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ABSTRACT  

The topological state of covalently closed, double-stranded DNA is defined by the knot 

type K  and the linking-number difference LkΔ  relative to unknotted relaxed DNA. DNA 

topoisomerases are essential enzymes that control the topology of DNA in all cells. In 

particular, type-II topoisomerases change both K  and LkΔ  by a duplex-strand-passage 

mechanism and have been shown to simplify the topology of DNA to levels below thermal 

equilibrium at the expense of ATP hydrolysis. It remains a puzzle how small enzymes are 

able to preferentially select strand passages that result in topology simplification in much 

larger DNA molecules. Using numerical simulations, we consider the non-equilibrium 

dynamics of transitions between topological states ( , )K LkΔ  in DNA induced by type-II 

topoisomerases. For a biological process that delivers DNA molecules in a given topological 

state ( , )K LkΔ  at a constant rate we fully characterize the pathways of topology 

simplification by type-II topoisomerases in terms of stationary probability distributions and 

probability currents on the network of topological states ( , )K LkΔ . In particular, we 

observe that type-II topoisomerase activity is significantly enhanced in DNA molecules 

that maintain a supercoiled state with constant torsional tension. This is relevant for 

bacterial cells in which torsional tension is maintained by enzyme-dependent homeostatic 

mechanisms such as DNA-gyrase activity. 
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INTRODUCTION 

The topological state of covalently closed, double-stranded DNA is defined by the knot 

type, K , and the linking number, Lk . DNA topoisomerases play a critical role in controlling 

the topology of double-stranded DNA through torsional relaxation and supercoiling, 

decatenation of interlocked DNA duplexes, and elimination of knotted DNA-recombination 

products, which cannot support transcription and replication (1–5). Supercoiling is 

quantitatively defined in terms of the linking-number difference relative to relaxed DNA, 

0Lk Lk LkΔ = − , rather than Lk  itself; here, 0 0Lk N h=  where N  is the number of DNA 

base pairs in the DNA molecule and 0h  is the number of base pairs per helical turn in 

topologically relaxed DNA.  

     DNA topoisomerases are divided into two classes, type-I and type-II, corresponding to 

mechanisms that involve cleavage of one or both DNA strands, respectively (6). Type-I 

enzymes regulate the torsional tension in double-stranded DNA by changing LkΔ  

exclusively whereas type-II enzymes can change both K  and LkΔ  by passing one duplex 

DNA segment through another. Torsional relaxation of DNA is energetically favorable and 

can be performed by ATP-independent enzymes, such as topoisomerase I, and by DNA 

gyrase in the absence of ATP (3). All topoisomerases can remove supercoils from DNA, 

but DNA gyrase can also introduce negative supercoils into DNA at the expense of ATP 

hydrolysis. All type-II enzymes require ATP hydrolysis to perform duplex-segment passage, 

in particular type-IIA enzymes such as bacterial topoisomerase IV and eukaryotic 

topoisomerase II (7). This cofactor requirement was poorly understood until Rybenkov et 

al. showed in 1997 that type-II topoisomerases selectively perform strand passages that 

reduce the steady-state fraction of knotted or catenated, torsionally relaxed plasmid DNAs 

to levels 80 times below that at thermal equilibrium (8). In particular, the width of the 

LkΔ distribution for torsionally relaxed plasmid DNAs acted on by type-IIA topoisomerases 

was found to be narrower, i.e., less supercoiled, than that observed with ATP-independent 

enzymes (8). Thus, type-II topoisomerases use the free energy of ATP hydrolysis to drive 

the system away from thermal equilibrium. However, the puzzle remains how a relatively 

small enzyme is able to preferentially select strand passages that lead to unknotting rather 

than to formation of knots in large DNA molecules because the topological state of DNA is 

a property of the entire molecule that cannot be determined by local DNA-enzyme 

interactions. 

     Since the seminal work by Rybenkov et al. several models have been suggested to 

explain how ATP-hydrolysis-driven type-II topoisomerases can selectively lower the 

frequency of DNA knotting (8–14).   These models are generally based  on  geometric  or  
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Figure 1. (A) Mechanistic details of duplex-DNA passage in type-II topoisomerases. Step 1: enzyme 

binding to gate (G) segment in duplex DNA, followed by an encounter with transfer (T) segment; 

step 2: binding of two ATP molecules seals the gate; step 3: cleavage of the G segment duplex, 

catalyzed by the binding of 2 Mg2+ ions; step 4: passage of the T segment through the G segment; 

step 5: hydrolysis of the first ATP molecule releases a phosphate group and reseals the G segment 

strand; step 6: hydrolysis of the second ATP molecule dismantles the complex releasing both DNA 

strands; step 7: the enzyme resets to its original conformation. (B) Structure of yeast type-II 

topoisomerase dimer bound to a doubly nicked 34-mer duplex DNA (PDB 4GFH) and AMP-PNP. The 

DNA is bent 160° via interactions with an invariant isoleucine (49). 

kinetic mechanisms that increase the probability of strand-passage reactions and result in 

topology simplification from an initial state. The most successful model that has emerged 

from these studies is the model of a hairpin-like gate (G) segment, where the type-II 

enzyme strongly bends the G-segment DNA and accepts for passage only  a  transfer  (T) 

segment from the inside to the outside of the hairpin-formed G segment (Figure 1A) (9, 

15). For torsionally unconstrained (nicked) DNA, the model predicts a large decrease in 

the steady-state proportion of knots and catenanes relative to those at equilibrium, 

although it is insufficient to explain the magnitude of the effect observed with torsionally 

relaxed DNA plasmids (9, 15).  Indeed,  strong  (~150°)  protein-induced bending of the 

G segment, as required by the model, is observed in a co-crystal structure of yeast 

topoisomerase II with G-segment DNA (Figure 1B) (16). Experimental AFM measurements 

are consistent with bend angles between 94° and 100°, whereas FRET measurements 

suggest somewhat larger bend angles of 126° and 140° (17). 
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     Another group of studies did not directly address mechanisms of topoisomerase action 

but considered the probability distribution ( ),P K LkΔ , and distributions derived therefrom, 

at thermal equilibrium (10, 18–20). This distribution is directly related to the free-energy 

landscape ( ) ( ), ln ,BF K Lk k T P K LkΔ = − Δ  where T  is the temperature and Bk  is 

Boltzmann’s constant. The distribution ( ),P K LkΔ  corresponds to a phantom-chain 

ensemble where the DNA molecules are free to explore all topological states ( , )K LkΔ  at 

thermal equilibrium, referred to here as the equilibrium segment-passage (ESP) ensemble 

(21). Characterization of ( ),P K LkΔ  therefore yields important insight about the most 

likely relaxation path of a given DNA knot by a hypothetical topoisomerase that lacks any 

bias towards topology simplification and is driven only by the topological free-energy 

gradient. Indeed, the actual extent of bias for an ATP-driven type-II enzyme in favor of 

unknotting can only be quantified if we know the probability of acting in the absence of 

any bias, corresponding to topoisomerase action in absence of ATP hydrolysis. The 

system’s behavior at thermal equilibrium thus provides a necessary reference state  for 

investigating mechanisms of topoisomerase activity such as chirality bias (22–24).  

     Motivated by the fact that type-II enzymes drive the system away from equilibrium, 

we investigate a model of topoisomerase activity based on a network of topological states 

( , )K LkΔ  of circular DNAs with knot type K  and linking number difference LkΔ  in which 

the dynamics of transitions between states ( , )K LkΔ  mediated by type-II enzymes is 

described by a chemical master equation. Previous studies showed the existence of 

unknotting/unlinking pathways followed by type-II topoisomerases that stepwise 

progressively reduce the topological complexity of knotted/catenated molecules (25, 26). 

The main goal of our study is to identify significant pathways along which topology 

simplification by type-II enzymes occurs in terms of non-equilibrium steady states (NESSs) 

for the network ( , )K LkΔ . We also quantify type-II topoisomerase activity for a hairpin-

like G segment compared to a straight (unbent) G segment. To address these questions 

we generated a large set of equilibrium ensembles of knotted and supercoiled 6-kbp DNAs 

by Monte Carlo simulations to find transition rates and NESS parameters in the network 

of topological states ( , )K LkΔ . Our analytical approach can be thought of as a two-level 

model. At the top (macroscopic) level, the model uses topological states as the variable, 

so it allows DNA-topology transitions between states ( , )K LkΔ  according to a chemical 

master equation. This state space is therefore an integer lattice and the transitions 

between states occur with rates that are computed from an explicit, coarse-grained 

polymer model, which accounts for microscopic states. The master-equation formulation 

allows one to compute the occupancies of the different macrostates, including their 

dynamics. In principle, other mesoscopic models for knotted supercoiled DNA can be used 
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to capture the underlying microscopic behavior of the system, such as those obtained from 

Brownian or molecular dynamics (27). 

     A novel feature of our model is the capability to dynamically account for processes that 

generate complex knots extraneously, either in vitro or in vivo. The favorable unknotting 

pathways were determined in terms of universal NESS probabilities and probability 

currents, derived from transition rates. The idea of an induced probability current stems 

from the presence of an idealized source of complex knots. For example, type-II enzymes 

crucially maintain the integrity of genomic DNA during transcription and replication, 

requiring relaxation of (+) supercoils that build up ahead of RNA and DNA polymerases 

(28, 29). High local concentrations of type-II enzyme molecules near the boundary of a 

transcription bubble or ahead of a replication fork could therefore increase the probability 

of knotting through stochastic duplex-segment passage.  In vitro, type-IIA enzymes 

efficiently generate not-trivial knots through processes that facilitate intramolecular 

interactions among duplex-DNA segments, such as DNA supercoiling, DNA looping, or 

segment-segment interactions promoted by polycations and other DNA-condensing agents 

(30–32).  There is little information regarding endogenous knotting of DNA in vivo, 

although recent studies in yeast suggest that there can be low steady-state levels of knots 

in intracellular chromatin (33). If such knots exist in vivo, there must be mechanisms to 

efficiently resolve such topological entanglements, which are a potential death sentence 

for the cell (2, 34–36). 

COMPUTATIONAL METHODS 

DNA Model and Simulation Procedure 

Following previous studies (18, 19, 21, 37) circular duplex DNA is modeled as a discrete 

semi-flexible chain with N  extensible segments of mean length 0 10b = nm, corresponding 

to a total chain length of 0L Nb= ; in this work we use 200N =  corresponding to 6-kbp 

DNA (each segment has approximately 30 bps). The potential energy of a chain 

conformation is given by  

 ( ) ( )
2 2

2

01

21 cos 1 ,
2

N
s i

B b i tw
i

c b
U k T c c Tw

b N
πθ

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎡ ⎤= − + − + Δ⎜ ⎟⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

∑   (1) 

where 300T = K is the temperature and Bk  is Boltzmann’s constant. iθ  is the bending 

angle between successive segments i  and 1i + , ib  is the length of segment i , and TwΔ  

is the double-helical twist relative to relaxed DNA. During a Monte Carlo simulation, the 

value of TwΔ  was calculated for each chain conformation using White’s equation 
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Tw Lk WrΔ = Δ −  where Wr  is the writhe of the chain conformation and LkΔ  was fixed 

during the simulation. The bending energy constant bc  is chosen such that the persistence 

length P  of the chain is equal to 5 segments, i.e., 05 50P b= = nm, resulting in 5.5157bc =

(21). The stretching energy constant is given by ( )0s s Bc K b k T=  where sK  is the stretch 

modulus of DNA; using the approximate value 1000sK = pN for B-form DNA under 

physiological conditions (38) results in 2500sc = . The twisting energy constant is given by 

( )0tw Bc C b k T=  where C  is the torsional rigidity constant of DNA; using 193 10C −= × erg·cm 

for B-form DNA (37) results in 7.243twc = . Excluded-volume and electrostatic interactions 

between DNA segments are modeled by an effective hard-cylinder diameter 5d = nm, 

corresponding to an ionic strength of 150 mM (39).  

     Equilibrium ensembles of chains with fixed knot type K  and linking number difference 

LkΔ  were generated by Monte Carlo (MC) simulation. In our procedure, chain 

conformations evolved by crankshaft rotations and stretching moves of sub-chains (21), 

and sub-chain translations, or reptations, along the local chain axis; the purpose of 

reptation moves was to increase the probability of extrusion and resorption of superhelix 

branches   (37).     Trial    conformations    were    accepted     with    probability acceptP =  

( ) ( )min exp ,1trial current BU U k T⎡ ⎤⎡ ⎤− −⎣ ⎦⎣ ⎦  according to the Metropolis criterion,  where trialU  and 

currentU  are the potential energies of trial and current conformations, respectively, 

according to Equation (1). Excluded-volume interactions and preservation of knot type K  

were implemented by rejecting any trial conformation in which chain segments overlapped 

or which resulted in a change of K . Knot types K  of current and trial conformations were 

determined by calculating the Alexander polynomial ( )tΔ  for 1.1t = −  and the HOMFLY 

polynomial ( ),P a z  (40). Averages for given knot type K  and linking number LkΔ  were 

calculated from ensembles containing 610  saved conformations for the unknot 0.1  and the 

trefoil knot 3.1 , and 55 10×  saved conformations for all other knot types K . The 

simulation period between saved conformations entering these ensembles was 1000 MC 

moves.               

Model of Type-II Enzymes   

DNA-bound type-II enzymes with hairpin and straight G segments were modeled by 

selecting four or two contiguous chain segments, respectively, whose local geometry 

during a trial move conformed to specific criteria  (Figure 2). A hairpin G segment formed 

two sides of an equilateral triangle with side lengths 02 20b = nm, corresponding to a 120° 

bend.  A putative T segment was considered to be juxtaposed  with  the  G segment  if  it  
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Figure 2. Simulation snapshots of the left-handed trefoil knot 3.1−  with (A) hairpin-like G segment 

and (B) straight G segment (59). The conformations shown correspond to states in which a T 

segment (green) is properly juxtaposed with the G segment (red) to initiate strand passage. 

Deformed chains used to determine knot type 'K  and linking number 'LkΔ  of the chain 

conformation after strand passage are indicated by grey lines. 

passed through the triangle in such a way that none of the chain segments overlapped, 

i.e., excluded-volume interactions were preserved for the enzyme (Figure 2A). For a 

straight G segment, a potential T segment was considered to be juxtaposed if it passed 

through an equilateral triangle with one side formed by the straight G segment of length 

02 20b = nm (Figure 2B). The orientation of this triangle about the center axis of the chain 

was chosen randomly for each trial conformation. Again, excluded-volume interactions of 

chain segments were preserved.  

Juxtaposition Probabilities and Transition Rates 

Strand passages by type-II enzymes generate transitions from topological states 

( ),a K Lk= Δ  to states ( )', 'b K Lk= Δ  with ' 2Lk LkΔ = Δ ± . The associated transition rates 

abk  are assumed to be of the form  

( ) ( )0  ,abk k j a Q b a=                  (2) 

where 0k  is a constant which depends on enzyme activity and concentration, but is 

independent of the topological states a , b  of the DNA (9, 15). ( )j a  is the juxtaposition 

frequency of the enzyme in state a , corresponding to the fraction of DNA conformations 

in state a  in which a potential  T segment is properly juxtaposed with the  G segment  as 
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described above. ( )Q b a  is the conditional probability that strand passage from a 

juxtaposed conformation in state a  results in state b . The state ( )', 'b K Lk= Δ  of the chain 

that would result from state ( ),a K Lk= Δ  by passage of the T segment through the G 

segment was determined by considering local deformations of the chain as follows (Figure 

2). The knot type 'K  was determined by calculating the Alexander and HOMFLY 

polynomials of the deformed chain (40). 'LkΔ  was determined by calculating the writhe 

'Wr  of the deformed chain and assuming that strand passage leaves the twist TwΔ  nearly 

unchanged; applying White’s equation Lk Tw WrΔ = Δ +  to original and deformed chain, and 

using 'Tw TwΔ = Δ , then gives ' 'Lk Lk Wr WrΔ − Δ = − . Using the fact that the change of LkΔ  

occurs strictly in steps of 2±  allowed us to determine the sign of the change of LkΔ  by 

the corresponding change of the writhe Wr , which was always close to 2±  in our 

simulations. Thus, both ( )j a  and ( )Q b a  can be determined by MC simulations of 

equilibrium ensembles of chains in a fixed topological state a . The validity of this approach 

is based on the assumption that the reaction is not diffusion limited, which implies that 

the probability ( )j a  of finding a potential T segment properly juxtaposed with the G-

segment is equal to the equilibrium probability of this juxtaposed conformation in the 

absence of strand passage (9). 

Master Equation and Non-Equilibrium Steady States 

Consider an ensemble of circular duplex DNA molecules acted on by type-II enzymes in 

the presence of ATP. The rates abk  for transitions from topological states ( ),a K Lk= Δ  to 

states ( )', 'b K Lk= Δ  induced by the enzyme are given by Equation (2). The probability 

( ),P a t  to find a given DNA molecule in topological state a  at time t  obeys the master 

equation 

 ( ) ( ) ( ) ( ), , , ,   .ba ab ab
b a b

d P a t P b t k P a t k W P b t
dt ≠

⎡ ⎤= − ≡⎣ ⎦∑ ∑   (3) 

We consider here the situation where the probabilities ( ),P a t  are stationary, i.e., time-

independent, for all topological states a , corresponding to non-equilibrium steady states 

(NESS). The stationary NESS probabilities ( )*P a  were deduced from the eigenvector with 

eigenvalue  0  of the transition matrix  abW   in Equation (3)  and  using  the  normalization 

condition ( )* 1
a
P a =∑  (the star symbol for ( )*P a  is used to distinguish NESS probabilities 

from the equilibrium probabilities ( )P a  obtained in ESP ensembles). Stationary NESS 

probability currents from topological states a  to states b  are found from 

( ) ( )* *
ab ab bai P a k P b k= − . Note that at thermal equilibrium the detailed balance condition 

implies 0abi = ; conversely, in our study, NESS with appreciable probability currents abi  
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were generated by continuously delivering a complex topology, e.g., knot type 10.139K −=  

with 12LkΔ = − , to the ensemble by introducing a source rate ( ),Sk a b  with origin 

( )0.1,0a =  (the unknot with 0LkΔ = ) and source state ( )10.139 , 12b −= − .  

Universal NESS Probabilities and Probability Currents 

For nonzero source rates Sk  the NESS probabilities ( )*P a  and probability currents abi  

depend on enzyme properties such as intrinsic rate and concentration in terms of the 

constant 0k  in Equation (2). In order to obtain results independent of such largely 

unknown details (in this sense “universal”) we define normalized transition rates as 

 
( ) ( ) ( ) ( )

0 0 0
,ab

ab
j akK Q b a J a Q b a

k j j
≡ = ≡   (4) 

where 0j   is the juxtaposition frequency in a reference state,  which  we  choose as ( )0.1,0  

(the unknot with 0LkΔ = ). The normalization factor  ( )0 0 0.1,0;
b

k j k b=∑   in Equation (4), 

with ( ); abk a b k=  from Equation (2),  corresponds to the total rate of enzyme  reaction  in 

the reference state (0.1,0)a = . The normalized juxtaposition frequency ( ) ( ) 0J a j a j=  in 

Equation (4) is the ratio of the actual juxtaposition frequency ( )j a  in state a  and the 

juxtaposition frequency 0j  in the reference state, where the unknown constant 0k  drops 

out. Universal NESS probabilities ( )*P a  as a function of the parameter ( )0 0Sk k jκ =  were 

calculated using the normalized rates abK  in Equation (4) as described above, and 

universal NESS probability currents are obtained as ( ) ( )* *
ab ab baI P a K P b K= − . The 

universal NESS probabilities ( )*P a  and probability currents abI  as functions of the 

parameter κ  are expected to depend only on geometric properties of the enzyme, such 

as the bend angle of the G segment.  Thus these quantities are independent of properties 

that do not involve the particular topological state of the DNA, for example the overall size 

of the enzyme (as long as it is much smaller than the DNA) and the precise form of the 

interaction potential between the G and T segments. We verified by our simulations that 

( )*P a  and abI  are indeed universal functions of the parameter κ  by showing that ( )*P a  

and abI  remained unchanged when altering the interaction between G and T segments 

(Supplementary Figure S6). This test also provided an internal control for the validity of 

our computational approach.   
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RESULTS 

Equilibrium Distribution and Free-energy Landscape 

As outlined in the Introduction, the topological distribution at thermal equilibrium provides 

a reference state necessary to understand ATP-driven type-II enzyme action that results 

in topology simplification beyond equilibrium. The equilibrium ensemble is characterized 

by the joint probability distribution ( ),P K LkΔ , corresponding to an equilibrium segment-

passage (ESP) ensemble of phantom chains, and distributions derived therefrom (18, 19). 

In particular, Podtelezhnikov et al. found that ( )P K LkΔ , the conditional distribution of K  

for given LkΔ , is dominated by only a few knots K  for any fixed value of LkΔ ; moreover, 

the dominating knots except for the unknot were all chiral (18). Later, Burnier et al. 

pointed out that for chiral knots K  the level of supercoiling is characterized by the quantity 

( ), nickedLke Lk Wr KΔ = Δ −  rather than LkΔ , where ( ),nickedWr K  is the signed, 

nonzero mean value of the 3D writhe for a torsionally unconstrained (nicked) DNA 

molecule with chiral knot type K  (19). This result can be easily understood by taking the 

average of White’s equation for fixed LkΔ , i.e., Lk Tw WrΔ = Δ + : for a torsionally 

relaxed, i.e., not supercoiled, chain one has 0TwΔ =  and ( ), nickedWr Wr K= , thus 

( ), nickedLk Wr KΔ =  and 0LkeΔ =  (Figure 3). Burnier et al. found that the conditional 

distribution ( )P K LkeΔ  is dominated by the unknot for any fixed value of LkeΔ ; moreover, 

( )P K LkeΔ  decreases with increasing Lke−Δ  for any knot K , implying that increasing 

levels of supercoiling favor unknotting (19).   

     We first verified that our calculation reproduces the behavior of the equilibrium 

distribution ( )P K LkΔ  found earlier (see Figure 4 in reference (18) and Figure 2A in 

reference (19)). For our 6-kbp DNAs we indeed find that for any fixed, small value of LkΔ  

only  a  few  knot  types  K   dominate  the  distribution.    However,   for   18Lk−Δ > , 

corresponding to superhelix density 0 0.0315Lk Lkσ− = Δ >  for 6-kbp DNAs, the distribution 

rapidly becomes degenerate and many different knot types K  contribute to ( )P K LkΔ  

(Supplementary Figure S2). This value of σ  is closely similar to the in-vivo level of 

unconstrained supercoiling in prokaryotes (41, 42). If conditions inside the cell increase 

the level of unconstrained supercoiling beyond this σ  value, the resulting distribution of 

knot types would be expected to become highly degenerate. 

    Next, in order to understand the most-probable relaxation path of a given DNA knot K  

with linking number LkΔ  by a topoisomerase that is driven only by the topological free-

energy gradient, we calculated the free energy landscape ( ) ( ), ln ,BF K Lk k T P K LkΔ = − Δ       

including all knot types K  which dominate the distribution  ( )P K LkΔ   and  have  12  or  
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Figure 3. Standard forms of (A) the unknot 0.1 and (B) the left-handed knot 8.19− , and simulation 

snapshots of 6-kbp DNAs of these knots with values of LkΔ  and ( ), nickedLke Lk Wr KΔ = Δ −  as 

shown (59). The mean writhe ( ), nickedWr K  of torsionally relaxed (nicked) DNA is 0 for 0.1K =  

and 8.76−  for 8.19K −= . The states with 0LkeΔ = appear relaxed, whereas for 12LkeΔ = −  

supercoiling is present. 

fewer crossings (Figure 4). (See Supplementary Data, Section S1, Figure S1 and Table S1 

for details regarding the calculation of ( ),P K LkΔ ). The free-energy landscape also 

explains the apparent contradiction between results for ( )P K LkΔ  and ( )P K LkeΔ  

obtained in references (18) and (19), respectively, by noting that distributions for fixed 

LkΔ  or LkeΔ  merely correspond to different sections of the same free energy landscape 

( ),F K LkΔ  (Figure 4): along sections with fixed 5.5Lk−Δ > , the minimum value of 

( ),F K LkΔ  corresponds to the chiral knot 3.1− , whereas along sections with fixed 

( ), nickedLke Lk Wr KΔ = Δ − , the minimum in F  always coincides with the unknot 0.1.  The 

corresponding free-energy gradient towards 0.1  is steeper for increasing Lke−Δ , in 

agreement with earlier results (18, 19).  
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Figure 4. Free energy landscape ( ) ( ), ln ,BF K Lk k T P K Lk⎡ ⎤Δ = − Δ⎣ ⎦  in units of Bk T  for 6-kbp DNAs, 

where ( ),P K LkΔ  is the joint probability distribution of K  and LkΔ . Along sections with fixed 

5.5Lk−Δ > , ( ),F K LkΔ  is minimum for nontrivial knots, i.e., knots different from the unknot 0.1. 

This is indicated for 7Lk−Δ =  ( F  minimum for 3.1K −= , orange line/dot) and 12Lk−Δ =  ( F  

minimum for 8.19K −= , brown line/dot). The white curves are sections for fixed values 0 , 10−  of 

the degree of supercoiling ( ), nickedLke Lk Wr KΔ = Δ −  where ( ), nickedWr K  is the mean writhe 

for torsionally relaxed (nicked) DNA with knot type K . Along these sections, F  is always minimum 

for the unknot 0.1 and the corresponding free energy gradient towards 0.1 becomes steeper with 

increasing Lke−Δ . 

Steady-State Knot Distributions in Supercoiled DNA and Topology Simplification 

In addressing the influence of DNA supercoiling on the unknotting efficiency of type-II 

enzymes, we first consider an ensemble of supercoiled 6-kbp circular duplex DNAs in the 

presence of type-II topoisomerase and ATP without additional components. Each round of 

type-II enzyme action converts a DNA substrate in the state ( , )K LkΔ  to a product state 

( )', 'K LkΔ  where ' 2Lk LkΔ = Δ ±  and 'K  is a knot that can be obtained from K  by one 

intersegmental passage (43). Figure 5 shows steady-state fractions ( )* ,P K LkΔ  of the 

unknot 0.1  and stereoisomers 3.1+  and 3.1−  of the trefoil knot for type-II enzymes 

modeled in terms of hairpin-like and straight G segments, respectively. Knots with more 

than 3 crossings occurred with low frequency and were omitted from Figure 5 for simplicity. 

As a comparison we also show the equilibrium probabilities ( ),P K LkΔ  corresponding to 

ESP ensembles. 
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Figure 5. Steady-state fractions ( )* ,P K LkΔ  for the unknot 0.1  and isoforms 3.1+  and 3.1−  of the 

trefoil knot in the presence of type-II enzymes modeled with hairpin-like and straight G segments, 

respectively. Also shown are the corresponding equilibrium fractions ( ),P K LkΔ  for comparison. The 

group of numbers shown for each knot K  are steady-state fractions ( )* ,P K LkΔ , in percent, for 

DNAs with hairpin-like G segments (upper entries, magenta), straight G segments (middle entries, 

green), and equilibrium fractions ( ),P K LkΔ  corresponding to ESP ensembles (lower entries, blue). 

The fractions for right-handed isoforms of a chiral knot are the same as for left-handed isoforms by 

symmetry. The upper panel displays sums of ( )* ,P K LkΔ  over the LkΔ - values shown in the figure. 

The arrows and associated numbers indicate residual probability currents ( ), 'I K K  for enzymes with 

hairpin (magenta) and straight G segments (green). 

     Figure 5 shows that the steady-state fraction of 3.1 knots is reduced for enzymes with 

hairpin G segments compared to enzymes with straight G segments, consistent with 

results obtained earlier for torsionally unconstrained (nicked) chains (9).   For  the  sums 

( ) ( )* *0.1 0.1,
Lk

P P Lk
Δ

= Δ∑   and ( ) ( )* *3.1 3.1 ,
Lk

P P Lk− −
Δ

= Δ∑ ,  corresponding  to  steady- 

state probabilities of knots 0.1  and 3.1−  for nicked chains, we find 

( ) ( )* * 43.1 0.1 9.7 10P P− −= ×   (hairpin G segment) and ( ) ( )* *3.1 0.1 0.0079P P− =  (straight G 

segment). This corresponds to a reduction by a factor of about 8 (compare column k uC C  

in Table 1 in reference (9), where both isoforms 3.1−  and 3.1+  were included in the 

statistics of the trefoil knot 3.1 for nicked 7-kbp DNAs). The difference in reduction factors 

of 14 in reference (9) and 8 in our study may be explained by the fact that the hairpin-

like G segment considered in (9) had an overall 180° -bend compared to a smaller 120° -

bend in our model (see Computational Methods).  
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     However, for fixed values of LkΔ  the reduction factor depends strongly on the value 

of LkΔ ; for example, for 4LkΔ = −  the reduction factor is only 1.5 whereas for 0LkΔ =  it 

is 61 (Figure 5). The dependence of the reduction factor on LkΔ  is related to the fact that 

the free-energy gradient depends on the relevant section of the free-energy landscape 

( ),F K LkΔ : the gradient toward 0.1  is much steeper for fixed 0LkΔ =  than for 4LkΔ = −  

(Figure 4). We also found that the steady-state fractions ( )* ,P K LkΔ  for knots K  different 

from the unknot are slightly larger for type-II enzymes with straight segment than the 

corresponding equilibrium probabilities ( ),P K LkΔ  (Figure 5), again in agreement with 

results obtained previously for nicked chains (compare reference (9), Table 1). 

Interestingly, for supercoiled DNA, residual cycle-probability currents appear. Such cyclic 

probability currents occur because type-II enzymes drive the reaction away from thermal 

equilibrium so that detailed balance between directed fluxes ( ) ( ), ', 'K Lk K LkΔ → Δ  and 

( ) ( )', ' ,K Lk K LkΔ → Δ  is violated in general. However, it is not clear whether these residual 

probability currents have any significance regarding the unknotting efficiency of type-II 

enzymes.   

     Apart from DNA unknotting, another aspect of DNA-topology simplification by type-II 

enzymes is a reduction of the degree of supercoiling, which translates into a narrower 

LkΔ -distribution about its mean value ( ), nickedWr K  for a given knot type K . A metric 

used to quantify this type of topology simplification is the topology simplification factor  

( ) ( )s.d. , topo II s.d. , topo ITSF Lk Lk= Δ Δ  where ( )s.d. , topo IILkΔ  is the standard deviation of 

LkΔ  in the presence of type-II enzyme and ATP, and ( )s.d. , topo ILkΔ  is the standard 

deviation of LkΔ  in the presence of type-I enzyme. The latter does not consume energy 

from ATP hydrolysis and thus generates the LkΔ  distribution corresponding to an ESP 

ensemble at thermal equilibrium. In reference (8) the variance of the LkΔ -distribution 

was measured for the nicked unknot form of 7-kbp pAB4 DNA in the presence of E. coli 

topoisomerase IV and ATP and gave the result 2 1.7LkΔ =  compared with the equilibrium 

value 3.1, which yields 0.74TSF = . We studied the narrowing of the LkΔ distribution for 

the unknot 0.1  in the presence of type-II enzymes modeled with the hairpin-like G 

segment and compared the standard deviations of the steady-state distribution 

( )* 0.1P LkΔ  and the equilibrium distribution ( )0.1P LkΔ  (Supplementary Data, Section S3 

and Figure S3). Note that the distributions ( )* 0.1P LkΔ  for even and odd values of LkΔ  

are disjunct because type-II enzymes change LkΔ  in steps of 2; conversely, type-I 

enzymes change LkΔ  in steps of 1. We thus find 0.91TSF =  for LkΔ  even and 0.86TSF =  

for LkΔ  odd, in reasonable agreement with the experimental result (8) (Supplementary 

Data, Section S3).   
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Pathways of Topology Simplification in Knotted, Supercoiled DNA 

For DNAs in the size range considered here and in the absence of a process that actively 

delivers a complex knot type to the ensemble of DNAs, the equilibrium probabilities 

( ),P K LkΔ  are very small for any knot K  different from the unknot. In the presence of a 

type-II enzymes these probabilities are reduced even further. Thus, for DNA molecules a 

few kbp in length practically no knotted DNAs appear even in the absence of type-II 

enzymes. However, a typical situation in vivo is that some biological process is present 

that actively generates knotted DNAs, and type-II enzymes are essentially needed to 

remove these knots. To address this biologically relevant situation, we now assume the 

presence of an extraneous process that continuously delivers DNA molecules in a complex 

source state ( ),S S Sa K Lk= Δ . Specifically, we assume that a process is present in the 

ensemble of 6-kbp duplex DNAs that continuously converts unknotted DNAs with 0LkΔ =  

to DNAs forming the knot 10.139−  with linking number 12LkΔ = −  at constant rate Sk . The 

knot 10.139−  contributes notably to the distribution ( )P K LkΔ  at 12LkΔ = −  

(Supplementary Figure S2) and is chosen here to illustrate the pathway of topology 

simplification by type-II topoisomerase given an initial complex topological state.  

     The DNA molecules delivered in the source state (10.139 , 12)Sa
−= −  by the extraneous 

process are converted by type-II enzyme strand passages to simpler topological forms in 

a stepwise manner, resulting in a pathway of intermediate topological states. As discussed 

in the previous section, each round of type-II enzyme action converts a DNA substrate in 

the state ( , )K LkΔ  to a product state ( )', 'K LkΔ  where ' 2Lk LkΔ = Δ ±  and 'K  is a knot 

that can be obtained from the knot K  by one intersegmental passage (43). Eventually the 

DNAs are converted back to the originating state (0.1,0) , i.e., the unknot with 0LkΔ = . 

The latter is then converted again to molecules in the source state (10.139 , 12)Sa
−= −  by 

the extraneous process, resulting in a continuous cycle. The cyclic process is characterized 

by non-equilibrium steady state (NESS) probabilities ( )*P a  for DNAs in topological states 

( ),a K Lk= Δ , and probability currents abI  for transitions from states ( ),a K Lk= Δ  to 

( )', 'b K Lk= Δ . The NESS probabilities ( )*P a  are appreciable for the source state Sa  and 

all intermediate states a  along the pathway of topology simplification by topoisomerase-

II action.  
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Figure 6. Comparison of NESS probabilities and probability currents generated by type-II 

topoisomerase activity with (A) hairpin and (B) straight G segment (59). In both cases, we imposed 

an external process that converts unknotted DNA with 0LkΔ =  to DNA forming a (source) knot 

10.139SK
−=  with 12SLkΔ = −  in the limit of large source rate Sk  (pathways shown on the left in (A) 

and (B)). Dominant probability currents with ( ), 0.1SI a b I ∞∞ >  are shown as dark blue arrows and 

subdominant probability currents with ( )0.05 , 0.1SI a b I ∞∞< <  are shown as light blue arrows. 

Steady-state probabilities ( )* ,P K Lk∞ Δ , in percent, are shown next to each knot K . Open circles 

indicate positions of ( ), nickedLk Wr KΔ = , i.e., ( ), nicked 0Lke Lk Wr KΔ = Δ − =  (cf. white curve on 

the left in Figure 4). The pathways shown on the right in (A) and (B) show cases in which a 

supercoiled state is maintained by introducing the constraint 5LkeΔ < − . In these cases, we assumed 

the presence of an external process that converts unknotted DNA with 6LkΔ = −  to DNA forming a 

source knot 10.139SK
−=  with 18SLkΔ = − , and the source rate Sk  was adjusted to obtain the same 

source probability current 76.3SI =  as for the pathway shown on the left to facilitate comparison. 

    Figure 6 shows resulting pathways of topology simplification for type-II enzymes 

modeled by a hairpin-like (Figure 6A) and straight G segments (Figure 6B), respectively. 

Steady-state probabilities ( )*P a , in percent, are shown next to each state ( ),a K Lk= Δ , 

and probability currents abI  are given by numbers next to the arrows. The source 

probability current associated with the external process that converts DNAs in the 

originating state (0.1,0)  to the source state (10.139 , 12)Sa
−= −  is given by ( )* 0.1,0SI P κ=  

with ( )0 0Sk k jκ =  (see Computational Methods). Only probability currents abI  with 

0.05SabI I >  are shown, where dominant currents with 0.1SabI I >  are shown as dark blue 

arrows and subdominant currents with 0.05 0.1SabI I< <  are shown as light blue arrows. 

Empty circles indicate states ( ),K LkΔ  for which ( ), nicked 0Lke Lk Wr KΔ = Δ − = , 

corresponding to torsionally relaxed chains (cf. white curve on the left in Figure 4). It is 

apparent that the pathways shown on the left sides in Figures 6A, 6B closely follow the 

path 0LkeΔ = . Interestingly, only a small number of intermediates contribute to the 

pathways although there exist about 250 different knot types with 10 or fewer crossings. 

     For the pathways shown on the left sides in Figures 6A, 6B we consider the limit of a 

large source rate Sk  for the external process. In this limit, the originating state ( )0.1,0  is 

depleted by the external process, which implies that the steady-state probability of the 

originating state vanishes as ( )* 0.1,0 1 SP k∼ . For all other states a  the steady-state 

probabilities approach finite values ( )*P a∞  in the limit of a large source rate Sk . Likewise, 

all probability currents abI  approach finite values  abI
∞   in the limit of large source rate Sk , 

including the source probability current SI . Therefore, the values of the steady-state 

probabilities ( )*P a  and probability currents abI  in Figures 6A, 6B are universal in the 

sense that they are independent of the precise value of the source rate Sk  as long as Sk  
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is large enough. The full dependence of ( )*P a  and abI  on the parameter ( )0 0Sk k jκ =  is 

shown in Supplementary Figures S4, S5.  

     In many biological systems a finite amount of supercoiling is maintained. For example, 

for bacterial cells the torsional tension is maintained by a homeostatic mechanism 

involving topoisomerase I and DNA gyrase (44, 45). To study this situation, on the right 

sides in Figures 6A, 6B we show pathways of topology simplification for the case that a 

state of finite DNA supercoiling is maintained by introducing the constraint 5LkΔ < − . For 

these pathways we assume that an external process is present that continuously converts 

DNAs in the originating state (0.1, 6)−  to the source state (10.139 , 18)Sa
−= − . The parameter 

( )0 0Sk k jκ =  is adjusted so as to produce the same source probability current SI  as for 

the pathways shown on the left sides in Figure 6A, 6B to facilitate a comparison. Figure 6 

reveals the dependence of the unknotting capability of a type-II enzyme on the degree of 

supercoiling. For the source state ( )10.139 , 12Sa
−= −  of the pathways shown on the left 

sides in Figures 6A, 6B we find ( )* 0.84%SP a∞ =  for hairpin G segment and ( )* 3.5%SP a∞ =  

for straight G segment, corresponding to a reduction by a factor of 4.2. Conversely, for 

the source state ( )10.139 , 18Sa
−= −  of the pathways shown on the right sides in Figures 6A, 

6B, for which the DNAs are more supercoiled, we find ( )* 0.15%SP a =  for the hairpin G 

segment and ( )* 1.5%SP a =  for the straight G segment, corresponding to a larger 

reduction factor of 10. Thus, supercoiling favors unknotting for the present non-equilibrium 

situation where a complex knot type is continuously delivered to the ensemble of DNA 

conformations. 

     Interestingly, the pathways for hairpin and straight G segments are somewhat similar. 

This surprising result will be explained further below in terms of juxtaposition probabilities 

( )J a  and transition probabilities ( )Q b a  for enzymes with hairpin and straight G 

segments. 

How do Type-II Enzymes with Hairpin G Segments Suppress Knotting Below 
Equilibrium?   

As discussed in the previous section, a type-II topoisomerase with hairpin G segment 

reduces the steady-state fraction of complex knots below the equilibrium value relative to 

an enzyme with a straight G segment; moreover, the unknotting efficiency of the hairpin 

enzyme increases with DNA supercoiling. To better understand the origin of this effect, 

Figure 7 compares normalized juxtaposition probabilities ( ) ( ) 0, ,J K Lk j K Lk jΔ = Δ  and 

transition probabilities ( ),Q b K LkΔ  appearing in Equation (4) for type-II enzymes with 

straight ( 0 0.0017j = ) and hairpin G segments ( 0 0.00013j = ), respectively. The quantity 0j  

denotes the juxtaposition probability for the reference state (0.1,0)  so that ( )0.1,0 1J =  by 
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definition (see Computational Methods). Figure 7 shows the dependence of J  and Q  on 

states   ( ),K LkΔ    for   the   knots    0.1K = ,   3.1− ,   8.19−    as   a   function   of   LkΔ . 

( ) ( )
' 2

stay 0.1  0.1, ' 0.1,
Lk Lk

Q Q Lk Lk
Δ =Δ ±

= Δ Δ∑   is  the  probability  that  strand  passage  in  an 

unknot with linking number LkΔ  again results in an unknot (with ' 2Lk LkΔ = Δ ± ), i.e., no 

knotting occurs. For 3.1K −=  and 8.19− ,  

 ( ) ( )
' ' 2

simplify ', ' ,
K K Lk Lk

Q Q K Lk K Lk
< Δ =Δ ±

= Δ Δ∑ ∑   (5) 

is the probability that strand passage results in unknotting, i.e., yields a knot 'K  with a 

smaller number of crossings than K  (denoted 'K K< ).  

     As shown in Figure 7 (upper panels), the normalized juxtaposition probabilities 

( ),J K LkΔ  are larger for hairpin than for straight G segment, and this effect increases with 

the complexity of the knot K and with the degree of supercoiling 

( ), nickedLke Lk Wr KΔ = Δ − . The fact that ( ),J K LkΔ  increases with knot complexity is 

expected because complex knots are more compact than less complex knots on average, 

so that more complex knots have higher probabilities of segment juxtaposition. This is 

consistent with the corresponding behavior of the unknot 0.1  compared with the trefoil 

knot 3.1−  for nicked DNA (9). However, for supercoiled DNA, ( ),J K LkΔ  also increases 

with the degree of supercoiling LkeΔ , and this effect is dramatically larger for type-II 

enzymes with hairpin versus straight G segments. This can be qualitatively explained in 

terms of correlated juxtaposition of chain segments. In juxtaposed conformations of type-

II enzymes with hairpin G segments, typically two crossings of the chain are made by the 

juxtaposed T and hairpin G segments; conversely, in juxtaposed conformations with 

straight G segment typically only one crossing is made by the juxtaposed T and straight 

G segments (Figure 8) (9). This leaves, on average, one extra crossing that has to be 

absorbed by the rest of the chain for the hairpin case compared with a straight G segment. 

The free energy F  of unknotted supercoiled DNA increases quadratically with the 

superhelix density 0 ,Lk Lkσ− = Δ  i.e., ( )2
0F Lk Lk∝ Δ  (see, e.g., equation (8) in (46)) . 

Assuming that this relationship generalizes for knotted, supercoiled DNA to 

( )2
0F Lke Lk∝ Δ  and that the extra crossing involved in the case of the hairpin G segment 

amounts to an increment ( ) ( )hairpin straight 1Lke LkeΔ = Δ +  in linking number that has to 

be absorbed by the rest of the chain, we find ( ) ( )hairpin straightF F− ∝

( ) ( )2 21 2 1Lke Lke LkeΔ + − Δ = Δ +  (here ( )straightLke LkeΔ = Δ ). This linear increase in free 

energy as a function of LkeΔ  corresponds to an exponential increase in juxtaposition 

probability for hairpin compared to straight G segments, i.e., 

( ) ( ) ( )hairpin straight ~ exp 2J J LkeΔ  (Figure 7, upper panel). 
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Figure 7. Normalized juxtaposition frequencies ( ) ( ) 0, ,J K Lk j K Lk jΔ = Δ  and transition 

probabilities ( ),Q b K LkΔ  for type-II enzymes modeled by hairpin-like G segment (blue curves) and 

straight G segment (green curves) for knot types (A) 0.1 and (B) 3.1− , 8.19−  (59). The quantity 0j  

denotes the juxtaposition probability for the reference state (0.1,0) , with 0 0.00013j =  for hairpin G-

segment and 0 0.0017j =  for straight G-segment. Note that ( )0.1,0 1J =  by definition. ( )stay 0.1Q  is 

the probability that strand passage in an unknot with linking number LkΔ  again results in an unknot 

(with ' 2Lk LkΔ = Δ ± ), i.e., no knotting occurs. For 3.1K −= , 8.19− , ( )simplifyQ  is the probability 

that strand passage results in unknotting, i.e., in a knot 'K  with a smaller number of crossings than 

K  (see text). The vertical lines indicate values ( )3.1 ,nicked 3.433Wr − =  and 

( )8.19 ,nicked 8.761Wr − = , respectively, corresponding to LkΔ - values for which the degree of 

supercoiling vanishes, i.e., ( ), nicked 0Lke Lk Wr KΔ = Δ − =  (cf. Figure 3). Supercoiled chains 

correspond to LkΔ - values to the left and right from these vertical lines. 

 

Figure 8. Schematic depiction of juxtaposed and passed conformations of type-II enzymes modeled 

by straight and hairpin G segments, respectively. The G segment is indicated by the purple portion 

and the T segment by the green portion of the chain. (A) Juxtaposed and passed conformations for 

straight G segment. (B) Juxtaposed (left) and passed (right) conformations for hairpin G segment. 

Note the different number of crossings made by the T and G segments. 
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     A similar argument also explains the behavior of ( )stay 0.1Q  as a function of LkΔ  for 

hairpin compared to straight G segments (Figure 7, lower panel, left). In a conformation 

generated by the passage of a T segment through a hairpin G segment, corresponding to 

the juxtaposition of a straight segment to the outside of a hairpin, typically the passed T 

and hairpin G segments do not cross (Figure 8). Thus, if the passed conformation is 

knotted, all of the crossings of the knot have to be absorbed by the rest of the chain. 

Conversely, in passed conformations with straight G segments typically one crossing is 

made by the passed T and straight G segments, leaving one crossing less that has to be 

absorbed by the rest of the chain if the passed conformation is knotted (Figure 8) (9). 

Thus, a similar argument as above leads to ( )become knotted,hairpin /Q

( ) ( )become knotted,straight ~ exp 2Q Lk− Δ ; see  Figure 7 (lower panel, left) where 

( ) ( )stay 0.1 1 become knottedQ Q= − . Interestingly, and in opposition to the behavior of 

( )stay 0.1Q , the probability ( )simplifyQ  that strand passage in the nontrivial knots 3.1− , 

8.19−  results in unknotting is similar for hairpin and straight G segments, albeit somewhat 

larger for the hairpin G segment (Figure 7, lower panel middle and right). This may be 

explained as follows. Consider, for example, a trefoil knot which is transformed to an 

unknot by strand passage. Both for hairpin and straight G-segments, there is no extra 

crossing that needs to be absorbed by the rest of the chain in the resulting unknot after 

strand passage. Thus the transition probabilities ( )0.1, 2 3.1,Q Lk LkΔ ± Δ  are expected to be 

similar for hairpin and straight G segments regardless of the value of LkΔ  (Figure 7, lower 

panel, middle). 

     Thus, the unknotting capability of type-II enzymes for complex knots is enhanced for 

a type-II enzyme with hairpin G segment compared to a type-II enzyme with straight G 

segment mainly due to a combination of two effects: 1. Enhanced juxtaposition probability 

( ),J K LkΔ  for complex knots and 2. enhanced probability ( )stay 0.1Q  for an unknot to stay 

unknotted after strand passage. Both these effects increase exponentially with the degree 

of supercoiling ( ), nickedLke Lk Wr KΔ = Δ − . Note that this effect cannot be explained alone 

by the free-energy landscape ( ),F K LkΔ  (Figure 4) but is a result of the non-equilibrium 

dynamics associated with type-II action. Conversely, the probability ( )simplifyQ  that 

strand passage in a complex knot results in unknotting is similar for hairpin and straight 

G segments, and thus does not contribute much to the unknotting capability of type-II 

enzymes with a hairpin versus a straight G segment. In this sense, type-II enzymes with 

hairpin G segments are not “smarter” than type-II enzymes with straight G segments (the 

latter corresponding to the equilibrium situation) but are more efficient mainly due to 

enhanced frequencies of juxtaposition ( ),J K LkΔ  and probabilities ( )stay 0.1Q . 
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DISCUSSION 

Although much attention, experimentally and theoretically, has been devoted to 

understanding the action of type-II topoisomerases on unknotted, supercoiled DNA and 

relaxed or nicked, knotted DNA, respectively, there has been little examination of type-II 

enzyme activity on DNAs that are both knotted and supercoiled.  Whereas negative (-) 

supercoiling is acknowledged to be essential for normal transactions involving DNA in living 

systems, unresolved knotting of a genome is generally believed to be fatal to the cell (2, 

34–36).  The question of how homeostatic mechanisms properly regulate supercoiling and 

completely eliminate knots at the same time hinges on detailed understanding of the 

respective rates for linking-number changes versus unknotting. Toward that end we have 

developed a model based on a network of topological states ( , )K LkΔ  of circular DNAs with 

knot type K  and linking-number difference LkΔ  in which the dynamics of transitions 

between states ( , )K LkΔ  mediated by type-II enzymes is described by a chemical master 

equation. For the special case that the non-equilibrium fractions of states ( , )K LkΔ  are 

time-independent, corresponding to non-equilibrium steady states (NESS), we fully 

characterize pathways of topology simplification mediated by type-II enzymes as network 

graphs having steady-state probabilities *( , )P K LkΔ  and probability currents 

( ) ( ), ', 'I K Lk K Lk⎡ ⎤Δ → Δ⎣ ⎦  (Figures 5, 6). Our approach thus comprehensively and 

simultaneously addresses the kinetics of superhelix relaxation and knot resolution. One 

novel feature of our model is that we consider the biologically relevant case that complex 

knots are generated extraneously (Figure 6). Our analysis complements the work of 

Shimokawa and colleagues, who considered stepwise unlinking of DNA-replication 

catenanes by the Xer site-specific recombinase (25). Indeed, our approach can be 

generalized to quantitatively analyze rates of linking/unlinking during site-specific 

recombination and other processes.    

     As a starting point for our non-equilibrium model, we first investigated the equilibrium 

probability distribution ( ),P K LkΔ  and free-energy landscape 

( ) ( ), ln ,BF K Lk k T P K LkΔ = − Δ  to obtain the most likely relaxation path of a given DNA knot 

by a hypothetical topoisomerase that lacks any bias towards topology simplification and is 

driven only by the topological free-energy gradient. In particular, we clarify two apparently 

contradictory results in the literature concerning how supercoiling and knotting affect the 

thermodynamically most-stable topology of a circular DNA molecule. A previous study 

used Monte Carlo simulations to address the dependence of the topological free energy of 

knotted circular DNA on supercoiling and showed that non-trivially knotted species were 

free-energy minima for even modest, fixed values of LkΔ  (18).  Moreover, complexity of 

the knots corresponding to the free-energy minimum increases with increasing LkΔ  
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(Supplementary Figure S2); thus, supercoiling favors more complex knots according to 

this view (18). In a study published nine years later a different team argued that in type-

II enzyme action an effective linking number difference, ( ),nickedLke Lk Wr KΔ = Δ − , is 

fixed instead of LkΔ  (cf. Figure 3), and concluded that the unknot is a universal free 

energy minimum, consistent with a picture in which supercoiling inhibits DNA knotting 

(19). The apparent contradiction is resolved by considering the full free-energy landscape 

of knotted supercoiled DNA, in which distributions for fixed LkΔ  or LkeΔ  correspond to 

different paths along the contours of this landscape (Figure 4).  Thus, both statements are 

correct depending on the particular context of the analysis.  

     Our non-equilibrium model recapitulates the experimental observation that type-II 

topoisomerases remove crossings in trefoil knots in DNA below the level expected at 

thermal equilibrium (8) (Figure 5). As found previously, the efficiency of unknotting 

strongly depends on the presence or absence of a topoisomerase-induced bend in the gate 

(G) segment (9, 15): a hairpin-like G segment having an induced bend of 120° gave more 

efficient unknotting than an unbent G segment, resulting in an 8-fold reduction of trefoil 

knots in the hairpin G segment case compared to a straight G segment. In addition, for 

our LkΔ -resolved model we show that the efficiency of unknotting (the reduction factor 

for trefoil knots) depends strongly on the value of LkΔ  (Figure 5). We find that the LkΔ  

distribution in the unknot is narrower, i.e., the DNA is less supercoiled on average in the 

presence of type-II enzyme activity compared to the product LkΔ  distribution for a type-

I enzyme, in agreement with experimental results (8) (Supplementary Figure S3). The 

latter does not consume the energy of ATP hydrolysis and therefore generates the LkΔ  

distribution expected at equilibrium. 

     Introducing an extraneous biological process that continuously converts unknotted 

DNAs with 0LkΔ =  to a complex topological form ( , )S SK LkΔ  (chosen to be ( )10.139 , 12− −  

in our study) at a constant rate Sk  leads to the following main results for the pathways of 

topology simplification mediated by type-II enzymes (Figure 6): 

1. Only a small number of intermediate topological states contribute to the pathways, 

namely those that dominate the equilibrium distribution ( )P K LkΔ  (Supplementary 

Figure S2); 

2. The pathways closely follow the path ( ),nicked 0Lke Lk Wr KΔ = Δ − =  (pathways 

shown on the left in Figures 6A, 6B) corresponding to the minimum in the free-energy 

landscape ( ) ( ), ln ,BF K Lk k T P K LkΔ = − Δ  (white line on the left in Figure 4); 

3. The unknotting efficiency strongly depends on the geometry of the G segment and 

on the degree of DNA supercoiling, being largest for a hairpin-like G segment activity 
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in DNA for which a finite degree of supercoiling is maintained (pathway shown on the 

right in Figure 6A). These results suggest that only the combined effects of type-II 

topoisomerase activity, driving the system away from equilibrium, and increased DNA 

supercoiling can generate the degree of topology simplification observed in 

experimental measurements;  

4. The dominating pathways for hairpin and straight G segments are closely similar. 

This surprising result can be explained by the fact that the unknotting capability of a 

type-II enzyme with a hairpin G segment compared to a straight G segment is 

enhanced mainly due to an enhanced juxtaposition probability in complex knots and 

enhanced probability for an unknot to remain unknotted after strand passage, as 

opposed to a different selection of strand passages in knotted DNA (Figure 7). In this 

sense, the requirement for a bent G segment acts as a topological filter. Type-II 

enzymes that require a hairpin G segment are not “smarter” than type-II enzymes that 

employ a straight G segment (the latter closely corresponding to the equilibrium 

situation), but rather are more active.    

     Other models apart from the hairpin-like G segment have considered the ramifications 

of “hooked” juxtapositions on topology simplification (12).  The main difference between 

the hooked-juxtaposition model from the hairpin-like G segment model is that the 

enzymes bind two juxtaposed DNA segments simultaneously rather than successively. 

Thus the principle of both models is essentially the same, apart from the fact that hooked 

juxtapositions occur much more rarely than juxtapositions with a hairpin-like G segment 

(9, 15). Moreover, it is difficult to imagine how the enzyme could impose a geometric 

requirement for hooked juxtapositions on the transiently passed T segment.  For this to 

be the case the enzyme would need to have preferential affinity for a pre-bent incoming T 

segment, implying also that there should be a preferred geometric orientation of this 

segment.  We are not aware of any experimental evidence to support the latter 

requirement.   

     Results obtained in this study are based on the assumption that the affinity of type-II 

enzymes to bind to DNA and generate an appropriate G segment geometry is independent 

of the topological state ( , )K LkΔ  of the DNA, in particular, independent of the degree of 

supercoiling. This implies that the constant 0k  in Equation (2), describing the affinity and 

concentration of the enzyme, is assumed to be independent of the topological state 

( , )K LkΔ  of the DNA. Thus the constant 0k  drops out in the ratio in Equation (4) so that 

our results are universal in the sense that they do not depend on the value of 0k . However, 

recent experimental results suggest that type-II enzymes have a propensity to bind to 
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DNA and form G segments in highly supercoiled DNA, presumably because the latter is 

strongly bent on average, thereby facilitating the formation of bent G segments (47). This 

effect can be implemented in our model by making 0k  in Equation (2) a function of the 

degree of supercoiling ( ), nickedLke Lk Wr KΔ = Δ − . 

     It has long been argued that for thermodynamic reasons type-II enzyme action 

requires the energy of ATP hydrolysis to move the system out of topological equilibrium. 

Bates et al. have argued that only a small portion of the free energy gained from ATP 

hydrolysis is needed to achieve topology simplification (48).  In a study of E. coli 

topoisomerase-IV mutants, Lee et al. found that the extent of topoisomerase II-induced 

DNA bending in the substrate DNA G segment, but not DNA binding, was correlated with 

ATP-hydrolysis activity (49).  Thus, a relevant question in this context is at which point 

during the strand-passage reaction the energy gained from ATP hydrolysis is used by the 

enzyme, and for what purpose. Even without ATP hydrolysis the enzyme can bind to DNA 

and perform strand passage (50, 51); this implies that these steps are essentially driven 

by the free-energy gradient so that the enzyme-DNA complex after strand passage should 

be very stable. Thus it has been proposed that ATP hydrolysis serves to release the energy 

necessary for dissociating the stable enzyme-DNA complex after strand passage, and 

resetting the original conformation of the protein (14, 52) (Figure 1A). Other studies 

suggested that two ATP molecules are hydrolyzed sequentially before and after strand 

passage, respectively (53, 54). It would be interesting to address these questions by 

modeling the enzymatic reaction in terms of graphs on networks formed by chemical and 

conformational states of the enzyme-DNA complex, similar as has been recently done for 

molecular motors and other nanomachines (55–58).  
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S1. JOINT PROBABILITY DISTRIBUTION, ( , )P K LkΔ  

The free energy landscape ( ) ( ), ln ,BF K Lk k T P K LkΔ = − Δ  shown in Figure 4 was obtained 

by calculating the joint probability distribution ( ),P K LkΔ  of knot type K  and linking num-

ber difference LkΔ  for 6-kbp DNA using the DNA model and Monte Carlo (MC) simulation 

procedure described in the main text. To calculate ( ),P K LkΔ  we used the relation [1] 

 ( ) ( ) ( ),P Lk K P Lk K P KΔ = Δ  , (1) 

where ( )P Lk KΔ  is the conditional distribution of LkΔ  for given K  and ( )P K  is the distri-

bution of K  for torsionally unconstrained (nicked) DNA.  

     ( )P K  in Equation (1) was determined by MC simulations from the frequency of occur-

rence of knot types K  in equilibrium segment-passage ( ESP )  ensembles containing 610  

saved conformations, where the simulation period between saved conformations was 1000 

MC moves. Since the probability of occurrence of any particular knot decreases exponentially 

with its complexity [2] we used the method of restricted ESP  ensembles [3] to accurately 

determine ( )P K  for complex knots (Table S1, Figure S1). This method uses restricted en-

sembles in which one or more dominating knot types are excluded so that less dominant knot 

types occur with higher frequency. Using the relation ( ) ( ) ( ) ( )/ /P B P A P B P A′ ′= for the 

probabilities of occurrence of knot types A , B  in the unrestricted ensemble, ESP , and re-

stricted ensemble, ESP′ , respectively, one obtains the probability ( )P B  of a knot B  that 

occurs with low frequency in ESP  but with sufficiently high frequency in ESP′  as 

 ( ) ( )
( ) ( )P A

P B P B
P A

′=
′

 ,             (2) 
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where the knot A  serves as link between ensembles ESP and ESP′ . If the probability of a 

knot C  is too low even in the restricted ensemble ESP′ one may iterate the procedure by 

including an even more restricted ensemble ESP′′ , resulting in 

 ( ) ( )
( )

( )
( ) ( )'

''
' ''
P A P B

P C P C
P A P B

=  , (3) 

where knot A  serves as link between ESP  and ESP′ , and knot B  as link between ESP′  

and ESP′′ (Figure S1). In our calculations we considered ensembles in which no knot types 

were excluded ( ESP )  as well as the restricted ensembles { }ESP' ESP 0.1= −  and 

{ }ESP'' ESP' 3.1, 4.1, 5.1, 5.2= −  (where for the chiral knots 3.1, 5.1, 5.2  both the left and 

right-handed forms were excluded). The knots 3.1A −=  and 6.1B −=  served as links be-

tween ensembles according to Equations (2), (3). ( )P K  for 0.1K = , 3.1− , 4.1  was ob-

tained from ESP , for 5.1− , 5.2−  from ESP′ using Equation (2), and for the remaining knots 

shown in Table S1 from ESP′′  using Equation (3).  

     ( )P Lk KΔ  in Equation (1) was calculated using the relation [1] 

 ( ) ( ) ( ) ( )TwP Lk K d Wr P Lk Wr P Wr KΔ = Δ −∫  , (4) 

where ( )P Wr K  is the distribution of writhe Wr  for given knot type K  and ( )TwP TwΔ  is the 

distribution of twist TwΔ  in torsionally relaxed (nicked) DNA. ( )TwP TwΔ  is assumed to be of 

Gaussian form ( )
2

22

1 exp ,
22

Tw
TwP Tw
σπσ

⎛ ⎞Δ
Δ = −  ⎜ ⎟

⎝ ⎠
with variance ( )2 24 twN cσ π=  ,  where 

here 200N =  and 7.243twc = , and White’s equation in the form  Tw Lk WrΔ = Δ −   was used 

(see main text). The distribution ( )P Wr K  in Equation (4) was obtained by MC simulations 

of torsionally unconstrained chains with fixed knot type K . The resulting mean values 

( )Wr K  for various knot types used in the main text are shown in Table S1.  
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Figure S1. Schematic illustration of the 

method of restricted ensembles to obtain 

the probability ( )P C  of a complex knot C  

(green dot) which occurs with very low fre-

quency in the unrestricted ensemble ESP
but with sufficient frequency in the re-

stricted ensemble ESP′′ . Knots A  and B  

(blue dots) link ESP  with an intermediate 

restricted ensemble ESP′ and ESP′ with 

ESP′′ , respectively (see Equation (3)). 

K  ( )[ ]%P K  ( )Wr K−  

0.1  98.94  0  

3.1−  0.49  3.433  

4.1 0.062  0  

5.1−  34.2 10−×  6.205  

5.2−  35.8 10−×  4.593  

3.1 #3.1− −  59.2 10−×  6.839  

7.1−  51.1 10−×  9.048  

8.19−  51.5 10−×  8.761 

10.124−  73.5 10−×  11.217  

10.139−  89.3 10−×  11.465  

12.242−  97.2 10−×  13.713  

Table S1. Equilibrium probabilities ( )P K  

in per cent and mean writhe ( )Wr K  in 

ESP ensembles of various torsionally un-

constrained knots K  for 6-kbp DNA’s 

( 200N =  segments).      
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S2. CONDITIONAL PROBABILITY DISTRIBUTION, ( )P K LkΔ  

 

Figure S2. Conditional probability distribution ( )P K LkΔ  of knot types K  with given link-

ing number difference LkΔ  for 6-kbp DNAs. ( )P K LkΔ  was calculated by MC simulation of 

ESP  ensembles with fixed linking number LkΔ  and measuring the frequency of occurrence 

of knot types K . Only curves with ( ) 0.04P K LkΔ >  are shown. For any fixed, small value 

of LkΔ  only a few knot types K  dominate the distribution. Conversely, for 18Lk−Δ >  the 

distribution degenerates and many different knot types K  contribute to ( )P K LkΔ . The val-

ues 7Lk−Δ =  and 12Lk−Δ =  indicated by orange and brown vertical lines, respectively, re-

fer to Figure 4 in the main text. Knots K1–K13 have more crossings than knots in any tables 

available to us. 
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S3. NARROWING OF THE STEADY-STATE DISTRIBUTION, ( )* 0.1P LkΔ   

 

 

Figure S3. Steady-state distribution ( )* 0.1P LkΔ  for the unknot 0.1  in the presence of 

type-II enzymes modeled as hairpin-like G-segment. Because type-II enzymes change LkΔ  

in steps of 2, the distributions ( )* 0.1P LkΔ  for even and odd values of LkΔ  are disjunct (red 

and green dots, respectively). Also shown is the distribution ( )0.1P LkΔ  for type-I enzymes, 

which essentially corresponds to an equilibrium ( )ESP  distribution, changing LkΔ  in steps 

of 1. The solid lines are least-square Gaussian fits to the discrete distributions. The distribu-

tions ( )* 0.1P LkΔ  and ( )0.1P LkΔ  are used to calculate the topology simplification factor 

TSF  quantifying the narrowing of the LkΔ - distribution in the presence of type-II enzymes 

and ATP relative to type-I enzymes. 

Variance of LkΔ  for type-II enzyme with hairpin G-segment for even and odd values of LkΔ : 

 

         ( ) ( )2 2 *

6, 4, ,4,6
topo II, even  0.1  2.099

Lk
Lk Lk P Lk

Δ = − −
Δ = Δ Δ =  ∑

…
,                (5) 

         ( ) ( )2 2 *

7, 5, ,5,7
topo II, odd  0.1  1.894

Lk
Lk Lk P Lk

Δ = − −
Δ = Δ Δ =∑

…
 .                     (6) 
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Variance of LkΔ  for an equilibrium ( )ESP  distribution with LkΔ  in unit steps: 

                 ( ) ( )2 2

7, 6, ,6,7
ESP  0.1  2.546 .

Lk
Lk Lk P Lk

Δ = − −
Δ = Δ Δ =   ∑

…
                       (7) 

Resulting topology simplification factor ( ) ( )s.d. , topo II s.d. , ESP= Δ ΔTSF Lk Lk  for the 

standard deviation ( ) 2s.d. Lk LkΔ = Δ :  0.91=TSF  for LkΔ  even and 0.86=TSF  for 

LkΔ  odd.  
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S4. DEPENDENCE OF ( )*P a  AND abI  ON SOURCE RATE Sk    
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Figure S4. (A) Steady-state probabilities ( )*P a  in per cent and (B) normalized probability currents 

abI  as function of the parameter ( )0 0Sk k jκ =  for type-II enzyme with hairpin G-segment for vari-

ous topological states ( ),a K Lk= Δ ,  ( )', 'b K Lk= Δ  (cf. Computational Methods and Figure 6A). The 

curves show the crossover behavior of ( )*P a  and abI  between the limits 0Sk =  (corresponding to 

the absence of an external process that generates a source state Sa ) and Sk → ∞ . Corresponding 

limit values of ( )*P a  and abI  are indicated by numbers on the left and right sides of the figures, 

respectively. The steady-state probability of the originating state (0.1,0)  in (A) vanishes as 

( )* 0.1,0 1 SP k∼  for large source rate Sk  since this state is depleted by the process that generates 

DNAs in the source state (10.139 , 12)Sa
−= − . For all other states a  the steady-state probabilities 

approach finite values ( )*P a∞  in the limit of a large source rate Sk . Likewise, all probability currents 

abI  approach finite values abI
∞  in the limit of large source rate Sk , including the source current SI . 
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Figure S5. Same as Figure S4 for type-II enzyme with straight G-segment (cf. Figure 6B).  
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S5. UNIVERSALITY OF STEADY-STATE PROBABILITIES, ( )*P K  

 

 

Figure S6. Steady-state probabilities ( )*P K  in per cent for (A) 3.1K −=  and (B) 10.139K −=  for 

torsionally unconstrained (nicked) 6-kbp DNAs as function of the parameter ( )0 0Sk k jκ =  for type-

II enzyme with hairpin G-segment. Shown are results for two cases: (i) the four segments forming 

the hairpin G-segment (shown red in Figure 2A) interact with the segments of the rest of the chain 

(including a potential T-segment) with the same excluded volume (EV) interaction as the segments 

of the rest of the chain (blue dots); (ii) the four segments forming the hairpin G-segment do not 

interact with the rest of the chain by an EV interaction (red dots). Thus, the G-segment in case (ii) 

does not repel the segments of the rest of the chain by an EV interaction, and in this sense is more 

active than the G-segment in case (i). As a result, the juxtaposition probability 0j  for the unknot in 
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our simulations is about 10 times larger in case (ii) than in case (i): ( )0 without EV 0.00156j = , 

( )0 with EV 0.000162j = . Nevertheless, the curves ( )*P K  as functions of the parameter 

( )0 0Sk k jκ =  collapse on single curves in both cases within numerical error, which shows that 

( )*P K  is independent of whether the G-segment is modeled with or without EV interaction. More 

generally, ( )*P K  is expected to be independent of any property of the enzyme that determines its 

overall activity regardless of the topological state of the DNA. In this sense, ( )*P K  as function of κ  

is universal. A key requisite for this universality is that the enzyme is much smaller than the DNA, 

so that the enzyme itself cannot probe the topological state of the DNA. In (A) we use a log-log scale 

to show that ( )* 3.1P −  approaches a finite value ( )*
0 3.1P −  in the limit 0Sk →  (corresponding to the 

absence of an external process that generates the knot 3.1− ) as indicated on the left side of the 

figure. In (B) we use a linear scale for the y - axis because ( )* 10.139 0P − →  for 0Sk → . The finite 

limits ( )* 3.1P −
∞ , ( )* 10.139P −

∞  for Sk → ∞  are indicated on the right sides of figures (A), (B). We 

attribute the small deviation between the curves for cases (i) and (ii) by the fact that the enzyme in 

our simulation, albeit being small, has a finite size compared with the rest of the chain, which has a 

larger effect on the knot 10.139−  than on 3.1−  since the former is more compact on average than 

the latter.     
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