
Changes in structural network topology correlate with severity of hallucinatory 

behaviour in Parkinson’s disease  

Julie M. Hall1,2*, Claire O’Callaghan2,3,, Alana. J. Muller2, Kaylena A. Ehgoetz 

Martens2, Joseph R. Phillips1,2, Ahmed A. Moustafa1,4, Simon J. G. Lewis2, James M. 

Shine2  

 
1 School of Social Sciences and Psychology, Western Sydney University, Milperra, 

NSW, 2214, Australia 
2  Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, 

Australia 
3 Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, 

University of Cambridge, Cambridge, UK 
4 MARCS Institute, Western Sydney University, Milperra, NSW, 2214, Australia 

 

Correspondence should be addressed to Julie M. Hall  

Corresponding author’s address: Brain and Mind Centre, University of Sydney, 100 

Mallett Street, Camperdown, New South Wales, 2050, Australia 

Corresponding author’s phone and fax: T: +61 2 91144219, F: +61 2 9351 0855 

Corresponding author’s e-mail: julie.hall@sydney.edu.au 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 3, 2018. ; https://doi.org/10.1101/383141doi: bioRxiv preprint 

https://doi.org/10.1101/383141
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract  

An inefficient integration between bottom-up visual input and higher-order visual 

processing regions is implicated in the manifestation of visual hallucinations (VH) in 

Parkinson’s disease (PD). Using graph theory, the current study aimed to investigate 

white matter contributions to this perceptual imbalance hypothesis. Twenty-nine PD 

patients reported their hallucinatory behaviour on a questionnaire and performed a 

behavioural test that has been shown to elicit misperceptions. A composite score 

derived from these measures was used as a proxy for hallucinations severity and was 

correlated to connectivity strength of the network using the Network Based Statistic 

approach. The results showed that the severity of VH was associated with reduced 

connectivity within a large sub-network. This network included the majority of the 

diverse club and showed overall greater between- and within-module scores, 

compared to nodes not associated with hallucination severity. Furthermore, a 

reduction in between-module connectivity in the lateral occipital cortex, insula and 

pars orbitalis, as well as decreased within-module connectivity in the prefrontal, 

somatosensory and primary visual cortices were associated with VH severity. In 

contrast, the severity of VH was associated with an increase in between- and within-

module connectivity in the orbitofrontal and temporal cortex, as well as regions 

comprising the dorsal attentional and DMN. These results suggest that the severity of 

VHs is associated with marked alterations in structural network topology, highlighted 

by a reduction in connectivity strength across a large sub-network, as well as changes 

in participation across top-down visual processing centres, visual and attentional 

networks. Therefore, impaired integration across the perceptual hierarchy may result 

in the inefficient transfer of information that gives rise to VHs in PD.  
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Introduction  

Visual hallucinations (VHs) in Parkinson’s disease (PD) exist on a spectrum ranging 

from simple misperceptions, to complex well-formed images (1). With disease 

progression and loss of insight, VHs constitute a major source of distress for the 

patient (2, 3) and comprise a high degree burden for caregivers (4). Risk factors of 

VHs include older age and disease duration, sleep and mood disturbances as well as 

cognitive decline (5-7). Furthermore, previous work has shown that patients with VHs 

show disruptions in attentional processing (8), reduced performance on 

visuoperceptive tasks (9-11), decreased visual contrast sensitivity, colour 

discrimination (12) and acuity (13). Current models of VHs have therefore focused on 

the interaction of perceptual and attentional dysfunction (for review, see (14)). 

Specifically, it has been proposed that failure to effectively integrate information from 

different processing sites across the perceptual hierarchy is likely to contribute to VHs 

and misperceptions in PD (14-17).  

 

Attention, prior experience and expectations strongly influence perception. Perceptual 

predictions, generated from a myriad of modalities across the brain, guide perceptual 

processes to facilitate the interpretation of noisy and ambiguous input (18-20). The 

orbitofrontal cortex (OFC) process coarse information projected from the visual 

cortex and provides an “initial guess” of an object’s identity (21). Previous work in 

PD patients with VHs has shown that the accumulation of sensory evidence is slow 

and inefficient, which may result in an over-reliance on these top-down predictions 

(22). Importantly, top-down visual processing regions can modulate neural activity in 

early visual regions, with expected stimuli leading to reduced activity (23). 

Additionally, activity within the default mode network (DMN), a network involved in 

mediating endogenous perception, has shown to be increased during a misperception 

in this patient population (24). Therefore, VHs may arise when perceptual input is not 

properly integrated and internally generated images interfere with the perceptual 

process (22, 25-27). 

 

While functional neuroimaging studies have made significant contributions to our 

understanding (24, 28-31), less is known about the involvement of white matter 

changes in the manifestation of VHs in PD.  Experiments using diffusion tensor 

imaging (DTI) have reported altered white matter integrity in the optic nerve and 
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optic radiation (32) as well as ascending tracts from the cholinergic nucleus basalis of 

Meynert to parietal and occipital cortical regions (33). However, given the 

involvement of large-scale brain networks in perception, unique insights into white 

matter changes associated with VHs can be gained by investigating whole brain 

network topology. Topological features of the human connectome allow us to 

describe the arrangement of connections within and between segregated sub-modules 

(34). Specifically, nodes that integrate these specialist communities are crucial for 

incorporating information streams of different modalities, which is essential for 

processes such as perception (35, 36). Therefore, investigating network topology can 

provide novel insights in changes across different perceptual hierarchies.  
 

The current study aimed to examine whether VHs are associated with changes in 

structural network topology. We hypothesized that the severity of hallucinatory 

behaviour would be associated with ineffective information processing as shown by 

reduced between-module scores in visual networks, reflecting reduced visual input to 

integration centres. Furthermore, increased between-module scores across top-down 

perceptual prediction areas and the DMN could indicate an over-reliance on regions 

involved in the generation of internal percepts (37).  

 

Methods  

Twenty-nine patients with idiopathic PD were included in this study. Demographic 

information including age, disease duration and levodopa dose equivalent (LEDD) 

were obtained for all participants. All patients were assessed on the Hoehn & Yahr 

clinical stage (38) and the motor aspect of the MDS-UPDRS (part III) (39). Global 

cognition was assessed using the Mini-Mental State Examination (MMSE) (40) and 

set-shifting performance was assessed using the Trail Making Test part B minus part 

A (TMTB-A) (41). The study was approved by the local ethics committee and was in 

accordance with the principles of the Helsinki Declaration. Written informed consent 

was obtained from all participants before participation. 

 

Bistable Percept Paradigm 

All patients performed the Bistable Percept Paradigm (BPP) (17), a behavioural task 

capable of inducing misperceptions in susceptible patients. In this task, patients were 

presented with either single or bistable percepts (i.e. “hidden” images as shown in 
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Figure 1) for a maximum of 30 sec in a randomised order. The participant had to 

decide whether the stimulus was a single or hidden image by a button press and 

describe to the examiner what they had seen. The recorded responses included the 

following: 1) correct single or correct hidden, 2) “missed”, recorded when the subject 

perceived a single image when a bistable percept was presented and 3) 

“misperceptions”, recorded when a subject incorrectly identified a single image as a 

bistable image, i.e. incorrectly reported an image that was not presented on the screen.  

 

 
Figure 1. Example of single and hidden images of the BPP (42)  

 

Psychosis and Hallucinations Questionnaire 

All patients completed the Psychosis and Hallucinations Questionnaire (PsycH-Q) 

(43). This validated questionnaire consists of two parts, of which the responses of the 

first part (PsycH-QA) were included in this study.  The PsycH-QA consists of three 

subscales including 1) visual misperceptions, which includes questions about the 

presence of VHs, passage hallucinations and three frequently reported contents of 

VHs including people, animals and objects; 2) sensory misperceptions, including 

audition, touch, olfaction, and gustation, and; 3) disordered thought and psychotic 

behaviour. Participants rated the frequency of their symptoms on a 5-point Likert 

scale, ranging from 0 (“never experienced”) to 4 (“experienced daily”). The total 

score was calculated by summing the responses (43) (see Supplementary Materials). 

Part B of the PsycH-Q assesses symptoms related to VHs (i.e. attention and sleep) and 

was not included in this study.  
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Composite score  

The percentage of misperceptions on the BPP and the total score on the PsycH-QA 

were standardized and then summed to create a composite score that reflected the 

severity of visual hallucinatory behaviour (hereafter referred to as the hallucination 

severity score (HSS)). The HSS was correlated with the demographic variables using 

parametric or non-parametric correlations depending on the distribution of the 

variables and was used as a correlate in the imaging analysis.  

 

MRI Acquisition  

All participants underwent magnetic resonance imaging (MRI) using a 3-Tesla 

General Electric Discovery MR750 scanner (GE Medical Systems) with an 8-channel 

phased array head coil. Diffusion weighted images (DWI) were obtained by using 

echo-planar imaging sequences with 61 different motion probing gradient directions 

(TR/TE: 7025/80 ms, 55 transverse slices, slice thickness: 2.5 mm, matrix: 256 × 256, 

FOV: 240 x 240 mm). The effective diffusion weighting was b = 1000 s/mm2 and 

four volumes with no diffusion weighting (b = 0 s/mm2) were obtained at the 

beginning of each diffusion sequence. 3D T1-weighted, anatomical images were 

obtained (TR/TE/TI: 7.2/2.7/450 ms, voxel size 1 × 1 × 1 mm, 196 transverse slices, 

256 × 256 matrix, FOV: 256 x 256 mm, flip angle 12°). The 3D-T1 images were used 

for individual registration between T1 weighted anatomical and the DWI images and 

cortical parcellation using FreeSurfer (version 5.3; 

http://surfer.nmr.mgh.harvard.edu).  

 

Diffusion tensor imaging pre-processing and deterministic fibre tracking  

DTI pre-processing was performed using the FMRIB Software Library (FSL, 

http://fsl.fmrib.ox.ac.uk). The pre-processing steps were as follows: i) DTI images 

were corrected for susceptibility, head motion and eddy current induced geometrical 

distortions using FSL’s tool eddy; ii) a binary brain mask was created using bet; iii) 

images were realigned using a rigid body registration to the b = 0 image; then iv) a 

tensor was fitted in each voxel (44); followed by v) the computation of the fractional 

anisotropy (FA) level based on the eigenvalues for each voxel, in order to determine 

the preferred diffusion direction within a voxel. FA thus serves as a surrogate measure 

of white matter integrity, with lower levels of FA reflecting reduced white matter 

integrity (45-47). The preferred diffusion direction information was then used to 
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reconstruct the white matter tracts of the brain using a deterministic tracking approach 

based on the fibre assignment by continuous tracking (FACT) algorithm (48). 

Deterministic tractography yields less false positive tracts compared to probabilistic 

methods (49). False positives are detrimental in network modularity as they occur 

more prevalently between than within modules (50). A streamline was started from 

eight seeds within each voxel of the brain (grey and white matter) following the main 

diffusion direction of the voxel and stopped when: i) the FA value < 0.1; ii) the traced 

fibre made a turn >45°; or iii) when the tract left the brain mask. The images were 

acquired when reverse phase-encoding direction approaches were not the standard 

procedure within acquisition protocols, which could have influenced the registration 

of diffusion and anatomical images. Therefore, anatomically constrained tractography 

was not applied (51). The weighted brain network was calculated for each participant 

and consistency thresholding at 50% was applied (i.e. including the tracts found in 

50% of the patients) (52). The mean density of the thresholded group matrix was 

8.7%. To verify the results were not skewed by the choice of threshold, we also 

applied the thresholding method that retained most consistent edges across subjects 

but controlling for their distance (i.e. the consistency of edges within "bins" based on 

their length to avoid preferential retention of short edges (53)). The mean density of 

the group matrix using this threshold was 13.2%. 

  

Network Based Statistic 

A Network Based Statistic (NBS) analysis was applied to investigate whether the 

HSS was associated with altered connectivity strength in an interconnected sub-

network of the brain (54). NBS is a non-parametric method for connectome-wide 

analysis, which aims to detect specific pairs of brain regions showing a significant 

effect of interest, while controlling for family-wise-error (FWE) rate. Importantly, no 

inferences of individual connections are made; instead the null-hypothesis can only be 

rejected at the sub-network level. As such, NBS is similar to the cluster-based 

multiple-comparisons approaches used in standard functional MRI analysis. To 

identify changes in sub-networks associated with the HSS, the t-statistic was set at 1.7 

determined using the critical value of the t-distribution for our sample size (55). 

Connections were deemed significant at FWE-corrected p-value < 0.05 (one-sided) 

using 5000 permutations.   
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To investigate whether the sub-network involved particular functional networks, we 

investigated whether nodes in the sub-network that correlated with the HSS 

overlapped with previously defined resting state networks. To this end, seven 

canonical resting state networks from the Yeo et al. atlas (56) were overlaid with the 

structural parcellation and the percentage of nodes from each network included within 

the structural sub-network that inversely related to HSS was calculated for each 

resting state network. To analyse whether this overlap occurred significantly above 

chance, we randomly permuted the resting state network identity of each region (5000 

iterations) and used the overlap between the randomized vector and the original node 

assignment to populate a null distribution. To test whether each individual resting 

state network overlapped with the significant sub-network, their overlap was 

compared with the null distributions. A resting state network was identified as 

targeted if the true overlap was more than the 97.5th percentile of null distribution (i.e. 

the top 2.5%). A network was considered not to be associated with the HSS if the 

overlap was less than the 2.5th percentile of the null distribution.   

 

Graph theoretical analysis 

The graph organizational measures were computed using the Brain Connectivity 

Toolbox (http://www.brain-connectivity-toolbox.net) (57). The thresholded, weighted 

brain networks were then partitioned into modules, which are non-overlapping groups 

of highly connected nodes that are only sparsely connected with other modules, using 

the Louvain algorithm (57). To account for the stochastic nature of the Louvain 

algorithm, a consensus partition was identified by calculating the module assignment 

for each node 500 times. To define an appropriate value for the resolution parameter 

(γ), the Louvain algorithm was iterated 100 times across a range of values (0.5 – 2.0 

in steps of 0.1) of the group mean connectivity matrix and then estimated the 

similarity of the resultant partitions using mutual information. The γ parameter of 1.9 

provided the most robust estimates of topology across the iterations and was used to 

determine the optimal resolution of the network modularity.  

 

After the nodes were assigned to their modules, their intra- and inter-modular 

connectivity were calculated. Intra-modular connectivity was calculated using the 

module degree z-score Wi (see equation 1), in which a positive score reflects high 

within-module connections (compared to the node’s average number of connections), 
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and negative z-scores denote the opposite. Inter-modular connectivity was calculated 

using the participation coefficient Bi (see equation 2). Low Bi values indicate few 

between-module connections, whereas high Bi values indicate uniformly distributed 

connections across modules (github.com/juliemaehall/topology). High Wi and high Bi 

scores are not mutually exclusive (58).  

 

    W! =
!!-‐!!!
!!!!

        [1] 

Equation 1 – Module degree z-score Wi, where κi is the strength of the connections of region i to other regions in 

its module si, 𝜅!!  is the average of κ over all the regions in si, and 𝜎!!!  is the standard deviation of κ in si  

 

  𝐵! = 1− !!"
!!

!!!
!!!        [2] 

Equation 2 - Participation coefficient Bi, where κis is the strength of the positive connections of region i to regions 

in module s, and κi is the sum of strengths of all positive connections of region i. The participation coefficient of a 

region is therefore close to 1 if its connections are uniformly distributed among all the modules and 0 if all of its 

links are within its own module. 

 

To test whether nodes within the sub-network identified using the NBS analysis 

differed from nodes not included in the sub-network, the average Wi and Bi of the sub-

network were contrasted against the average Wi and Bi of the nodes not included in 

the sub-network using non-parametric permutation testing.  

 

To test whether the HSS correlated with the Wi and Bi nodes across the whole brain 

connectome, a Spearman’s rho correlation was performed followed by a non-linear 

permutation test using 5000 iterations to control for multiple comparisons (59), using 

an alpha of 0.05. This approach was repeated using the different threshold (53) and 

the outcome was correlated to the Wi and Bi using the original threshold.  Both the Wi 

and Bi scores calculated using the aforementioned threshold highly correlated with the 

Wi and Bi scores calculated with the consensus threshold (r = 0.92 and r = 0.94, 

respectively), indicating that the results were not biased by the chosen thresholding 

method.  

 

Diverse club analysis 

We identified the ‘diverse club’ of the network, which comprised of the top 20% of Bi 

nodes (60). These nodes play an important role in network integration and changes to 
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these nodes could affect between module communication (60). We normalized the 

diverse club coefficient in reference to a null model: a random vector with a preserved 

modular structure was created by randomizing the mean participation coefficient of 

each node for 5000 iterations.  The diverse club was identified as those regions with a 

participation coefficient greater than the 95th percentile of the permuted distribution. 

We investigated whether the number of diverse club nodes was significantly higher 

within the sub-network associated with the HSS, compared to nodes that were not 

included in the sub-network identified using the NBS analysis.  

 

Results 

Demographics 

Table 1 presents the descriptive variables of the 29 patients. The mean percentage of 

misperceptions on the BPP was 18.48 (range: 0 – 49), and the mean score on the 

PsycH-QA was 9.48 (range: 0 – 34 (max score = 52)), highlighting a diverse range of 

hallucinatory behaviour in the patient cohort. Finally, to verify the severity score to 

the ‘gold standard’, we correlated the HSS in a large cohort of patients with PD and 

Lewy Body Dementia (n = 75) to the MDS-UPDRS item 2 and found a correlation of 

r = 0.53 (p < 0.001).  However, given higher construct validity (43), we opted to use 

the PsycH-QA scores for the remainder of our analysis. 

 

Table 1. Demographics and clinical variables  

Variable Mean (range) Correlation with HSS  

r (p-value) 
Age (y) 65.1 (51 – 84) 0.18 (0.345) 

Duration (y) 5.8 (1.2 – 16) -0.05 (0.785) 

LEDD 656.9 (125 – 1548) -0.06 (0.767) 

H&Y 1.9 (1 – 3) 0.01 (0.949) 

MDS-UPDRS III 25.5 (7 – 55) 0.29 (0.125) 

MMSE 28.5 (25 – 30) -0.06 (0.762) 

TMTB-A 78.9 (-1 – 123) 0.33 (0.08) 

BPP % misperceptions  18.48 (0 – 49) - 

PsycH-QA 9.48 (0 – 34) - 

LEDD = Levodopa equivalence daily dose; MDS-UPDRS III = motor part of the Movement Disorder Society Unified 

Parkinson’s Disease Rating Scale; H & Y = Hoehn and Yahr; MMSE = Mini Mental State Examination; TMTB-A = Trail 

Making Test part B – part A; BPP = Bistable Percept Paradigm; PsycH-QA = Psychosis and Hallucinations Questionnaire, part A 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 3, 2018. ; https://doi.org/10.1101/383141doi: bioRxiv preprint 

https://doi.org/10.1101/383141
http://creativecommons.org/licenses/by-nc-nd/4.0/


The HSS showed a positive correlation trending towards significance with the TMTB-

A (r = 0.33, p = 0.08). No significant correlations were observed between the HSS and 

other demographic and clinical variables.  

 

The HSS correlated with decreased connectivity in a large sub-network 

As illustrated in Figure 2, the NBS analysis revealed a sub-network comprising 183 

edges (12% of the edges in the thresholded connectivity matrix) and 127 nodes with 

reduced FA-based connectivity strength correlated to the HSS (p < 0.05). The effects 

presented with a fairly liberal threshold, suggesting the changes related to the HSS are 

subtle yet topological extended (54). No significant sub-network was identified in the 

opposite direction (positive correlation between the HSS and connectivity strength).  

 

 
Figure 2. NBS analysis reveals a sub-network, comprising 183 edges and 127 nodes with reduced 

connectivity strength correlated to increased HSS (p < 0.05). Figure visualized with BrainNet Viewer 

(61). 

 

Furthermore, the average Wi and Bi scores within the sub-network were 0.149 and 

0.759 respectively. These values were significantly higher (p < 0.05) than the average 

Wi and Bi scores of the nodes outside the network (-0.178 and 0.628, respectively).  

 

The sub-network includes all sub-cortical nodes but did not target a specific cortical 

resting state network  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 3, 2018. ; https://doi.org/10.1101/383141doi: bioRxiv preprint 

https://doi.org/10.1101/383141
http://creativecommons.org/licenses/by-nc-nd/4.0/


The sub-network that showed decreased connectivity strength correlated with the HSS 

included the majority of the sub-cortical nodes (p < 0.05). As illustrated in Figure 3, 

the sub-network further included nodes across the cortex, however the somatomotor 

network was relatively spared (p < 0.05). Sixty-five percent of the nodes in the DMN 

were part of this sub-network, however this was not significantly above chance (p > 

0.05).  

 

 
Figure 3: Left panel: the percentage of nodes included in the sub-network for each resting state 

network. Right panel: the functional resting state networks of the Yeo atlas (56).  DMN = default mode 

network; VAN = ventral attentional network; DAN = dorsal attentional network. 

 

Nodes in the sub-network show high participation scores  

Eighteen nodes were included in the diverse club (see Supplementary Materials). 

Seventeen of the eighteen nodes (94%) of the diverse club were included in the 

aforementioned sub-network, which was deemed significantly above chance (p < 

0.001). As illustrated in Figure 4, nodes with high participation coefficients were 

more often part of the sub-network. 

0% 

20% 

40% 

60% 

80% 

100% 

Percentage of nodes include in the sub-
network per functional network 
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Figure 4. Nodes ranked according to the Bi scores. Blue: nodes included in the sub-network; grey: 

nodes not included in the sub-network correlated to the HSS.  

 

The HSS correlated with Wi and Bi scores  

When investigating the whole structural connectome, the HSS positively correlated to 

regional Bi (i.e. higher participation scores were associated with higher severity 

values) for nodes in the left medial OFC, a node in the right anterior and left posterior 

cingulate, precuneus, and the caudal middle frontal gyrus. Furthermore, nodes in the 

right occipital, pars orbitalis and insula showed negative correlations between the 

HSS and participation coefficient (i.e. lower participation scores were associated with 

higher scores on the HSS; see Table 2 and Figure 5). 

 

Increased HSS scores were further associated with increased module degree z-scores 

in the right thalamus, the bilateral lingual, left medial OFC, pars opercularis and 

supramarginal gyrus, the right lateral occipital and superior temporal cortices. 

Decreased HSS were associated with increased module degree z-scores in the bilateral 

precuneus, the left parts triangularis, rostral middle frontal and superior parietal 

cortex, the right pericalcarine and precentral gyrus (see Table 3 and Figure 5).  
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Table 2.  Spearman’s rho correlation between the participation coefficient and the 

HSS (p < 0.05; permutation test) 
Node X Y Z Rho Sub-network 

Positively correlated      

Frontal      

ctx-lh-medialorbitofrontal_2 -5 33 -20 0.370 - 

ctx-rh-caudalmiddlefrontal_2 40 15 39 0.433 - 

Parietal       

ctx-lh-precuneus_2 -10 -44 46 0.404 ✓ 

Cingulate      

ctx-lh-posteriorcingulate_2 -8 -43 21 0.572 ✓ 

ctx-rh-superiorfrontal_3 11 40 40 0.357 ✓ 

Negatively correlated      

Frontal      

ctx-rh-parsorbitalis_1 43 43 -10 -0.461 ✓ 

Occipital      

ctx-rh-lateraloccipital_5 47 -73 2 -0.385 ✓ 

Insular      

ctx-rh-insula_1 36 -18 13 -0.400 ✓ 

ctx-lh = left hemisphere; ctx-rh = right hemisphere 

 

Table 3.  Spearman’s rho correlation between the module degree z-score and the HSS 

(p < 0.05; permutation test) 
Node X Y Z Rho Sub-network 

Positively correlated      

Subcortical      

Right-Thalamus-Proper 13 -17 7 0.485 ✓ 

Frontal      

ctx-lh-medialorbitofrontal_1 -7 52 -11 0.399 - 

ctx-lh-parsopercularis_2 -47 14 15 0.408 - 

Parietal      

ctx-lh-supramarginal_3 -55 -34 35 0.446 - 

Temporal      

ctx-rh-superiortemporal_4 46 -6 -11 0.566 - 

Occipital      

ctx-rh-lateraloccipital_3 27 -94 -6 0.386 - 

ctx-lh-lingual_2 -10 -70 0 0.424 ✓ 

ctx-rh-lingual_1 14 -83 -7 0.407 - 

Negatively correlated      

Frontal      

ctx-lh-parstriangularis_1 -43 33 2 -0.497 ✓ 

ctx-lh-rostralmiddlefrontal_5 -31 56 2 -0.571 ✓ 
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ctx-rh-precentral_6 22 -17 67 -0.388 ✓ 

Parietal      

ctx-lh-precuneus_2 -10 -44 46 -0.455 ✓ 

ctx-lh-superiorparietal_6 -22 -76 29 -0.406 ✓ 

ctx-rh-precuneus_2 12 -54 26 -0.387 ✓ 

Occipital      

ctx-rh-pericalcarine_1 15 -75 12 -0.375 ✓ 

ctx-lh = left hemisphere; ctx-rh = right hemisphere 

 

 

 

Figure 5a) Nodes with a significant correlation between participation coefficients and the HSS; b) 

Nodes with a significant correlation between the module degree z-score and HSS. Green indicates a 

positive correlation, red indicates a negative correlation. ). Figure visualized with BrainNet Viewer 

(61). 

 

Discussion  

The aim of this study was to determine whether changes in structural network 

topology were associated with hallucinatory behaviour in PD. We showed that 

severity of hallucinatory behaviour was correlated with reduced connectivity across a 

bilateral sub-network. Regions within this sub-network showed higher participation 

and module degree z-scores compared to regions outside this network. The loss of 

	  

	  

a 

b 
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connectivity strength may force the system to adapt and reroute information across 

less efficient pathways, impeding the standard sensory integration process. 

Importantly, 94% of the nodes in the diverse club were included in this sub-network. 

This community of high participation nodes is thought to control the integration of 

relatively segregated regions (60). Indeed, the diverse connectivity pattern of these 

nodes makes them crucial for the functional coordination of brain regions during 

tasks, and activity in these nodes predicts changes in the coupling of other regions 

(60). Severity of hallucinatory behaviour may thus be the result of impaired 

integration and segregation of brain networks or ‘modules’, affecting effective 

information transfer. Finally, we showed regional changes in participation associated 

with hallucination severity (the HSS score), with a positive correlation between 

participation scores in the medial OFC, cingulate, precuneus and middle frontal gyrus 

and the HSS and negative correlation with participation scores in the lateral occipital 

cortex, pars orbitalis and insula. These findings suggest a reweighting of the regions 

along the perceptual hierarchy, which may give rise to VHs.  

 

Lower participation of the lateral occipital cortex may reflect reduced early visual 

processing, resulting in ineffective accumulation of visual information from the 

environment. Previous work using a Bayesian drift diffusion model has demonstrated 

that accumulation speed and quality of perceptual information are reduced in PD 

patients with VH (22). Furthermore, reduced quality or integration of visual stimuli 

may increase perceptual uncertainty, a suggestion that aligns with increased 

participation in the dorsal anterior cingulate cortex (62). Perceptual uncertainty may 

place excessive emphasis on top-down prediction centres, which subsequently could 

lead to a reduced activity in early visual regions (23).  

 

This emphasis on top-down visual processing centres is supported by the increased 

participation coefficient and module degree z-score in the medial OFC. The OFC has 

an integrative function across brain networks as evidenced by its high participation 

coefficient. Additionally, this region is thought to facilitates recognition during visual 

perception by integrating incoming sensory information with previous experiences 

and expectations (63). During typical visual perception, the OFC is activated early in 

response to visual stimuli, receiving low spatial frequency signals from the visual 

cortex (64). Notably, only stimuli resembling known objects are shown to activate the 
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OFC, which in turn generates a semantic association and provides a predictive signal 

to the visual system (65). Conversely, visual stimuli that carry no meaningful 

association do not activate the OFC in healthy individuals. Hence, it could be 

speculated that due to decreased quality of visual input, inappropriate recruitment of 

the OFC occurs, which may result in ascribing false associative information to visual 

stimuli.  

 

The manifestation of VHs has previously been recognized as a dysfunction between 

the attentional networks (31). Specifically, patients with VHs are shown to be less 

able to recruit the dorsal attentional network (DAN), which enables the selection of 

appropriate sensory stimuli (66). With reduced control of this network, ambiguous 

stimuli might instead be interpreted by the ventral attentional network (VAN) and the 

DMN, which are less well equipped for this task. Our results showed increased 

participation in the posterior cingulate cortex (PCC), a key hub of the DMN. PCC 

activity has been implicated in regulating the focus of attention, specifically, the shift 

from the external world into internal mentation (67). Furthermore, the PCC is 

involved in mind wandering and supports internally directed cognition (68). A failure 

to suppress PCC activity may lead to the intrusion of internal thoughts into task 

performance (69). Moreover, a positive correlation was found between the HSS and 

the module degree z-score of the left pars opercularis, a node in the VAN, a network 

that is activated when expectations in perception are violated (24, 70). Conversely, a 

negative correlation between the HSS scores and module degree score and 

participation coefficients was found in other nodes of the VAN, namely the left pars 

triangularis, the right pars orbitalis and insula. The left pars triangularis supports 

resolving competition between simultaneously active representations (71), whilst the 

insula plays an important role in dynamically shifting attention between the 

attentional control networks (72). The anterior insula has previously been shown to be 

reduced in volume in PD patients with VH (24, 73). Together, these results suggest 

that ineffective communication between attentional networks in the brain may 

predispose an individual to hallucinate. Surprisingly, the participation coefficient of a 

node within the DAN (‘ctx-rh-caudalmiddlefrontal_2’) showed a positive correlation 

with the HSS. This node was not part of the sub-network and it may be possible that 

this is a compensatory response to the loss of connectivity strength in the other DAN 

regions.  Notably, the connectivity matrix shows between module connections of this 
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region with nodes in the somatomotor and the frontoparietal network, but not with the 

DMN or VAN.  

 

Finally, all nodes that showed negative correlations with the HSS were included in the 

sub-network. Decreased within-module scores were found across the prefrontal and 

the somatosensory association cortex, as well as in the primary visual cortex, whilst 

there was a positive correlation between the HSS and the bilateral secondary visual 

cortex, perhaps as a result of the decreased visual input from V1. Additionally, the 

supramarginal gyrus, a node that has been shown to be functionally active during 

spatial perception but also during visual imagery (74) showed an increased module 

degree z-score with increasing severity of VHs. Furthermore, a positive correlation 

with the HSS and the module degree score in the superior temporal cortex, a region 

involved in auditory processing was found. Although further research is needed, it 

could be speculated that increased visual uncertainty may stimulate other sensory 

processing areas.  

 

This study has several limitations worth noting. Firstly, the DWI data was acquired 

without EPI distortion correction. This may have affected the accuracy of registration 

between DWI and T1 images in the frontal and temporal cortices. Due to relatively 

low diffusion weighting used in the current MRI protocol, it was chosen to employ 

DTI rather than more sophisticated methods such as constrained spherical 

deconvolution, an algorithm that more adequately deals with multiple fibre directions 

within one voxel than DTI. Furthermore, as the investigation was conducted in a 

relatively small group of PD patients, future studies should replicate our findings in a 

larger sample size.  

   

Conclusions 

We conclude that hallucinatory behaviour in PD patients is associated with marked 

alterations in structural network topology. Severity of hallucinatory behaviour was 

associated with decreased connectivity in a large sub-network that included the 

majority of the diverse club. These changes may result in an inefficient rerouting of 

information across less efficient pathways, which may lead to impaired visual 

integration processes. Furthermore, nodes within the orbitofrontal cortex and temporal 

lobes showed increased participation scores, whilst the visual association cortex, 
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insula and middle frontal gyrus showed decreased scores associated with the HSS 

score. These findings suggest that impaired integration across different 

regions along the perceptual hierarchy may result in inefficient transfer of 

information. A failure to effectively switch between attentional networks and the 

intrusion of internal percepts could give rise to perceptual glitches, such 

as misperceptions and hallucinations. 
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