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Abstract

Cycads are among the few plants that have developed specialized roots to host nitrogen-

fixing bacteria. We describe the bacterial diversity of the coralloid roots from seven  Dioon

species  and  their  surrounding  rhizosphere  and  soil.  Using  16S  rRNA  gene  amplicon

sequencing, we found that all coralloid roots are inhabited by a broad diversity of bacterial

groups,  including  cyanobacteria  and  Rhizobiales  among the  most  abundant  groups.  The

diversity and composition of the endophytes are similar in the six Mexican species of Dioon

that we evaluated, suggesting a recent divergence of Dioon populations and/or similar plant-

driven restrictions in maintaining the coralloid root microbiome. Botanical garden samples and

natural populations have a similar taxonomic composition, although the beta diversity differed

between  these  populations.  The  rhizosphere  surrounding  the  coralloid  root  serves  as  a

reservoir and source of mostly diazotroph and plant growth-promoting groups that colonize

the coralloid  endosphere.  In  the  case of  cyanobacteria,  the  endosphere  is  enriched with

Nostoc spp and Calothrix spp that are closely related to previously reported symbiont genera

in  cycads  and  other  early  divergent  plants.  The  data  reported  here  provide  an  in-depth

taxonomic  characterization  of  the  bacterial  community  associated  with  coralloid  root

microbiome. The functional aspects of the endophytes, their biological interactions, and their

evolutionary history are the next research step in this recently discovered diversity within the

cycad coralloid root microbiome. 
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Introduction

Specialized root modifications that contain endophytic microbes are rare in plant evolution,

present only in legumes in angiosperms [1] and in cycads in the gymnosperms [2]. Cycads

have specialized apogeotropic roots of small coral-like shapes, termed coralloid roots, which

contain  nitrogen-fixing  cyanobacteria.  The  formation  of  a  coralloid  develops  from  the

secondary roots through morphological changes that include an increase in lenticel cells [3],

considered  the  main  mode  of  cyanobacterial  entry  [3,4].  Coralloid  masses  are  formed

involving somatic reduction before the dichotomous branching of the roots. The reduced cells

make up part  of a ring of differentiated cortical  cells lying beneath the epidermis [5]. It  is

possible to see this ‘cyanobacterial ring’, also known as ‘algal ring’, inside which endophytes

are located, even with the naked eye. 

Given that all extant cycads have the capacity to form coralloid roots, they were most

likely present in the earliest cycad lineages, at least 250 MYA [6]. Compared to the more

recent  legume  nodules  of  approximately  65  MYA  [7],  the  cycad  lineage  has  a deep

evolutionary  history  of  hosting  bacterial  endophytes  in  their  coralloid  roots.  Previous

investigations of the coralloid roots that trace back as far as the 19th century report bacterial

groups belonging to rhizobia [8], Pseudomonas radicicola and Azotobacter strains [4,9]. Most

studies however, have been developed using cyanobacteria-specific markers: morphological

and  biochemical  characters  [10,11];  tRNA LEU intron  [12,13];  Short  Tandemly  Repeated

Repetitive Sequences [14]; and 16S rRNA direct from the coralloid roots [15], or isolated in

BG11  and  BG11o  media  [11,16].  These  studies  report  a  simple  bacterial  community

composed of a few or many strains of Nostoc cyanobacteria, with one or several strains per

coralloid  root  [12–14];  an  overall  lack  of  a  geographic  structure  of  the  endophyte

cyanobacteria in cycad host species from Asia (Cycas), suggesting shared taxa among host

populations within a region [15]; and no correlation was found between a resident cyanobiont

species and its host cycad species Australia (Macrozamia) [16]. More recently a high diversity

of endophytes in coralloid roots of the Asian cycad  Cycas bifida  was described using 16S

rRNA Illumina amplicons [17]. Zheng et al. [17] found significant differences in the abundance
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of  some  bacterial  families  compared  to  regular  cycad  roots,  with  a  dominance  of

cyanobacteria in the coralloid roots [17]. Likewise, Gutiérrez-García et al. [18] sampled the

bacterial  coralloid  microbiome  of  Dioon  edule using  complete  genomes  and  shotgun

metagenomes from axenic cultures and liquid co-cultures that aim to describe the functional

diversity  of  the  endophytic  microbiome  [19],  and  also  found  several  bacterial  groups  in

addition  to  cyanobacteria  endophytes.  There  appears  to  be  a  broad  spectrum  of  non-

cyanobacteria inside the coralloid root, which we are only beginning to explore.

Microbial  communities  associated  with  plants  can  be  influenced  by  the  plant

compartment [20,21].  The soil surrounding plants can be considered as the main source of

root endophytes [22]; the rhizosphere or soil region influenced by root exudates as a ‘growth

chamber’ [22]; and the endosphere (internal tissues) as a restricted, specialized area that

contains  microbes [23].  In  plants,  comparison between soil  and rhizosphere  microbiomes

often  show differences  in  alpha  [24]  and  beta  diversity  [24,25] and  slight  differences  in

taxonomic  composition  and  community  structure  [26].  The  endosphere  typically  has  the

lowest  bacterial  diversity [25],  sometimes enriched with specific  bacterial  groups [27]  and

functionally specialized microbial communities [18]. In cycads, only two studies mention the

influence of  bacterial  soil  diversity  in  the bacterial  coralloid  endosphere.  Zimmerman and

Rosen, [10] found that endophytic  Nostoc was different from edaphic  Nostoc  populations,

while Cuddy et al. [28] found that the genotypes from cyanobacteria from the rhizosphere and

the endophytes were different.

Our goal in this study is to describe the bacterial microbiome inside the coralloid root

within the genus  Dioon, as well as its surrounding soil and rhizosphere. We evaluated the

bacterial diversity from seven Dioon species from a botanical garden population and a Dioon

merolae from a natural population. Our main hypothesis was that there is bacterial diversity

other than cyanobacteria in the coralloid roots microbiome, and that most of this diversity is

recruited from the surrounding rhizosphere and enriched inside the root. This is the first study

of the microbial diversity of a whole neotropical cycad genus including its rhizosphere and the

surrounding bulk soil. 
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Materials and Methods

Field sampling and sample preparation.  Coralloid roots samples of both juvenile

(Fig 1) and adult  plants (S1 Fig) were collected in April  2015 from the Botanical  Garden

“Francisco Javier Clavijero” from the Instituto Nacional de Ecología, A.C. in Xalapa (INECOL),

Veracruz,  Mexico  (n=13);  and  from  a  natural  population  (n=4)  from  Santiago  Lachiguiri,

Oaxaca, Mexico. Bulk soil was collected (~40g) approximately 10 cm away from each plant

from  the  botanical  garden,  although  only  three  samples  were  fully  processed  (Table  1).

Likewise, rhizosphere samples were collected from each plant from the botanical garden, of

which only six were fully processed. All samples were transported to the laboratory in liquid

nitrogen, frozen from the time of collection. The coralloid roots samples were defrosted and

washed in a Phosphate Buffered Saline (PBS) for 20 minutes to obtain the rhizosphere for

individuals from the botanical garden. Subsequently, to remove epiphytes, the coralloid roots

were washed in hydrogen peroxide for seven minutes and immersed in 70% ethanol for 10

minutes. Then they were washed 

with 10% commercial bleach solution (NaClO) for 10 minutes, and then washed for five more

times with sterile water before DNA extraction. Rinsed water from the last step in the washing

process was tested for the presence of epiphytes by amplifying the 16S rRNA region, and

also plated on axenic culture media (BHI medium). Only samples with no PCR amplification

or culture growth were processed. 

DNA extraction and generation of 16S rRNA amplicons. Bacterial  DNA was

extracted from coralloid roots previously washed, using the DNeasy Plant mini kit (Qiagen).

Approximately 120 mg of plant  tissue from a sample was used for isolation of plant  and

bacterial DNA. The genomic DNA of rhizosphere and bulk soil samples were extracted using

the UltraClean Soil DNA kit (MOBIO laboratories). We amplified the 16S rRNA hypervariable

region V3-V4 using universal primers 515F and 806R [29] with 30 ng of gDNA. Only some soil

and rhizosphere successfully amplified (Table 1). The amplicon libraries were prepared in our

laboratory using the protocol by Vo & Jedlicka [30] without modifications and sequenced in a
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2 x 300 bp paired-end run using the Illumina Miseq platform. The raw sequencing data for

16S rRNA sequencing results have been deposited at the Sequence Read Archive (SRA,

http://www.ncbi.nlm.nih.gov/sra/)  under  accession  numbers  PRJNA481384

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA481384)

Quality filters and sequence analysis.  Forward and reverse sequences obtained

from the MiSeq run were overlapped to form contiguous reads using PEAR v.0.9.8 [31] and

were  de-multiplexed  using  the  QIIME  v.1.9.1  pipeline  [32]  using  a  Phred  score  >Q30.

Sequences  were  clustered  into  operational  taxonomic  units  (OTUs)  and  taxonomy  was

assigned  using  UCLUST  v.1.2.22q  [33]  based  on  97%  pairwise  identity  against  the

Greengenes database (gg_13_8_otus).  Unassigned sequences were submitted to the Silva

16S rRNA database (release 132) in Mothur v.1.38.1 [34]. 

OTUs that belonged to the cyanobacteria phylum and that were initially assigned to

this  taxonomic  level  were  blasted  against  another  Silva  database  (release  123).  OTUs

assigned to  chloroplast  and  mitochondria,  and sequences that  did  not  have  at  least  ten

counts across all samples were removed. Chimeric sequences, defined as hybrids between

multiple DNA sequences, were identified using Mothur and also removed. The filtered OTUs

were rarefied based on the number of sequences from the library with the lowest sequencing

depth within each sets comparison, using QIIME.

Taxonomic and phylogenetic diversity. We separated  the  26  samples  into  sets

(Table 1) to test the importance of the host species, the origin of  the sample (natural  vs

botanical garden samples) and the root-associated compartment (endosphere, rhizosphere,

and bulk soil). We first compared all  Dioon species from the botanical garden endosphere

samples (set 1, normalized count = 6912 reads), with the exception of a sample (D. mejiae

01.DJM) that had a very low number of reads (3650) and was removed. We estimated the

alpha-diversity (observed species,  Shannon and Simpson effective index) using the Rhea

Pipeline  v.2.0  [35]  and  the  differences  in  the  bacterial  community  within  the  sets  (beta-
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diversity) were calculated with the Bray-Curtis distance [36]. Statistical tests for the alpha and

beta diversity were not carried out in the set 1 comparison due the low number of samples for

each species. To test for significant differences in alpha diversity we used a U-Mann-Whitney

test  for  paired  samples,  and  a  Kruskal-Wallis  test  for  comparisons  of  more  than  three

samples. We also tested for significant differences in the beta-diversity of the communities

using ANOSIM and PERMANOVA in R (VEGAN Package v1.17-2, [37]). 

To measure taxonomic diversity among Dioon species from set 1, we used non-metric

multidimensional  scaling  (nMDS)  ordination  with  a  Bray-Curtis  distance  matrix  of  taxon

relative  abundances,  and used the  balanced version  of  Unifrac  distances,  referred  to  as

generalized  UniFrac  [38],  to  construct  a  dendrogram from all  the  samples  using  Ward's

clustering method [39]. We developed ‘heat trees’ with the taxonomic diversity found in the

OTUs  from set  1  (without  01.DMJ sample)  and  set  2  (normalized  count  =  3293  reads),

defined as  D. merolae samples from natural population, using the R package metacodeR

v.0.2.1 [40]. In these plots, the node width and color indicate the number of reads assigned to

each taxon. For each of these two sets, heat maps were performed for the 20 most abundant

genera, using the function heatmap.2 from the R package gplots v.3.0.1 [41]. 

We  compared  only  the  D.  merolae  botanical  garden  samples  from set  1  to  their

samples from a natural population (set 2) and tested for the differences in diversity among the

endosphere and the rhizosphere (normalized count = 3650 reads), defined as set 3, from

which  where we expected most  bacteria  to  be  recruited.  We also compared shared and

private OTUs between all  three compartments,  soils  samples,  set  4,  and their  respective

rhizosphere and endosphere samples (normalized count = 6912 reads), using alpha and beta

diversity  as  described  above.  To  visualize  shared  OTUs  and  taxa  between  the  different

comparisons we constructed Venn diagrams using R package VennDiagram v.1.6.20 [42]. In

the set 4 comparison, we also wanted to know if endophytic cyanobacteria, a group known to

be prevalent in coralloid roots, belonged to a single phylogenetic clade or they were members

of different lineages. A single clade would suggest some specificity at the species or higher

level, recruited from the rhizosphere and maintained or perhaps filtered, in the coralloid root
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endosphere. The cyanobacteria sequences that were classified to genus level and at least

400 bp in length from our study, along with a Bacillus sequence (outgroup) that was obtained

from our study and reference sequences downloaded from GenBank database were aligned

using Mafft  v.7.305b [43]. The alignment was submitted to JModelTest v.2.1.10 [44] which

determined  that  GTR  +  G  +I  model  was  the  most  appropriate  substitution  model.  The

phylogenetic estimation was performed using MrBayes v3.2.3 [45] with default parameters.

Results

Taxonomic diversity in the coralloid root endosphere. We analyzed the coralloid

root-associated bacterial microbiome using 16S rRNA amplicons. Chimeras, chloroplast and

mitochondria  sequences  and  OTUs  that  did  not  have  at  least  ten  counts  reads  were

discarded, resulting a total of 2,347,323 high-quality sequences and 8,812 OTU for the 26

samples (Table 1). The filtered OTUs were classified at the major taxonomic level possible

and corresponded to 16 phyla, 40 classes, 78 orders, 137 families and 246 genera.

The  taxonomic  abundance  profiles  from the  12  Dioon  samples  from the  botanical

garden (set 1) were not grouped according to host species (Fig 2A), only 01.DME was more

similar  to 02.DME. Our dendrogram based on Ward's clustering method with generalized

UniFrac distance also showed a mixed distribution of hosts based on the total symbionts (Fig

2B).  To  measure  the  distribution  of  species  diversity  within  the  botanical  garden,  alpha

diversity  metrics  (observed  species/OTUs,  effective  Shannon  and  Simpson)  were  also

estimated (S1 Table).  Samples 01.DSO and 04.DME had the most  alpha diversity,  while

01.DSP  and  06.DME  were  the  least  divers;  In  the  latter  two  samples,  Nostoc and

Actinobacteria, dominate the community.  Overall, these results suggest that in the botanical

garden, all samples share a similar microbiome composition with varying degrees of diversity,

independent of the host species.
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A sum of all the OTUs from the 12 botanic garden samples resulted in 4,156 OTUs, in

which  Proteobacteria,  Actinobacteria,  Cyanobacteria,  Bacteroidetes,  Verrucomicrobia  were

the  five  most  abundant  phyla  (Fig  3A).  The  top  five  most  abundant  families  were

Nostocaceae,  Streptomycetaceae,  Rhizobiaceae,  Pseudonocardiaceae,  Chitinophagaceae.

A total of 190 genera were identified in the Dioon endosphere (Fig 3A), and most of the 20

most  abundant  genera  were  evenly  distributed  among  our  samples,  with  a  few  notable

exceptions (Fig 3B). Nostoc, Rhizobium and Amycolaptosis have distinctively high abundance

for some samples (Fig 3B) (01.DSP, 05. DME and 06.DEM, respectively).

For  Dioon merolae samples obtained from a natural population (set 2), there were a

total of 902 OTUs and 91 genera (S2A Fig). The top five most abundant phyla were the same

as the botanical garden samples except for Bacteriodetes. The five most abundant families

were  Nostocaceae,  Streptomycetaceae,  Geodermatophilaceae,  Micromonosporaceae  and

Pseudonocardiaceae. The top most abundant genera included some that overlapped with

samples from the botanic garden and were abundant in this latter population, namely Nostoc,

Rhizobium, Amycolatopsis, Streptomyces, Sphingomonas, Pseudonocardia, Mycobacterium,

Bradyrhizobium, Agrobacterium and Devosia (S2B Fig). Samples 07.DME and 08.DME from

the natural population have less bacterial diversity and are mostly dominated by Nostoc (S2B

Fig).  The bacterial  community  of  the  natural  population  shared 445 (19%) OTUs and 77

(48%)  genera  with  the  botanic  garden  (S3  Fig).  Differences  of  alpha  diversity  were  not

significant (p > 0.05, S2 Table), but beta diversity was (ANOSIM R= 0.7, p=0.004). 

Bulk soil and the rhizosphere as a source of the endophytes. We measured

the shared and private bacterial diversity of the soil and compared it to the rhizosphere and

the endosphere of three Dioon samples. There is high bacterial diversity in the three coralloid

root  compartments  (5,740  OTUs  and  207  genera),  with  soil  being  the  most  diverse

compartment (3990 OTUs), followed by the rhizosphere and endosphere (3,411 and 1,537

OTUs,  respectively)  (Fig  4A).  Differences  in  alpha  diversity  and  beta-diversity  were  not
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significant in any of the comparisons (p > 0.05, S2 Table; p=0.18, PERMANOVA, respectively)

with  635 OTUs and 84 genera shared among the  three compartments.  Yet  the 20 most

abundant shared genera are distributed differently in soil, rhizosphere or the endosphere (Fig

4B), with  Nostoc,  Sphingomonas,  and Rhizobium among the most abundant genera.  In the

comparison of the three coralloid root compartments of the 20 most abundant shared genera,

six genera were most abundant in the endosphere and five in the rhizosphere, and only the

genus Rhodobium was most abundant in the bulk soil. 

Of the 1,537 OTUs and 130 genera found in the endosphere, 400 OTUs and 18 genera

were private to this compartment, while 808 (53%) OTUs and 95 (73%) genera were shared

with  the  bulk  soil  and  964  (63%)  OTUs  and  101  (78%)  genera  were  shared  with  the

rhizosphere. The outside (bulk soil and rhizosphere) and inside (endosphere) of the coralloid

root shared 1137 (74%) OTUs and 112 (86%) genera. When comparing the rhizosphere of six

Dioon  samples  (set  3)  with  their  respective  endosphere,  we  found  4219  OTUs and  187

genera, of which 1044 (65%) OTUs and 116 (62%) genera were shared (Fig 5A), while 574

OTUs and 23 genera were private to the endosphere. There is significantly more bacterial

diversity in the rhizosphere for the three metrics of alpha diversity (Fig 5B, S2 Table); although

beta-diversity was not significantly different (p=0.09, PERMANOVA). 

Phylogeny  of  the  cyanobacterial  endophytes.  When  we  compared  the

cyanobacteria  microbiome  from the  three  compartments  associated  to  coralloid  root,  we

found 64 OTUs for the phylum, of which 38 can be classified to seven families and in seven

genera:  Nostoc,  Calothrix,  Microcoleus,  Leptolyngbya,  Chroococcus,  Acaryochloris,

Scytonema. To test for possible phylogenetic patterns that would suggest specificity to the

coralloid  root  compartment,  we placed our  samples in  a  phylogeny constructed using 25

OTUs classified to the genus level (400 bp) (Fig 6).
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The resulting tree shows two clades, with the genus Acaryochloris as the sister taxon

to a clade of all  other genera obtained from our amplicons data .  Clade (A),  included two

OTUs classified as the genus Chroococcus and six OTUs as Leptolyngbya found in the bulk

soil  and/or  the  Dioon rhizosphere. They grouped with a previously reported  Chroococcus

obtained from a biofilm of a water fountain; and most notably, a Leptolyngbya isolated from a

distantly-related cycad’s rhizosphere (Macrozamia sp. ‘Bundarra’ from Australia, Cuddy et al.

[28]). Clade (B) included a subclade with only one rhizosphere and soil OTU identified as

Microcoleus;  and  a  subclade  with  samples  from  both  cycad  endophytes  and  the  cycad

rhizosphere and bulk soil  classified as  Nostoc, Calothrix,  and  Scytonema. Some of these

genera include previously reported endosymbiotic  Nostoc  in cycads and early seed plants

(Gunnera) and the aquatic fern (Azolla).

Interestingly, all of our Nostocales cycad endophytes constitute a monophyletic group

that  likely  include  a  new  species  of  Nostoc  or  perhaps  even  a  new  genus. It  is  worth

mentioning that  Nostoc and Calothrix genera were the only Nostocales genera found in the

endosphere among the 2,347,323 reads and 8,812 OTUs from the 26 individuals included in

this study. Calothrix was exclusive to the endosphere. 

Discussion

A taxonomically diverse bacterial community inside Dioon coralloid roots.

Endophytes associated with cycad coralloid roots have been studied for more than a century

mostly by methods that underestimated or did not aim to measure the non-cyanobacterial

bacterial diversity present inside the root. Our study supports very early studies [4,8,9], and

two more recent studies, the 16S rRNA-based Zheng et al. [17] and the metagenomic-based

Gutiérrez-García et al. [18], that report a diverse bacterial microbiome beyond cyanobacteria. 

We found a high  bacterial  diversity  in  the  endophytes  of  the 12 samples  from six

Mexican  Dioon  species,  similar to  that  detected in  the root  endosphere from angiosperm

plants as Arabidopsis [27], sugarcane [46], poplar trees [47], and inside the specialized root

nodules  of  legumes  [48].  We  found  that  Proteobacteria,  Actinobacteria,  Cyanobacteria,
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Bacteroidetes and Planctomycetes were the dominant bacterial phyla in the  Dioon coralloid

root  microbiome.  Some of  these phyla  (Proteobacteria,  Actinobacteria  and Bacteroidetes)

have been reported as typical root endophytes, enriched in other plants [49].

At the level of family Nostocaceae is among the most abundant as also reported in

Cycas bifida [17]. We also found the 14 other most abundant families from C. bifida that are

present in our  Dioon samples. In the Gutiérrez-García et al.  [18] study, the authors used

shotgun metagenomics to  characterize co-cultures from an inoculum of  the coralloid  root

endosphere from D. merolae and found 51 families and 76 bacterial genera, of which 34 and

33 respectively, were present in our amplicon data.  Nine families were shared between these

two  studies  and  ours,  including  Nostocaceae,  Rhizobiaceae,  Pseudonocardiaceae,

Mycobacteriaceae, Hyphomicrobiaceae, Bacillaceae, Bradyrhizobiaceae that were abundant

in our data, suggesting these may constitute a taxonomic core for cycads in general.

Most of the diversity was evenly distributed among most samples, with the exception of

three samples which showed that cyanobacteria were highly abundant and dominant over

other  taxa.  The  overall  low  bacterial  diversity  associated  with  a  high  cyanobacteria

abundance was also observed in three coralloid roots samples from  Cycas bifida [17]. We

partially agree with the authors that  cyanobacteria may inhibit  growth of other  groups by

competition  or  secretion  of  secondary  metabolites.  We  also  suggest  however,  that  it  is

possible that the age of the coralloid root is an important factor influencing the dominance of

cyanobacteria, and that older roots could contain more cyanobacteria as they mature. The

maturation of a coralloid root causes morphological changes that include more numerous

lenticels [3] and could therefore allow the entry of more bacteria. Cyanobacteria colonization

is important in the transition from precoralloid to coralloid root [3], and in addition, changes in

the structure of the cyanobacterial community have been reported during the degradation of

the coralloid roots [50]. The age of the root as a key factor for microbiome composition inside

the coralloid root requires further investigation.
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Composition and bacterial  diversity of  the root-endosphere microbiome

among sites and host species. Differences in the growth stage of the natural (adults)

and botanic garden (juveniles) host samples could be affecting the beta-diversity in the root

microbiome, as is seen in other plants such as legumes [48] and rice [51]. Physiological and

biological differences among the hosts could also affect the composition and quantity of root

exudates  throughout  the plant  growth stages [52,53],  influencing the diversity  of  the root

endophytes  and  the  microbial  conformation  of  the  rhizosphere  [54].  The  varying

microenvironmental  factors  in  each  population  can  also  influence  in  the  prokaryotic

communities from the two sites that we compared. Biogeographic factors significantly affect

the  microbial  communities  associated  in  roots  from  Agave [20]  and  the  soil  type  and

geographical location contribute to rice root microbiome variation [25]. Future samples from

natural  populations  including  their  rhizosphere  will  help  discern  the  importance  of  local

climatic and soil conditions in the endophyte taxonomic diversity.

For most samples, there is no clear relationship to the host species. This has been

observed  in  other  plants;  for  instance,  there  were  no  differences  in  the  alpha  and  beta

diversity of microbial communities from roots of three species of  Fragaria strawberries [55].

The sample tissue type (different plant compartments) accounted for more of the variance in

the prokaryotic communities than the host species in cultivated and native  Agave species

[20]. Other variables such as soil type have been shown to have more influence than host

genotype  [25]  or  plant  species  [56]  on  the  endosphere  microbiome.  Furthermore,  similar

genus-level  microbiomes have been observed for different genera from legumes [48] and

maize and teosinte in Poaceae [57]. Finally, it is also possible that given that our samples

seem  to  be  part  of  a  species  complex  of  recent  divergence  [58,59],  they  simply  share

biological traits that favor certain bacterial communities.

Our data also show that there are only a few bacterial genera enriched in the Dioon

endosphere. More than half of the most abundant genera we found have been reported as

diazotrophic plant endophytes, confirming the nitrogen-fixation role of the coralloid root [60].

Interestingly, the Rhizobiales were the most abundant order in the coralloid root microbiome.
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Rhizobiales have been reported in nodules [48,61] and roots [61] of legumes, and roots of

non-legume plant species as sugarcane [46] and Agave [62]. The presence and enrichment

of Rhizobiales species in the roots of phylogenetically diverse plant hosts [63] could indicate

that  the Rhizobiales  are  part  of  a  bacterial  core in  symbiotic  plant  microbiomes. Diverse

species of the rhizobiales can affect  the primary root  growth in non-legume plants as  A.

thaliana [63] and are a key component in the formation of nodules in different species of

legumes [64]. It  remains to be seen if their function in the coralloid root is similar to their

functions in angiosperms. 

Some  genera  among  the  20  most  abundant  such  as  Agrobacterium,  Bosea,

Bradyrhizobium,  Burkholderia,  Caulobacter,  Chitinophaga,  Devosia,  Luteimonas,

Mycobacterium,  Rhizobium,  Sphingomonas,  Streptomyces,  Variovorax are  also  known  to

have  traits  of  plant  growth-promotion  [65–67].Plant  growth-promoting  bacteria  were  also

consistently  enriched  in  the  two  D.  merolae populations,  and  include  Streptomyces,

Sphingomonas,  Rhizobium,  Pseudonocardia,  Nostoc,  Mycobacterium,  Bradyrhizobium,

Amycolatopsis,  and Agrobacterium.  Samad  et  al.  [66]  isolated  the  three  most  abundant

genera found in their amplicon data from four weed and grapevine root microbiomes and

found  that  Sphingomonas have  beneficial  properties  such  as  auxin  (indole  acetic  acid)

production. It is thus possible that the plant is favoring some beneficial bacterial groups as

endophytes. In summary, the prevalence of these bacterial groups suggests a functional core

that could be important in the development and growth of the coralloid root. 

The  bulk  soil  and  rhizosphere  serve  as  a  bacterial  reservoir  for  the

colonization of endosphere. Our results demonstrated that the soil and rhizosphere

associated with Dioon coralloid roots are highly diverse. As with other plants [25,66,67], the

soil (bulk soil and rhizosphere) is more diverse in the number of OTUs and genera than the

root endosphere, although these differences are not significant in our study (alpha diversity

metrics). When we compared the rhizosphere and endosphere from the six  Dioon samples

(set 3 comparison), we found significant differences in the alpha diversity, with higher diversity
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on the outside than the inside of coralloid root, a common pattern reported previously in 30

species of angiosperms [68].

The lack of significant differences in beta diversity among the samples (set 3 and set 4)

with their respective endospheres support the idea that the soil microbiota is the main source

of species for the root endosphere. This is similar to what has been reported for sugarcane, in

which the 90% of OTUs discovered in the endosphere of roots, stalks, and leaves were also

present in the bulk soil samples [46]. In  Agave species leaf and root bacterial endophytes

were present in their respective episphere (93%) and bulk soil (86%) [20]. Finally, with respect

to the taxa from the endosphere that are not shared with the rhizosphere and bulk soil, only

the genus Bacteroides was not found in the soil, reported previously as an endophyte of rice

(Oryza) [69] and reed (Phragmites australis) [70].

The colonization of bacteria from the rhizosphere to the endosphere may take place through

the cracks or lenticels in coralloid roots as an active process [3,4,71], as many endophytes

express cell-wall-degrading enzymes [72].  Further  research could investigate  the  function

(metagenomic)  and  gene  expression  patterns  (metatranscriptomic)  associated  with  the

coralloid root colonization by the cycad endophytes we report here.

The  endosphere  of  Dioon is  enriched  with  cyanobacteria  within  a

monophyletic group.  Our  study  finds  various  taxa  that  belong  to  the  cyanobacteria

phylum in the Dioon coralloid root-associated microbiome. These include 38 OTUs grouped in

seven genera, of which four (Microcoleus, Chroococcus, Acaryochloris, Scytonema) had been

not been previously reported in soils surrounding the coralloid root. 

Our phylogeny shows that Dioon Nostocales endophytes are close relatives, placed in

the cyanobacteria heterocystous cluster [73]. Genera such as  Scytonema are found in the

rhizosphere and bulk soil and we do not rule out the possibility that other non-heterocystous

genera capable of nitrogen fixation such as Leptolyngya [74] could colonize the endosphere.

Our results, however, show that Nostoc and Calothrix are the predominant two genera inside

the coralloid root. They have heterocysts, thick-walled cells where the nitrogenase enzyme for
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nitrogen fixation is located [75] and are known for their colonization ability and for promoting

the  growth  of  several  plant  groups  [76,77].  Earlier  studies  of  the  cycad  coralloid  root

endophytes also mostly report a bacterial community composed of a few or many strains of

Nostoc, and less frequently,  Calothrix [9,11,14]. The genera  Tolypothrix  and Leptolyngbya

found in the soil surrounding our  Dioon samples, were also previously reported in the roots

from the Australian  Macrozamia  [28] Tolypothrix was not found in our sequences, perhaps

due to inconsistencies in taxonomic reports in this genus [78].

It  remains  to  be  seen  if  the  prevalence  of  only  some  bacterial  groups  in  the

endosphere is a result of plant-driven selection mechanisms through the enhanced activity of

defense  and  hydrolytic  enzymes in  the  plant  host  [77],  or  it  is  due  to  the  coralloid  root

microenvironment  such  as  the  influence  of  soil  pH  and  nitrates  content  in  the  bacterial

diversity  associate  to  roots  of  soybean  and  wheat  [67];  or  the  microbiome  interactions

themselves that could filter out certain bacteria groups including cyanobacteria [22,79]. 

Also, the finding of similar species in the rhizosphere opens the possibility that species

assemblages that already exist outside the root, enter as such when recruited. The finding of

interacting  Nostoc-Caulobacter in  other  Dioon species adds to  this  possibility  [18].  These

hypotheses  require  appraisal  based on a  wider  sampling  of  Mexican  cycad species  and

functional studies of the main groups we identified here. 
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Figures captions

Fig 1. Juvenile individual of Dioon edule from the botanical garden. The radicular system

of the Dioon species consist of a primary root, secondary root, precoralloid root and coralloid

root. Also shown is a cross-section of the coralloid root without magnification, highlighting the

‘algal or cyanobacterial zone’. 

Fig  2.  Beta-diversity  analysis  among  the  coralloid  root  endosphere  from  Dioon

samples (set 1 comparison). A) Non-metric multidimensional scaling (nMDS) plot based on

Bray-Curtis  distance,  where  each  symbol  represents  the  bacterial  community  in  a  single

Dioon sample. B) A dendrogram based on Ward's clustering method showing the distance

and clustering of  the samples by their  root  endosphere microbiome.  Abbreviations of  the

Dioon species used here are: DME = D. merolae, DPU= D. purpusii, DSP= D. spinulosum,

DSO= D. sonorense, DED= D. edule, and DAN= D. angustifolium.

Fig 3. Taxonomic diversity and abundance of bacterial genera in the endosphere from

Dioon samples (set 1 comparison). A) heat tree of the taxonomic diversity; The node width

and color indicate the number of reads assigned to each taxon. Of the 20 most abundant

genera (green) the symbol “&” represents the bacteria that have been reported as nitrogen-

fixing.  B)  Heat  map of  20  most  abundant  genera,  where  each column corresponds to  a

bacterial genus, and each row to a specific Dioon sample. 

Fig 4. Bacterial diversity in the three coralloid root compartments (set 4 comparison).

A) Venn diagram showing the shared OTUs and genera (in parenthesis) between the bulk

soil, rhizosphere and endosphere. B) Bar chart of the 20 most abundant genera in the core of

the three compartments (635 OTUs/84 genera).
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Fig 5. Differences of bacterial diversity between the endosphere and rhizosphere (set 3

comparison).  A)  Venn  diagram  showing  the  shared  OTUs  and  genera  (in  parenthesis)

between the endosphere and rhizosphere of the six Dioon samples. B) Distribution of alpha-

diversity within the rhizosphere and endosphere as measured by observed species, Shannon

and Simpson effective index.

Fig  6.  Phylogeny  of  the  genera  belong  to  cyanobacteria  found  in  the  three

compartments (set 4 comparison). The ingroup contains 7 cyanobacteria genera and 25

OTUs.  The  endosphere,  rhizosphere,  and  bulk  soil  are  represented  by  a  circle  (yellow),

Pentagon  (Maroon),  and  square  (Green)  respectively.  The  cyanobacteria  reported  in  the

literature are represented by a star,  the color blue indicates free-living cyanobacteria and

green indicates those that live in symbiosis. The letters: A and B denote the main clades

formed in the analysis. The values above branches are the posterior probabilities.

Supporting information

S1 Table. Alpha diversity metrics for the 12 samples of genus Dioon (set 1).

S2 Table. Alpha diversity pairwise comparisons among sets of populations and 

compartments.

S1 Fig. Adult individual of Dioon merolae from the natural population.

S2 Fig. Taxonomic diversity and abundance of bacterial genera in the endosphere from

Dioon merolae (set 2). A) Heat tree of taxonomic diversity, the node width and color 

indicates the number of reads assigned to each taxon. Of the 20 most abundant genera 

(green) the symbol “&” represents the bacteria that have been reported as nitrogen-fixing. B) 

Heat map of 20 most abundant genera, each column corresponds to a bacterial genus, each 

row to a specific Dioon merolae sample.
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S2 Fig. Venn diagram showing the shared OTUs and genera (in parenthesis) between the D. 

merolae samples from botanical garden and natural population.

S3 Fig. Differences of bacterial diversity between the two populations from D. merolae 

(set 2 comparison). Venn diagram showing the shared OTUs and genera (in parenthesis) 

between the D. merolae samples from botanical garden and natural population.
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Fig 1
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Fig 2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2018. ; https://doi.org/10.1101/381798doi: bioRxiv preprint 

https://doi.org/10.1101/381798
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 3
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Fig 4
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Fig 5
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Table 1. Dioon samples of different species, compartments, populations, and sets; The
number of reads and OTUs obtained for each individual are also shown

END = Endosphere; RHZ = Rhizosphere; BSO= Bulk soil, BOG= Botanical garden, NAP =
Natural population 

ID Sample Species Compartment Population #Set #Reads #OTUs

01.DME D. merolae END BOG 1 105344 1405

02.DME D. merolae END BOG 1 69583 1274

03.DME D. merolae END BOG 1 31357 1174

04.DME D. merolae END BOG 1 44118 2621

05.DME D. merolae END BOG 1 35857 1396

06.DME D. merolae END BOG 1 9424 482
01.DSO D. sonorense END BOG 1 172972 4577

02.DSO D. sonorense END BOG 1 11324 844

01.DAN D. angustifolium END BOG 1 28949 1303
01.DPU D. purpusii END BOG 1 60344 2177

01.DSP D. spinulosum END BOG 1 148326 1045

01.DED D. edule END BOG 1 6912 559

01.DMJ D. mejiae END BOG 1 3650 148

07.DME D. merolae END NAP 2 308911 417
08.DME D. merolae END NAP 2 339633 575
09.DME D. merolae END NAP 2 3293 583

10.DME D. merolae END NAP 2 56776 1187

01.DPU D. purpusii RHZ BOG 3 59691 3821
01.DSP D. spinulosum RHZ BOG 3 172698 4937

01.DED D. edule RHZ BOG 3 22247 1399

01.DME D. merolae RHZ BOG 3 13159 1692

01.DMJ D. mejiae RHZ BOG 3 93036 2837

06.DME D. merolae RHZ BOG 3 151769 4558

01.DPU D. purpusii BSO BOG 4 330178 6079
01.DSP D. spinulosum BSO BOG 4 52869 4139

01.DED D. edule BSO BOG 4 14903 2730
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