏
t=2

Normal(φt|ηφt−1, ((σ(φ))−2(D−W))−1)×

p∏
j=1

Normal
(
βj|0,

τ 2c2λ2
j

c2 + τ 2λ2
j

)
× Cauchy+(λj|0, 1)×

Normal(α|0, 52)× Inv-Gamma(c2|2.5, 10)× Normal+(τ |0, 52)×

Normal+(κ|0, 52)× Beta(η|1, 1)× Normal+(σ(φ)|0, 12).

47/48

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2018. ; https://doi.org/10.1101/384115doi: bioRxiv preprint 

https://doi.org/10.1101/384115
http://creativecommons.org/licenses/by/4.0/


Weibull burn area model

We used the following parameterization of the Weibull distribution:

[y|κ, σ] = κ

σ

(
y

σ

)κ−1
exp

(
−
(
y

σ

)α)
,

where κ is a shape parameter and σ is a scale parameter.

The unnormalized posterior density of this model is:

[β, α,φ, σ(φ), η, κ, λ, c, τ | y] ∝
ntot∏
i=1

[yi|β, α, φsi,ti , κ]×

[φ1|σ(φ)]
T∏
t=2

[φt|φt−1, σ
(φ), η]×

p∏
j=1

[βj|λj, c, τ ][λj]×

[α][c][τ ][κ][η][σ(φ)]

=
ntot∏
i=1

Weibull(yi|κ, exp(α + X(si,ti)β + φsi,ti))×

Normal(φ1|0, ((σ(φ))−2(D−W))−1)×
T∏
t=2

Normal(φt|ηφt−1, ((σ(φ))−2(D−W))−1)×

p∏
j=1

Normal
(
βj|0,

τ 2c2λ2
j

c2 + τ 2λ2
j

)
× Cauchy+(λj|0, 1)×

Normal(α|0, 52)× Inv-Gamma(c2|2.5, 10)× Normal+(τ |0, 52)×

Normal+(κ|0, 52)× Beta(η|1, 1)× Normal+(σ(φ)|0, 12).
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