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ABSTRACT 
 

Cardiovascular (CV) and lifestyle associated risk factors (RFs) are increasingly 

recognized as important for Alzheimer’s disease (AD) pathogenesis. Beyond the ε4 allele of 

apolipoprotein E (APOE), comparatively little is known about whether CV associated genes also 

increase risk for AD (genetic pleiotropy). Using large genome-wide association studies 

(GWASs) (total n > 500,000 cases and controls) and validated tools to quantify genetic 

pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly 

associated with AD and one or more CV RFs, namely body mass index (BMI), type 2 diabetes 

(T2D), coronary artery disease (CAD), waist hip ratio (WHR), total cholesterol (TC), low-

density (LDL) and high-density lipoprotein (HDL). In fold enrichment plots, we observed robust 

genetic enrichment in AD as a function of plasma lipids (TC, LDL, and HDL); we found 

minimal AD genetic enrichment conditional on BMI, T2D, CAD, and WHR. Beyond APOE, at 

conjunction FDR < 0.05 we identified 57 SNPs on 19 different chromosomes that were jointly 

associated with AD and CV outcomes including APOA4, ABCA1, ABCG5, LIPG, and 

MTCH2/SPI1. We found that common genetic variants influencing AD are associated with 

multiple CV RFs, at times with a different directionality of effect. Expression of these AD/CV 

pleiotropic genes was enriched for lipid metabolism processes, over-represented within 

astrocytes and vascular structures, highly co-expressed, and differentially altered within AD 

brains. Beyond APOE, we show that the polygenic component of AD is enriched for lipid 

associated RFs. Rather than a single causal link between genetic loci, RF and the outcome, we 

found that common genetic variants influencing AD are associated with multiple CV RFs. Our 

collective findings suggest that a network of genes involved in lipid biology also influence 

Alzheimer’s risk.  
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INTRODUCTION 
 

There is mounting evidence that cardiovascular (CV) disease impacts Alzheimer’s 

disease (AD) pathogenesis. Co-occurrence of CV and AD pathology is the most common cause 

of dementia among the elderly [4] and imaging manifestations of vascular disease are routinely 

observed on MRI scans of AD patients [36]. Observational epidemiology studies have found that 

cardiovascular/lifestyle related risk factors (RFs) are associated with dementia risk and targeting 

these modifiable RFs may represent a viable dementia prevention strategy [5, 26]. Recently, the 

National Academy of Medicine [24] and the Lancet [19] commissioned independent reports on 

strategies for dementia prevention. Both reports found encouraging evidence for targeting 

cardiovascular RFs with the Lancet commission concluding that 35% of dementia could be 

prevented by modifying several RFs including diabetes, hypertension, obesity, and physical 

inactivity. 

Genetic studies have found CV associated loci that also increase risk for late-onset AD. 

The ε4 allele of apolipoprotein E (APOE) is the biggest genetic risk factor for AD and encodes a 

lipid transport protein involved in cholesterol metabolism [22]. Genome-wide association studies 

(GWAS) in late-onset AD have identified single nucleotide polymorphisms (SNPs) implicated in 

lipid processes, such as CLU and ABCA7 [17, 31], and enrichment in cholesterol metabolism 

pathways [7]. Considered together, these findings suggest ‘pleiotropy’, where variations in a 

single gene can affect multiple, seemingly unrelated phenotypes [37].  

We have previously shown that genetic enrichment in CV traits/diseases (hereafter 

referred to as RFs) results in improved statistical power for discovery of novel AD genes [10]. 

Building on this work, in the present study, we systematically evaluated shared genetic risk 

between AD and cardiovascular/lifestyle associated RFs and diseases. We focused on publicly 
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available genetic data from cardiovascular outcomes and a combination of traits and diseases that 

have been epidemiologically associated with increased AD risk. Using large GWAS and 

validated tools to estimate pleiotropy, we sought to identify SNPs jointly associated with AD and 

one or more CV RFs, namely body mass index (BMI), type 2 diabetes (T2D), coronary artery 

disease (CAD), waist hip ratio (WHR), total cholesterol (TC), low-density (LDL), and high-

density lipoprotein (HDL). Using large publicly available databases, we additionally examined 

whether the AD/CV pleiotropic genes are enriched for biological processes, over-represented 

within specific tissue and cell types, co-expressed, and differentially expressed within AD brains. 

 

 
METHODS 

Participant samples  

We evaluated complete GWAS results in the form of summary statistics (p-values and 

odds ratios) for clinically diagnosed AD dementia and seven CV associated RFs, including BMI 

[20], T2D [32], CAD [25], WHR [33], and plasma lipid levels (TC, LDL, and HDL [ 42]; Table 

1). We obtained publicly available AD GWAS summary statistic data from the International 

Genomics of Alzheimer’s Disease Project (IGAP Stage 1, for additional details see Supplemental 

Information and [17]; Table 1). The IGAP Stage 1 consists of 17,008 AD cases (mean age = 74.7 

± 7.7 years; 59.4% female) and 37,154 controls (mean age = 76.3 ± 8.1 years; 58.6% female) 

drawn from four different consortia across North America and Europe with genotyped or 

imputed data at 7,055,881 SNPs (for a description of the AD dementia cases and controls within 

the IGAP Stage 1 sub-studies, please see [17]). 

We obtained publicly available BMI GWAS summary statistic data from the Genetic 

Investigation of Anthropometric Traits consortium (GIANT, for additional details see [20]; Table 
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1). The BMI GWAS meta-analysis consists of 339,224 individuals of European and non-

European descent from 125 studies. The meta-analysis summary statistics were adjusted for age, 

sex and inverse normal transformation of the residuals.  

The publicly available T2D GWAS summary statistic data were obtained from the 

Diabetes Genetics Replication and Meta-analysis consortium (DIAGRAM, for additional details 

see [32]; Table 1). The T2D GWAS meta-analysis Stage 1 summary statistics were drawn from 

18 studies and consists of 26,676, T2D cases and 132,532 controls from European and non-

European decent. Stage 1 summary statistics were adjusted for age, sex and principal 

components derived from the genetic data to account for population stratification. Genomic 

control (GC) correction to study-level was also conducted to correct for residual population 

structure not accounted for by principal components adjustment.  

We obtained publicly available CAD GWAS summary statistic data from the 

CARDIoGRAMplusC4D consortium (Coronary Artery Disease Genome wide Replication and 

Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics). The 

CARDIoGRAMplusC4D 1000 Genomes-based GWAS meta-analysis consists of 60,801 CAD 

cases and 123,504 controls from European and non-European decent (for additional details see 

[25]; Table 1). The meta-analysis statistics were adjusted for over-dispersion.  

We obtained publicly available WHR without adjustment for BMI GWAS summary 

statistic data from the GIANT consortium (for additional details see [33]; Table 1). The WHR 

GWAS meta-analysis summary statistics included 224,459 individuals of European and non-

European decent. The summary statistics were adjusted for age and study-specific covariates. 

Residuals were calculated for men and women separately and then transformed by the inverse 

standard normal function.  
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Lastly, we obtained publicly available TC, LDL, and HDL GWAS summary statistic data 

from Global Lipids Genetics Consortium (for additional details see [42]; Table 1). The TC, LDL, 

and HDL GWAS summary statistics included 188,577 individuals of European and non-

European decent. The summary statistics were adjusted for age and sex. 

 The relevant institutional review boards or ethics committees approved the research 

protocol of all individual GWAS used in the current analysis, and all human participants gave 

written informed consent. 

 

Genetic Enrichment and Conjunction False Discovery Rates (FDR) 

We evaluated whether there is pleiotropic enrichment in AD as a function of each of the 

seven CV RFs (see Supplemental Information). These validated methods have been described 

previously [2, 3, 6, 16, 44]. Briefly, for given associated phenotypes A (e.g. AD) and B (e.g. 

BMI), pleiotropic ‘enrichment’ of phenotype A with phenotype B exists if the proportion of 

SNPs or genes associated with phenotype A increases as a function of increased association with 

phenotype B. To assess for enrichment, we constructed fold-enrichment plots of nominal –

log10(p) values for all AD SNPs and for subsets of SNPs determined by the significance of their 

association with each of the seven CV RFs. In fold-enrichment plots, the presence of enrichment 

is reflected as an upward deflection of the curve for phenotype A if the degree of deflection from 

the expected null line is dependent on the degree of association with phenotype B. To assess for 

polygenic effects below the standard GWAS significance threshold, we focused the fold-

enrichment plots on SNPs with nominal –log10(p) < 7.3 (corresponding to p > 5x10-8). The 

enrichment seen can be directly interpreted in terms of true discovery rate (TDR = 1 – False 

Discovery Rate (FDR)) (for additional details see Supplemental Information). To account for 
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large blocks of linkage disequilibrium (LD) that may result in spurious genetic enrichment, we 

applied a random pruning approach, where one random SNP per LD block (defined by an r2 of 

0.8) was used and averaged over 200 random pruning runs. Given prior evidence that several 

genetic variants within the human leukocyte antigen (HLA) region on chromosome 6 [38, 44], 

microtubule-associated tau protein (MAPT) region on chromosome 17 [9] and the APOE region 

on chromosome 19 [10] are associated with increased AD risk, one concern is that random 

pruning may not sufficiently account for these large LD blocks resulting in artificially inflated 

genetic enrichment [6]. To better account for these large LD blocks, in our genetic enrichment 

analyses, we removed all SNPs in LD with r2 > 0.2 within 1Mb of HLA, MAPT and APOE 

variants (based on 1000 Genomes Project LD structure). 

To identify specific loci jointly involved with AD and the seven CV RFs, we computed 

conjunction FDRs, as previously described [2, 3, 6, 43, 44]. Briefly, conjunction FDR, denoted 

by FDR trait1& trait2 is defined as the posterior probability that a SNP is null for either trait or for 

both simultaneously, given the p-values for both traits are as small, or smaller, than the observed 

p-values. Unlike the conditional FDR which ranks disease/primary phenotype associated SNPs 

based on genetic ‘relatedness’ with secondary phenotypes, the conjunction FDR minimizes the 

possibility/likelihood of a single phenotype driving the common association signal. Conjunction 

FDR therefore is more conservative and specifically pinpoints pleiotropic loci between the traits 

of interest. We used an overall FDR threshold of < 0.05, which means 5 expected false 

discoveries per hundred reported. Manhattan plots were constructed based on the ranking of 

conjunction FDR to illustrate the genomic location of the pleiotropic loci. In all analyses, we 

controlled for the effects of genomic inflation by using intergenic SNPs (see Supplemental 
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Information). Detailed information on fold enrichment plots, Manhattan plots, and conjunction 

FDR can be found in Supplemental Information and prior reports [2, 3, 6, 43, 44].   

 

Functional evaluation of shared risk loci 

To assess whether SNPs that are shared between AD and CV RFs modify gene 

expression, we identified cis-expression quantitative loci (eQTLs, defined as variants within 1 

Mb of a gene's transcription start site) and regional brain expression of AD/CV SNPs in a 

publicly available dataset of normal control brains (UKBEC, http://braineac.org [30]). Given the 

evaluation of CV RFs, we also evaluated eQTLs using a blood-based dataset [41], We applied an 

analysis of covariance (ANCOVA) to test for associations between genotypes and gene 

expression. We tested SNPs using an additive model.  

 

Functional association analyses 

To evaluate enrichment in tissue types and biological pathways of the AD/CV pleiotropic 

genes, we used FUMA, a web-based platform that integrates information from multiple 

biological resources to facilitate functional annotation of GWAS results [40]. To evaluate 

potential protein and genetic interactions, co-expression, co-localization and protein domain 

similarity between the overlapping genes, we used GeneMANIA, (http://genemania.org), an 

online web-portal for bioinformatic assessment of gene networks [39].  

 

Gene expression alterations in AD brains 

To determine whether the AD/CV pleiotropic genes are differentially expressed in AD 

brains, we analyzed gene expression of overlapping genes in publicly available datasets. Mayo 
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Clinic Brain Bank (Mayo) RNAseq study was accessed from the Accelerating Medicines 

Partnership – Alzheimer’s Disease (AMP-AD) portal (syn3163039; accessed April 2017). We 

examined gene expression in the temporal cortex of brains with neuropathologic diagnosis of AD 

dementia (N=82) and elderly control brains that lacked a diagnosis of neurodegenerative disease 

(n=80) [1]. Differential gene expression comparing AD dementia vs. controls used a “Simple 

Model.” In this model, multi-variable linear regression analyses were conducted in R, using 

CQN normalized gene expression measures and including age at death, gender, RNA integrity 

number (RIN), brain tissue source, and flowcell as biological and technical covariates.  

 

Evaluation of cell classes within the brain  

Using a publicly available RNA-sequencing transcriptome and splicing database [46], we 

ascertained whether the AD/CV pleiotropic genes are expressed by specific cell classes within 

the brain. The cell types surveyed are neurons, fetal astrocytes, mature astrocytes, 

oligodendrocytes, microglia/macrophages, and endothelial cells (for additional details, see [46]). 

 

RESULTS 

Pleiotropic enrichment in AD conditional on plasma lipid levels 

For progressively stringent p-value thresholds for AD SNPs (i.e. increasing values of 

nominal –log10(p)), we found at least 40-fold enrichment using TC, 20-fold enrichment using 

HDL and 60-fold enrichment using LDL (Figure 1). In comparison, we found no enrichment 

with BMI, T2D, CAD, and WHR. We note that these results reflect genetic enrichment in AD as 

a function of CV RFs after the exclusion of SNPs in LD with HLA, MAPT, and APOE (see 

Methods). 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2018. ; https://doi.org/10.1101/383844doi: bioRxiv preprint 

https://doi.org/10.1101/383844
http://creativecommons.org/licenses/by-nd/4.0/


12 
 

 Given the long-range LD associated with the APOE/TOMM40 region [45], we focused 

our pleiotropy analyses on genetic variants outside chromosome 19. At a conjunction FDR < 

0.05, we identified 57 SNPs, in total, across 19 chromosomes jointly associated with AD and CV 

RFs (Figure 2, Table 2). Of these, we found that on chromosome 11, rs11039149 (closest gene = 

NR1H3) was in LD with: a) rs2071305 (closest gene = MYBPC3, pairwise D’ = 0.78) and b) 

rs4752856 (closest gene = MTCH2, pairwise D’ = 0.86). None of the remaining SNPs showed 

strong LD, suggesting that each SNP contributed independently to the genetic enrichment signal.  

Outside of the known association with the APOE/TOMM40 region on chromosome 19, 

we identified several AD/CV associated loci including: 1) rs11580687 (chr 1, nearest gene = 

CDC73, conditioning trait = BMI), 2) rs72796734 (chr 2, nearest gene = ABCG5, conditioning 

trait = LDL), 3) rs1883025 (chr 9, nearest gene = ABCA1, conditioning trait = LDL), 4) 

rs1263173 (chr 11, nearest gene = APOA4, conditioning trait = TC), and 5) rs6493386 (chr 15, 

nearest gene = ATP8B4, conditioning trait = LDL) (Table 2). On chromosome 11, we found 

several SNPs tagging genes within the MTCH2/SPI1 locus that may be separate from 

CELF1/CUGBP1 and APOA4 (Supplemental Figure 1a-j and eQTL section below). 

 

Shared genetic risk between CV RFs 

 To evaluate whether the AD susceptibility loci listed in Table 2 are associated with a 

single CV RF or with multiple associated RFs, we constructed a matrix plot. For each of the 7 

CV RFs, we plotted the magnitude and direction of associated z-scores for all 57 AD/CV 

SNPs/closest genes (Figure 3, Supplemental Table 1). We found that many of the AD/CV 

SNPs/closest genes were associated with multiple CV RFs and with different direction of effects. 

For example, a) rs1883025/ABCA1 was associated with a z-score of -6.82 with LDL (p-value of 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2018. ; https://doi.org/10.1101/383844doi: bioRxiv preprint 

https://doi.org/10.1101/383844
http://creativecommons.org/licenses/by-nd/4.0/


13 
 

9.42 x10-12), and -18.1 with HDL (p-value of 5.16 x 10-73) and b) rs4752856/MTCH2 was 

associated with a z-score of -10.03 with HDL (p-value of 1.02 x10-23), -4.97 with TC (p-value of 

6.79 x10-7) and +7.92 with BMI (p-value of 2.41 x 10-15). These findings illustrate that common 

genetic variants influencing AD risk are associated with multiple CV RFs. 

 

cis-eQTLs 

We found significant cis-associations between the AD/CV pleiotropic SNPs and 173 

genes in either brain or blood tissue types (Supplemental Table 2). Several SNPs showed 

significant cis-eQTLs with multiple genes. Outside of the APOE/TOMM40 region, we found 12 

cis-eQTLs that replicated in both datasets, namely C1QTNF4, CRY2, DMWD, HLA-DOB, KLC3, 

LACTB, MTCH2, NARS2, NUP160, PAPSS1, PTK2B, and SPI1. Within the APOE/TOMM40 

region, we found a cis-association between rs3852860 and PVRL2 that was significant in both 

brain and blood suggesting AD/CV pleiotropic genetic signal on chromosome 19 that is 

independent from APOE. 

 

Gene ontology and gene-protein network analyses 

At an FDR < 0.05, we found that the closest genes associated with the AD/CV 

polymorphisms were associated with multiple gene ontology (GO) molecular, cellular, and 

biological pathways and tissue types. These shared loci were highly enriched for lipid-associated 

processes including cholesterol and sterol transport, regulation, binding, and activity 

(Supplemental Figure 2). Beyond APOE, several genes were associated with lipid metabolism 

including ABCA1, ATP8B4, APOA4, ABCG5, ITGB3, LIPG, and NR1H3. We also found that 

expression of the AD/CV pleiotropic genes was over-represented within different tissue types, in 
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particular the cerebral cortex, skin, subcutaneous fat and arterial structures including the 

coronary artery (Supplemental Figure 3a). Beyond APOE, several genes were highly expressed 

across a number of tissue types including C1S, PSMC3, PTK2B, RAC1, and RPL6 (Supplemental 

Figure 3b). In our ‘network’ analysis, we found that the majority of the AD/CV pleiotropic genes 

were co-expressed (53%), co-localized (13%), or showed shared protein domains (10%) (Figure 

4). Functional analyses across functionally expressed AD/CV pleiotropic genes (i.e. those with 

significant cis-eQTLs in both brain and blood) are shown in Supplemental Figures 4-6. 

 

Gene expression in brains from AD patients and healthy controls 

To investigate whether the AD/CV pleiotropic genes are differentially expressed in AD 

brains, we compared gene expression in AD brains with neuropathologically normal control 

brains. For several shared AD/CV genes, we observed differential expression in AD brains 

compared to controls (Supplemental Table 3). We found the strongest effects (absolute 

magnitude of beta-coefficients) for differential expression of CDC73, TRPS1, ABCA1, USP24, 

and ABCG5 (Figure 5).  Similarly, across functionally expressed pleiotropic genes (i.e. those 

with significant cis-eQTLs in both brain and blood), we observed differential expression in AD 

brains (Figure 5, Supplemental Table 4).  

 

Cell type enrichment  

Across different central nervous system cell types, we found that the AD/CV pleiotropic 

genes were highly expressed in astrocytes (Figure 6). Similarly, across functionally expressed 

pleiotropic genes (i.e. those with significant cis-associations in both brain and blood), we found 

enrichment in astrocytes and microglia/macrophages (Figure 6). Notable examples include 
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ABCA1 (astrocytes), MTCH2 (astrocytes), and SPI1 (microglia/macrophages) (Supplemental 

Figures 7-8). 

DISCUSSION 

Beyond APOE, we identified 57 SNPs on 19 different chromosomes that jointly 

conferred increased risk for AD and cardiovascular outcomes. Expression of these AD/CV 

pleiotropic genes was enriched for lipid and cholesterol metabolism processes, over-represented 

within the CNS (mainly astrocytes) and vascular structures, highly co-expressed, and 

differentially altered within AD brains. Collectively, our findings suggest that the polygenic 

component of AD is highly enriched for lipid associated RFs. 

 In their genetic association with AD, not all cardiovascular RFs are created equal. We 

found minimal genetic enrichment in AD as a function of T2D, BMI, WHR, and CAD 

suggesting that the known comorbidity [21, 28, 35] between these CV RFs and Alzheimer’s 

etiology is likely not genetic. In contrast, genetic enrichment in AD was predominantly localized 

to plasma lipids. Building on our prior work leveraging statistical power from large CV GWASs 

for AD gene discovery [10], we found genetic variants jointly associated with AD and CV RFs, 

many with known cholesterol/lipid function. By conditioning on plasma TC, LDL, and HDL 

levels, we identified AD susceptibility loci within genes encoding apolipoproteins, such as 

APOA4, ATP-binding cassette transporters, such as ABCA1 and ABCG5, and phospholipases, 

such as ATP8B4 and LIPG (for a discussion on lipid genes and AD see [11]). In functional 

analyses, expression of these pleiotropic genes was enriched for lipid metabolism pathways, 

over-represented within the brain and arteries, and perturbed within the brains of AD patients. 

Considered together with our co-expression findings, these results are consistent with the 
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hypothesis that a network of non-APOE genes implicated in lipid biology also influence 

Alzheimer’s pathobiology. 

 Our pleiotropy findings suggest that complex diseases and traits have a complex genetic 

architecture. Although we did not evaluate causal associations using a Mendelian Randomization 

(MR) framework, our results have implications for the relationship between common genetic 

variants, cardiovascular RFs and AD as an outcome. To date, MR studies have typically 

evaluated a single CV risk factor at a time, which is valid only if the genetic variants used for the 

MR influence AD exclusively via the selected CV risk factor [18, 27]. For a number of variants, 

we found pleiotropy challenging the conventional MR approach (for a review on the assumptions 

underlying MR see [12]); that is, common genetic variants influencing AD are associated with 

multiple CV RFs, at times with a different directionality of effect (Figure 3, Supplemental Table 

2). Instead of a single causal link between genetic variants, RF and the outcome [13], these 

results suggest two possible scenarios: 1. genetic variants influence cardiovascular RFs and AD 

independently, or, 2. genetic variants influence AD through multiple cardiovascular RFs.  

 On chromosome 11, our pleiotropy and eQTL results point to AD associated genetic 

signal within MTCH2 and SPI1, independent from CELF1/CUGB1. By conditioning on 

cardiovascular RFs, we identified several SNPs tagging variants within NR1H3, MTCH2, 

MYBPC3 and CELF1. The eQTL analyses showed cis-associations with MTCH2 and SPI1, both 

of which showed differential gene expression alterations in AD brains. Consistent with our 

findings, a recent study found an AD risk locus within the CELF1 region that was associated 

with lower expression of SPI1 in monocytes and macrophages [14, 15]. SPI1 encodes a 

transcription factor, PU.1, that is essential for myeloid cell development and a major regulator of 

cellular communication in the immune system [23]. We note that the majority of our pleiotropic 
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genes were expressed in astrocytes and to a lesser extent, microglia, implicating genes expressed 

in microglia, astrocytes or other myeloid cell types in AD pathogenesis [34].  

 Our findings have clinical implications. First, given the common co-occurrence of 

vascular and Alzheimer’s pathology, it is highly likely that the clinically diagnosed AD 

individuals from our cohort have concomitant vascular brain disease, which may further 

contribute to their cognitive decline and dementia. As such, a plausible interpretation of our 

findings is that the susceptibility loci identified in this study may increase brain vulnerability to 

vascular and/or inflammatory insults, which in turn may exacerbate the clinical consequences of 

AD pathological changes. Second, no single common variant detected in this study will be 

clinically informative. Rather, integration of these pleiotropic variants into a 

cardiovascular pathway specific, polygenic ‘hazard’ framework for predicting AD age of onset 

may help identify older individuals jointly at risk for cardiovascular and Alzheimer’s disease [8]. 

Therapeutically targeting cardiovascular RFs in these individuals may impact the Alzheimer’s 

disease trajectory. 

 This study has limitations. First, whereas several of the CV RF GWASs included 

European and non-European ancestry individuals, the IGAP AD cohort restricted analyses to 

non-Hispanic Whites. Therefore, these results may not be generalizable to AD patients from 

other populations. Second, our AD patients were diagnosed largely using clinical criteria without 

neuropathology confirmation and this may result in misclassification of case status. However, 

such misclassification should reduce statistical power and bias results toward the null. Finally, 

given evidence that phospholipids are proinflammatory [29], future work should evaluate 

whether LDL, HDL or TC influence AD risk through inflammation or other mediator variables. 
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 In summary, across a large cohort (n > 500,000 cases and controls), we show 

cardiovascular associated polygenic enrichment in AD. Beyond APOE, our findings support a 

disease model in which lipid biology is integral to the development of clinical AD in a subset of 

individuals. Lastly, considerable clinical, pathological and epidemiological evidence has shown 

overlap between Alzheimer’s and cardiovascular risk factors; here, we provide genetic support 

for this association. 
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 FIGURE LEGENDS 

Fig. 1 Fold enrichment plots of nominal -log10 p-values (corrected for inflation and excluding 

APOE, MAPT, and HLA regions) in Alzheimer’s disease (AD) below the standard GWAS 

threshold of p < 5x10-8 as a function of significance of association with body mass index (BMI), 

type 2 diabetes (T2D), coronary artery disease (CAD), waist hip ratio (WHR), total cholesterol 

(TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) at the level of p ≤ 1, p 

≤ 0.1, p ≤ 0.01, respectively. Blue line indicates all SNPs 

 

Fig. 2 Conjunction Manhattan plot of conjunction –log10 (FDR) values for Alzheimer’s disease 

(AD) alone (black) and AD given body mass index (BMI; AD&BMI, red), type 2 diabetes (T2D; 

AD&T2D, orange), coronary artery disease (CAD; AD&CAD, aquamarine), waist hip ratio 

(WHR; AD&WHR, green), total cholesterol (TC; AD&TC, purple), low-density lipoprotein 

(LDL; &LDL, blue) and high-density lipoprotein (HDL, AD|HDL, bright green). SNPs with 

conjunction –log10 FDR > 1.3 (i.e. FDR < 0.05) are shown with large points. A black line around 

the large points indicates the most significant SNP in each LD block and this SNP was annotated 

with the closest gene, which is listed above 

 

Fig. 3 Matrix plot mapping directionally encoded z-scores for the non-APOE AD/CV pleiotropic 

genes for each CV RF. * indicates the conditioning RF used to identify the most significant SNP 

(see Table 2 and Fig. 2) 

 

Fig. 4 Network interaction graph predominantly illustrating co-expressed (purple), co-localized 

(blue), and shared protein domains (khaki) for AD/CV pleiotropic genes 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2018. ; https://doi.org/10.1101/383844doi: bioRxiv preprint 

https://doi.org/10.1101/383844
http://creativecommons.org/licenses/by-nd/4.0/


29 
 

 

Fig. 5 Genes associated with Alzheimer’s disease and cardiovascular disease differentially 

expressed in AD patients versus controls: a) CDC73, b) ABCA1, c) ABCG5, and d) SPI1 

 

Fig. 6 Enrichment associated with a) AD/CV pleiotropic genes in astrocytes and b) functionally 

expressed pleiotropic genes in astrocytes and microglia/macrophages. Functionally expressed 

pleiotropic genes were defined as genes with significant cis-associations in both brain and blood 
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Fig. 2 
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Fig. 3 
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Fig. 5 
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Fig. 6 
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Table 1 Summary data from all GWAS used in the current study 
 
Disease/Trait Total N Reference URL to Summary data 

Alzheimer’s 
disease 

AD 54,162 [17] http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php 

Body Mass 
Index 

BMI 339,224 [20] 
http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files    

file: GWAS Anthropometric 2015 BMI/Download BMI All Ancestries GZIP 

Type 2 
Diabetes 

T2D 159,208 [32] 
http://diagram-consortium.org/downloads.html 

file: DIAGRAM 1000G GWAS meta-analysis Stage 1 Summary statistics 

Coronary 
Artery Disease 

CAD 184,305 [25] 
http://www.cardiogramplusc4d.org/data-downloads/ 

file: CARDIoGRAMplusC4D 1000 Genomes-based GWAS - Additive 

Waist Hip 
Ratio 

WHR 224,459 [33] 
http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files    

file: Download WHR Combined All Ancestries GZIP 

Total 
Cholesterol 

TC 188,577 [42] 
http://csg.sph.umich.edu/abecasis/public/lipids2013/ 

file: jointGwasMc_TC.txt.gz 
 

Low-Density 
Lipoprotein 

LDL 188,577 [42] 
http://csg.sph.umich.edu/abecasis/public/lipids2013/ 

file: jointGwasMc_LDL.txt.gz 
 

High-Density 
Lipoprotein 

HDL 188,577 [42] 
http://csg.sph.umich.edu/abecasis/public/lipids2013/ 

file: jointGwasMc_HDL.txt.gz 
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Table 2 Overlapping loci between AD and CV RFs at a conjunction FDR < 0.05. Chromosome 19 SNPs are excluded. 
 

 
SNP Chr Position Nearest Gene A1 

Reference  
CV RF 

Min  
Conj FDR 

Reference  
CV RF  
p-value 

AD  
p-value 

Direction 
of Allelic 

Effect 

1 rs11580687 1 193685925 CDC73 G BMI 2.05E-02 2.46E-04 8.63E-05 +/- 

2 rs12410656 1 27397604 SLC9A1 T LDL 3.48E-03 9.32E-09 1.03E-04 -/+ 

3 rs6676563 1 55652983 USP24 G LDL 4.16E-02 2.12E-14 1.62E-03 +/- 

4 rs72796734 2 44063731 ABCG5 T LDL 2.38E-02 1.61E-04 8.41E-04 -/+ 

5 rs741477 2 65066311 AK097952 G TC 2.28E-02 7.96E-04 6.79E-04 -/- 

6 rs12994639 2 64959331 SERTAD2 G TC 4.80E-02 2.37E-06 1.61E-03 -/- 

7 rs17713879 2 254215 SH3YL1 A HDL 4.35E-02 8.03E-04 7.34E-04 -/+ 

8 rs6785930 3 151056616 MED12L A LDL 4.82E-02 3.17E-03 8.67E-04 +/- 

9 rs17037999 4 108613027 PAPSS1 G LDL 4.56E-02 2.98E-03 4.35E-04 +/+ 

10 rs6886253 5 174616451 DRD1 T LDL 1.85E-02 5.23E-04 6.36E-04 -/- 

11 rs5744712 5 74892002 POLK C LDL 3.61E-02 4.32E-32 1.36E-03 +/+ 

12 rs141974113 6 32360050 BTNL2 A CAD 3.20E-02 2.64E-04 2.06E-04 +/+ 

13 rs646984 6 32576592 HLA-DRB5 C TC 2.14E-03 1.27E-04 2.06E-05 -/+ 

14 rs2717926 7 37714304 BC043356 C BMI 1.93E-02 2.26E-04 9.55E-05 -/- 

15 rs2888877 7 92228400 CDK6 T LDL 3.18E-02 1.31E-03 1.00E-03 -/- 

16 rs17153037 7 26048075 DM004234 A BMI 3.21E-02 1.02E-04 1.85E-04 +/- 

17 rs35991721 7 99728790 MBLAC1 T CAD 1.14E-02 5.28E-05 5.92E-05 -/+ 

18 rs702483 7 6426941 RAC1 T TC 2.95E-02 1.90E-03 6.27E-04 -/+ 

19 rs858513 7 99825558 STAG3OS G LDL 1.63E-02 4.95E-04 5.51E-04 -/+ 

20 rs7819800 8 95975168 C8ORF38 A T2D 3.81E-02 1.68E-04 1.24E-04 -/+ 

21 rs10093964 8 27312040 PTK2B T BMI 3.15E-02 4.29E-04 1.13E-04 +/- 

22 rs7014168 8 10641965 SOX7 A HDL 2.80E-02 9.71E-11 4.35E-04 -/- 

23 rs1180628 8 116430861 TRPS1 C LDL 3.67E-02 1.24E-04 1.39E-03 +/- 

24 rs1883025 9 107664301 ABCA1 T LDL 4.28E-03 9.42E-12 1.29E-04 +/- 

25 rs943424 9 137436967 COL5A1 T TC 3.10E-02 2.17E-03 1.87E-04 +/+ 
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26 rs7916835 10 124122373 PLEKHA1 T T2D 1.44E-02 1.62E-05 4.41E-05 -/- 

27 rs1263173 11 116681008 APOA4 G TC 4.59E-02 5.84E-07 1.53E-03 +/+ 

28 rs2727273 11 61702603 BEST1 T LDL 2.37E-02 6.56E-04 8.40E-04 -/- 

29 rs7928842 11 47566352 CELF1 C BMI 1.82E-02 8.72E-11 8.85E-05 -/+ 

30 rs4752856 11 47648042 MTCH2 A TC 4.36E-04 6.79E-07 9.14E-06 -/- 

31 rs2071305 11 47370957 MYBPC3 C HDL 3.10E-04 1.29E-10 3.09E-06 -/- 

32 rs11039149 11 47276675 NR1H3 G LDL 2.21E-02 1.38E-03 4.97E-06 +/+ 

33 rs12292911 11 47449072 PSMC3 A BMI 1.19E-03 1.72E-07 3.78E-06 +/- 

34 rs3815364 11 67202847 RPS6KB2 A LDL 3.82E-02 6.36E-04 1.46E-03 +/- 

35 rs11038670 11 45845150 SLC35C1 A HDL 2.29E-02 2.02E-04 3.43E-04 +/+ 

36 rs2510044 11 77909014 USP35 A TC 4.68E-02 6.09E-05 1.57E-03 -/- 

37 rs12146727 12 7170336 C1S A CAD 2.20E-02 1.63E-04 9.30E-05 -/- 

38 rs10861632 12 106960182 RFX4 A HDL 2.93E-02 2.45E-05 4.58E-04 +/- 

39 rs7972529 12 112841242 RPL6 G CAD 4.93E-02 4.05E-04 3.58E-04 +/- 

40 rs10773111 12 125332955 SCARB1 T HDL 4.94E-02 2.40E-12 8.55E-04 +/+ 

41 rs17101733 14 75123026 AREL1 G TC 6.54E-03 4.17E-04 3.52E-06 +/+ 

42 rs6493386 15 50213929 ATP8B4 G LDL 3.76E-02 1.46E-03 1.13E-03 -/- 

43 rs11857703 15 63379592 TPM1 A HDL 4.16E-02 7.63E-07 6.96E-04 +/+ 

44 rs3098197 15 50817133 USP50 A HDL 1.43E-02 1.95E-05 2.00E-04 -/- 

45 rs889555 16 31122571 BCKDK T TC 3.16E-02 1.04E-03 9.63E-04 -/+ 

46 rs8062895 16 72048632 DHODH G LDL 4.07E-02 2.79E-05 1.58E-03 +/- 

47 rs9941245 16 19916895 GPRC5B G HDL 1.63E-02 1.09E-04 2.32E-04 -/+ 

48 rs113260531 17 5138980 BC029580 A CAD 3.19E-02 2.66E-04 6.84E-06 +/- 

49 rs3760372 17 45380002 ITGB3 T LDL 1.31E-02 5.96E-07 4.32E-04 +/- 

50 rs144939739 17 43666820 LOC644172 A CAD 3.26E-02 2.01E-05 2.10E-04 -/+ 

51 rs12940610 17 64312463 PRKCA A LDL 2.25E-02 9.00E-04 7.93E-04 -/+ 

52 rs12951873 17 47403553 ZNF652 C CAD 3.04E-02 1.67E-04 1.93E-04 +/+ 

53 rs11083394 18 27940854 DSC2 G LDL 1.92E-02 2.81E-04 6.62E-04 -/- 

54 rs17656498 18 47128176 LIPG C TC 1.39E-02 3.02E-09 3.90E-04 -/+ 
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55 rs6021721 20 50746651 ZFP64 G HDL 4.51E-02 9.01E-05 7.68E-04 +/- 

56 rs9621715 22 21942007 UBE2L3 A BMI 3.23E-02 3.66E-04 1.86E-04 -/+ 

57 rs2298428 22 21982892 YDJC T TC 3.70E-03 6.15E-06 9.17E-05 -/- 
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