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Abstract  

  

 Lupus nephritis (LN) occurs in up to 50% of patients with systemic lupus erythematosus 

(SLE), and is a major contributor to mortality and morbidity. LN presents as a highly 

heterogeneous disease both in histopathology and response to therapy. The molecular and 

cellular processes leading to renal damage and to the heterogeneity of the disease are not well 

understood. To elucidate the processes underpinning the heterogeneity of LN, we applied single-

cell RNA-sequencing (scRNA-seq) to renal biopsies from LN patients. Skin biopsies were 

evaluated as a source of biomarkers for monitoring kidney disease. Type-I interferon (IFN) 

response signatures were identified in tubular cells and keratinocytes, differentiating LN patients 

from healthy controls. Non-responders associated with higher IFN signatures in both tissue 

compartments. Moreover, non-response was also associated with a fibrotic signature in the 

tubular cells. Receptor-ligand interaction analysis indicated that the fibrotic process is likely 

mediated by FGF receptors with the initiating signal originating from infiltrating leukocytes. 

Differential expression analysis of tubular cells between proliferative and membranous LN 

pointed to several fibrosis-relevant pathways, which may offer insight into their histological 

differences. In summary, scRNA-seq was applied to LN to deconstruct its heterogeneity and 

provide novel targets for personalized approaches to therapy.  
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 Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease that can affect 

multiple organs including the heart, brain, skin, lungs, and kidneys. SLE is characterized by the 

production of autoreactive antibodies against nuclear antigens such as ribonucleoproteins, 

dsDNA, and histones1. Lupus nephritis (LN) affects ~50% of patients with SLE and is a major 

contributor to mortality and morbidity2. Although the exact pathogenesis has yet to be fully 

characterized, immune complex deposition in and along the glomerular basement membrane and 

in the mesangial matrix, with secondary inflammation and proliferation of mesangial and 

endothelial cells, are hallmarks of the disease. Additionally, hypercellularity of mesangial and 

endothelial cells, as well as interstitial and glomerular fibrosis, are common features of 

chronicity and disease progression. 

 

These immune, inflammatory, and parenchymal cell proliferative responses of LN have 

visible and heterogeneous histopathologic manifestations, which can be  monitored by renal 

biopsy and evaluated according to the International Society of Nephrology/Renal Pathology 

Society (ISN/RPS) 2003 Lupus Nephritis Classification System3. The spectrum of glomerular 

pathology is variable not only between patients but frequently within the same patient. 

Moreover, neither initial clinical manifestations nor treatment responses uniformly correlate with 

the histologic class of glomerular injury. Thus, clinical findings and biopsy alone are insufficient 

for accurate prognosis and further measures need to be developed to improve treatment and 

prognostic decisions. Additionally, the molecular basis for the observed histopathology is not yet 

fully characterized and further heterogeneity may exist, which could explain the difficulty in 

accurately predicting response to treatment. For instance, fibrosis has been associated with poor 

response to treatment, but the underlying mechanisms initiating and promoting fibrosis are not 
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fully understood. A further limitation within the ISN/RPS classification system is that histologic 

analysis is completely based on glomerular changes, despite a growing body of literature 

suggesting that the tubulointerstitial space is more predictive of response to therapy and 

prognosis, with infiltrates and fibrosis associated with poor renal outcome4–6.  

 

Other potential and more accessible tissue sites than the kidney could also be exploited to 

obtain tissue for biomarkers of SLE progression7. Discovery of signatures in readily accessible 

tissue, such as the skin, which has immune complex-mediated inflammation analogous to that 

seen in the kidney, would greatly facilitate early diagnosis and treatment decisions in a much less 

invasive manner. Previously, we demonstrated an interferon signature in the keratinocytes from 

biopsies of non-lesional non-sun exposed skin of patients with LN compared to healthy controls8. 

This provides a rationale for using skin as a potential surrogate of renal disease, which could be 

sampled serially to follow response.  

 

Single-cell RNA-sequencing (scRNA-seq) is an emerging transcriptomic technology 

resolving cell type contributions in tissues9,10. This technique has been applied to a number of 

complex renal diseases including renal cell carcinoma11 and recently to LN by our group8. When 

resolved at a cell type level, transcriptome analysis yields valuable information regarding 

intercellular signaling responses and cell-type-specific pathways involved in promoting and 

maintaining LN. When applying this technique to renal biopsies of LN patients, we found 

clinically relevant prognostic markers at the time of biopsy, associated with favorable responses 

to treatment. Additionally, our data revealed putative intercellular interactions, which may be 
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associated with signaling cascades responsible for the progression of the disease in certain 

patients.  
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Results 

 

Samples and data acquisition 

 

 A total of 21 renal tissue samples were collected from LN patients undergoing a clinically 

indicated renal biopsy (Supplemental Table 1). Of these patients, 17 also had a skin punch 

biopsy performed at the time of the renal biopsy. In addition to LN patients, 3 biopsy pairs of 

control skin and renal tissue were obtained from healthy individuals undergoing a nephrectomy 

for kidney transplant donation. Cell suspensions from skin and kidney biopsies of the same 

patient were processed on a single chip capturing about 250 cells per tissue type (Figure 1A). 

The cells captured per chip were sequenced at an approximate depth of 200,000 reads/cell 

disregarding calibrator spike reads. A total of 19,200 wells were sequenced; however, only data 

originating from 6,158 wells confirmed by microscopy to contain single cells and resulting in a 

minimum read count of 20,000 were retained for downstream bioinformatics analysis. 

 

Cell lineage determination 

 

 We first identified the cell lineage using principle component analysis (PCA). In an 

iterative process, we removed cells of abnormally high or low gene counts indicating doublet cell 

captures or poor-quality cells, respectively, resulting in 4,008 cells entering final analysis. 

Dispersion and mean expression values were calculated for each gene to identify highly variable 

genes, which were subjected to PCA, and resulted in 11 significant principle components. t-

Distributed Stochastic Neighbor Embedding (tSNE) was used to collapse the principle 
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components into two dimensions and resulted in 6 distinct clusters of cell types (Figure 1B). 

Differential expression analysis identified mutually exclusive sets of genes, which were 

characteristic of the cell lineage and frequently included established markers of cell types. The 

top 30 most differentially expressed markers in each cluster are provided in Supplemental Table 

2. For example, tubular cells uniquely expressed UMOD and SLC12A1, whereas keratinocytes 

uniquely expressed KRT1 and KRT10. Fibroblasts expressed many extracellular matrix proteins 

including DCN, while endothelial cells distinctly expressed FLT1 and PECAM1. Leukocytes 

expressed distinct myeloid, T-, and B-cells genes (CD14, CD3G, and MZB1, respectively) yet 

appeared as one cell type by tSNE analysis (Figure 1C-E). Although we did not capture all 

known types of glomerular cell types, mesangial cells were recovered as indicated by high 

expression of their unique marker TAGLN. As anticipated, skin and renal biopsies were 

predominated by keratinocytes and tubular cells, respectively. The residual cell types represented 

smaller percentages and their relative abundance varied widely across samples (Figure 1C).  

 

 When averaged together across all renal cells, scRNA-seq expression resembled a bulk 

polyA-mRNA sequenced renal biopsy. Similarly, averaged skin single cells correlated with a 

bulk polyA-mRNA sequenced dissociated skin sample. Although averaged renal single cells also 

correlated with bulk sequenced skin and vice versa, they did so to a lesser extent than their 

originating tissue type (Figure S1). 

 

When the keratinocyte subset identified by the first level tSNE analysis was once more 

subjected to tSNE analysis, the presence of a small number of sweat gland cells and melanocytes 

defined by DCD and MLANA, respectively, became apparent (Figure 2A-D)12,13. These cell types 

WITHDRAWN

see manuscript DOI for details

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/382846doi: bioRxiv preprint 

https://doi.org/10.1101/382846


 8 

were excluded from participation in downstream comparative keratinocyte analysis. Similarly, 

the group of tubular cells identified by first level analysis was composed of various subtypes 

representative of the distinct nephron segments as previously reported (Figure 3A-D)8.  

 

LN skin and kidney epithelium indicate upregulation of type-I interferon response pathway genes 

 

 It has been shown that type-I interferons (IFN) are important in SLE in general and have 

been associated with disease flares in LN14. We previously demonstrated in a small cohort of 

patients that keratinocytes from LN patients show upregulation of IFN-responsive genes 

compared to healthy controls8. Here, through cumulative distribution function analysis we 

confirmed this observation in a separate and larger cohort of patients and further expanded this 

finding to tubular cells (Figure 4A). Type-I IFN pathway genes in tubular cells and keratinocytes 

from LN patients were significantly higher expressed than those of healthy controls as indicated 

by the right-shifted curve of established IFN-responsive genes compared to other genes (Figure 

4A). Using the tubular expression of IFN-response genes we created an IFN response score for 

each patient and found that patients who did not respond to treatment had significantly higher 

(p=0.04) IFN response scores compared to those who were either partial (50% reduction in 

proteinuria at 6 months post biopsy) or complete responders (urine protein-to-creatinine ratio 

mg/mg < 0.5) (Figure 4B).  
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Patients non-responsive to treatment demonstrate higher expression of fibrotic extracellular 

matrix proteins as compared to responders 

 

To explore pathways other than those reflective of IFN signaling in patients who did not 

respond to therapy, differential expression analysis was performed on the average tubular cell 

profiles created for each patient. This analysis identified 301 significantly (p < 0.05) 

differentially regulated genes (Figure 5A). Enrichment analysis revealed significant (p < 0.001) 

upregulation of extracellular matrix (ECM) proteins and proteins that interacted with the ECM, 

reflective of an active fibrotic pathway in patients that were unresponsive to therapy compared to 

those who responded. This expression pattern is consistent with the phenotypic change of tubular 

epithelial-myofibroblast transdifferentiation which is an important event that associates with 

progressive renal tubulointerstitial fibrosis15,16. Relevant to LN, tubulointerstitial fibrosis is a 

marker of poor prognosis5,6 further supporting the finding of this expression in non-responders. 

Of clinical relevance, this gene signature may be predictive of a fibrotic response before it is 

measureable by standard histopathological assessment since the biopsies of some of these 

patients did not demonstrate fibrosis by typical scoring of tubulointerstitial damage. While it is 

acknowledged that ECM proteins are typically expressed by canonical fibroblasts, the cellular 

subset in this analysis expressed tubular cell but not fibroblast markers, supporting that this 

observation was not simply due to fibroblast contamination. Finally, although it is possible that 

fibroblasts may also play an important role in the fibrotic pathways leading to tubulointerstitial 

fibrosis and progressive renal insufficiency in LN, too few fibroblasts were captured to assess 

any potential differences in the contribution of fibroblasts between groups (data not shown). 
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Interestingly, two of the differentially expressed genes identified by pathway analysis as 

ECM interacting proteins, TIMP1 and SERPING, that were upregulated in tubular cells of 

patients who did not respond to treatment, have previously been shown to be pro-fibrotic and 

associated with renal fibrosis17,18. Similarly, upregulation of the complement and coagulation 

cascades including C1S and C1R were also noted in non-responders (Figure 5B)19.  

 

A similar analysis was applied to the keratinocytes of non-responders and responders to 

assess the possibility of monitoring pathways activated in the epithelium of a tissue distant from 

the site of inflammation. Pathway enrichment analysis on the differentially expressed genes from 

keratinocytes of patients who did not respond to treatment also demonstrated upregulation of 

extracellular matrix (Figure 5B). The full list of differentially expressed genes from each 

comparison can be found in Supplemental Table 3. 

 

Using logistic regression analysis on fibrotic genes in the tubular cells, an equation 

predicting response to treatment at 6 months post biopsy was created using genes identified as 

fibrotic markers among the differentially expressed genes between responders and non-

responders. Four genes, COL1A1, COL14A1, COL1A2, and COL5A2 were found to significantly 

explain variance and predict response to treatment with a 92% accuracy and an area under the 

curve of 0.96 (Figure 5C). Correlations between response to treatment and patient demographics 

(race/ethnicity) were explored, but none were found (data not shown).  
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Fibrotic pathways in kidney may be initiated by infiltrating cell receptor-ligand interactions 

 

 Understanding the intercellular networks of communication can help elucidate potential 

targets for therapy in a cell-type-specific manner. scRNA-seq provides a unique starting point for 

deciphering ligand-receptor interactions by resolving gene expression according to cell type. 

Potential engagement of the highest expressed cognate receptors and ligands of cell types present 

in LN skin and kidney are indicated in Figure 6. Many cells in the kidney including tubular cells 

express various FGF receptors (FGFRs) such as FGFR3 at high levels. FGFs and FGFRs have 

been implicated in fibrosis in many organs including the kidney20. While it has been reported that 

FGF can be produced by epithelium21, in these studies FGF13 was expressed at high levels by 

infiltrating leukocytes, but not other renal cell types. Additionally, tubular cells express high 

levels of the chemokine CCL19 whose receptor CCR7 is expressed within the leukocyte 

population. Tubular cells also expressed high levels of TNFSF10, potentially signaling to 

leukocytes which express the TNFRSF10A receptor.  

 

Tubular cells and keratinocytes from patients with proliferative histologic classes compared to 

membranous class upregulate TNF and type-I IFN response pathways  

 

 The molecular basis for different histopathologies in LN is not completely understood. 

To determine if there are specific pathways involved we performed differential expression on 

tubular cells from LN patients with proliferative class disease (class III or class IV) and those 

with membranous disease (class V). This analysis excluded patients with mixed class III/V or 

IV/V disease. Pathway enrichment analysis of the upregulated genes in proliferative class disease 
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revealed increased type-I IFN and TNF family signaling compared with tubular cells from 

membranous class (Figure 7). Keratinocytes from patients with proliferative disease also showed 

an upregulation of several pathways including antigen presentation and response to type-I IFN 

compared with keratinocytes from membranous disease (Figure 7). The full list of differentially 

expressed genes can be found in Supplemental Table 3.  
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Discussion 

 

 scRNA-seq applied to kidney and skin biopsies from a cohort of LN patients and healthy 

controls identified clinically relevant cell-type-specific signatures associated with disease states. 

Small amounts of renal biopsy tissue not required for traditional histopathological evaluation by 

a nephropathologist thereby provided important adjunct diagnostic value. Skin biopsies were also 

obtained from LN patients and healthy controls, and the resulting sequencing data was mined for 

potential biomarkers that could be associated with clinically relevant parameters and disease 

states.  

 

 As previously reported we discovered an IFN response signature in both the tubular cells 

and keratinocytes from patients with LN compared to healthy controls, indicative of a systemic 

response to IFN measurable in multiple organ systems including the skin. We further found that 

the tubular IFN response score at the time of biopsy predicted patient response to treatment at 6 

months post biopsy, and may therefore be a useful prognostic tool especially if this signature can 

be monitored in the skin over time.  

 

In addition to the IFN response signature, we also identified significantly upregulated 

pathways associated with ECM proteins and ECM-interacting proteins indicative of a fibrotic 

response specifically expressed in the tubular cells and keratinocytes of patients who did not 

respond to treatment. Interestingly, while this signature was present in many non-responders, 

conventional histologic evaluation in 3 of these patients demonstrated none to only mild 

interstitial fibrosis. Tubular ECM protein expression has been linked to a process known as 
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tubular epithelial-myofibroblast transdifferentiation during which tubular cells differentiate into 

myofibroblasts and begin secreting large amounts of ECM proteins20. This process has been 

linked to increased interstitial fibrosis and has implications for prognosis22,23. Since this pathway 

was found in tubular cells that did not express canonical markers of myofibroblast 

transformation other than COL1A1 and COL1A2, we may have detected cells early in this 

differentiation pathway, or potentially a parallel fibrotic process amongst tubular cells that will 

not differentiate into myofibroblasts24. Accordingly, we demonstrated that our scRNA-seq could 

be used to create a model by which we could predict which patients would respond to treatment. 

Including such a diagnostic at the time of biopsy may predict which patients will need more 

aggressive therapy to control fibrotic scar formation leading to organ failure. Since this fibrotic 

signature was also present in the keratinocytes of non-responders, development of a system to 

monitor kidney disease using the skin as a surrogate, where repeat biopsies can be performed 

regularly, may prove to be a powerful prognostic tool. Pathway enrichment analysis in the 

kidney and skin was also able to differentiate between patients with membranous and 

proliferative nephritis. Proliferative nephritis had upregulation of more inflammatory pathways 

such as type-I IFN signaling in both skin and kidney and TNF signaling in the kidney.  

 

By investigating the receptor ligand interactions among cell types in the skin and kidney, 

we identified several putative signaling interactions, which could be responsible for the 

association with clinical parameters. For instance, interactions were identified between 

infiltrating leukocytes and tubular cells through an FGF receptor, which is known to be involved 

in fibrotic processes and could be responsible for the upregulation of ECM and ECM-interacting 

proteins that were observed in the tubular cells of patients who did not respond to treatment. 
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Interestingly FGF receptors were highly expressed on all of the resident kidney cells, including 

fibroblasts, endothelial cells, and mesangial cells. Additionally, chemokines produced by 

resident renal cells including tubular cells, endothelial cells, and fibroblasts may be involved in 

the recruitment of inflammatory cells into the kidney. While validation of these interactions was 

not the focus of this study, such interactions provide potentially interesting and novel therapeutic 

targets, which may be useful in disease-state-specific treatment based on molecular diagnosis.  

 

While our previous scRNA-seq study of renal biopsies yielded most of the dominant 

renal cell types, glomerular cells were absent from that analysis8. Using the 800-well platform 

markedly increased cell capture counts, and mesangial cell profiles from both healthy controls 

and LN patients were obtained. Podocytes, however, were not captured and a further increase in 

throughput by using the next-generation of droplet-based microfluidics may prove necessary to 

capture this rarer population of cells. Furthermore, although mesangial cells, endothelial cells, 

and fibroblasts were captured using this technology, their low abundance limited their 

differential expression analysis between patients and patient groups. Approaches increasing the 

number of each cell type captured would enable a similar type of analysis performed here 

between the major cell populations of the skin and kidney.  

 

In summary, we have shown that scRNA-seq is a feasible and informative technique in 

the study of LN, despite the complexity and heterogeneity of the disease. scRNA-seq of LN 

tissues revealed molecular signatures clinically relevant to diagnostic and prognostic applications 

which could be used to meaningfully augment the current standard of care. Moreover, these 
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molecular signatures also begin to reveal some of the processes which may underlie the 

histologic heterogeneity of LN. 
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Online Methods 

 

Procurement of clinical samples 

 

 Skin punch biopsies (1x2 mm) from non-lesional, non-sun exposed skin, and segments of 

14 to 18 gauge renal needle core biopsies dispensable for clinical diagnosis (0.8x3 mm) were 

obtained from patients with SLE undergoing clinically indicated renal biopsies. The mean tissue 

mass of skin biopsies was 7 mg (2-12 mg) and that of renal biopsies was 3 mg (2-5 mg). Only 

renal biopsies with a pathology report indicating active LN (classes II to V, or a mixed class of 

III/V or IV/V), were included in this study. Comparable skin and kidney biopsies were collected 

from healthy control donors undergoing live kidney donation. Kidney biopsies are often standard 

of care for transplant departments to insure no overt pathology exists within the donor kidney. 

These patients also donated a small piece of skin tissue from the incision site. Both procedures 

are a minimal deviation from standard of care and present no significant risk to the patient. All 

SLE patients, healthy kidney donors, and respective recipients provided informed consent and 

the institutional review boards and ethics committees of Albert Einstein College of Medicine and 

New York University approved the sample collection. Renal biopsies were evaluated by a renal 

pathologist according to the ISN/RPS 2003 system for glomerular disease3, and in addition, NIH 

activity and chronicity indices, which add evaluation of tubules and interstitium25. Patient 

demographics and clinical data are reported in Supplemental Table 1.  
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Tissue dissociation and single-cell isolation 

 

 Tissue was collected at clinical sites (NYU and Einstein/Montefiore) and transported to a 

central technical site (Rockefeller University) within two hours of biopsy in either 

HypoThermasol FRS (BioLife Solutions) or Tyrode’s solution. Tissue was then either 

immediately dissociated and processed, or if not intended for fresh processing, placed in 500 l 

of Cryostor10 (StemCell) and frozen within an hour, during which samples were cooled on ice 

for 20 min before being placed into -80C. Cryopreserved tissue was thawed on ice for 10-15 

min directly before dissociation. Tissue was dissociated as previously described8. Briefly, renal 

and skin tissue biopsies were incubated for 15 min in a 37°C water bath in 450 l of 0.25 mg/ml 

freshly prepared Liberase TL (Roche) in Tyrode’s solution. Cells were collected through a 70 

m filter into FBS and stored on ice. Cells were collected by centrifugation in a 50 ml conical 

tube (BD) using an Eppendorf centrifuge 5804 and an A-4-44 rotor at 200 rcf for 5 min. The 

pelleted cells were resuspended in 100 l of Tyrode’s solution. The cell numbers and viability 

was determined using a Biorad TC20 automated cell counter and Trypan blue staining. The 

concentration of cells in suspension ranged from 20,000-1,000,000 cells/ml, but was typically 

near 300,000 cells/ml. If a large amount of debris was detected by microscopy and BioRad TC20 

cell counting, the cell pellet was suspended in 1 ml of Tyrode’s solution and recollected at 220 

rcf for 3 min. Cell suspensions were either diluted or concentrated by centrifugation and 

subsequent resuspension in a smaller volume targeting a final concentration of 200,000 cells/ml 

in Tyrode’s solution. A minimum of 10 l of cell suspension was necessary to proceed with 

scRNA-seq and loading of one of the two 400-well partitions of the C1 HT microfluidic chip. 

Viability typically ranged between 20-60% at this step. 
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Single-cell capture, cDNA library preparation, barcoding, and sequencing 

 

 Single-cell suspensions at a concentration of 200,000 cells/ml and no less than 2,000 cells 

were loaded into a medium 10-17 µm diameter C1 HT 800-well integrated microfluidic chip 

(IFC) (Fluidigm) and processed according to the Fluidigm C1 HT protocol revision A using the 

recommended standard mRNA-seq reagents and program. The chip is divided into two 400-well 

sections allowing for loading of skin and kidney samples matched by individual on the same 

chip. Per manufacturer’s recommendation, 7 µl of 10% PBS Tween was added to the valve fluid 

to reduce surface tension. The occupation of single-cell capture sites was verified using a Zeiss 

Axiovert 200 inverted microscope averaging 400 single cell captures per 800-well chip. The 

captured cells were lysed, polyA mRNA was reverse transcribed, and cDNA pre-amplified using 

the SMARTer Ultra Low RNA kit (Clontech) in the Fluidigm C1 Single-Cell Auto Prep system. 

To monitor cDNA library conversion, a cocktail of synthetic RNA spikes #1, #4, and #7 of the 

Ambion ArrayControl RNA Spikes (ThermoFisher) was prepared as described in the Fluidigm 

C1 protocol and added to the lysis reaction (Mix A) for each experiment. After the initial rounds 

of PCR on the microfluidic chip, products were harvested, exonuclease-treated, and further 

amplified according to the Fluidigm protocol. 

 

Pre-amplified cDNA libraries were tagmented and barcoded using the Nextera XT 

Library Preparation Kit (Illumina) with indexing according to the Fluidigm C1 HT protocol 

revision A. An enrichment primer to select for the 3’ ends was added during this step. PCR-

products originating from up to 800 cells per chip were pooled together using the 20 barcodes 
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recommended by Fluidigm, and sequenced paired-end using the Illumina NextSeq500. Read 1 

was sequenced 30 cycles and Read 2 120 cycles.  

 

Bioinformatic analysis 

 

 Single FASTQ files corresponding to up to 800 cells were demultiplexed into 20 FASTQ 

files by separating reads based on the Illumina Nextera index primers. Each of the 20 FASTQ 

files represents a single column (up to 40 cells) on the Fluidigm C1 HT IFC and was further 

demultiplexed into single-cell FASTQ files using a Perl script provided by Fluidigm. Resulting 

FASTQ files were then trimmed using cutadapt (version 1.12) in nextseq mode followed by 

polyA trimming26. FASTQ file reads were aligned to the human reference genome GRCh38 

downloaded from Ensembl using the STAR aligner (version 2.5.0a) allowing up to 2 mismatches 

to the reference sequence and keeping directionality27. The reference genome only contains the 

canonical chromosomes and non-chromosomal contigs; haplotypes were excluded. Uniquely 

mapped reads to the reference genome were counted using featureCounts (version 1.5.0) and the 

reads mapping to the human genome were collapsed on the gene level28. Transcripts from the 

Havana database were removed from the Ensembl 83 GTF as they frequently overlapped with 

older gene annotation leading to multimapping. Transcripts identified in both the Ensembl and 

Havana databases were kept in the GTF file and annotated as ensembl_havana. The pipeline was 

run on RedHat Linux or MacOS 10.10.3. A chip-dependent and low-frequency cross-well RNA 

or DNA contamination was encountered, requiring background subtraction to correct the count 

matrices. Briefly, the read counts observed in empty wells of each chip were averaged and 
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subtracted from each well of the same chip. Additional details of this step are provided in 

supplementary methods.  

 

PCA and tSNE analysis 

 

 Principal component analysis and t-Distributed Stochastic Neighbor Embedding (tSNE) 

were performed using the Seurat package (version 2.2.1) for R29. The count matrices were depth-

normalized to 100,000 reads and used to identify the set of genes that was most variable across 

datasets. We used a z-score cutoff of 0.1 to identify 2099 highly variable genes. In this analysis, 

all genes were evaluated for variability. Highly expressed ubiquitous genes such as 

mitochondrially encoded or nuclear-genome-encoded ribosomal proteins were excluded for 

clustering. The highly variable genes discovered by this process were loaded into a principal 

component analysis (PCA), which yielded 11 significant principal components and provided the 

input for tSNE visualization29.  

 

Receptor/ligand analysis 

 

 Lists of potential ligand-receptor pairs were obtained and manually curated from the 

Database of Interacting Proteins (http://dip.doe-mbi.ucla.edu) and the IUPHAR/BPS guide to 

pharmacology (http://www.guidetopharmacology.org) as described previously30. The list of 

interactions was intersected with CPM-normalized expression of genes for each cell type. A 

ligand-receptor interaction was considered active if the receptor was above 45 TPM and the 

cognate ligand above 65 TPM expression thresholds. The thresholds were selected to capture up 
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to 100 interactions. The identification of interacting pairs used custom Perl scripts, which 

averaged and normalized gene expression within each cell type and checked gene expression 

values against thresholds and the list of interaction pairs. Custom Perl and R scripts were used to 

draw interaction diagrams.  

 

Interferon score 

 

 Interferon scores were calculated using a set of 212 experimentally derived type-I IFN 

responsive genes as previously described8. Briefly, average cell-type-specific expression profiles 

per patient were created and the IFN responsive genes were subsetted and averaged excluding 

genes with a 0 value across all patients.  

 

Cumulative distribution analysis 

 

  To visualize IFN-response signatures, we used the ratios between LN and control for two 

gene sets of the IFN-responsive genes and ubiquitously expressed genes mentioned above. For 

each group of ratios, we calculated the cumulative distribution function (CDF) and estimated the 

statistical significance of the difference between two distributions using the Wilcoxon signed 

rank test using standard functions from the R statistical package.  
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Statistical analysis  

 

 The differential expression analysis was performed using DESeq2 (version 1.10.1) and R 

(version 3.4.2)31. Patient- and cell-type-specific expression profiles were created by averaging 

the expression across all cells of the same cell type for each patient creating a pseudo-bulk RNA-

seq expression matrix for differential expression analysis. Briefly, expression count matrices 

were fit to a generalized linear model per gene following a negative binomial distribution. 

Dispersion estimates for each gene within groups were shrunk using an empirical Bayesian 

approach using default DESeq2 parameters. Log2 fold changes were compared between disease 

groups using the Wald test. Pathway enrichment analyses were performed by enrichR32,33 using 

the Reactome 201634,35 and KEGG 201636–38 pathway databases. Logistic regression analysis was 

performed using R, fitting, and ‘pscl’ (version 1.5.2) and ‘ROCR’ (version 1.0-7) packages for 

accuracy and area under the curve analysis. 

 

Cumulative distribution functions were compared with a Mann-Whitney U test. 

Differences between groups were compared using a two-tailed Student’s t test with a p value less 

than 0.05 considered significant. 

 

Code availability 

 

All software packages and programs used are publically available and open source. 

Scripts used to analyze the data with these packages are available in the supplementary materials.  
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Data availability 

 

 Raw and processed data will be available from dbGAP, Accession number to be 

determined. Currently raw and processed data for review is available from Immport (https://aspera-

immport.niaid.nih.gov/aspera/user/?B=%2FAMP_RA_SLE.Phase1%2FSLE%2FRNASeq_C1.T

uscl) (username: immport-upload15, password: 15@1mmp0rt).  
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Figure 2.
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Figure 3.  
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Figure 4. 
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Figure 5.  
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Figure 7.   
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Figure Legends  

 

Figure 1. Cell lineage determination by dimensionality reduction analysis. A) Schematic of 

the scRNA-seq pipeline. Skin (n=17) and kidney (n=21) samples from LN patients or healthy 

controls (n=3) were collected at the time of clinically indicated renal biopsy or live kidney 

donation, respectively. Skin and kidney biopsies were enzymatically disaggregated into single cell 

suspensions and loaded onto a microfluidic device. Single cell captures were assessed via 

microscopy. B) t-Distributed Stochastic Neighbor Embedding (tSNE) clustering of 4,008 single 

cells. PCA identified six major clusters of cells from both skin and kidney biopsies. Cells are color-

coded by an algorithm for determining expression clusters and cell types. C) Box plot of the 

percent contribution of each cluster from skin and kidney biopsies. Boxes are colored by cluster 

corresponding to Figure 1B. D) Heatmap of the top 10 most differentially expressed genes in each 

cluster to identify mutually exclusive gene sets used to determine the cell lineage of each cluster. 

Each row is a differentially expressed gene and each column is a single-cell organized by cluster 

identity. Transcript abundance ranges from low (purple) to high (yellow). E) Violin plot of selected 

markers indicating the expression level of canonical markers within each cluster.  

 

Figure 2. Subclustering of keratinocytes reveals two rare skin-specific cell types. A) tSNE 

plotting of 1,939 keratinocytes identified in initial clustering analysis colored by cluster identifying 

algorithm with cell type labels next to each cluster. B) Expression of DCD and MLANA, markers 

of the new clusters, amongst clustered cells from low expression (grey) to high expression (dark 

blue). C) Heatmap of the differentially expressed genes between each identified cluster. D) Violin 

plot of MLANA and DCD, markers of melanocytes and sweat gland cells, respectively.  
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Figure 3. Subclustering of tubular cells identifies major tubular cell subtypes of the nephron. 

A) tSNE plotting of 1,221 tubular cells identified by initial clustering analysis. Three clusters of 

tubular cells are identified and colored by clustering algorithm with labels of putative cluster 

identity indicated next to each cluster. B) Expression of established tubular subtype marker within 

each cluster from low expression (grey) to high expression (dark blue). C) Heatmap of the top 10 

most differentially expressed genes between each cluster. D) Violin plot of canonical tubular cell 

subset markers used to determine the tubular cell subsets.  

 

Figure 4. IFN response signature differentiates LN patients from healthy controls and 

response to treatment. A) Cumulative distribution function (CDF) of the ratio of expression of 

212 IFN responsive genes (red line) or ubiquitously expressed genes (black line) in both tubular 

cells (top) and keratinocytes (bottom) (p<0.001). B) Boxplot of IFN response scores in healthy 

controls (n=3), patients who responded to treatment (n=13), and patients who did not respond to 

treatment (n=5) (p=0.0003, t=4.7234). Box indicates the first quartile, median, and third quartile. 

Whiskers indicate the highest and lowest values.  

 

Figure 5. A fibrotic gene signature as a potential prognostic marker for patients non-

responsive to treatment. A) MA plot of differential expression analysis performed between 

tubular cells of patients responsive (n=13) or non-responsive to treatment (n=5). Significantly 

differentially expressed genes are colored in red. B). Pathway enrichment analysis of genes 

identified as upregulated in patients non-responsive to treatment in Figure 5A. -Log10(p-value) of 

each pathway is shown for both keratinocytes and tubular cells colored from least significant 

(black) to most significant (red). Log2 fold change in gene expression between patients non-
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responsive to treatment compared with patients responsive to treatment in each pathway are 

indicated for tubular cells from smallest (grey) to highest (orange). C) Receiver operating 

characteristic curve of the logistic regression equation of differentially expressed fibrotic genes, 

COL1A2, COL1A1, COL14A1, COL5A2, with area under the curve (AUC) indicated.  

 

Figure 6. Putative receptor-ligand interactions between kidney and skin cells. Lines represent 

interactions between cell types in the skin and the kidney. Lines originate at the ligand and connect 

to its receptor as indicated by the arrowhead. Each cell type is color coded and represented by that 

color in each organ. Only receptors with expression above 45 CPM and ligand above 65 CPM 

within each cell type are shown. Receptors and ligand are arranged by expression strength 

clockwise from lowest expression to highest. Ligands or receptors without a cognate pair were 

excluded for visualization.  

 

Figure 7. Differential expression and pathway enrichment analysis of tubular cells and 

keratinocytes between membranous and proliferative LN. Significantly enriched pathways in 

both tubular cells and keratinocytes in membranous (n=6) and proliferative (n=8) LN are indicated. 

Mixed class III/V or IV/V were excluded from this analysis. Color intensity and length of bar 

indicates higher -Log10(p-value) from least significant (white) to most significant (red).  
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