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Abstract

Interaction Information generalizes the univariate Shannon Entropy to triplets of
variables, allowing the detection of redundant or synergetic interactions in dynami-
cal networks. Here, we calculated interaction information from functional magnetic
resonance imaging and asked whether redundancy or synergy vary across brain re-
gions and along lifespan. We found high overlapping between the pattern of high
redundancy and the default mode network, and this occurred along lifespan. The
pattern of high values of synergy, more heterogeneous and variable along lifespan,
was overlapping with different cognitive domains, such as spatial and temporal mem-
ory, emotion processing and motor skills. Moreover, the amount of redundancy and
synergy seem to be balanced along lifespan, suggesting informational compensatory
mechanisms in brain networks.
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Introduction

Interaction information (II) quantifies in triplets of variables the amount of redundant
(positive interaction) or synergetic (negative interaction) information contained in the
triplet [1, 2]. While the mutual information (MI) shared between two variables is always
positive or zero (for the case of independent variables), II can be either positive or
negative, respectively, unveiling redundancy (R) or synergy (S). To give some specific
examples, common-cause structures lead to R, whilst the combination of one XOR gate
with two independent random inputs leads to S [3, 4].

The presence of synergetic effects is well-known to occur in sociological and psycho-
logical modeling, where (very often) there are some variables that increase the prediction
power on different ones [5]. On the other hand, redundancy have been addressed be-
fore in gene regulatory networks [6, 7] and electrophysiological data in patients with
epilepsy [2] or with deficit of consciousness [8], but, the pattern of triplet interactions in
functional magnetic resonance imaging is not yet well-understood. By using a different
methodology based on Granger causality influence, the authors in [9] found that R re-
gions occurred mainly due to voxel-contiguity and inter-hemispheric symmetry, while S
occurred mainly between non-homologous region pairs in contra-lateral hemispheres.

The functional connectivity (FC) patterns at rest have been shown to be altered
in different pathological conditions such as deficit of consciousness [10, 11, 12, 13],
schizophrenia [14, 15], epilepsy [16] and Alzheimer’s Disease [17, 18, 19, 20, 21]. Here,
following a recent study [22] combining functional and structural multi-scale connectiv-
ity along lifespan, we address how redundancy and synergy varies from young to old
people, within an age interval of 10 to 80 years old, that as far as we know, has not been
addressed before.

Material & Methods

Participants

Participants were recruited in the vicinity of Leuven and Hasselt (Belgium) from the
general population by advertisements on websites, announcements at meetings and pro-
vision of flyers at visits of organizations, and public gatherings (PI: Stephan Swinnen).
A sample of N = 164 healthy volunteers (81 females) ranging in age from 10 to 80
years (mean age 44.4 years, SD 22.1 years) participated in the study. All participants
were right-handed, as verified by the Edinburgh Handedness Inventory. None of the
participants had a history of ophthalmological, neurological, psychiatric, or cardiovas-
cular diseases potentially influencing imaging or clinical measures. Informed consent
was obtained before testing. The study was approved by the local ethics committee for
biomedical research, and was performed in accordance with the Declaration of Helsinki.
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Imaging acquisition

Image acquisition was performed in a magnetic resonance imaging (MRI) Siemens 3T
MAGNETOM Trio MRI scanner with a 12-channel matrix head coil. The anatomical
data was acquired as a high-resolution T1 image with a 3D magnetization prepared rapid
acquisition gradient echo: repetition time (RT) = 2,300 ms, echo time (ET) = 2.98 ms,
voxel size = 1× 1× 1.1 mm3, slice thickness = 1.1 mm, field of view = 256× 240 mm2 ,
160 contiguous sagital slices covering the entire brain and brainstem.

Resting state functional data was acquired with a gradient echo-planar imaging se-
quence over a 10 min session using the following parameters: 200 whole-brain volumes
with TR/TE = 3, 000/30 ms, flip angle = 90, inter-slice gap = 0.28 mm, voxel size
= 2.5 × 3 × 2.5 mm3, 80 × 80 matrix, slice thickness = 2.8 mm, 50 oblique axial slices,
interleaved in descending order.

Imaging preprocessing

We applied resting fMRI preprocessing similar to previous work ([23, 24, 25, 26, 27,
28]) using FSL and AFNI (http://afni.nimh.nih.gov/afni/). First, slice-time was
applied to the fMRI data set. Next, each volume was aligned to the middle volume to
correct for head motion artifacts. After intensity normalization, we regressed out the
motion time courses, the average cerebrospinal fluid (CSF) signal and the average white
matter signal. Next, a band pass filter was applied between 0.01 and 0.08 Hz [29]. Next,
the preprocessed fuctional data was spatially normalized to the MNI152 brain template,
with a voxel size of 3 x 3 x3 mm3. Next, all voxels were spatially smoothed with a
6 mm full width at half maximum isotropic Gaussian kernel. Finally, in addition to
head motion correction, we performed scrubbing, by which time points with frame-wise
displacements ¿0.5 were interpolated by a cubic spline [30]. We further removed the
effect of head motion using the global frame displacements as a noninterest covariate, as
old participants moved more than the young (when representing the mean frame-wise
displacement as a function of age provided a correlation value equal to 0.51 with p value
equal to 1e− 11), and this fact introduced nuisance correlations with age.

Brain hierarchical atlas

The brain was divided in 2,514 brain regions that we grouped into modules using
the brain hierarchical atlas (BHA), developed in [31] and applied by the authors in
a traumatic injury study [32] and in a lifespan study [22]. The BHA is available
to download at http://www.nitrc.org/projects/biocr_hcatlas/. A new Phyton
version that was developed during Brainhack Global 2017-Bilbao can be download at
https://github.com/compneurobilbao/bha.

Although full details have been provided before [31], very briefly, the use of the BHA
guarantees three conditions simultaneously: (1) that the dynamics of voxels belonging
to a same module is very similar, (2) that those voxels belonging to a same module are
structurally wired by white matter tracts, (3) that modules are simultaneously functional
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and structural.
Here, we focus on the M=20 module partition as was shown to be optimal based

on cross-modularity X [31], and index defined as the geometric mean between the mod-
ularity of the structural partition, the modularity of the functional partition, and the
mean Sorensen similarity between modules existing in the two structural and functional
partitions.

Shannon entropy

The Shannon entropy of a random variable X is defined as:

H(X) = −
∑
x

prob(x)log prob(x), (1)

where x represents one possible state of variable X [33, 34]. Equation (1) can be general-
ized to two and three dimensions, respectively as H(X,Y ) = −

∑
x

∑
y prob(x, y)log prob(x, y)

and H(X,Y, Z) = −
∑

x

∑
y

∑
z prob(x, y, z)log prob(x, y, z). For base 2 logarithm (as

we have done here), the entropy is expressed in bits.
Here, X represents any time series of resting state functional dynamics.

Interaction information

The interaction information (II) is an extension of the Shannon entropy to triplets of
variables [1]. For any triplet (X,Y, Z), the interaction information (II) is defined as

II(X,Y, Z) ≡ MI(X,Y )−MI(X,Y |Z) (2)

where MI(X,Y ) = H(X,Y )−H(X)−H(Y ) is the mutual information between X and
Y and MI(X,Y |Z) is the conditional mutual information between X and Y conditioned
to Z (for details see [34]).

The sign of II has important physical implications; when II is positive, the three
variables (X,Y, Z) are said to be redundant, while if II is negative, the interaction in
(X,Y, Z) is synergetic.

Here, X,Y, Z represent any three time series of resting state functional dynamics.

Calculation of II

II was calculated by applying equation (2) and estimating MI(X,Y ) and MI(X,Y |Z)
using the Gaussian copula approach recently derived by [35]. In particular, we made use
of the functions cmi ggg.m and mi gg.m; available at https://github.com/robince/

gcmi/.
Important to remark is that because the copula entropy does not depend on the

marginal distributions of the original variables, the authors in [35] transformed the
marginals to be standard Gaussian variables, and therefore, the mutual information
was exactly estimated under the Gaussian assumption.
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Per module R and S

Values of R per brain module were obtained by summing (for a fixed module m) over
all pairs such that II was positive, i.e.,

Rm ≡
1

N+

∑
y

∑
z

II+(X = m,Y, Z), (3)

where II+ represent any positive value of II andN+ the total number of positive elements.
Analogously, the per module S was defined as:

Sm ≡
1

N−

∑
y

∑
z

∣∣II−(X = m,Y, Z)
∣∣ , (4)

where II− represent any negative value of II, N− the total number of negative elements
and | · · · | absolute value.

For the calculation of both Rm and Sm we only considered triplets in which the three
variables are distinct each other, ie. satisfying that y 6= m, y 6= z and z 6= y.

Normalized values of R and S were calculated by dividing each value by its maximum.

Mask of the resting state networks

Following [36], we created a mask for the different resting state networks by defining
voxels with z-score value satisfying z < −3 or z > 3. In particular, we built masks for
the default mode, cerebellum, executive control, frontoparietal, sensorimotor and visual
resting state networks.

These masks were used to calculate the percentage of overlap between brain maps of
R, S, 1 −S and R/S with the different functional resting state networks.

Results

M=20 modules of the BHA were used as regions of interest. We calculated II for all
possible triplets. Redundancy and synergy were assessed using equations (3) and (4)
dividing the entire population (N = 164) in 4 different intervals of age: I1 (10-20 years
old, N1 = 30), I2 (20-40 years old, N2 = 46), I3 (40-60 years old, N3 = 29) and I4 (60-80
years old, N4 = 59).

Values of R in bits are represented in figure 1. Panel a shows the values of R per each
of the M=20 modules, at different age intervals. Panel b shows the average R across
the M=20 modules. Significant statistical differences with age were found across the 4
groups (one-way ANOVA, p-value of p= 1e−51). Post-hoc analyses revealed statistical
differences between all intervals with respect to I4, indicating an overall redundancy
increment for the old population (I1 vs I4 p= 3e−24, I2 vs I4 p= 4e−30, I3 vs I4 p= 3e−33).
All these comparison were significant after Bonferroni correction (i.e., using a thershold
for significance of 0.05/6, being 6 the total number of pairwise comparisons). No other
group comparison was significant after correction.

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 1, 2018. ; https://doi.org/10.1101/382705doi: bioRxiv preprint 

https://doi.org/10.1101/382705


Brain maps of normalized R values per module are represented in figure 1c. High-
est values were found in modules 3, 9 and 16, that bilaterally are located in cerebellum,
precuneous, posterior cingulate, superior and middle temporal gyrus, paracentral lobule,
precentral gyrus, superior frontal and parietal gyrus and insula. The function associated
to these high redundant areas is a superposition of three important resting state net-
works, namely, default mode, sensory-motor and auditory networks (for further details
see descriptive Table S1 in [31]).

Values of S in bits are represented in figure 2. Panel a shows the values of S per
each of the M=20 modules at different age intervals. Panel b shows the average S across
the M=20 modules. Significant statistical differences with age were found across the 4
groups (one-way ANOVA, p= 2e−22). Post-hoc analyses revealed significant differences
for several comparisons after one-way anova (I1 vs I4 p= 2e−18, I1 vs I3 p= 3e−5, I2
vs I4 p= 5e−15, I3 vs I4 p= 6e−6). No other comparison survived after Bonferroni
correction. Thus, in comparison to R, the dynamical pattern of S along lifespan is more
heterogeneous.

Brain maps of normalized S values per module are represented in figure 2c. Highest
values were found in modules 3, 8 and 18, that bilaterally are located in hippocampus,
amygdala, entorhinal cortex, fusiform, temporal pole, inferior temporal gyrus, caudate
and putamen. These areas are associated to different cognitive domains, such as spatial
and temporal memory, emotion processing and motor skills.

Although in general, by construction of R and S, the two measures are inversely pro-
portional one to another, the two measures are in fact complementary. Figure 3 shows
brain maps of normalized R together with the ones for 1−S. In particular, values with
highest 1−S were found in modules 3, 9 and 10, bilaterally located in the anterior cin-
gulate, inferior parietal and frontal gyrus, orbital gyrus, pars opercularis, pars orbitalis,
pars triangularis, paracentral lobule, precentral gyrus, postcentral gyrus, precuneus, su-
perior temporal gyrus, insula, cerebellum, posterior cingulate, inferior parietal gyrus,
superior frontal gyrus. Therefore, brain maps of 1−S incorporate the frontal pole, in-
creasing the overlapping with the default mode network from 50.32 for R (figure 3a) to
66.95% for 1−S (figure 3b).

The amount of R is somehow compensated by S (mean over all R/S values = 0.98,
standard deviation = 0.16). However, differences in the ratio existed across brain regions.
This is illustrated in figure 4, where values of the ratio R/S bigger than 1 indicate supra-
unbalanced areas, whereas smaller than 1 indicate infra-unbalanced areas. Panel a shows
the highest R/S value corresponding to modules 9 and 10, which forms the default mode
network. Similar to what happens for R and S, the ratio R/S is dependent on age (one-
way ANOVA, p= 4e−18). Moreover, unlike to what happens for R, panel b shows the
variations of R/S to be highly heteregeneous with age along lifespan (one-way anova,
I1 vs I3 p= 0.001, I1 vs I4 p= 1e−6, I2 vs I3 p= 0.003, I2 vs I4 p= 1e−9 and I3 vs I4
p= 2e−15).

Next, we defined brain maps of infra-unbalanced R/S by looking to the brain areas
with ratio smaller than the mean minus one times the standard deviation. Similarly,
supra-unbalanced brain maps were determined by looking to the values bigger than
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the mean plus one times the standard deviation. Balanced areas corresponded to all
the other values. Table 1 shows the overlapping of the three classes of brain maps
(infra-unbalanced, supra-unbalanced and balanced) with the most important resting
state networks: default mode, cerebellum, executive control, frontoparietal, sensorimotor
and visual. Very remarkably, infra-unbalanced brain maps overlapped 9.5% with the
frontoparietal network. Balanced brain maps overlapped 84% and 77% respectively with
the cerebellum and visual networks. Supra-unbalanced brain maps matched 69.18% with
the default mode network.

Table 1: Overlapping percentage of the ratio R/S with the main Resting State Networks

Infra-balanced (%) Balanced (%) Supra-balanced (%)

DMN 0.2246 19.0583 69.1893

Auditory 0.0284 38.1631 55.2979

Cerebellum 0 84.3334 0.8268

Executive Control 5.176 37.3482 30.9205

Frontoparietal 9.5896 39.358 39.5368

Sensorimotor 1.72 11.7076 57.8549

Visual 0 77.7678 5.9748

Discussion

Interaction information (II) allows to assess how information between pairs of variables
is enhanced (by synergy, S) or ignored (by redundancy, R) after adding a new interacting
variable. Indeed, it is precisely the sign of II the one that reveals S (negative II) or R
(positive II).

Here, we have studied how the values of R and S are distributed across brain areas and
along lifespan. Brain areas with highest value of S were found subcortically in amygdala,
hippocampus, putamen and caudate, although cortically as well in the entorhinal cortex,
fusiform and temporal pole. With regard to R, we have found highly association with
the default mode network, a well-known resting state network shown to be altered in
many different brain disorders. This, together with the fact that R is more invariant
along lifespan as compared to S, suggests a new role for the default mode network, as
an integrator of information achieved by increasing redundancy. Perhaps, the significant
increase of R occurring for the old population suggests a physiological alteration of this
redundant role of the default mode network when we age, known to be altered [37], but
this issue needs a further clarification.

R and S seem to be balanced, suggesting compensatory informational mechanisms
in brain networks. We have seen that the frontoparietal network, classically associated
to attentional control [38], is the network most affected by infra-unbalanced ratio R/S,
revealing a new synergetic role of this network from an informational perspective. More-
over, cerebellum and visual are the two networks most balanced, again revealing new
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informational roles for these networks. Finally, the default mode network is the one with
highest supra-unbalanced ratio R/S, and therefore, confirming its highly redundant role.

About what might be the possible mechanisms underlying R and S in the brain, future
studies should address if network topological metrics, such as integration or segregation
are somehow related to synergy and redundancy, although this is far the scope of the
present work.
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Figure 1: Across subjects, average redundancy (R) per brain module and
along lifespan. a: For each module, values of R are represented in 4 different
age intervals: blue (10-20 years old), purple (20-40), red (40-60) and magenta (60-80).
Dark central lines represent average values across subjects and shaded areas represent
statistical error b: Violin plots of R averaging over all modules and subjects within
age interval. * represents statistical significant differences after Bonferroni correction.
Notice that all age groups showed differences with respect to the old group (magenta),
indicating that the overall R significantly increased in the old population. c: Brain maps
of normalized R averaging over all age intervals with a threshold value of 0,7.
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Figure 2: Across subjects, average Synergy (S) per brain module and along
lifespan. a: For each module, values of average S are represented in 4 different
age ranges, blue (10-20 years old), purple (20-40), red (40-60) and magenta (60-80).
Dark central lines represent average values across subjects and shaded areas represent
statistical error. b: Violin plots of S averaging over all modules and subjects within
age interval. * represents statistical significant differences after Bonferroni correction.
c: Brain maps of normalized S averaging over all age intervals with a threshold value of
0,7.
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Figure 3: Normalized values of R and 1-S across brain regions reveals a key
redundant role of the default mode network. a: Brain maps of normalized R
averaged over age intervals, subjects and modules overlap 50.32% with a mask of the
default mode network (depicted in black). b: Similar to panel a, but plotting brain
maps of 1-S provided an overlap with the default mode network of 66.94%. Notice that
1-S but not R incorporates the frontal pole into the brain map, increasing the matching
with the default mode network.
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Figure 4: Across subjects, ratio R/S per brain module and along lifespan. a:
Similar to figures 2 and 3, values are represented in 4 different age ranges, blue (10-20
years old), purple (20-40), red (40-60) and magenta (60-80). Three dashed lines delimite
the three regimes: infra-unbalanced and supra-unbalanced, respectively, with values of
R/S being smaller or bigger than mean minus or plus one times the standard deviation,
and balanced, elsewhere. Dark central lines represent average values across subjects
and shaded areas represent statistical error. Modules 9 and 10 corresponding to the
default mode network are highly supra-unbalanced. Modules 5 and 8 corresponding to
the fronto-parietal network are infra-unbalanced. b: Violin plots of R/S averaging over
all modules and subjects within age interval. Modules * represents statistical significant
differences after Bonferroni correction. 16
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