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Genomic analysis of diet composition finds 

novel loci and associations with health and 

lifestyle 

All authors and their affiliations are listed at the end of the manuscript.  

ABSTRACT 

We conducted genome-wide association study (GWAS) meta-analyses of relative caloric intake from fat, 

protein, carbohydrates and sugar in over 235,000 individuals. We identified 21 approximately 

independent lead SNPs. Relative protein intake exhibits the strongest relationships with poor health, 

including positive genetic associations with obesity, type 2 diabetes, and heart disease (𝑟𝑔  ≈  0.15 −

0.5). Relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, 

waist-hip ratio, and neighborhood poverty (|𝑟𝑔|  ≈  0.1 − 0.3). Overall, our results show that the relative 

intake of each macronutrient has a distinct genetic architecture and pattern of genetic correlations 

suggestive of health implications beyond caloric content. 

MAIN TEXT 

Understanding the effects of nutrition on health is a priority given the ongoing worldwide obesity 

epidemic1–5. The health impacts of many aspects of dietary intake have been studied, but the effects of 

macronutrient composition (i.e., relative intake from fat, protein, and carbohydrate) have been especially 

controversial. There is still no consensus on whether macronutrients exert specific health effects beyond 

their caloric value6–8. Despite a lack of robust empirical evidence from randomized trials on the long-term 

effects of macronutrient restriction on body weight and health2,6,9,10, dietary recommendations have 
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shifted from low-fat to low-sugar and, more recently, lower animal-protein diets11–17. Observational 

studies have found inconsistent phenotypic correlations between macronutrient proportions, body mass 

index (BMI) and related health outcomes (e.g., 18–20), and the mechanisms underlying these relationships 

are not well understood.  

Insights from genetics may help to elucidate the connections between nutrition and health outcomes. 

Twin studies suggest that diet composition is moderately heritable, with ℎ2 estimates ranging from 27% 

to 70% for the different macronutrients’ contributions to total energy intake21–23. Previous GWAS on 

relative caloric intake from protein, fat, and carbohydrates (up to N = 91,114) have identified three 

genome-wide significant SNPs in or near RARB, FTO and FGF21, each of which captures only a 

miniscule part of trait heritability (R2 < 0.06%)24–26. These results suggest that diet composition is a 

genetically complex phenotype and that most associated genetic variants have not yet been identified. 

Furthermore, no large-scale genome-wide association study (GWAS) has investigated relative sugar 

intake.  

Here we report GWAS results for diet composition, and we use the results to conduct bioinformatics 

analyses and to calculate genetic correlations with a range of other phenotypes. For the GWAS, we 

expand the samples used in earlier work from N = 91,11424–26 to 268,922 for relative intake of PROTEIN, 

CARBOHYDRATE, and FAT.  Furthermore, we report GWAS results for SUGAR (N = 235,391), which is a 

subcomponent of CARBOHYDRATE and captures relative intake of both naturally-occurring and added 

sugars. 

RESULTS 

Phenotype definition 

All cohorts used self-report questionnaires containing ≥70 food items, with average estimated intakes 

showing strong similarity across cohorts (Supplementary Table 1.2). Using these self-reports, we 

calculated the relative contributions of FAT, PROTEIN, CARBOHYDRATE and SUGAR to total caloric intake 
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(we do not study total caloric intake because it is mainly determined by body size and physical activity27 

and because systematic underreporting of total food intake is correlated with BMI28). Since macronutrient 

intake may not scale linearly with total caloric intake, we developed and applied a method that adjusts for 

the observed non-linear relationships (Supplementary Information 2.6, Extended Data Figure 1). 

Consistent with the satiating properties of protein29, we find that at higher levels of total caloric intake, 

relative protein intake declines, while relative fat intake increases, and relative sugar and carbohydrate 

intake remain roughly constant (Supplementary Table 2.2).  

Main results 

We began by assessing the SNP-based heritability of our phenotypes. We calculated GREML30 estimates 

using a random N = 30,000 subsample of conventionally unrelated UK Biobank (UKB) individuals. The 

estimates range from 2.1% for PROTEIN to 7.9% for CARBOHYDRATE (Extended Data Figure 2 and 

Supplementary Information 7).  

GWAS were performed in individuals of European ancestry. When possible, we excluded individuals on 

calorie- or macronutrient-restricted diets (Supplementary Table 1.3). Our discovery sample was the 

subset of the UKB with survey data on dietary intake (N = 175,253). The replication phase consisted of a 

meta-analysis of GWAS summary statistics from 14 additional cohorts that followed our analysis plan (N 

= 60,138) and summary statistics from DietGen25 (for FAT, PROTEIN and CARBOHYDRATE, N = 33,531). 

DietGen25 assumed a linear scaling of macronutrients with total energy intake. Since the genetic 

correlations between DietGen and our replication cohorts is not significantly different from 1 

(Supplementary Table 6.1), we added DietGen to our meta-analysis. 

Association statistics underwent rigorous quality control (Supplementary Information 3.3). The 

discovery stage identified 21 approximately independent genome-wide-significant lead SNPs (see 

Supplementary Information 3.3.5 for a description of the clumping algorithm): 4 for FAT, 5 for 

PROTEIN, 5 for SUGAR, and 7 for CARBOHYDRATE (Supplementary Table 4.1). These lead SNPs partially 

overlap across phenotypes and reside in 14 unique loci. In the replication stage, all 21 lead SNPs had the 
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anticipated signs and comparable effect sizes (Extended Data Figure 3), and 15 reached statistical 

significance at P < 0.05 (Supplementary Table 4.1). This empirical replication record matches or 

exceeds theoretical predictions that take into account the statistical winner’s curse, sampling variation, 

and statistical power31 (Supplementary Information 4.1).  

In order to maximize statistical power, all follow-up analyses that now follow are based on results from 

the combined analyses of discovery and replication samples (N = 235,391 to 268,922). The quantile-

quantile plots of exhibit substantial inflation (λGC = 1.12 to 1.19, Extended Data Figure 4). The 

estimated intercepts from LD Score regressions32 (LDSC) suggest that the vast majority of this inflation is 

due to polygenic signal, and only a small share is attributable to population stratification (max ~6% for 

FAT, n.s. different from 0%; Supplementary Table 3.4). The number of approximately independent lead 

SNPs is 36 (pairwise r2 < 0.01), including 6 for FAT, 7 for PROTEIN, 10 for SUGAR, and 13 for 

CARBOHYDRATE (Table 1, Figure 1). These 36 lead SNPs reside in 21 unique loci (Supplementary 

Table 5.2). The SNP effect sizes range from 0.015 to 0.098 phenotypic standard deviations per allele. The 

phenotypic variance explained per SNP, expressed in terms of coefficient of determination (R2), ranged 

from 0.011% to 0.054%, comparable to other genetically complex traits such as BMI and educational 

attainment (Extended Data Figure 5). 

MAGMA33 analyses of our GWAS summary statistics identified 81 unique genes (Extended Data 

Figure 6 and Supplementary Table 5.4). While the majority of these genes were near our lead SNPs, 

MAGMA also identified 33 genomic regions harboring 44 unique genes that are physically distant (> 1 

Mb) from our lead SNPs. 

We constructed polygenic scores for the macronutrient intakes by applying LDpred34 to our GWAS 

summary statistics. We assessed the scores’ out-of-sample predictive accuracy in two holdout cohorts: the 

Health and Retirement Study (N = 2,344) and the Rotterdam Study (N = 3,585). The scores predicted the 

macronutrient intakes with R2 ranging between 0.08% (P = 0.088) and 0.71% (P = 9.11×10-7; 

Supplementary Table 8.1). 
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We estimated pairwise genetic correlations between the macronutrients with bivariate LDSC35. All are 

statistically distinguishable from zero at P < 0.05 (except FAT and PROTEIN), as well as from one and 

negative one (Table 2). These results indicate that intake of each macronutrient has a different genetic 

architecture, consistent with previous work from animal studies showing distinct biological mechanisms 

involved in macronutrient-specific appetites36. 

Discussion of lead SNPs from combined meta-analysis 

Seven of the 21 lead SNPs have not been (directly or via LD partners, r2 ≥ 0.6 and distance < 250 kb) 

associated with any other traits in the NHGRI-EBI GWAS Catalog37 (Supplementary Table 5.5). Each 

of these seven SNPs is located in or near genes that have not been studied in depth to date.  

Five lead SNPs are located in (or near) genes that have well characterized biological functions in nutrient 

metabolism or homeostasis but have not previously been associated with food intake. First, a missense 

variant in APOE (rs429358) was associated with FAT, SUGAR, and CARBOHYDRATE, where the allele that 

decreases Alzheimer’s risk is associated with greater FAT intake, and vice-versa for SUGAR and 

CARBOHYDRATE.  APOE is not only strongly associated with Alzheimer’s disease38 but is also involved in 

fatty acid metabolism. We explored whether this association may be driven by sample selection. 

Specifically, older people with dementia may be systematically missing from the UKB, and unaffected 

elderly people may have different eating habits than younger people. We found that the association was 

greatly reduced in the subsample of UKB participants aged below 60, but the 95% confidence intervals of 

the effect sizes still overlapped with those of the older sample (Supplementary Table 5.3). 

Second, a well-known missense variant (rs1229984 in ADH1B) that limits alcohol metabolism was 

positively associated with FAT intake. The association was weaker in a sample of UKB alcohol abstainers 

(N = 39,679; Supplementary Table 5.3), suggesting that it may be partially driven by substitution of fat 

for alcohol. 
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Third, a PROTEIN lead SNP (rs13146907) was found in KLB, an essential cofactor to FGF2139,40 which 

influences sweet and alcohol taste preference via the liver-brain-endocrine axis41–43. KLB was only 

associated with PROTEIN, while variants in (or near) FGF21 were strongly associated with all four 

macronutrients. With MAGMA, we also identified MLXIPL (only for FAT), a gene that acts as a 

transcription factor to FGF2144. This might imply that different genes involved in the same pathway are 

important for directing intake of different macronutrients. 

Fourth, an intergenic variant (rs2472297) linked to higher caffeine consumption45,46 was associated with 

lower CARBOHYDRATE intake. There are various possible explanations, such as interrelated lifestyle 

choices pertaining to food and caffeinated drinks. 

Fifth, an intronic variant in GCKR (rs780094), a carbohydrate-metabolism gene, is associated with 

PROTEIN. The lead SNP is in almost perfect LD with a missense variant that has been associated with lipid 

levels47. 

Bioinformatic analyses 

Animal studies indicate that the brain and peripheral organs interact in directing macronutrient intake36,48. 

A question that arises is whether the “periphery”, which digests and metabolizes macronutrients, plays a 

larger role than the brain, for instance by determining how the brain assigns reward values to 

macronutrients. (For example, this is partially the case with alcohol, where mutations that limit metabolic 

capacity render alcohol consumption unpleasant49,50.) To examine to what extent genetic variation in the 

brain and the periphery contributes to macronutrient intake in humans, we used stratified LDSC51,52 to 

identify in which tissues diet-composition-associated SNPs are likely to be expressed (Supplementary 

Information 9.1). We performed two stratified LDSC analyses, which partitioned SNP heritability 

according to (i) 10 broadly-defined tissues, which were ascertained with LDSC reference data from 

chromatin data53 and (ii) 53 tissues (including 14 brain regions), as ascertained with LDSC reference data 

from sets of Specifically Expressed Genes in GTEx (known as LDSC-SEG)52. To correct for multiple 
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testing across tissues, we applied Bonferroni adjustments for the number of tested tissues (𝑃Bonf = 10 ∙ 𝑃  

and 𝑃Bonf = 53 ∙ 𝑃, respectively).  

We found that genetic variation related to the central nervous system plays a major role for intake of all 

macronutrients (𝑃Bonf < 0.015 for the regression coefficients; Figure 4), with the proportions of 

explained heritability ranging from 44% (FAT and SUGAR) to 55% (PROTEIN). Within the central nervous 

system, we found broad involvement of the brain, including (frontal) cortex (FAT and SUGAR), the basal 

ganglia (FAT), limbic system (FAT and SUGAR), cerebellum (PROTEIN), and hypothalamus and substantia 

nigra for FAT and PROTEIN (and SUGAR suggestively: 𝑃Bonf = 0.06). The confidence intervals for the 

coefficients overlap across brain regions so we cannot draw conclusions about the specificity of brain 

regions for intake of particular macronutrients. 

For FAT, genetic variation related to adrenals and/or pancreas tissue is estimated to explain 37% of the 

heritability. Because the adrenals play a role in lipid metabolism, and the pancreas is crucial for digestion, 

either tissue may plausibly affect fat intake. We caution, however, that in the LDSC-SEG analyses of 53 

tissues, all non-brain regions had P values above 0.05 even before Bonferroni adjustment (Figure 5). 

To gain insight into the putative functions of the top associated loci, we queried the 81 genes identified by 

the MAGMA analyses in Gene Network54, which predicts Reactome55 functions for genes 

(Supplementary Information 9.3). In addition to neural functioning (e.g., axon guidance), we found that 

the MAGMA genes were predicted to be involved in growth factor signaling and the immune system 

(Supplementary Table 9.6). These results may imply a more pronounced role for peripheral gene 

functions than our stratified LDSC results, which mainly implicated the brain. 

Relationships with health, lifestyle and socioeconomic status 

Using bivariate LDSC35,56, we estimated genetic correlations between our diet-composition phenotypes 

and 19 preselected relevant medical and lifestyle phenotypes for which well-powered GWAS results were 

available. We also included four additional phenotypes for which GWAS results became available after 
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our study was underway, as well as Alzheimer’s disease, motivated by the association we found between 

APOE with macronutrient intake. To control for multiple testing, we again calculated Bonferroni-adjusted 

P values (𝑃Bonf = 24 ∙ 𝑃). 

PROTEIN showed the strongest genetic correlations with poor health outcomes, including obesity (𝑟𝑔 =

0.35), type 2 diabetes (𝑟𝑔 = 0.45), fasting insulin (𝑟𝑔 = 0.41), and coronary artery disease (𝑟𝑔 = 0.16), as 

well as BMI (𝑟𝑔 = 0.40) (Figure 2, Supplementary Table 10.1). FAT, SUGAR, and CARBOHYDRATE had 

negative, non-significant genetic correlations with BMI (𝑟𝑔 between −0.06 and −0.02). For comparison, 

we estimated phenotypic associations between diet composition and BMI in four independent cohorts 

(combined N = 173,353) and meta-analyzed the results (Figure 3). PROTEIN (standardized �̂� = 0.09) and 

FAT (standardized �̂� = 0.06) are positively associated with BMI, while SUGAR and CARBOHYDRATE are 

negatively associated with BMI (standardized �̂� = -0.09 and -0.09, respectively, Supplementary Table 

10.2). Thus, the genetic correlation between PROTEIN and BMI stands out as large relative to the 

phenotypic correlation. 

Despite their relatively weak genetic correlations with BMI, SUGAR and CARBOHYDRATE have significant 

negative genetic correlations with waist circumference (𝑟𝑔 = −0.13 and −0.14) and waist-hip ratio (𝑟𝑔 =

−0.15 and −0.18). All the macronutrients have negative genetic correlations with alcohol consumption 

(𝑟𝑔 between −0.61 and −0.11), as expected since alcohol is included in energy intake and our phenotype 

measures are shares of energy intake.  

Next, we computed genetic correlations with indicators of socioeconomic status31,57,58, which are known 

to be phenotypically associated with food access, dietary choices, and health59–63. We found that FAT is 

negatively genetically correlated with educational attainment (𝑟𝑔 = −0.13). SUGAR and CARBOHYDRATE 

are negatively genetically correlated with the Townsend deprivation index (𝑟𝑔 = −0.23 and −0.30), 

which is constructed from the rates of unemployment, non-ownership of cars and houses, and 

overcrowding of the neighborhood in which individuals live64,58, with higher scores indicating more 
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severe socioeconomic deprivation. These genetic correlations are suggestive of environmental channels 

that affect macronutrient intake. 

Finally, we estimate the genetic correlations between diet composition and physical activity. Because 

physical activity is known to have health benefits65, its genetic correlations with diet composition may 

provide clues about mechanisms underlying relationships between diet composition and health. In these 

genetic correlation analyses, we used unpublished physical activity GWAS summary statistics from a 

sample of research participants from 23andMe (N = 123,983). The physical activity phenotype is a 

composite measure based on self-reported activities from leisure, occupation, and commuting. We found 

a negative genetic correlation of physical activity with FAT (𝑟𝑔 = −0.20) and a positive genetic 

correlation with SUGAR (𝑟𝑔 = 0.22). The genetic correlations with PROTEIN and CARBOHYDRATE are 

positive but not statistically distinguishable from zero (0.11 and 0.06, respectively).  

Discussion 

A possible role for PROTEIN in the etiology of metabolic dysfunction is implicated by the genetic 

correlation between PROTEIN and obesity, waist-hip ratio, fasting insulin, type 2 diabetes, HDL 

cholesterol, and heart disease, as well as by the BMI-increasing FTO allele associating with increased 

protein intake. This conclusion coincides with a growing (but often overlooked66) body of evidence that 

links protein intake to obesity and insulin resistance67–75. The positive genetic link between PROTEIN and 

BMI could reflect a causal effect of relative protein intake. There is some evidence from randomized 

trials with infants, which found a causal relationship between high-protein baby formula and infant body 

fat76. While the underlying biological mechanisms are unclear, high consumption of protein or certain 

types of amino acids (i.e., building blocks of protein) can induce insulin resistance77–79, rapamycin 

signaling72, and growth factor signaling80, thereby increasing metabolic dysfunction and early mortality 

risk. 
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We caution, however, that the strong and consistent links between PROTEIN and poor health outcomes 

might also be consistent with alternative explanations. Causation could run in the reverse direction: 

overweight individuals may have higher protein needs, or use high-protein diets as a weight-loss strategy. 

The associations might also be caused by other, unmeasured variables such as unhealthy lifestyle factors 

or co-consumed ingredients. However, we find that the phenotypic association between PROTEIN and BMI 

is robust to controls for educational attainment and household income. Furthermore, the genetic 

correlation between PROTEIN and physical activity is statistically indistinguishable from zero but positive. 

These findings weigh against socioeconomic status or physical activity being confounders of the positive 

genetic correlation between PROTEIN and BMI.  

For SUGAR, the phenotypic and genetic correlations we found with BMI and other health outcomes are 

consistent with observations from systematic reviews and meta-analyses of phenotypic relationships. 

Together, this body of evidence suggests that dietary sugar, beyond its caloric value, does not have 

negative health effects81–85, contrary to some popular beliefs (e.g., 17). Another possibility is that exercise 

offsets negative metabolic effects of high sugar intake86,87. Those with a higher predisposition to be 

physically active may tend to consume more sugar, as sugar is a metabolically convenient source of 

energy during exercise88 and may enhance endurance89. If so, the positive genetic correlation between 

SUGAR and physical activity might partially explain the lack of genetic correlations between SUGAR and 

poor health. 

For FAT and CARBOHYDRATE, we also found no consistent pattern of genetic and phenotypic associations 

with poor metabolic health. Taken together, our results complement the findings of phenotypic analyses 

from a large, multinational study by the EPIC-PANACEA consortium  (N = 373,803), which found that 

only calories from protein are associated with prospective weight gain18 – a finding that was consistent 

across 10 countries.  

While the phenotypic associations between dietary intake and health and lifestyle factors have been 

extensively explored in prior work, the large-scale genetic study of dietary intake is new. Overall, our 
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results show that the relative intake of each macronutrient has a distinct genetic architecture, and the 

pattern of genetic correlations is suggestive of health implications beyond caloric content. Moreover, our 

genetic correlation and bioinformatics analyses suggest a number of novel hypotheses regarding the 

causes and consequences of dietary intake that can be explored in future work. 

Online Methods 

Materials and methods are described in detail in the online Supplementary Information. Upon publication, 

GWAS summary statistics for the four macronutrients can be downloaded from the SSGAC website 

(https://thessgac.org/data). 
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Figures and tables 

 

 

Figure 1 Manhattan plots | The x-axis is SNP chromosomal position; the y-axis is the SNP P 

value on a −log10 scale; the horizontal dashed line marks the threshold for genome-wide (P = 5 × 

10−8) and suggestive (P = 1 × 10−5) significance; and each approximately independent (pairwise r2 

< 0.1) genome-wide significant association (“lead SNP”) is marked by a red cross. 
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Figure 2 Genetic correlations | Genetic correlations were estimated with bivariate LD Score 

(LDSC) regression. Error bars show 95% confidence intervals, while asterisks denote Bonferroni-

corrected P value thresholds (* PBonferroni < 0.05, ** < 0.01, *** < 0.001), corrected for 24 traits. 

The colours represent the different functional domains. 
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Figure 3 Phenotypic associations with Body Mass Index | Forest plots depicting the phenotypic 

associations between diet composition and Body Mass Index (BMI) in four independent cohorts, 

in terms of standardized betas (with errors bars indicating 95% confidence intervals). These 

standardized regression coefficients were obtained from a regression of BMI on the focal 

macronutrient and several covariates (sex, age, educational attainment, and household income). 

FHS = Framingham Heart Study (N = 4,413), HRS = Health and Retirement Study (N = 2,394), 

UKB = UK Biobank (N = 158,046), WHI = Women’s Health Initiative (N = 8,628). The summary 

estimate was based on a fixed-effects, inverse-variance weighted meta-analysis of all four cohorts. 
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Figure 4 LD Score partitioning of heritability – Tissues | Functional partitioning of the 

heritability of diet composition phenotypes with stratified LD Score regression, where tissues were 

ascertained by Finucane et al. on the basis of chromatin data. The panel shows the partial regression 

coefficient (𝜏𝐶) from the stratified regression, divided by the LD Score heritability of the diet 

composition phenotype (ℎ2). Each estimate of 𝜏𝐶 comes from a separate stratified LD Score 

regression, where we also controlled for the 52 functional annotation categories in the “baseline” 

model. Error bars represent 95% confidence intervals. The phenotypes are ordered from left to 

right (FAT, PROTEIN, SUGAR, and CARBOHYDRATE), from darker to lighter shades. Asterisks (*) 

denote significant deviation from zero after Bonferroni correction for 10 tissues: * 𝑃 <
0.05

10
, 

** 𝑃 <
0.01

10
, *** 𝑃 <

0.001

10
. 
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Figure 5 LD Score partitioning of heritability – Brain regions | Functional partitioning of the 

heritability of diet composition phenotypes with stratified LD Score regression, where tissues were 

ascertained by Finucane et al. on the basis of sets of specifically-expressed genes in GTEx data 

(“LDSC-SEG”). The sets of specifically-expressed genes in these analyses compared the focal 

tissue to other bodily tissues. The panel shows the partial regression coefficient (𝜏𝐶) from the 

stratified regression, divided by the LD Score heritability of the diet composition phenotype (ℎ2) 

to facilitate comparison between traits. Each estimate of 𝜏𝐶 comes from a separate stratified LD 

Score regression, where we also controlled for the 52 functional annotation categories in the 

“baseline” model. Error bars represent 95% confidence intervals. Asterisks (*) denote significant 

deviation from zero after Bonferroni correction for 53 tissues; * 𝑃 <
0.05

53
, ** 𝑃 <

0.01

53
, *** 𝑃 <

0.001

53
. Each group of colored bars represents an anatomical region (ordered from left to right: red – 

cortex, orange – basal ganglia, blue – limbic system, green – hypothalamus-pituitary, yellow – 

cerebellum, and purple – spinal cord).  
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Top hit in locus for SNPID CHR BP 
Effect 

allele 
Beta P value Nearest gene 

PROTEIN rs780094 2 27,741,237 t 0.018 5.58E-10 GCKR 

SUGAR rs12713415 2 60,205,134 c -0.019 4.88E-09 AC007100.1 

CARBOHYDRATE rs10206338 2 60,209,981 a -0.016 1.52E-08 AC007100.1 

PROTEIN rs445551 2 79,697,982 a 0.019 1.49E-08 CTNNA2 

CARBOHYDRATE rs10510554  3 25,099,776 t 0.019 2.94E-12 AC133680.1 

PROTEIN rs1603978 3 25,108,236 a 0.019 1.35E-10 AC092422.1 

SUGAR rs7619139 3 25,110,415 a -0.024 4.98E-16 AC092422.1  

CARBOHYDRATE rs10433500  3 85,546,798 a 0.016 1.96E-08 CADM2 

PROTEIN rs13146907 4 39,425,248 a -0.022 1.24E-14 KLB 

FAT rs1229984  4 100,239,319 t 0.098 2.64E-28 ADH1B 

SUGAR rs13202107 6 51,395,463 a -0.020 1.77E-08 SNORD66 

FAT rs57193069 7 1,862,417 a -0.016 1.80E-08 MAD1L1 

CARBOHYDRATE rs7012637 8 9,173,209 a 0.017 4.68E-10 AC022784.6 

FAT rs7012814  8 9,173,358 a -0.019 1.12E-11 AC022784.6 

SUGAR rs7012814  8 9,173,358 a 0.019 4.99E-10 AC022784.6 

CARBOHYDRATE rs9987289 8 9,183,358 a -0.026 4.64E-08 AC022784.6 

PROTEIN rs1461729 8 9,187,242 a 0.032 4.09E-12 AC022784.6 

CARBOHYDRATE rs10962121 9 15,702,704 t -0.015 3.40E-08 CCDC171 

CARBOHYDRATE rs2472297 15 75,027,880 t -0.018 3.73E-08 CYP1A1 

PROTEIN rs55872725 16 53,809,123 t 0.018 2.09E-10 FTO 

SUGAR rs9972653 16 53,814,363 t -0.020 1.53E-11 FTO 

FAT rs9927317 16 53,820,996 c -0.024 4.77E-12 FTO 

CARBOHYDRATE rs7190396  16 53,822,502 t 0.018 2.39E-10 FTO 

CARBOHYDRATE rs1104608 16 73,912,588 c 0.018 1.74E-10 AC087565.1 

CARBOHYDRATE rs36123991  17 44,359,663 t 0.021 8.24E-09 ARL17B 

SUGAR rs8097672  18 1,839,601 a 0.030 1.54E-12 AP005230.1  

CARBOHYDRATE rs8097672  18 1,839,601 a 0.023 1.95E-09 AP005230.1  

SUGAR rs341228 18 6,395,336 t 0.019 2.72E-09 L3MBTL4 

FAT rs429358  19 45,411,941 t 0.024 8.65E-10 APOE 

SUGAR rs429358  19 45,411,941 t -0.028 2.97E-11 APOE 

CARBOHYDRATE rs429358  19 45,411,941 t -0.027 3.49E-12 APOE 

FAT rs33988101 19 49,218,111 t -0.029 1.66E-26 MAMSTR 

SUGAR rs838144  19 49,250,239 t -0.028 8.53E-21 IZUMO1 

CARBOHYDRATE rs838144  19 49,250,239 t -0.023 3.26E-17 IZUMO1 

PROTEIN rs838133 19 49,259,529 a -0.032 4.52E-26 FGF21 

SUGAR rs62132802  19 49,270,872 t -0.020 1.07E-08 FGF21 

Table 1 Diet composition lead SNPs | GWAS summary statistics of the 36 diet composition lead 

SNPs (i.e., the top hit in the locus for each phenotype). A total of 21 of these lead SNPs are 

approximately independent. Supplementary Table 5.1 reports the effect alleles and summary 

statistics across all four phenotypes for each individual lead SNP. MAF = minor allele frequency 

(weighted average across cohorts). Beta = semi-standardized (i.e., increase in phenotypic standard 
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deviations per effect allele). All P values are genomic-controlled (corrected for LDSC intercept). 

All genomic coordinates are in GRCh37. 

 

  FAT PROTEIN Sugar CARBOHYDRATE 

FAT -- -- -- -- 

PROTEIN -0.019 (0.068) -- -- -- 

SUGAR -0.513 (0.040)*** -0.307 (0.057)*** -- -- 

CARBOHYDRATE -0.607 (0.032)*** -0.226 (0.048)*** 0.728 (0.020)*** -- 

Table 2 Genetic correlations between macronutrients | Genetic correlation analysis results 

obtained from bivariate LD Score regression (with block jackknife standard errors in brackets). 

Only HapMap3 SNPs were used in this analysis. The results show the genetic correlations among 

the four phenotypes calculated using the summary statistics from the combined meta-analyses. *** 

Denotes P value < 0.001 for the null hypothesis of zero genetic correlation. All estimates also 

differed from 1 and -1 with P < 0.001. 
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