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ABSTRACT 

Cancer stem cells (CSCs) are a heterogeneous and dynamic population that stands at the top of tumor cellular 

hierarchy and is responsible for maintenance of the tumor microenvironment. As methods of CSC isolation and 

functional interrogation advance, there is a need for a reliable and accessible quantitative approach to assess 

heterogeneity and state transition dynamics in CSCs. We developed a High-throughput Automated Single Cell Imaging 

Analysis (HASCIA) approach for quantitative assessment of protein expression with single cell resolution and applied 

the method to investigate spatiotemporal factors that influence CSC state transition using glioblastoma (GBM) CSC as 

a model system. We were able to validate the quantitative nature of this approach through comparison of the protein 

expression levels determined by HASCIA to those determined by immunoblotting. A virtue of HASCIA was exemplified 

by detection of a subpopulation of SOX2-low cells, which expanded in fraction size during state transition. HASCIA also 

revealed that CSCs were committed to loose stem cell state at an earlier time point than the average SOX2 level 

decreased. Functional assessment of stem cell frequency in combination with quantification of SOX2 expression by 

HASCIA defined a stable cut-off of SOX2 expression level for stem cell state. We also developed an approach to assess 

local cell density and found that denser monolayer areas possess higher average levels of SOX2, higher cell diversity 

and a presence of a sub-population of slowly proliferating SOX2-low CSCs. HASCIA is an open source software that 

facilitates understanding the dynamics of heterogeneous cell population such as that of CSCs and their progeny. It is a 

powerful and easy-to-use image analysis and statistical analysis tool available at https://hascia.lerner.ccf.org. 
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ABBREVIATIONS 

BMP4 - bone morphogenic protein 4 

CSC - cancer stem cell 

EGFR - epidermal growth factor receptor 

FBS - fetal bovine serum 

GBM - glioblastoma 

HASCIA - high-throughput automated single cell imaging analysis 

IQR - interquartile range 

LDA - limiting dilution assay  

MDn - median distance to top N neighboring particles 

NB - Neurobasal 

NWRn - number of particles within N * average particle radius 

OL - outliers 

PDX – patient-derived xenograft 
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INTRODUCTION 

Heterogeneity is a predominant feature of most biological systems (1,2,3) and emerging evidence supports the 

functional importance of cellular heterogeneity and noise for stability and plasticity in cell populations (4, 5, 6). 

Heterogeneity of response ensures robustness and stability of a population; phenotypic and genomic heterogeneity 

provides a substrate for adaptation and populational evolution. Complex tissue microenvironments are characterized 

by cellular hierarchies and uneven distribution of ligands, metabolites and energy sources, which in turn further 

increases heterogeneity of such systems. In cancers, intratumoral heterogeneity results in multiple cell subpopulations 

(7). Implications of such diversity include development of therapeutic resistance, tumor evolution and cellular 

population drift. Many cancer types have been shown to exhibit remarkable cellular heterogeneity including 

glioblastoma (GBM). This primary malignant brain tumor is notorious for development of therapeutic resistance, 

genetic and phenotypic diversity and drastic temporal cellular drift (8). 

Cancer stem cells (CSCs) have been first proposed as a model for acquisition of intratumoral heterogeneity (9). To 

date there is substantial evidence to support that GBM CSCs are involved in establishment of a diverse tumor 

microenvironment (10-15). Recent advances in isolation, manipulation and interrogation of CSCs have made it possible 

to recapitulate CSC behavior and study these cells in vitro (16). 

Emergence of single cell assessment approaches enabled evaluation of cellular diversity. Single cell DNA and RNA 

sequencing as well as flow cytometry and mass spectrometry have become widely used methods in the field of cancer 

research and have revolutionized our understanding of CSCs (17-20). However, most of the research efforts focus on 

static assessment of CSCs and underestimate spatial distribution of cell population. GBM CSCs are a dynamic system: 

these cells can transition in and out of the stem cell state and form intricate communication network within CSC 

population as well as with other cell types within the tumor (21-24). However, there is a lack of experimental 

approaches to assess spatiotemporal aspects of CSC biology. 

Immunofluorescence staining allows for direct visualization of cellular antigens in vivo and in vitro. The method has 

remained a staple of antigen detection and phenotype assessment since 1940 (25). However, despite widely accessible 

digital image acquisition, immunofluorescence implementation in modern research remains mostly qualitative. A 

survey of Pubmed using "Journal Article” [PT] AND 2017 [DP] AND “immunofluorescence" [TW] request revealed that 

only 13 out of 50 papers studied (26%) used immunofluorescence quantification techniques to report study results. 

Most of the 13 papers we reviewed utilized manual data quantification. An average modern smartphone possesses 2.5 

times more computing power than 1985 supercomputer (26), therefore computation speed and digital memory no 

longer pose limitations for most of the applications in modern science. In most areas of research the real limitation 

comes from lack of accessible, user-friendly software. 

Large-scale programmatically-driven data analysis is being used progressively more in biology in areas such as 

genomics, transcriptomics and mass spectrometry (27-30). Programming languages and computing environments like 

R, Python and Matlab offer powerful tools for data processing and analysis (31-33). Scientific image analysis has 

become accessible through development of ImageJ - open source software by NIH (34, 35). ImageJ and its specific 

application for biology - Fiji (36) allows users to quantify a wide variety of parameters based on pixel intensity and 

image coordinates. The software offers tools and plugins for particle analysis and an easy-to-learn macro language for 

batch image processing. RStudio’s Shiny is a platform for development of user-friendly interfaces for R-based statistical 

inference and data visualization.  

We utilized ImageJ macro and R languages, as well as the Shiny platform to create an accessible open source high-

throughput automated single cell imaging analysis (HASCIA) approach to immunofluorescence quantification. We 

applied the method to investigate population dynamics during GBM CSC state transition and examined spatiotemporal 

factors that play a role in this process.   
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MATERIALS AND METHODS 

CSC derivation and xenograft maintenance 

Previously established patient-derived xenograft (PDX) model of GBM (sample MDA23) (37) was obtained via a 

material transfer agreement from The University of Texas MD Anderson Cancer Center, Houston, TX. GBM cells were 

maintained using subcutaneous xenografts as previously described (38, 39). All experiments utilizing mice were 

approved by the Institutional Animal Care and Use Committee (IACUC) of the Cleveland Clinic. PDX model was 

maintained using immune-deficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice (Jackson Laboratory, Bar Harbor, 

ME, USA) for maintenance of tumor heterogeneity. Six-week-old female mice were subcutaneously injected in the 

flank with 2*10^6 freshly dissociated PDX GBM cells. Animals were sacrificed when tumor volume exceeded 5% of the 

animal’s body weight. Xenografted tumors were dissected mechanically and using papain dissociation kit (Worthington 

Biochemical Corporation, Lakewood, NJ, USA), CD133+ cells were subsequently enriched using the CD133 Magnetic 

Bead Kit for Hematopoietic Cells (CD133/2; Miltenyi Biotech, San Diego, CA, USA).  

GBM CSCs were propagated as a non-adherent sphere culture using Neurobasal complete medium (NBC) 

(Neurobasal medium (Life Technologies, Carlsbad, CA, USA) supplemented with B27 (Life Technologies), 1% 

penicillin/streptomycin (Life Technologies), 1 mM sodium pyruvate (Life Technologies), 2 mM L-glutamine (Life 

Technologies), 20 ng/mL EGF (R&D Systems, Minneapolis, MN, USA), and 20 ng/mL FGF-2 (R&D Systems) in 

humidified incubator with 5% CO2. Only low passage cells (<10) were used in all experiments to prevent cellular drift.  

 

CSC treatments 

For immunofluorescence staining and immunoblotting experiments cells were cultured as adherent monolayer on 

plates or glass cover slips coated Geltrex (Thermo Fisher Scientific, Waltham, MA, USA). To demonstrate change in 

epidermal growth factor receptor (EGFR) activation cells were cultured in three different conditions for 3 days: 1) NBC - 

Neurobasal complete medium: supplemented with 20 ng/mL EGF, and 20 ng/mL FGF-2, B27, 1% 

penicillin/streptomycin, 1 mM sodium pyruvate, and 2 mM L-glutamine;  2) NBF - Neurobasal medium supplemented 

with 10% fetal bovine serum (FBS, Sigma Aldrich, St. Louis, MO, USA), B27, 1% penicillin/streptomycin, 1 mM sodium 

pyruvate, and 2 mM L-glutamine; 3) DMEM+FBS - Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

10% FBS and 1% penicillin/streptomycin. For state transition experiments NBC with 25 ng/mL of bone morphogenic 

protein 4 (BMP4, R&D Systems) was used for 1-5 days to induce CSC differentiation. 

 

Immunoblotting 

Whole cell lysates were collected from adherent monolayer cell culture using 10% NP40 (Sigma Aldrich), 1mM 

EDTA, 150 mM NaCl, 10mM TrisCl pH 7.5 lysis buffer supplemented with protease and phosphatase inhibitor cocktails 

(Sigma Aldrich). GBM CSCs were analyzed by immunoblotting for expression of phospho-EGFR (Y1068, 1:1000, Cell 

Signaling, Danvers, MA, USA), SOX2 (1:500, R&D Systems) and phospho-STAT3 (1:1000, Y705, Cell Signaling). Anti-

beta-Actin (1:5000, Santa Cruz Biotechnology, Dallas, TX, USA) was used for loading control.  

 

Limiting dilution assay 

After exposure to one to five days of BMP4 cells were plated in a 96 well format with 24 wells of each dilution: 0.78, 

1.56, 3.125, 6.25, 12.5, 25, 50 and 100 cells/well. Number of wells positive for spheres was calculated 14 days later and 

stem cell frequencies were calculated using online tool available through the Walter and Eliza Hall Institute of Medical 

Research (http://bioinf.wehi.edu.au/software/elda/index.html) (40).  

 

Proliferation assay 

CellTrace Far Red dye (Life Technologies) was used for tracing of cell proliferation activity within the five-day 

period. Adherent monolayer cells were incubated with 1:1000 dilution of the dye concentrate in Neurobasal medium for 

20 min at 37 C. Following 3x wash with fresh Neurobasal medium cells were incubated in NBC medium for five days. 

Cells retaining the highest amount of dye represented the slowly dividing pool where as cells that divided multiple 

times had diluted the dye and therefore presented lower fluorescence intensity in far red channel.  

 

HASCIA method description 
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Phase I: Immunofluorescence staining 

To enable high-throughput parallel analysis of multiple conditions and up to four technical replicates we cultured 

cells in a 24-well format with glass cover-slips (Electron Microscopy Sciences, Hatford, PA, USA) on the bottom of the 

wells. To ensure stem cell phenotype is preserved during propagation as an adherent monolayer we coated the glass 

cover-slips with laminin-rich Geltrex solution (Life Technologies). Cells were fixed with a 4% solution of 

paraformaldehyde in phosphate buffered saline. After blocking and permeabilization with 2% donkey serum (EMD 

Millipore) and 0.1% triton (Sigma) we incubated the cells with 150 µL of primary and subsequently 500 µL of secondary 

antibody solutions directly in the 24-well plates, washing 3x with 1000 µL of PBS in between. Primary antibodies used: 

phospho-EGFR (Y1068, Cell Signaling), SOX2 (R&D Systems) and phospho-STAT3 (Y705, Cell Signaling). Secondary 

antibodies (Jackson ImmunoResearch): DL-488-conjugated donkey anti-mouse IgG, Cy3-conjugated donkey anti-

mouse IgG, DL-649-conjugated donkey anti-rabbit IgG.  

 As the last step, the internal controls (DNA and in some cases - Actin) were stained by incubating the cells with 

Hoechst 33342 (Polyscience Inc, Warrington, PA, USA) and phalloidin-Alexa-594 (Invitrogen, Carlsbad, CA, USA) 

solutions in PBS. Cover-slips were picked up from the wells and mounted on slides using gelvatol mounting medium 

(PVA (Sigma), Glycerol (Sigma), Sodium Azide (Fisher), TrisCl ph 8.5, water).  

 

Phase II: Digital imaging 

Imaging was carried out using Leica DM5000B microscope equipped with a Leica DFC310 FX Digital Color Camera 

(Fig. 1A). Five to twenty fields of view were captured from every cover-slip in multiple channels.  

 

Phase III: Image processing 

An ImageJ-based image processing script was developed to enable analysis of digital images. 

Script was created using ImageJ macro language (35, 41) and under Fiji version 1.0 (36), additional plugins used: 

CLAHE (42). The flow of the script is shown below and in Fig. 1B-C, code can be found by downloading the script file 

from https://hascia.lerner.ccf.org.  

 

1. Images from each condition and staining are grouped into stacks to enable batch analysis; 

2. Images are then normalized using shading images to cancel out any illumination, optics, camera and /or shutter 

imperfections; 

3. Based on the Hoechst DNA staining (nuclear internal control) a mask is created that delineates nuclear region 

and separates cells into individual particles using watershed functionality of ImageJ (Fig. 1B).  

4. If the cytoplasmic staining needs to be analyzed, delineation of cell borders is performed using dilated nuclear 

mask and a mask of a cytoplasmic standard (phalloidin). (Fig. 1C) 

5. The mask(s) is then applied to the staining of interest to measure fluorescence intensity in individual cells. The 

measurement is carried out using Analyze particles command optimized for automatic batch analysis of multiple 

image stacks.  

 

The measurements obtained from image analysis include an image Label, Raw Integreted Density (RawIntDen) - a 

measure of intensity of fluorescence in each particle, X and Y position of each particle on the image, Feret diameter - a 

maximum particle caliper, and many additional parameters that can be used further for data analysis.  

 

Phase IV: Data analysis 

For analysis of single cell measurements we developed a web-application using R and Shiny platform and packages 

{beeswarm}, {rmarkdown}, {moments}, {nortest}, {shiny} (Fig. 1D-E). Public version of all the software is available at 

https://hascia.lerner.ccf.org  

Measurements from each marker as well as internal control created by image processing script are imported into 

the platform, organized and then processed to analyze the following: 

1. Cell cycle changes. DNA staining intensity is plotted as a histogram or as a Kernel density plot. The web-app 

attempts to automatically identify G1 population by identifying the highest peak. G2 peak is identified by 
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multiplying G1 peak x value by 2 (G1x * 2). Boundaries of live cell population are then calculated with the following 

formula and applied to the plot:  

0.5 * G1x > live population > G2x + 2 * (G1x - 0.5 * G1x) 

Each graph can be manipulated to manually select G1 peak or manually outline viable cell population and exclude 

dead cells and cell aggregates from further analysis.  

2. Relative expression of stained markers. Using RawIntDen as a measure of fluorescence intensity, level of 

expression in different tested conditions can be compared. There are also two possible approaches for 

normalization of fluorescence intensity to internal control (i.e. DNA). The DNA intensity can be normalized to 

maximum of the selected live cell population and the marker intensity is divided by this normalized DNA value. 

Alternatively, marker intensity can be directly divided by DNA intensity. Both approaches enable more accurate per 

particle assessment of expression. Statistical analysis can be performed in this section: descriptive statistics include 

calculation of diversity coefficients, tests for normality, % outliers. Relative expression between conditions can be 

compared using t-test, pairwise t-test, Mann-Witney-Wilcoxon test and Kruskal-Wallis test. 

3. Spatial distribution of cells. Image Label is specified to identify cells located on the same image. Then, based on 

X and Y coordinates position of the center of each particle is identified. Feret’s diameter is used as a measure of 

particle’s caliper and is used to obtain mean particle diameter. Two parameters can be calculated by our web-

application: mean/median distance to top n number of closest neighbors (MDn) and number of particles within a 

certain radius of each cell (NWRn). Graphic representation of these parameters are outlined in Fig. 4A. Similarly to 

Relative expression section, comparative and descriptive statistical analysis can be performed on spatial 

parameters. 

4. Correlations between multiple parameters including normalized and non-normalized marker expression, MDn 

and NWRn. Web application plots total population distribution and calculates Pearson’s correlation. A subset of the 

total population can be outlined and plotted independently. 

 

Further statistical analysis 

For calculation and graphical presentation of diversity parameters we processed data using R, RStudio interface 

and {base} R graphics. To characterize differences in cell populations we used the following parameters:  

 

1. Tsallis entropy (43, 44) using Tsallis() function from {entropart} R package; 

2. Renyi entropy (45) using Renyi.z() function from {EntropyEstimation} R package; 

3. Percent outliers (46) by determining Q1 (25%) and Q3 (75%) by quantile() function from {stats} and calculating 

interquartile range (IQR): 

 

IQR = Q3 – Q1 

Lower outliers < Q1 - 1.5*IQR 

Higher outliers > Q3 + 1.5*IQR 

% OL = (N of Lower outliers + N of Higher outliers) / Total population; 

 

4. Kolmogorov-Smirnov test (47) was performed by comparing sample distribution with a normal distribution with 

the same average and standard deviation using functions rnorm() and ks.test() from {stats} R package; 

 

5. Anderson-Darling test (48) was performed using adtest() from {nortest} R package.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/381715doi: bioRxiv preprint 

https://doi.org/10.1101/381715
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  7 

RESULTS 

HASCIA method validation and assessment of GBM CSC population heterogeneity 

As a model of heterogeneous cell population we used PDX GBM CSCs. To validate the accuracy of assessing protein 

expression using HASCIA we first compared cumulative protein expression levels determined by immunoblotting with 

mean immunofluorescence staining intensities measured by HASCIA. For this purpose we chose a signaling pathway 

that is well-described and highly active in GBM CSC population: EGFR activation. To stimulate EGFR activation we 

stimulated with CSC NBC medium, which contains EGF. We used differentiation medium (DMEM+FBS) as well as 

Neurobasal medium without EGF and FGF but with addition of FBS (NBF) as a control (Fig.2A). Quantification of 

immunofluorescence staining for Tyr 1068 phosphorylated EGFR (pEGFR) using HASCIA revealed increased activation 

of the receptor in CSC propagating NBC medium that contains EGF. Interestingly, insulin-containing (through B27 

supplement) NBF medium was able to partially increase pEGFR levels compared to DMEM+FBS (without B27) (Fig. 2A). 

The same EGFR activation pattern detected by immunoblotting in the parallel samples (Fig. 2B) validated that HASCIA 

can quantitatively determine the average protein expression of the population. Beyond the mean expression levels of 

pEGFP of the cultures, HASCIA revealed heterogeneity of single cell pEGFR/DNA level. We utilized statistical 

approaches described previously (46) to assess and compare heterogeneity of pEGFR expression in GBM CSC 

populations (Table 1). We compared diversity by calculating Tsallis and Renyi entropies and percent outliers in the three 

populations. Diversity was the highest in NBF differentiation inducing condition indicating that this medium was able to 

sustain wider spectrum of cell state. We were also able to assess normality of the expression distributions by 

Kolmogorov-Smirnov and Anderson-Darling tests. From these experiments it became apparent that when subjected to 

different media conditions response of the GBM CSCs population is heterogeneous rather than binary. Population 

responds not only by shifting average expression but also by increasing or decreasing diversity and number of outliers. 

 

Direct transition out of stem cell state 

We next applied our method to investigate how GBM CSC population responds to a differentiation stimulus over 

time. We first determined SOX2 and pSTAT3 expression during a differentiation time courses as these markers have 

been described as predictors of stemness in CSCs (49, 50) (Fig. 3A). In a direct time course GBM CSCs were subjected to 

bone morphogenic protein 4 (BMP4) for one to five days and the cells were fixed and stained (Fig. 3B-C). Upon staining 

for SOX2 we observed a stable average SOX2 expression for the first three days and then a significant decline on days 4 

and 5 (Fig. 3B). Interestingly, plotting SOX2 expression against pSTAT3 expression not only confirmed a strong 

correlation between the two markers, but also revealed a sub-population of cells that expressed two markers at 

distinctively low levels separating this sub-population of cells from the majority. We measured the percentage of the 

SOX2-low/pSTAT3-low sub-population and plotted it against the time of treatment (Fig. 3C). An increase in SOX2-low 

population was observed beginning day 2 of exposure to differentiation medium, suggesting a possible state transition 

in the population during this time. The expansion of the SOX2-low cell population preceded average SOX2 expression 

change by two days, which may indicate that state transition happens earlier than the cumulative marker expression 

change in the total population becomes apparent.  Alternatively these data may indicate a sub-population with 

different kinetics of state transition.   

 

State transition and recovery during reversal of differentiation 

In attempt to identify a temporal point of no return for CSC state transition we subjected cells to BMP4 pre-

treatment for one to five days, after which we returned stem cell propagating medium (NBC) for five days (Fig. 3D-E). 

Analysis if SOX2 expression using HASCIA image processing revealed that even after one day of BMP4 treatment and 

subsequent recovery for five days average SOX2 level was significantly lower that in non-treated cells (Fig. 3D). The 

longer the period of pretreatment the lower the average SOX2 was observed. We also performed SOX2-low/pSTAT3-

low sub-population quantification similar to the direct transition experiment (Fig. 3E). Surprisingly, only cells pre-

treated for five days exhibited drastic increase in SOX2-low population. These data together with the results of direct 

transition out of stem cell state may indicate that marker expression changes are delayed in time from the actual state 

transition. To test that we performed a functional assessment of stem cell frequency using limiting dilution assay (LDA) 

(Fig. 3F). Estimated frequency of stem cells gradually decreased after day 2 of BMP4 exposure, which coincided with 

SOX2-low population expansion during direct time course. Together data from the time-courses and functional assay 
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may indicate the beginning of state transition at day 2 with overall populational change in marker expression took place 

around day 4 - 5.   

 

Identifying SOX2 expression level in a stem cell state 

Since the time course and self-renewal (LDA) experiments were performed using parallel replicates from a common 

GBM CSC population, we were able to directly compare the SOX2 expression levels with functional analysis. Using 

multiplex functionality of the HASCIA web-app we plotted the cell populations from the time course data of direct state 

transition experiment. We then outlined the top SOX2 expressing cells of the percentile that corresponded to the stem 

cell frequency determined by LDA for each time point (Fig. 3G). As a result we identified a cut-off value of SOX2/DNA 

for each population. Interestingly, the cut-off did not change in populations exposed to BMP4 for different length of 

time (Fig. 3H). This finding strongly supports SOX2 as an accurate marker of stem cell state and suggests that during 

state transition CSC population looses SOX2-high stem cells either through selection or through modulation of 

expression. 

 

Role of cell density in stem cell diversity and state transition 

Importance of cell-to-cell contact and interaction with extracellular matrix for GBM CSC propagation has been 

outlined in a several recent studies (51-53). HASCIA processing script measurements for each particle include 

coordinates of each nucleus centroid in the field of view as well as information about the diameter of the particle. We 

used these measurements to develop an automated quantification of two density parameters (Fig. 4A). We 

hypothesized that cell density influences stem cell state and state transition. First we created an uneven culture of GBM 

CSCs with areas of low and high cell density (Fig. 4B). We compared SOX2 expression with median distance to top ten 

neighboring cells (MD10) and number of cells within four nuclear radii (NWR4). In both cases we found a weak 

correlation between the two parameters. The majority of SOX2-high cells were located in high-density areas. Sub-

setting cells from high-density (MD10 < 50 - Fig. 4C) and low-density (MD10 > 50 - Fig. 4D) areas revealed a significant 

difference in diversity (Tsallis and Renyi entropies) of these two sub-populations. We then looked at proliferation of 

cells depending on density. Using CellTrace dye retention as a marker of slowly dividing cells we cultured GBM CSCs for 

five days. As expected, high-density areas of the monolayer contained slowly dividing cells (Fig. 4E). Interestingly, we 

observed SOX2-low population to be slower dividing. The results suggest that high-density areas are more diverse and 

contain both slowly dividing differentiated SOX2-low cells and rapidly dividing SOX2-high CSCs. Low density areas on 

the contrary have lower SOX2 expression diversity, slightly lower average SOX2 expression with rapidly proliferating 

cells. 

Lastly, we looked at how local microenvironment affects state transition (Fig. 4G). Using BMP4 to facilitate 

differentiation we plated cells into a 24 well plate at two different densities - 5,000 cells/well and 25,000 cells/well - and 

measured SOX2 expression on day 2, 3 and 4. Consistent with findings in previous experiments low-density monolayer 

had lower average SOX2 expression and response to BMP4 was apparent on day two in this population. We found that 

high-density culture responded to differentiating condition two days later than low-density culture.  
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DISCUSSION 

For accurate assessment and modeling of heterogeneous cell population dynamics experimental approaches 

should allow for quantifiable results to be acquired. Qualitative approaches such as immunoblotting and classical qPCR 

assess cumulative or average genetic makeup or phenotype in a population based on assessment of total cell lysates. 

Furthermore, biological systems present with a significant level of noise, thus high-throughput analysis techniques are 

warranted for multiple replicates to be included. Single cell mass spectrometry and flow cytometry are methods that 

allow analyses with single cell resolution, but their implementation is often limited due to high cost of equipment and 

dedicated software and technical complexity that requires users to undergo specific training. Immunofluorescence 

staining is a well-established and relatively inexpensive approach, readily available in majority of cancer research 

laboratories. We present a solution for adapting this method to serve CSC research purposes with a single cell 

resolution.  

Our open source software is easy to follow and does not require lengthy training. Our results are consistent with 

previously published papers (54-56) suggesting that quantitative immunofluorescence staining is reliably comparable to 

cumulative expression analysis by immunoblotting. It allows for better data normalization, normalization to DNA 

content, which cancels out the general increase in expression of many gene products due to cell cycle progression 

towards G2 cell cycle phase.  Single particle resolution allows to assess heterogeneity of protein expression and it’s shift 

during response to biological stimuli in a cell population. Several software solutions allow automated image 

quantification however they all require development statistical analysis pipelines by the user (57-58). HASCIA yields 

statistically analyzed and graphically presented data, ready for publication. The software can potentially be optimized 

and used to analyze images of tissue sections and RNA and DNA FISH (59).   

Heterogeneity of a cell population is often a result of a distinct minority sub-population being included in the total 

cell pool. Our results revealed a minor sub-population of GBM CSCs that is stable in a CSC propagating medium. 

Previous studies have suggested that multiple CSC subtypes may co-exist in the same tumor (60, 61). Observed 

increase in this minor SOX2-low sub-population followed BMP4-induced state transition suggests that these cells may 

be further on a differentiation spectrum.  

Temporal aspects of commitment for stem state transition in CSCs are understudied. Our results suggest that even 

though phenotypical shift in a population can be observed following up to 4 days of continuous differentiation stimulus, 

partial irreversible commitment to differentiation can happen following just one day of stimulation with a significant 

decrease in SOX2 appearing even after recovery. These results underline the long lasting effects of microenvironment 

on CSCs and the extent of population plasticity in PDX GBM CSCs. SOX2 is an established progenitor cell program 

transcription factor in GBM CSCs (62, 63). Our results provide insight into a tight correlation between state transition 

and SOX2 expression. Narrow variation in identified SOX2 cut-off value defined by functional analysis supports direct 

influence of this protein expression on sphere and tumor forming capacity.  

Cell density is closely dependent on cell adhesion and cell-to-cell communication. Our group and many other 

researchers have previously outlined the importance of adhesion and cell communication molecules in CSC 

maintenance and expansion (64-69). However in an experimental setting cell density is often overlooked and poorly 

controlled for across studies in CSC field. By developing a coordinate analysis of immunofluorescence images we were 

able to show that the local cell density impacted state transition dynamics, cellular diversity and cell proliferation. 

Optimal cell density for every particular GBM CSC specimen should be sought for reliable representation of GBM 

biology in vitro.  

In conclusion, our results obtained via HASCIA underline the biological importance of CSC population 

heterogeneity. HASCIA can serve a useful and accessible tool to further interrogate heterogeneous and complex CSC 

behavior and is available through https://hascia.lerner.ccf.org 
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FIGURE LEGENDS 

Figure 1. High-throughput automated single cell imaging analysis (HASCIA) method description. A -  

immunofluorescence images of an adherent GBM CSC monolayer, scale bar – 100 µm. Phase – phase contrast, Hoechst 

– DNA staining, SOX2 – stem cell marker, Phalloidin – b-Actin staining, pSTAT3 Y705 -  phosphorylated Y705 of STAT3 

staining. B – Algorithm for nuclear staining analysis. Nuclear staining images are used to create nuclear masks and 

separating particles. The mask is further used  for delineation of nuclear region in nuclear marker staining. Individual 

particles are subsequently analyzed using Particle Analysis feature of ImageJ. C – Algorithm for cytoplasmic staining 

analysis. Nuclear mask is created as in B with subsequent dilation to fill perinuclear area. Cytoplasmic standard staining 

(in this case – Actin, stained by Phalloidin-Alexa594) is used to create cell border outlines. Combined dilated nuclear 

mask and cell border mask yield cytoplasmic mask that is then used to delineate individual cellular cytoplasm on 

images of marker staining. D – screen shot of https://hascia.lerner.ccf.org . E – Algorithm for HASCIA web-application 

data processing. After image processing with ImageJ scrip, measurements are imported into the app, based on DNA 

intensity profiles live cell population for every specimen is outlined, expression in specimens is calculated by applying 

normalization of marker intensity to DNA intensity in each individual particle. The normalized data can further be used 

to compare expression between specimens, analyze local cell density and perform multiplexing to investigate 

correlations between parameters.  

 

Figure 2. HASCIA method validation and assessment of GBM CSC population heterogeneity. A – 

Immunofluorescence staining and quantification using HASCIA. Adherent CSC monolayer was treated for 3 days with 

DMEM+FBS, EGF-containing NBC or with NBF medium. The cells were then fixed and stained for phosphorylated 

Y1068 EGFR (green) and using Hoechst (blue) as a nuclear standard. Quantification with HASCIA revealed significant 

differences in pEGFR expression between the three groups. B – In parallel, after similar treatment an immunoblotting 

analysis was performed with whole cell lysates. C – Densitometry analysis of the immunoblotting revealed similar trend 

of pEGFR changes with different media. D – More detailed analysis of expression distribution measured by HASCIA 

revealed differences in diversity and distribution shape in addition to changes in average pEGFR expression.  

 

Figure 3. GBM CSC state transition and identification of SOX2 expression level in stem cell state. A – 

Experimental design for state transition time courses. GBM CSCs were cultured for total of 10 days in a 24-well plate. 

For differentiation induction experiments cells were treated with NBC + BMP4 for the last 0 – 5 days and then fixed and 

stained. For reversal of differentiation experiment cells were treated for 0 - 5 d of NBC + BMP4 and then returned to 

CSC-propagating NBC medium for 5 days before fixing and staining the cells. B – Differentiation induction time course. 

Overall SOX2/DNA levels of the population showed significant decrease on days 4 and 5. C – Quantification of SOX2-

low population (<0.2 SOX2/DNA) revealed increase of this subpopulation percentage on day 2. D – Pre-treatment and 

reversal time course showed significant decrease in SOX2/DNA even after 1 day of pre-treatment with BMP4. E – Stable 

increase in percentage of SOX2-low subpopulation (<0.2 SOX2/DNA) was observed only after 5 days of pre-treatment. 

F – Functional assessment of sphere forming capacity using LDA estimated stem cell frequency of cultures treated with 

BMP4 for varying durations. G – Multiplexing of SOX2/DNA levels with pSTAT3/DNA from the direct time course (in A) 

helped outline estimated % of true stem cells (in D) and this way cut-off values of SOX2/DNA were determined. H – For 

each culture with various duration of BMP4 treatment, top percentile, which correspond to sphere forming frequency 

(panel F), of CSCs racked according to SOX2 expression level were high lighted with red color, and the rest of the 

population was high lighted with blue color.  Average cut-off between cut-offs of day 0-5 +/- standard deviation (purple) 

was calculated. This cut-off value changed very little and independent of BMP4 exposure duration suggesting that the 

cells express SOX2 at higher than this level are capable of sphere formation. Thus, it divides each cell population into 

sphere-forming stem cells (red) and non-sphere forming cells (blue). 

 

Figure 4. Cell density correlates with SOX2 level. A – Using particle coordinates HASCIA allows to quantify two 

spatial parameters: mean/median distance to top N neighboring particles (MDn) and number of particles within N * 

average particle radius (NWRn). B – SOX2/DNA was plotted against MD10 and NWR4, which revealed significant 

correlation (Pearson’s test) between these parameters. Highest SOX2/DNA was observed in high-density areas. C – 

Subset of CSC population in low local density (MD10<50) has a lower diversity (Tsallis and Renyi entropies) and slightly 
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a lower average SOX2/DNA than D – CSCs in high local density area (MD10>50).  E – 5 day proliferation assay revealed 

slowly dividing cells (high retention of CellTrace dye) in high-density areas. F – Slowly dividing population possesses 

lower SOX2/DNA level. G – State transition time course of cells plated at 5,000/well and 25,000/well revealed faster 

response in low-density culture and higher, more stable SOX2/DNA level in high-density culture.  
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 DMEM+FBS NBC NBF 

Tsallis entropy 1.4969 1.9069 1.9276 

Renyi entropy 1.2773 1.7189 1.7413 

% Outliers 2.7701 2.4705 2.7331 

Kolmogorov-Smirnov index 0.0886 0.0634 0.0932 

Kolmogorov-Smirnov p-value 0.0069 0.0015 0.0090 

Anderson-Darling index 19.0460 9.3235 11.7658 

Anderson-Darling p-value 3.70E-24 1.37E-22 3.70E-24 

 

Table 1. Diversity and normality of pEGFR expression distribution in GBM CSCs 
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