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Abstract 

Copy number variants (CNVs) are a pervasive, but understudied source of genetic            

variation and evolutionary potential. Long-term evolution experiments in chemostats         

provide an ideal system for studying the molecular processes underlying CNV formation            

and the temporal dynamics of de novo CNVs. Here, we developed a fluorescent reporter              

to monitor gene amplifications and deletions at a specific locus with single-cell            

resolution. Using a CNV reporter in nitrogen-limited chemostats, we find that GAP1 CNVs             

are repeatedly generated and selected during the early stages of adaptive evolution            

resulting in predictable dynamics of CNV selection. However, subsequent diversification          

of populations defines a second phase of evolutionary dynamics that cannot be            

predicted. Using whole genome sequencing, we identified a variety of GAP1 CNVs that             

vary in size and copy number. Despite GAP1’s proximity to tandem repeats that facilitate              

intrachromosomal recombination, we find that non-allelic homologous recombination        

(NAHR) between flanking tandem repeats occurs infrequently. Rather, breakpoint         

characterization revealed that for at least 50% of GAP1 CNVs, origin-dependent           

inverted-repeat amplification (ODIRA), a DNA replication mediated process, is the likely           

mechanism. We also find evidence that ODIRA generates DUR3 CNVs, indicating that it             

may be a common mechanism of gene amplification. We combined the CNV reporter with              

barcode lineage tracking and found that 10 3-10 4 independent CNV-containing lineages          

initially compete within populations, which results in extreme clonal interference. Our           

study introduces a novel means of studying CNVs in heterogeneous cell populations and             

provides insight into the underlying dynamics of CNVs in evolution. 
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Introduction 

Copy number variants (CNVs) drive rapid adaptive evolution in diverse scenarios           

ranging from niche specialization to speciation and tumor evolution [1–4]. CNVs, which include             

gene duplications and deletions, underlie phenotypic diversity in natural populations [5–10], and            

can generate evolutionary novelty through modification of existing heritable material [11–14].           

Beneficial CNVs are associated with defense against disease in plants, increased nutrient            

transport in microbes, and drug resistant phenotypes in parasites and viruses [9,15–18]. Despite             

the importance of CNVs for phenotypic variation, evolution and disease, the underlying            

dynamics with which these alleles are generated and selected in evolving populations are not              

well understood.  

Long term experimental evolution provides an efficient means of gaining insights into            

evolutionary processes by allowing highly controlled and replicated selective conditions [19,20].           

Chemostats are culturing devices that maintain cells in a constant nutrient-limited growth state,             

enabling continuous culturing [21]. Nutrient limitation in chemostats provides a defined and            

strong selective pressure in which CNVs have been repeatedly identified as major drivers of              

adaptation. CNVs containing the gene responsible for transporting the limiting nutrient are            

repeatedly selected in a variety of organisms and conditions including Escherichia coli limited             

for lactose [22], Salmonella typhimurium in different carbon source limitations [23], and            

Saccharomyces cerevisiae in glucose-, phosphate-, sulfur- and nitrogen-limited chemostats         

[24–30]. CNVs confer large selective advantages and multiple, independent CNV alleles have            

been identified within populations [25–27,31]. These findings suggest that CNVs are generated            

at a high rate, but estimates differ greatly, ranging from 1 x 10 -10 to 3.4 x 10 -6 duplications per                   

cell per division, with variation in CNV formation rates potentially depending on locus and/or              
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condition [32,33]. A high rate of CNV formation suggests that multiple, independent            

CNV-containing lineages may compete during adaptive evolution resulting in clonal interference,           

which is characteristic of large, evolving populations [29,34–36]. However, the extent of clonal             

interference among CNV-containing lineages is unknown. 

The general amino acid permease, GAP1 , is ideally suited to studying the role of CNVs               

in adaptive evolution. GAP1 encodes a high-affinity transporter for all naturally occurring amino             

acids and analogues, and it is highly expressed in nitrogen-poor conditions [37,38]. We have              

previously shown that two classes of CNVs are selected at the GAP1 locus in S. cerevisiae:                

amplification alleles in glutamine and glutamate-limited chemostats and deletion alleles in urea-            

and allantoin-limited chemostats [24,25]. GAP1 CNVs are also found in natural populations.            

Multiple, tandem copies of GAP1 have been identified in wild populations of the nectar yeast,               

Metschnikowia reukaufii, which result in a competitive advantage over other microbes when            

amino acids are scarce [39]. As a frequent target of selection in adverse environments in both                

experimental and natural populations, GAP1 is a model locus for studying the dynamics and              

mechanisms underlying both gene amplification and deletion in evolving populations.  

CNVs are generated by two primary classes of mechanisms: homologous recombination           

and DNA replication [40–42]. DNA double strand breaks (DSBs) are typically repaired by             

homologous recombination and do not result in CNV formation. However, non-allelic           

homologous recombination (NAHR) can generate CNVs when the incorrect repair template is            

used, which occurs more often with repetitive DNA sequences such as transposable elements             

and long terminal repeats (LTRs) [43]. During DNA replication, stalled and broken replication             

forks can re-initiate DNA replication through processes including break-induced replication          

(BIR), microhomology-mediated break-induced replication (MMBIR), and fork stalling and         

template switching (FoSTes) [44–46]. BIR is driven by homologous sequences, whereas           
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MMBIR relies on shorter stretches of sequence homology. Recently, origin-dependent          

inverted-repeat amplification (ODIRA) has been identified as a new mechanism underlying           

amplification of the SUL1 locus in yeast [47,48]. ODIRA relies on the presence of a DNA                

replication origin and tandem inverted repeat sequences, and is hypothesized to involve the             

formation of extrachromosomal circular intermediates that replicate independently.  

Extrachromosomal circular DNA is common in yeast, and in humans may drive            

progression of tumorigenesis in cancer [49,50]. Extrachromosomal circular DNA formation is           

typically mediated by LTRs and other repetitive elements, and may represent an easy and              

reversible mechanism of generating adaptive CNVs [51,52]. Previously, we found that some            

GAP1 amplifications are extrachromosomal circular elements and we hypothesized that          

GAP1 circle alleles are excised after NAHR between flanking LTRs [25]. Identifying the            

mechanisms underlying CNV formation at different loci is required for understanding the roles of              

CNVs in evolutionary processes and tumorigenesis.  

A key limitation to the study of CNVs in evolving populations is the challenge of               

identifying them at low frequencies. CNVs are typically detected using molecular methods for             

interrogating DNA copy number including qPCR, southern blotting, DNA microarrays and           

sequencing [24–26]. Using any of these methods, de novo CNVs at a specific locus are               

undetectable in a heterogeneous population until present at high frequency (e.g. >50%). This             

precludes analysis of the early dynamics with which CNVs emerge and compete in evolving              

populations. As CNVs usually comprise genomic regions that include multiple neighboring           

genes [24], we hypothesized that CNVs could be identified on the basis of increased expression               

of a constitutively expressed fluorescent reporter gene inserted adjacent to a target gene of              

interest. A major benefit of this approach is that it detects CNVs independently of whole genome                

sequencing, enabling a high-resolution and inexpensive assay of CNV dynamics in evolving            
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populations. 

In this study, we constructed strains containing a fluorescent CNV reporter adjacent to             

GAP1 and performed evolution experiments in different selective environments using          

chemostats. The CNV reporter allowed us to visualize selection of CNVs at the GAP1 locus in                

real time with unprecedented temporal resolution. We find that CNV dynamics occur in two              

distinct phases: CNVs are selected early during adaptive evolution and quickly rise to high              

frequencies, but subsequent dynamics are complex. We find that GAP1 CNVs are diverse in              

size and copy number, and can be generated by aneuploidy, translocations and NAHR.             

Nucleotide resolution of GAP1 CNV breakpoints revealed that CNV formation is mediated by             

inverted repeat sequences for at least half of the resolvable cases, suggesting that             

replication-based mechanisms also underly gene amplification at the GAP1 locus. Analysis of            

multiple DUR3 amplifications also identified inverted repeat sequences at CNV breakpoints.           

These findings are consistent with ODIRA, suggesting it may be a major source of de novo                

CNVs in budding yeast. To characterize the substructure of the CNV subpopulation, we             

generated a lineage-tracking library using random DNA barcodes. FACS-based fractionation of           

CNV lineages and barcode sequencing identified thousands of individual CNV lineages           

consistent with a high CNV supply rate and extreme clonal interference. Together, our results              

show that CNVs are generated repeatedly by replication errors, and CNV-containing lineages            

experience extensive clonal interference, leading to complex dynamics within populations. 

5 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/381590doi: bioRxiv preprint 

https://doi.org/10.1101/381590
http://creativecommons.org/licenses/by/4.0/


 

Results 

Protein fluorescence increases proportionally with gene copy number 

We sought to construct a reporter for CNVs that occur at a given locus of interest.                

Based on previous studies [53–56], we hypothesized that CNVs that alter the number of copies               

of a constitutively expressed fluorescent protein gene would facilitate single cell detection of de              

novo copy number variation. To test the feasibility of this approach, we constructed haploid              

Saccharomyces cerevisiae strains isogenic to the reference strain (S288c) with one or two             

copies of a constitutively expressed GFP variant, mCitrine [57], and diploid strains with 1-4              

copies of mCitrine integrated into the genome (Table S1 ).  

Flow cytometry analysis confirmed that additional copies of mCitrine produce          

quantitatively distinct distributions of protein fluorescence (Figure 1A). Haploid cells with two            

copies of mCitrine have higher fluorescence than those with a single copy and there is minimal                

overlap between the distributions of fluorescent signal in the two strains. Interestingly,            

normalization of the fluorescent signal by forward scatter, which is correlated with cell size,              

shows that the concentration of fluorescent protein is proportional to the ploidy normalized copy              

number of the mCitrine gene (i.e. one copy in a haploid results in a signal equivalent to two                  

copies in a diploid and two copies in a haploid results in a signal similar to four copies in a                    

diploid). Thus, the cell size-normalized fluorescent signal, or concentration, accurately reports           

on the number of copies of the fluorescent gene in single cells. Therefore, integrating a               

constitutively expressed fluorescent protein gene proximate to an anticipated target of selection            

functions as a CNV reporter for tracking gene amplifications and deletions in evolving             

populations (Figure 1B).  
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Figure 1. Fluorescent protein signal is proportional to gene copy number. (A ) Protein fluorescence              
increases proportionally with increased copies of the mCitrine gene in both haploid and diploid cells               
containing variable numbers of a constitutively expressed mCitrine gene integrated at either the HO locus               
and/or the dubious ORF, YLR123C. The two copy diploid is heterozygous at both loci. Each distribution                
was estimated using 100,000 single cell measurements normalized by forward scatter, which varies as a               
function of cell size. (B ) Schematic representation of how the fluorescent reporter enables CNV detection               
in heterogeneous evolving populations through quantitative changes in protein fluorescence. 

A CNV reporter tracks the dynamics of GAP1 CNVs in real time 

Previous work has shown that spontaneous GAP1 amplifications are positively selected           

when glutamine or glutamate is the limiting nitrogen source during evolution experiments in             

chemostats [25]. Additionally, since GAP1 is highly expressed in urea-limited chemostats [58]            

but the permease does not transport urea, GAP1 deletions provide a fitness benefit and              

spontaneous deletions are selected in urea-limited conditions [25]. Thus, the use of different             

nitrogen sources in nitrogen-limited chemostats enables the study of both GAP1 amplification            

and deletion, making it an ideal system for studying the dynamics of CNV selection in evolving                

populations.  

We constructed a haploid strain containing a mCitrine CNV reporter 1,118 bases            

upstream of the GAP1 start codon to ensure that the native regulation of GAP1 was unaffected                
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[59]. We inoculated the GAP1 CNV reporter strain into 9 glutamine-, 9 urea- and 8               

glucose-limited chemostats, for a total of 26 populations (Table S2 ). For each of the three               

selection conditions, we included two control populations: one containing a single copy of the              

mCitrine CNV reporter at a neutral locus (one copy control) and one containing two copies of                

the mCitrine CNV reporter at two neutral loci (two copy control). All populations were maintained               

in continuous mode (dilution rate = 0.12 culture volumes/hr; population doubling time = 5.8              

hours) for 267 generations over 65 days. We sampled each of the 32 populations every 8                

generations and used flow cytometry to measure fluorescence in 100,000 cells per sample.  

Experimental evolution in a glutamine-limited chemostat resulted in a clear increase in            

fluorescence in individual cells containing the GAP1 CNV reporter by generation 79 (Figure             

2A). By contrast, populations containing one or two copies of mCitrine at neutral loci exhibited               

stable fluorescence for the duration of the experiment (Figure 2A). The maintenance of protein              

fluorescence in one and two copy control populations is consistent with the absence of a               

significant fitness cost associated with the CNV reporter (Figure S1). 

Analysis of eight additional independent populations evolving in glutamine-limited         

chemostats showed qualitatively similar dynamics of single-cell fluorescence over time (Figure           

S2). To summarize the dynamics of CNVs in evolving populations, we determined the median              

normalized fluorescence in each population at each time point. The fluorescent signal of the              

GAP1 CNV reporter increases with time of selection in all populations evolving in             

glutamine-limited chemostats (Figure 2B), consistent with the de novo generation and selection            

of CNVs at the GAP1  locus in all 9 populations. 

Populations evolving in urea-limited and glucose-limited chemostats do not show          

substantial changes in fluorescence with one exception (Figure 2B). In a single urea-limited             

population (ure_05), we detected a complete loss of fluorescent signal by generation 125,             
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indicating the occurrence of a GAP1 deletion that subsequently swept to fixation. Thus, the              

GAP1 CNV reporter detects both amplification and deletion alleles at the GAP1 locus. The              

absence of increases or decreases in fluorescence in all glucose-limited populations is            

consistent with the absence of selection for GAP1 CNVs in conditions that are irrelevant for               

GAP1  function.  

To quantify the proportion of cells containing a GAP1 duplication, we used one and two               

copy control strains to define flow cytometry gates. We found that the fluorescence of control               

strains varied slightly (Figure S3A), which may be indicative of either instrument variation or              

changes in cell physiology and morphology during the experiment as suggested by systematic             

changes in forward scatter with time (Figure S3B). Using a conservative method to classify              

individual cells containing GAP1 amplifications (methods ), we find that GAP1 amplification           

alleles are selected with remarkably reproducible dynamics in the nine glutamine-limited           

populations (Figure 2C). CNVs are predominantly duplications (two copies), but quantification           

of fluorescence suggests that many cells contain three or more copies of the GAP1 locus               

(Figure S4 ).  

We quantified the dynamics of CNVs in each population evolved in glutamine-limited            

chemostats using metrics defined by Lang et al., [60]. CNVs are detected by generation 70-75               

(average = 72.8 ± 2.6) in all 9 populations (Tup) (Table 1 ). To estimate the fitness of all CNV                   

lineages relative to the mean population fitness, we calculated Sup, the rate of increase in the                

abundance of the CNV subpopulation (see methods and Appendix). The average relative            

fitness of the CNV subpopulation is 1.077 (Sup) and CNV alleles are at frequencies greater than                

75% in all populations by 250 generations (Table 1 ). Thus, GAP1 amplifications emerge early,              

increase in frequency rapidly, and are maintained in each population for the duration of              

selection in glutamine-limited environments.  
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Figure 2. Dynamics of GAP1 CNVs in evolving populations. (A) Normalized distributions of             
single-cell fluorescence over time for a representative GAP1 CNV reporter strain and one and two copy                
controls evolving in glutamine-limited chemostats. Single cell fluorescence is normalized by the forward             
scatter measurement of the cell, which varies as a function of cell size. (B) Normalized median                
fluorescence for each population evolving in glutamine (n = 9), urea (n= 9) and glucose (n = 8) limited                   
chemostats. The fluorescence of one and two copy controls are plotted for reference (grey dotted lines).                
(C) Estimates of the proportion of cells with GAP1 amplifications over time for nine glutamine-limited               
populations containing the GAP1 CNV reporter.  
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Table 1. Summary statistics of GAP1 CNV dynamics in glutamine-limited chemostats. Tup is the              
number of elapsed generations before CNVs are reliably detected (>7% frequency, see            
methods ). Sup is the rate of increase in CNV abundance during the initial expansion of the CNV                 
subpopulation (Appendix ). The frequency of CNVs in the population at generation 150 and             
generation 250, when genome sequencing was performed, is also indicated.   
Population Tup 1 + Sup ± SE g150% g250% 

gln_01 70 1.066 ± 0.0038 62 77 

gln_02 75 1.071 ± 0.0034 57 87 

gln_03 70 1.071 ± 0.0037 88 94 

gln_04 70 1.079 ± 0.0036 80 95 

gln_05 75 1.077 ± 0.0041 74 89 

gln_06 70 1.082 ± 0.0043 91 75 

gln_07 75 1.094 ± 0.0048 18 78 

gln_08 75 1.090 ± 0.0052 90 82 

gln_09 75 1.066 ± 0.0050 48 93 

AVG ± STD 72.8 ± 2.6 1.077 ± 0.01 68 ± 24 86 ± 8 

 

We conclude that GAP1 CNVs undergo two distinct phases of population dynamics. The             

initial dynamics with which CNV subpopulations emerge and increase in frequency are highly             

reproducible in independent evolving populations. However, after 125 generations, the          

trajectories of the CNV subpopulation in the different populations diverge. Many populations            

maintain a high frequency of GAP1 amplification alleles, but in some populations they decrease              

in frequency. In one population, GAP1 CNV alleles are nearly lost entirely from the population               

before subsequently increasing to an appreciable frequency (gln_07). We hypothesize that CNV            

lineages are selected early and reproducibly due to a high supply rate of CNVs and the strength                 

of selection. In the second phase, the dynamics are more variable as competition between CNV               

lineages, other adaptive lineages, and secondary mutations influence evolutionary trajectories.  
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GAP1 CNV alleles are diverse within and between replicate populations 

Based on prior studies [24,26], we hypothesized that multiple CNV alleles exist within             

each population. To characterize the diversity of GAP1 CNVs, we isolated a total of 29 clones                

from glutamine- and 21 clones from urea- limited chemostats at 150 and 250 generations for               

whole genome sequencing (Table S3 ). For glutamine limitation, we enriched for clones            

containing GAP1 CNVs by identifying clones with increased fluorescence. For urea limitation,            

we randomly selected clones. We used read depth to calculate GAP1 copy number and to               

determine approximate CNV boundaries (Figure 3A, Table S4 and methods ). We find that             

GAP1 copy number estimated by sequencing read depth correlates with the fluorescent signal             

for individual lineages (Figure 3B), indicating that fluorescent signal is predictive of copy             

number. In 3 clones, we find increased read depth across the entirety of chromosome XI               

consistent with aneuploidy. Thus, our CNV reporter is able to detect aneuploid chromosomes as              

well as CNVs.  

We identified diverse GAP1 CNVs between and within populations (Figure 3C). Analysis            

of at least two GAP1 CNV containing clones from each glumatime-limited population failed to              

identify a CNV common to any population. This suggests that GAP1 CNVs are not              

predominantly formed through a recurrent mechanism as might be anticipated by the presence             

of proximate repetitive elements. Although in some cases the identical CNV was identified in              

different clones within populations, in the majority of populations (6/9) different clones had             

different CNVs. For example, at generation 150 in population gln_01 we identified a large GAP1               

CNV that includes the entire right arm of chromosome XI (gln_01_c2) and another clone that               

was aneuploid for the entire chromosome (gln_01). At generation 250, isolated clones from             

population gln_01 have CNV alleles that are distinct from each other and from those observed               
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at generation 150. Clones from the 8 additional glutamine-limited populations show evidence for             

CNV diversity within and between the two time points analyzed (Figure 3C). Thus, sequence              

analysis of a small number of clonal isolates suggest the presence of multiple CNV lineages               

within evolving populations. 

Importantly, while control populations evolving in glutamine-limited chemostats did not           

show evidence for GAP1 CNVs on the basis of fluorescence, sequence analysis identified             

GAP1 amplifications in lineages isolated from these populations (Appendix ). As one and two             

copy control strains do not have the GAP1 CNV reporter, this suggests that GAP1 CNV               

formation and selection is not affected by the reporter. Moreover, we find no evidence that the                

molecular features of GAP1 CNVs are altered as a result of the CNV reporter.  

We determined the fitness of GAP1 CNV-containing clones using pair-wise competitive           

fitness assays in glutamine-limited chemostats (Figure S5 and Figure 3C). The majority of             

evolved clones (14/21) have higher relative fitness compared to the ancestral strain, with fitness              

coefficients ranging from 0.08-0.30, indicating that GAP1 CNVs typically confer large fitness            

benefits.  
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Figure 3. Diversity and fitness effects of GAP1 CNVs. (A) Representative sequence read depth plot               
from a glutamine-limited clone (gln_01_c4). The nucleotide coordinates of GAP1 in our CNV reporter              
strain are 518438-520246 (blue line). Estimated breakpoint boundaries are shown in red. Read depth was               
normalized to the average read depth on chromosome XI. Read depth at each nucleotide was randomly                
downsampled for presentation purposes. (B) Read depth based estimates of GAP1 copy number for              
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glutamine-limited clones are positively correlated with median fluorescence of the clonal sample,            
indicating that fluorescence is informative about the copy number of de novo CNVs. (C) Schematic               
representation of CNVs identified in clones isolated from glutamine-limited populations. Copy number and             
CNV boundaries were estimated using read depth (methods ). The reported copy number refers             
specifically to the GAP1 coding sequence and does not necessarily reflect copy number throughout the               
entire CNV, which may vary.  

DUR3 CNVs are repeatedly selected during urea limitation  

We analyzed the genome sequences of 21 clones isolated from urea-limited populations            

and identified multiple CNVs at the DUR3 locus (Figure S6A and Appendix ). DUR3 encodes a               

high affinity urea transporter and we have previously reported DUR3 amplifications during            

experimental evolution in a urea-limited chemostat [24]. We compared properties of GAP1 and             

DUR3 amplifications and found that the average copy number for clones with GAP1 CNVs is 3                

(Figure S6B) whereas clones with DUR3 CNVs contain significantly more copies with an             

average copy number of 5 (Figure S6C, t-test, p-value < 0.01). Copy number does not               

significantly increase in clones between 150 and 250 generations. DUR3 CNV alleles (average             

of 26 kilobases) are significantly smaller than GAP1 CNVs (average of 105 kilobases) (Figure              

S6D-E, t-test, p-value < 0.01). Thus, comparison of GAP1 and DUR3 CNVs suggests significant              

differences in the generation and selection of CNVs as a function of locus and selective               

condition.  

CNV breakpoints are characterized by interrupted inverted repeats 

To resolve CNV breakpoint sequences, we generated a pipeline integrating CNV calls            

from existing CNV detection methods (CNVnator, Pindel, Lumpy, and SvABA [61–64] and            

optimized their performance on synthetic yeast genome data (Supplementary Information)          

simulating both clonal (Figure S7) and heterogeneous populations (Figure S8 ). Although these            

algorithms perform well using simulated data, we found that they had a high false positive and                
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false negative rate when applied to real data (Table S5 and Table S6 ) and in general were not                  

informative about the novel sequence formed at CNV boundaries. Therefore, we developed a             

breakpoint detection pipeline that integrates information from read depth, discordant reads and            

split reads. To define the breakpoint sequence, we performed de novo assembly using all split               

reads and aligned the resulting contig against the reference genome (methods ). We used             

information about breakpoints and copy number to infer the likely mechanism by which CNVs              

were generated (methods ).  

We analyzed 27 lineages containing GAP1 CNVs and inferred the underlying           

mechanisms for 16 (59%) of them. Of the 16 GAP1 CNVs that can be reliably resolved, 5 (31%)                  

are likely the result of NAHR, 3 (19%) are the result of aneuploidies and 2 (12%) are the result                   

of interchromosomal translocations. For 6 out of 16 (38%) GAP1 CNVs, we identified a pair of                

inverted repeated sequence separated by a short distance (less than one Okazaki fragment             

size) proximate to the breakpoint (Figure 4A and Appendix ). Typically, we find a single copy of                

the inverted repeat retained in the breakpoint in addition to an absent intervening sequence              

(AIS) that is present between the inverted repeats in the reference sequence but not the CNV                

allele. In some cases, breakpoints are comprised of inverted sequences that overlap in the              

original reference sequence. These overlaps frequently include one of the inverted repeats and             

are retained in the breakpoint assembly. These characteristic features comprising closely           

spaced inverted repeats with interstitial gain and loss, proximity to an origin of replication, and               

an odd copy number of amplified region are consistent with CNV formation mediated by ODIRA. 

Analysis of DUR3 amplifications suggests that all DUR3 CNVs are formed through            

ODIRA (Table S5 ). DUR3 amplification breakpoints occur at inverted repeat sequences and            

typically result in an AIS (Figure 4B and Appendix ). Analysis of all ODIRA-mediated             

breakpoints shows that the inverted repeat sequences range in length from 4-15bp with a              
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median length of 8bp that are spaced 50bp apart (Figure 4C). In those cases that result in an                  

AIS at the breakpoint, the absent sequence is typically 20bp (Figure 4C).  
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Figure 4. Interrupted inverted repeats mediate CNV formation. The locations of CNV breakpoints             
were identified using a weighted combination of co-occurrent discordant and split reads. To characterize              
novel sequence, we identified all supporting split reads, performed de novo assembly and aligned against               
the reference genome. (A) Representative CNV breakpoint for a GAP1 CNV. The breakpoint is              
characterized by 5-bp inverted repeats interrupted by a 46bp sequence, which resolves to a breakpoint               
sequence comprising a short inverted sequence (blue) and a single copy of the inverted repeat (red).                
Only 17bp of the sequence between the inverted repeats is retained in the breakpoint assembly (green)                
with 29bp absent from the breakpoint assembly (grey). (B) Representative breakpoint of a CNV              
containing DUR3. The breakpoint sequence is characterized by a 9bp inverted repeat interrupted by a               
55bp sequence. The breakpoint resolves to a 43bp inversion (blue), a single copy of the inverted repeat                 
(red) and loss of 12 nucleotides (grey). (C) Distribution of sequence features across 29 breakpoints at the                 
GAP1  and DUR3 loci that contain inverted repeats.  

Whole genome population sequencing provides insight into population        

heterogeneity 

To comprehensively characterize acquired genomic variation in populations, we         

performed whole population, whole genome sequencing of glutamine-, urea-, and          

glucose-limited populations at generations 150 and 250 (Table S3 ). Analysis of relative            

sequence read depth is consistent with high frequency GAP1 CNVs in glutamine-limited            

populations (see Appendix ). Population sequencing also confirmed the fixation of a GAP1            

deletion (ure_05) in a urea-limited population. Relative sequence read depth at the GAP1 locus              

correlates well with the normalized fluorescence of the GAP1 CNV reporter in populations             

(Figure S9 ) providing additional evidence for the utility of the CNV reporter. In glutamine-limited              

chemostats, GAP1 copy number estimated within populations (which is a function of copy             

number within clones and allele frequencies) ranges from 2-4 copies, with a trend towards              

increased copy number over time (Figure S9 ).  

We performed single nucleotide polymorphism (SNP) analysis using genome         

sequencing data from populations (Table S7 ) and clones (Table S8 ) at generations 150 and              

250. More non-synonymous SNPs were identified in glucose-limited populations than glutamine-           

and urea-limited populations (Table 2 ), which contained GAP1 and DUR3 amplifications at high             
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frequencies at 150 and 250 generations. In contrast to previous studies [28,29], we did not               

identify CNVs at the HXT6/7 locus in glucose-limited populations. Therefore, increased           

nucleotide variation within these populations may reflect alternative adaptive strategies in           

glucose-limited populations. 

 

Table 2. Summary of single nucleotide variation in three different selection conditions.            
Populations were sequenced at 150 and 250 generations. For variants that were identified at              
both time points, we determined whether they increased (↑) or decreased (↓) in frequency              
between generation 150 and 250.  
 Glucose (n=10) Urea (n=11) Glutamine (n=11) 
 Total Trend Total Trend Total Trend 
Predicted 
effect  g150 g250 ↑ ↓ g150 g250 ↑ ↓ g150 g250 ↑ ↓ 
Non-coding 4 9 2 1 8 12 1 0 6 5 0 0 
Missense 47 61 17 4 22 34 6 2 12 22 4 1 
Frameshift 4 5 1 1 5 6 2 0 2 2 0 0 
Synonymous  1 7 0 0 4 10 2 0 4 3 0 0 
Stop gained 4 10 2 0 7 4 0 2 0 5 0 0 
Start lost 0 1 0 0 0 0 0 0 0 0 0 0 
Splice variant 2 3 0 1 0 0 0 0 0 1 0 0 
Mitochondrial 
genome 0 0 0 0 0 2 0 0 0 0 0 0 
Inframe 
insertion 0 0 0 0 0 0 0 0 0 1 0 0 

Total variants 62 96 22 7 46 68 11 4 24 39 4 1 

 

We find multiple genes with independent, non-synonymous variation in glutamine-limited          

populations (Table 3 ) including MCK1, a protein kinase with potential roles in NHEJ; SOG2 , a               

member of the RAM signaling pathway and regulator of bud separation after mitosis; and TAO3 ,               

another member of the RAM network. Our lab has previously reported mutations in MCK1              

during glutamine and arginine limitation [24], suggesting that it is a recurrent target of selection               

in these conditions. Changes in cell morphology are potentially adaptive in nutrient-poor            
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conditions, which may result from defects in cell cycle progression and bud separation             

associated with mutations in the RAM pathway [65]. 

In the nine urea-limited populations, we identified 14 independent non-synonymous          

variants in DUR1,2 (Table 3 ). DUR1,2, encodes urea amidolyase, which metabolizes urea to             

ammonium. At two different locations in the gene, we find that the exact nucleotide was mutated                

multiple times independently. In a third location, we identified a SNP at the exact nucleotide               

position as previously reported [24]. Thus, a subset of variants in DUR1,2 appear to be uniquely                

beneficial and recurrently selected. Interestingly, we did not detect nonsense mutations among            

these 14 mutations suggesting that acquired variants alter DUR1,2 function rather than            

rendering it non-functional.  

In glucose-limited populations, we identified multiple, independent mutations in four          

genes (Table 3 ): TRK1, a component of the potassium transport system; SVF1 , which is              

important for the diauxic growth shift and is implicated in cell survival during aneuploidy [66];               

CDC48, an AAA ATPase; and WHI2 , which is a mediator of the cellular stress response.               

Previous studies have identified loss-of-function mutations in WHI2 suggesting it is a general             

target of selection across different conditions [24,27,67].  

Analysis of clonal samples (Table S8 ) was largely consistent with population           

sequencing. We identified two cases in which SNPs occurred within GAP1 CNVs. These SNPs              

are present at frequencies of 53% in a lineage containing a GAP1 duplication and 30% in a                 

lineage containing a GAP1 triplication indicating that they are present on only one of the copies                

within the CNV. We also identified polymorphisms within DUR3 amplifications. This suggests            

that individual copies of a gene within a CNV can accumulate additional mutations even in               

relatively short-term evolutionary scenarios. Interestingly, 8 of the 9 clones with DUR3            
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amplifications also acquired a variant in DUR1,2, which may be indicative of a synergistic              

relationship between CNVs and single nucleotide variation. 

 

Table 3. Genes with multiple, independent, non-synonymous acquired mutations.         
Variants with frequency greater than 5% within each population. 

Glucose-limitation Urea-limitation      Glutamine-limitation 

Gene Name Total Variants Gene Name Total Variants Gene Name Total Variants 
TRK1 11 DUR1,2 14 MCK1 3 
SVF1 2   SOG2 3 

CDC48 3   TAO3 2 
WHI2 3   GPB2 2 

 

Lineage tracking reveals extensive clonal interference among CNV        

lineages 

The reproducible dynamics of CNV lineages observed during glutamine-limited         

experimental evolution may be due to two non-exclusive reasons: 1) a high supply rate of de                

novo CNVs or 2) pre-existing CNVs in the ancestral population (Figure S10 ). In both scenarios,               

a single CNV or multiple, competing CNVs may underlie the reproducible dynamics. Sequence             

analysis of clonal lineages suggests at least two, and as many as four, CNV lineages may                

co-exist in populations (Figure 3 ); however, genome sequencing is uninformative about the total             

number of lineages for two key reasons. First, the potential for recurrence of CNVs confounds               

distinguishing CNVs that are identical by state from those that are identical by descent. Second,               

as gene amplifications can exhibit instability, CNVs that arise de novo may subsequently             

diversify over time resulting in apparently distinct alleles that are derived from a common event. 

To quantify the number, relationship and dynamics of individual CNV lineages, we            

constructed a lineage tracking library using random DNA barcodes [68]. We constructed a             
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library of ~80,000 unique barcodes (Figure S11 ) in the background of the GAP1 CNV reporter               

and performed six independent replicates in glutamine-limited chemostats. Real time monitoring           

of CNV dynamics using the GAP1 CNV reporter recapitulated the dynamics of our original              

experiment (Figure 5A, Figure S12A and Table S9) although CNV lineages appeared earlier in              

these populations (Tup; t-test p-value < 0.01). As the lineage tracking strain was independently              

derived from the strain used in our original experiment, these results indicate that selection of               

GAP1  CNVs in glutamine limitation is reproducible and independent of strain background. 

To quantify individual lineages, we isolated the subpopulation containing CNVs from two            

populations (bc01 and bc02) at multiple timepoints (generations 70, 90, 150, and 270) using              

fluorescence activated cell sorting (FACS) (Figure 5A). We sequenced barcodes from the CNV             

subpopulation at each time point and determined the number of unique lineages ([69] and              

methods ). To account for variation in the purity of the isolated CNV subpopulation, we analyzed               

individual clones from the CNV subpopulation isolated by FACS to estimate a false positive rate,               

which we find varies as a function of time point (Figure S12B and methods ), and applied this                 

correction to barcode counts (Table S10 ).  
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Figure 5. Lineage tracking reveals extensive clonal interference among CNV-containing lineages .           
(A ) We used fluorescence-activated cell sorting (FACS) to fractionate cells containing GAP1 CNVs from 2               
independent populations at four time points (dashed black lines) and performed barcode sequencing. (B )              
Using a sample- and time point-specific false positive correction, we identified 7067, 973, 131, and 76                
barcodes in bc01 (right) at generations 70, 90,150 and 270 respectively and 5305, 5351, 583, and 28                 
barcodes in bc02 (left) at generations 70, 90,150 and 270 respectively. The 21 unique barcodes in bc01                 
and 18 unique barcodes in bc02 that are present at >1% population frequency in at least one time point                   
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are represented by a unique color in the plot. All other lineages that are never found at >1% frequency                   
are shown in grey. Lineages denoted by a * are found at >1% frequency in both populations.  

 

Strikingly, we detect thousands of independent GAP1 CNV lineages at generation 70            

indicating that a large number of independent GAP1 CNVs are generated and selected in the               

early stages of glutamine limitation (Figure 5B). Applying our false positive correction, we             

identified 7,067 GAP1 CNV lineages in bc01 and 5,305 GAP1 CNV lineages in bc02 at               

generation 70 (methods; Table S10). To increase the stringency of CNV lineage identification,             

we required a lineage tracking barcode be detected in at least two consecutive time points in the                 

CNV subpopulation. Using this conservative criterion, we detected 872 and 2,695           

CNV-containing lineages in bc01 and bc02, respectively (Table S10). Thus, between 10 3-10 4            

independent CNV lineages initially compete within each population containing ~10 8 cells. 

The overall diversity of CNV lineages decreases dramatically with time, consistent with            

decreases in lineage diversity observed in other evolution experiments [68,70]. By generation            

270, we detect only 76 CNV lineages in bc01 and 28 CNV lineages in bc02. To determine the                  

dominant lineages, we identified barcodes that reached greater than 1% frequency in the CNV              

subpopulation in at least one time point: 21 independent lineages are found at greater than 1%                

frequency in bc01 and 18 independent lineages are found at greater than 1% frequency in bc02                

(Figure 5B). These results indicate the presence and persistence of multiple GAP1 CNVs,             

where glutamine-limited populations are characterized by large initial diversity followed by a            

dramatic reduction in the diversity of CNV lineages. 

Although CNVs rise to high population frequencies in both populations (Figure 5A), the             

composition of competing CNV lineages is dramatically different: in bc02, a single lineage             

dominates the population by generation 150 (Figure 5B), whereas in bc01, there is much              

greater diversity at these latter time points. In both populations, several CNV lineages that              

24 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/381590doi: bioRxiv preprint 

https://paperpile.com/c/NZCdOp/f6ve+LSyu
https://doi.org/10.1101/381590
http://creativecommons.org/licenses/by/4.0/


 

comprise a large fraction of the CNV subpopulation at early generations (generations 70, 90, or               

150) are extinct by generation 270. Thus, within populations, individual CNV lineages do not              

increase in frequency with uniform dynamics despite consistent and reproducible dynamics of            

the entire CNV subpopulations (Figures 5A and Figure 2 ). Differences in fitness between             

individual CNV lineages, possibly as a result of copy number, CNV size and secondary adaptive               

mutations, are likely to contribute to these dynamics. 

CNV subpopulations comprise de novo and pre-existing CNV alleles 

To distinguish the contribution of pre-existing genetic variation and de novo variation to             

CNV lineage dynamics, we assessed whether barcodes were shared between CNV lineages in             

independent populations. We identified four barcodes at greater than 1% frequency that are             

common to both populations (Figure 5B) and are therefore likely to have been present in the                

ancestral population. One of these barcodes (indicated in light purple) was present at 14% in               

bc01 and 19% in bc02 at generation 70. We find that the barcode for this lineage was                 

over-represented in the ancestral unselected population (an initial frequency of 0.014%, which is             

one order of magnitude greater than the average starting frequency of 0.0011%; Figure S11 ).              

Although there is a possibility that de novo CNVs formed independently in this barcode lineage,               

it is more likely that this lineage contained a pre-existing CNV in the ancestral population. While                

this lineage represented a sizable fraction of the CNV subpopulation in both replicate             

populations, it was only maintained at high frequency in bc01. Only one of the four pre-existing                

CNV lineages persists throughout the experiment in both populations. By contrast, in each             

population, we identified 17 and 14 unique high frequency CNV lineages that are most likely               

new CNVs. These results indicate that both pre-existing CNVs and de novo CNVs that arise               

during glutamine limitation contribute to adaptive evolution.  

25 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/381590doi: bioRxiv preprint 

https://doi.org/10.1101/381590
http://creativecommons.org/licenses/by/4.0/


 

Discussion 

Copy number variants are a primary class of genetic variation and adaptive potential. In              

this study, we sought to understand the short-term fate of CNVs as they are generated and                

selected in evolving populations. Previous work from our laboratory and others has shown that              

well-defined, strong selection in chemostats provides an ideal system for studying CNVs. We             

used nitrogen limitation to establish conditions that positively select for amplification and            

deletion of the gene GAP1, which encodes the general amino acid permease, in S. cerevisiae. 

A GAP1  CNV reporter reveals the dynamics of selection 

To determine the dynamics with which CNVs are selected at the GAP1 locus, we used a                

constitutively expressed fluorescent gene located adjacent to GAP1 and tracked changes in            

single cell fluorescence over time. While one and two copy control strains with mCitrine at               

neutral loci maintain a steady fluorescent signal over 250 generations of selection, all             

glutamine-limited populations with the GAP1 CNV reporter show increased fluorescence by           

generation 75. Importantly, the structure and breakpoints of CNVs within and between            

populations are different, indicating independent formation of CNVs. Control strains were           

inoculated independently, and have different genetic backgrounds, but also form CNVs at the             

GAP1 locus as determined by whole genome sequencing. These data indicate that GAP1 CNVs              

are positively selected early and repeatedly in glutamine-limited environments.  

Inferences of CNV formation mechanisms 

Whole genome sequencing of GAP1 CNV lineages that were isolated on the basis of              

increased fluorescence uncovered a wide range of CNVs within and between populations. We             
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found cases in which distinct alleles were identified within populations at different time points              

and cases in which we identified the same CNV allele 100 generations later. GAP1 CNV alleles                

are 105 kilobases on average, but can include the entire right arm of chromosome XI (260                

kilobases). A previous study in bacteria showed that there is a cost to gene duplication, with a                 

fitness reduction of 0.15% per kilobase [71]. Therefore, we hypothesized that CNVs would             

decrease in size over evolutionary time through a refinement process in order to reduce the               

fitness burden. However, we failed to detect a significant reduction in CNV allele size over time.                

This may be because increased CNV size does not confer a fitness cost in yeast, the fitness                 

benefit of the GAP1 CNV outweighs this cost, or because there are other genes within the CNV                 

whose amplification confers a fitness benefit.  

Breakpoint analysis provided insight into CNV formation mechanisms. We identified          

breakpoints within LTRs for 5 glutamine-limited clones. These clones all have 2 copies of GAP1 ,               

which suggests that these CNVs were formed by a tandem duplication mediated through NAHR.              

Surprisingly, GAP1 gene amplifications occurring between the flanking LTRs YKRCdelta11 and           

YKRCdelta12 are infrequent (3/27 GAP1 CNVs). The GAP1 deletion, which occurred in one             

population in urea limitation, had breakpoints in YKRCdelta11 and YKRCdelta12. We did not             

find evidence for the selection of GAP1circle CNVs in any population. 

We identified 6 GAP1 CNVs and 9 DUR3 CNVs containing a pair of breakpoints that                

comprise closely-spaced inverted repeat sequences. These CNVs have specific characteristics          

that are consistent with the ODIRA mechanism, including an odd copy number and proximity to               

an autonomously replicating sequence. Thus, while NAHR is likely to play a role in CNV               

formation, our results suggest that replication-based mechanisms may be a predominant source            

of gene amplifications in yeast. 
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The large number of CNV lineages identified in our study indicates that they occur at a                 

high rate. Recent studies have suggested that adaptive mutations are stimulated by the             

environment. Stress can lead to increases in genome-wide mutation rates in both bacteria and              

yeast [72–74] and replicative stress can lead directly to increased formation of CNVs [75,76].              

Other groups have proposed an interplay between transcription and CNV generation, and that             

active transcription units might even be “hotspots” [76]. These hotspots, often designated as             

common fragile sites, may occur in large, late replicating genes, and be a function of inter-origin                

distance [77–79]. Local transcription at the rDNA locus leads to rDNA amplification, and is              

thought to be regulated in response to the environment [80]. Transcription of the CUP1 locus in                

response to environmental copper leads to promoter activity that further destabilizes stalled            

replication forks and generates CNVs [81]. Given the high level of GAP1 transcription in              

nitrogen limited chemostats [58] it is tempting to speculate that this condition may promote the               

formation of GAP1 CNVs. Further studies are required to understand the full extent of              

processes that underlie CNV formation at the GAP1 locus and how these different mechanisms              

may contribute to the fitness and overall success of CNV lineages. 

Clonal interference underlies CNV dynamics 

By combining a CNV reporter with lineage tracking, we identified a surprisingly large             

number of independent CNV lineages. Whereas clonal isolation and sequencing suggested at            

least four independent lineages, lineage tracking indicates that many thousands of individual            

CNV lineages emerge within less than 100 generations. Most of these lineages do not ever               

achieve high frequencies in the populations, as we identified only 18-21 lineages present at              

>1% frequency. We hypothesize that the frequency of GAP1 CNV events can be attributed to a                

combination of factors including: a high mutation supply rate due in part to the large chemostat                
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population size (~10 8), the strength of selection, and the fitness benefit conferred by GAP1              

amplification. Together, these factors contribute to an early, deterministic phase, during which            

CNVs are formed at a high rate and thousands of lineages with CNVs rapidly increase in                

frequency. During a second phase, the dynamics are more variable as competition from             

different types of adaptive lineages, and additional acquired variation, influence evolutionary           

trajectories of individual CNV lineages. This phenomenon has recently been observed in other             

evolution experiments, where early events are driven by multiple competing single-mutant           

lineages [70], but later dynamics are influenced by stochastic factors and secondary mutations             

[68].  

While we found lineages that were common to both populations (at least one of which is                

likely to contain a pre-existing CNV), ancestral lineages do not exclusively drive the dynamics              

we observe. Pre-existing CNV lineages have different dynamics in each population, and do not              

prevent the emergence of unique de novo CNV lineages. This demonstrates that the ultimate              

fate of a CNV lineage depends on multiple factors, and a high frequency at an early generation                 

does not guarantee that a lineage will persist in the population. Thus, CNV dynamics result from                

pre-existing and de novo variation and are characterized by extensive clonal interference and             

replacement among competing CNV lineages.  

Conclusion 

The combined use of a fluorescent CNV reporter and barcode lineage tracking provides             

unprecedented insight into this important and understudied class of mutations. Previous studies            

have tracked specific mutations and their fitness effects [60], but ours is the first single-cell               

based approach to identify an entire class of mutations and follow their evolutionary trajectories              

with high resolution. While barcode tracking alone would provide information about the number             
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of adaptive lineages present and their fitness effects, the CNV reporter enables us to explicitly               

determine the number of unique CNV events. Rather than identifying CNVs that are identical by               

descent, the barcodes enable a quantitative estimate of clonal interference. In addition, the             

reporter provides an estimate of the total proportion of CNVs in the population, which we can                

use to inform our understanding of lineage dynamics. Our system provides a facile means for               

studying the molecular processes underlying CNV generation as well as evolutionary aspects of             

CNVs including pleiotropy and tradeoffs. Extension of our method is likely to be useful for               

addressing fundamental questions regarding the evolutionary and pathogenic role of CNVs in            

diverse systems. 

Methods 

Strains and media 

We used FY4 and FY4/5, haploid and diploid derivatives of the reference strain S288c, for all                

experiments. Table S1 is a comprehensive list of strains constructed and used in this study. To                

generate fluorescent strains, we performed high efficiency yeast transformation [82] with an            

mCitrine gene under control of the constitutively expressed ACT1 promoter          

(ACT1pr::mCitrine::ADH1term) and marked by the KanMX G418-resistance cassette        

(TEFpr::KanMX::TEFterm ). The entire construct, which we refer to as the mCitrine CNV            

reporter, is 3,375 base pairs. For control strains, the mCitrine reporter was integrated at two               

neutral loci: HO (YDL227C) on chromosome IV and the dubious ORF, YLR123C on             

chromosome XII. Diploid control strains containing 3 and 4 copies of the mCitrine CNV reporter               

were generated using a combination of backcrossing and mating. We constructed the GAP1             

CNV reporter by integrating the mCitrine construct at an intergenic region 1 kilobase upstream              

of GAP1 (integration coordinates, chromosome XI: 513945-517320). PCR and Sanger          
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sequencing were used to confirm integration of the GAP1 CNV reporter at each location (PCR               

primer sequences are provided in Table S11 ). Transformants were backcrossed, sporulated,           

and segregants genotyped to identify the correct genotype. 

 

For the purpose of lineage tracking, we constructed a strain containing a landing pad and the                

GAP1 CNV reporter by mating and segregation analysis [68]. As the kanMX cassette is present               

at two loci in this cross, we performed tetrad dissection and identified four spore tetrads that                

exhibited 2:2 G418 resistance. A segregant with the correct genotype (G418 resistant, ura-) was              

identified and confirmed using a combination of PCR and fluorescence analysis. We introduced             

a library of random barcodes by transformation and selection on SC-ura plates [68]. We plated               

an average of 500 transformants on 200 petri plates and estimated 78,000 independent             

transformants.  

 

Nitrogen limiting media (glutamine and urea limitations) contained 800 𝛍M nitrogen regardless            

of molecular form and 1 g/L CaCl 2-2H2O, 1 g/L of NaCl, 5 g/L of MgSO4-7H2O, 10 g/L KH2PO4,                  

2% glucose and trace metals and vitamins as previously described [24]. Glucose limiting media              

contained 0.08% glucose, 1 g/L CaCl 2-2H2O, 1 g/L of NaCl, 5 g/L of MgSO4-7H2O, 10 g/L                

KH2PO4, 50g/L (NH4)2SO4 and trace metals and vitamins [83]. 

 

Long-term experimental evolution 

We inoculated the GAP1 CNV reporter strain into 20mL ministat vessels [84] containing either              

glutamine-, urea-, or glucose-limited media. Control populations containing either one or two            

copies of the CNV reporter at neutral loci (HO and YLR123C) were also inoculated in ministat                

vessels for each media condition. Ministats were maintained at 30℃ in aerobic conditions and              
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diluted at a rate of 0.12 hr-1 (corresponding to a population doubling time of 5.8 hours). Steady                 

state populations of 3 x 10 8 cells were maintained in continuous mode for 270 generations (~2                

months). Every 30 generations, we archived 2 mL population samples at -80℃ in 15% glycerol. 

 

Flow cytometry sampling and analysis 

To monitor the dynamics of CNVs, we sampled 1mL from each population every ~8              

generations. We performed sonication to disrupt any cellular aggregates and immediately           

analyzed the samples on an Accuri flow cytometer, measuring 100,000 cells per population for              

mCitrine fluorescence signal (excitation = 516nm, emission = 529nm, filter = 514/20nm), cell             

size (forward scatter) and cell complexity (side scatter). We generated a modified version of our               

laboratory flow cytometry pipeline for this analysis (https://github.com/GreshamLab/flow), which         

uses the R package flowCore [85]. We used forward scatter height (FSC-H) and forward scatter               

area (FSC-A) to filter out doublets, and FSC-A and side scatter area (SSC-A) to filter debris. We                 

quantified fluorescence for each cell and divided this value by the forward scatter measurement              

for the cell to account for differences in cell size. To determine population frequencies of cells                

with zero, one, two, and three plus copies of GAP1 , we used one and two copy control strains                  

grown in the same media to define gates and perform manual gating. We used a conservative                

gating approach to reduce the number of false positive CNV calls by first manually drawing a                

liberal gate for the one copy control strain, followed by a non-overlapping gate for the two copy                 

control strain. 

 

Quantification of CNV dynamics 

To quantify the dynamics of CNVs in evolving populations, we defined summary statistics as in               

[60]. Tup is the generation at which CNVs are initially detected and Sup is the slope of the linear                   
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fit during initial population expansion of CNVs. We first determined the proportion of cells with a                

CNV and the proportion of cells without CNVs at each time point, using the manually defined                

gates. To calculate Tup, we defined a false positive rate for CNV detection in evolving one copy                 

control strains from generations 1-153 (defined as the average plus one standard deviation =              

7.1%). We designate Tup once an experimental population surpasses this threshold . To            

calculate Sup, we plotted the natural log of the ratio of the proportion of cells with and without a                   

CNV against time and calculated the linear fit during initial population expansion of CNVs. We               

defined the linear phase on the basis of R2 values (Appendix ). Sup can also be defined as the                  

percent increase in CNVs per generation, which is an approximation for the relative average              

fitness of all CNV alleles in the population.  

 

Isolation and analysis of evolved clones 

Clonal isolates were obtained from each glutamine- and urea-limited population at generation            

150 and generation 250. We isolated clones by plating cells onto rich media (YPD) and               

randomly selecting individual colonies. We inoculated each clone into 96 well plates containing             

the limited media used for evolution experiments and analyzed them on an Accuri flow              

cytometer following 24 hours of growth. We compared fluorescence to unevolved ancestral            

strains and evolved 1 and 2 copy controls grown under the same conditions, and chose a                

subset of clones for whole genome sequencing (Table S4 ). 

 

To measure the fitness coefficient of evolved clones, we performed competitive fitness assays in              

glutamine-limited chemostats using the same conditions as our evolution experiments [24]. We            

co-cultured our fluorescent evolved strains with a non-fluorescent, unevolved reference strain           

(FY4). We determined the relative abundance of each strain every 2-3 generations for             
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approximately 15 generations using flow cytometry. We performed linear analysis of the natural             

log of the ratio of the two genotypes against time and estimated the fitness, and associated                

error, relative to the ancestral strain.  

 

Genome sequencing 

For both population and clonal samples, we performed genomic DNA extraction using a             

modified Hoffman-Winston protocol [86]. We used SYBR Green I to measure gDNA            

concentration, standardized each sample to 2.5 ng/μL, and constructed libraries using           

tagmentation following a modified Illumina Nextera library preparation protocol [87]. To perform            

PCR clean-up and size selection, we used an Agilent Bravo liquid handling robot. We measured               

the concentration of purified libraries using SYBR Green I and pooled libraries by balancing their               

concentrations. We measured fragment size with an Agilent TapeStation 2200 and performed            

qPCR to determine the final library concentration.  

 

DNA libraries were sequenced using a paired-end (2x75) protocol on an Illumina NextSeq 500.              

Standard metrics were used to assess data quality (Q30 and %PF). To remove reads from a                

potentially contaminating organism that was introduced after recovery from the chemostats, we            

filtered any reads that aligned to Pichia kudriavzevii. Given the evolutionary divergence between             

these species, the majority of filtered reads belonged to rDNA and similar, deeply conserved              

sequences. The median percent contamination was 1.165%. We modified the S. cerevisiae            

reference genome from NCBI (assembly R64) to include the entire GAP1 CNV reporter and              

aligned all reads to this reference. We aligned reads using bwa mem ([88], version 0.7.15 ) and                

generated BAM files using samtools ([89], version 1.3.1 ). Summary statistics for all sequenced             
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samples are provided in Table S3 . FASTQ files for all sequencing are available from the SRA                

(accession SRP142330 ).  

 

CNV detection using published algorithms  

To assess the performance of CNV detection algorithms, we simulated copy number variants             

ranging in size from 50bp - 100,000bp in 100 synthetic yeast genomes. We used SURVIVOR               

[90] to simulate copy number variants in the reference yeast genome and wgsim [89] to               

generate corresponding paired-end FASTQ files. We used bwa mem [88] to map reads back to               

the reference and called CNVs with Pindel, CNVnator, LUMPY and SvABA [61–64]. We             

assessed the effect of read depth on algorithm performance by downsampling a 100x coverage              

BAM file to 80x, 50x, 20x, 10x and 5x coverage. We defined a CNV as being correctly predicted                  

if the simulated and detected CNVs were: (i) of the same type (e.g. duplication), (ii) predicted to                 

be on the same chromosome and (iii) contained in the same interval (defined by the start and                 

stop position), which were considered overlapping if there was no gap between them             

(maxgap=0) and had minimum overlap of one base pair (minoverlap=1). For intervals [a,b] and              

[c,d], where a<=b and c<=d, when c<=b and d>=a, the two intervals overlap and when c > b or d                    

< a, the two intervals don't overlap. If the gap between these two intervals is <= maxgap and the                   

length of overlap between these two intervals is >= minoverlap, the two intervals are considered               

to be overlapping.  

 

To assess the performance of these tools on heterogeneous population samples, we also             

simulated mixed samples by combining reads from a simulated CNV-containing genome and an             

unmodified reference yeast genome at varying proportions. The ratio of the reads from the              

CNV-containing genome varied between 20% and 90%, and the total coverage was 50X. 
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Performance comparisons for all benchmarking were based on false discovery rate (FDR) and             

F-score. The F-score (also known as F1 measure) combines sensitivity/recall(r) and precision(p)            

with an equal weight using the formula F=(2pr)/(p+r). An F-score reaches its best value at 1 and                 

worst at 0 and was multiplied by 100 to convert to a percentage value. We called CNVs for each                   

clone and population sample using an in-house pipeline that collates results from Pindel,             

SvABA, and Lumpy (Table S5 and  Table S6).  

 

Sequence read depth and breakpoint analysis 

To manually estimate CNVs boundaries we used a read-depth based approach. For each             

sample sequenced, we used samtools [89] to determine the read depth for each nucleotide in               

the genome. We liberally defined CNVs by identifying ≥300 base pairs of contiguous sequence              

when read depth was ≥3 times the standard deviation across chromosome XI for GAP1 or               

chromosome VIII for DUR3. These boundaries were further refined by visual inspection of             

contiguous sequence ≥100 base pairs with read depth ≥3 times the standard deviation. These              

analyses were only performed on sequenced clones because population samples are likely to             

have multiple CNVs and breakpoints thereby confounding read-depth based approaches. We           

compared manually estimated breakpoints to those identified by the algorithms (Table S5 ) and             

defined a set of ‘high confidence breakpoints’. 

 

To determine CNV breakpoints, we extracted split and discordant reads from bam files using              

samblaster [91]. Both split reads and discordant reads were used to identify breakpoints;             

however, each candidate breakpoint required at least one split read. Additionally, breakpoints            

were scored using a weighted method where split reads were worth 1 and discordant reads               
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were worth 3. Positively identified breakpoints required a score of at least 9. Breakpoint              

sequences were generated by making local assemblies of breakpoint associated split and            

discordant reads using velvet [92]. The relationship between breakpoint sequences and the            

reference genome was determined using BLAST. 

 

To infer the underlying mechanism by which CNVs were formed, we applied the following              

criteria. If the sequence of least one of the two CNV boundaries contained inverted repeat               

sequences, and we estimated an odd number of copies in the CNV, we classified the               

mechanism as ODIRA. If the boundary sequences occurred within repetitive sequence elements            

(LTRs or telomeres) and had two copies we inferred NAHR. Aneuploids were defined on the               

basis of increased read depth throughout the entire chromosome, but no detected novel             

sequence junctions. Translocations were identified by LUMPY. All breakpoints that failed to            

meet these criteria were defined as unresolved. 

 

SNP and variant identification 

SNPs and indel variants were first identified using GATK4’s Mutect2 [93], which allows for the               

identification of variants in evolved samples (‘Tumor’) after filtering using matched unevolved            

samples (‘Normal) and pool of normals (PON). The PON was constructed using six sequenced              

ancestral clones, while the paired normal was a single, deeply sequenced, ancestor. Variants             

were further filtered using GATK’s FilterMutectCalls to remove flag low quality predictions; only             

variants flagged as passed or germline risk were retained. We chose to retain so-called              

germline risk variants because this flag is often raised when a variant is at or near 100%                 

frequency in the evolved sample but can not definitively be ruled out from being present in the                 

ancestral population. Given the haploid nature of the evolved population, and further            
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downstream filtering of ‘too-recurrent’ mutations, we allowed germline risk variants to be            

retained. Variants were further filtered if they occurred in low complexity sequence; i.e. variants              

were filtered if the SNP or indel occurred in, or generated, a homogenous nucleotide stretch of                

five or more of the same nucleotide. Variants from within populations that were detected at less                

than 5% frequency were considered low confidence and excluded. Finally, variants were filtered             

if they were found to be ‘too-recurrent’; that is, if the exact nucleotide variant was identified in                 

more than three independently evolved lineages, we deemed it more parsimonious to assume             

that the variant was present in the ancestor.  

 

Quantifying the number of CNV lineages 

We inoculated the lineage tracking library into 20mL ministat vessels [84] containing            

glutamine-limited media. Control populations containing either zero (WT), one or two copies of             

the GAP1 CNV reporter at neutral loci (HO and YLR123C) were also inoculated in ministat               

vessels for each media condition. Control populations did not contain lineage tracking barcodes.             

Ministat vessels were maintained and archived as above. Samples were taken for flow             

cytometry every ~8 generations and analyzed as previously described. 

 

We used fluorescence activated cell sorting (FACS) to isolate the subpopulation of cells             

containing two or more copies of the the mCitrine CNV reporter using a FACSAria. We defined                

our gates using zero, one, and two copy mCitrine control strains sampled from ministat vessels               

at the corresponding timepoints: 70, 90, 150, and 265 generations. Depending on the sample,              

we isolated 500,000-1,000,000 cells with increased fluorescence, corresponding to two or more            

copies of the reporter. We grew the isolated subpopulation containing CNVs for 48 hours in               

glutamine-limited media and performed genomic DNA extraction using a modified          
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Hoffman-Winston protocol [86]. We verified FACS isolation of true CNVs by isolating clones             

from sub-populations sorted at generation 70, 90, and 150 (sorted from all lineage tracking              

populations, bc01-06) and performing independent flow cytometry analysis using an Accuri. We            

estimated the average false positive rate of CNV isolation at each time point as the percent of                 

clones from a population with FL1 less than one standard deviation above the median FL1 in                

the one copy control strain. Only subpopulations with fluorescence measurements for at least             

25 clones were included in calculations of false positive rate. 

 

We performed a sequential PCR protocol to amplify DNA barcodes and purified the products              

using a Nucleospin PCR clean-up kit [68]. We quantified DNA concentrations by qPCR before              

balancing and pooling libraries. DNA libraries were sequenced using a paired-end (2x150)            

protocol on an Illumina MiSeq 300 Cycle v2. Standard metrics were used to assess data quality                

(Q30 and %PF, Table S3 ). However, the reverse read failed due to over-clustering, so all               

analyses were performed only using the forward read. We used the Bartender algorithm with              

UMI handling to account for PCR duplicates and to cluster sequences with merging decisions              

based solely on distance except in cases of low coverage (<500 reads/barcode), for which the               

default cluster merging threshold was used [69]. Clusters with a size less than four or with high                 

entropy (>0.75 quality score) were discarded. We estimated relative abundance of barcodes            

using the number of unique reads supporting a cluster compared to total library size.  
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Supplementary Note 

Application of existing CNV detection algorithms fails to identify GAP1 and           

DUR3 duplications 

The identification of CNVs using a fluorescent reporter enables assessment of the extent             

to which current algorithms are able to detect CNVs using short read sequencing. To evaluate               

algorithm performance, we first tested each algorithm using simulated data (methods ). We            

simulated haploid clonal samples and found that LUMPY, SvABA and Pindel performed            

reasonably well (FDR < 5% and F-score > 80%) with average genome coverages ranging from               

5X-50X (Figure S7 ). We then simulated mixed non-clonal populations containing CNVs at            

differing allele frequencies. We found that LUMPY and SvABA performed well in all scenarios              

whereas Pindel performed well only when simulated populations contained CNVs at frequencies            

of at least 50% (Figure S8).  

On the basis of these results, we generated an in-house pipeline for detecting CNVs that               

integrates results from Pindel, Lumpy, and SvABA [61–63]. We first applied this pipeline to              

clonal CNV samples with increased fluorescence. We found that in 36% of cases, in which a                

CNV is predicted to be present on the basis of fluorescence and clear increases in sequencing                

read depth, all three algorithms failed to call a CNV at the GAP1 locus. LUMPY consistently                

identified the most breakpoints, which we compared against manual CNV boundary calls (Table             

S5 ). This high false negative rate was further exacerbated for population sequencing data in              

which fluorescence clearly indicated the presence of CNV lineages at >50% frequencies: in 28%              

of tested populations a CNV was not called by any of the algorithms (Table S6 ). We conclude                 
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that existing CNV calling algorithms are poorly suited to detection of CNVs in heterogeneous              

samples and suffer from a high false negative rate even for clonal haploid samples.  

 

Supplementary Figures 
 
Figure S1 . Assessment of CNV reporter fitness effects. The fitness of strains carrying one (DGY500)               
or two copies (DGY1315) of a constitutively expressed mCitrine gene was assayed. Fluorescent strains              
were co-cultured with the non-fluorescent, unevolved reference strain (FY4). We performed two            
independent competitive fitness assays in glutamine-limited chemostats using the same conditions as            
evolution experiments. No significant fitness defect was observed for either strain indicating that             
constitutive expression of the fluorescent gene does not confer a fitness cost in these conditions. Error                
bars are 95% confidence intervals. 
 
Figure S2 . The GAP1 CNV reporter indicates the emergence of GAP1 CNVs in all glutamine-limited               
populations. Distributions of single-cell fluorescence over time for all glutamine-limited experimental           
populations. Fluorescent signal is normalized by forward scatter, which varies as a function of cell size.                
Each distribution is based on at least 100,000 single cell measurements.  
 
Figure S3. Normalization by forward scatter mitigates effects of cell physiology and morphology             
variation on CNV reporter signal. Dashed grey lines represent one and two copy control populations.               
(A ) Median unnormalized fluorescence across time for all evolving populations. (B ) Median forward             
scatter over time for all populations. One glucose-limited population (pink) developed a bud separation              
defect, resulting in a cell aggregation phenotype and large forward scatter and fluorescence             
measurements. Normalizing by forward scatter accounts for this issue and other changes in overall cell               
physiology during the evolution experiments (see Figure 2B ).  
 
Figure S4. Gating flow cytometry data enables estimation of CNV alleles that contain more than               
two copies. The proportion of cells with zero, one, two, and three or more copies of GAP1 in each                   
glutamine-limited experimental population. This proportion was calculated after generating gating criteria           
based on one and two copy control populations. 
 
Figure S5. GAP1 CNV-containing lineages have a higher relative fitness than the ancestral strain.              
The fitness of evolved lineages containing GAP1 CNVs was determined by competition experiments with              
a non-fluorescent, unevolved reference strain (FY4) in glutamine-limited chemostats. The majority (14/21)            
of evolved CNV-containing lineages have significantly higher fitness (t-test, p.val < 0.05) than the              
ancestor. Decreased, or insignificant fitness differences, may reflect context-specific fitness effects of            
GAP1  CNV-containing lineages. Error bars are 95% confidence intervals.  
 
Figure S6 . Identification of CNV alleles at the DUR3 locus. (A ) A schematic illustrating the genomic                
context and estimated breakpoints for clones isolated from urea-limited chemostats containing DUR3            
CNVs. Breakpoint boundaries were estimated using a read depth based approach (methods ). Compared             
to (B ) clones isolated from glutamine-limited chemostats containing GAP1 CNVs, (C ) clones isolated from              
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urea-limited chemostats have significantly higher copy number. (D ) GAP1 CNV alleles are significantly             
larger than (E) DUR3 CNV alleles (t-test p.val < 0.01).  
 
Figure S7. Benchmarking existing CNV detection algorithms with simulated clonal samples. We            
simulated CNVs in the yeast genome at different average sequencing depths to assess the performance               
of CNVnator, LUMPY, Pindel and SvABA. Algorithm performance was evaluated using false discovery             
rate (FDR) and F-score. We find that with increased read depth (A ) the false discovery rate increases for                  
deletion detection, but (B ) overall performance improves for all algorithms as determined by F-score.              
Conversely, for duplication detection (C ) the false positive rate is not increased with increasing read depth                
and (D ) overall performance improves with increased read depth. 
 
Figure S8. Benchmarking existing CNV detection algorithms with simulated heterogeneous          
populations samples . We simulated heterogeneous populations containing CNVs at varying frequencies           
and assessed algorithm performance. Most algorithms perform reasonably well when CNVs are present             
at 50% or higher in the population. 
 
Figure S9 . Population estimates of GAP1 copy number by CNV reporter and quantitative             
sequencing are linearly correlated and increase with time of adaptive evolution. Relative depth at              
the GAP1 locus, calculated from whole genome sequencing data, is strongly correlated with the median               
normalized fluorescence of the GAP1 CNV reporter in populations. Glutamine-limited populations           
measured at generation 250 tend to have higher fluorescence and higher relative read depth at the GAP1                 
locus than at generation 150. 
 
Figure S10. Population prehistory of independent evolution experiments. All independent          
populations share a common history prior to founding of individual populations. The prehistory of              
experiments using the GAP1 CNV reporter (A ) differ with respect to the size of the size founding                 
population in experiments using a lineage tracking library (B ). Any variation that is introduced prior to                
founding of individual populations may contribute to the evolution of all populations. Variation that is               
introduced after separation into individual populations contributes to evolutionary outcomes in that            
population only.  
 
Figure S11 . Distribution of barcodes counts in ancestral populations . We determined the distribution             
of read counts supporting each unique barcode in the ancestral population, after filtering out low               
confidence clusters. The relative frequencies of barcodes vary by over an order of magnitude and we                
observe a long tail with a few barcodes significantly overrepresented in the ancestral population. The red                
arrow indicates an overrepresented barcode in the ancestral population that was identified in the CNV               
subpopulation in both independent barcoded evolution experiments (indicated in purple in Figure 5B ). 
 
Figure S12. Identification of barcoded GAP1 CNV-lineages in evolving populations. (A ) GAP1 CNV             
dynamics in barcoded populations assayed using a CNV reporter. (B) Estimation of true positive rate of                
CNV isolation by FACS at generations 70, 90, and 150. CNV subpopulations were isolated by FACS at                 
each timepoint and clones isolated by plating for single colonies. The percent of cells containing a CNV                 
in the fractionated subpopulation was estimated using at least 25 clones. A one copy control strain was                 
used to define gates.  
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Supplementary Tables 
 
Table S1 . List of strains used and generated in this study.  
 
Table S2 . List of all experimentally evolved populations.  
 
Table S3 . DNA sequencing summary statistics for all clonal and population samples. 
 
Table S4 . Summary statistics of all evolved clones. Nucleotide resolution of estimated break points and               
size (in kilobases) of CNV alleles are also presented. These statistics were calculated using a read-depth                
based approach.  RD = read depth. 
 
Table S5. Breakpoint analysis of 27 GAP1 CNVs and 9 DUR3 CNVs. We compare all 3 CNV detection                  
methods used in this study: breakpoint sequences determined through split read assembly and alignment,              
breakpoint identification using Lumpy, and CNV boundary classification using using read-depth and visual             
inspection.  
 
Table S6 . Summary of CNV detection algorithm performance for all population samples.  
 
Table S7 . SNPs identified from population sequencing data. Mode refers to whether a mutation detected               
at both times points and increased in frequency (increase) or decreased in frequency (decrease). SNPs               
present at frequencies greater than 0.05 are reported. 
 
Table S8 . SNPs identified from clone sequencing data. SNPs were filtered on the basis of their frequency                 
in the clonal sequence data using a threshold of 0.25. 
 
Table S9 . Summary statistics for GAP1 CNV dynamics, determined using the GAP1 CNV reporter, in               
replicated evolution experiments using lineage tracking libraries. Summary statistics are defined as in             
Table 1. 
 
Table S10. Frequency of barcodes in each population across time. We estimated the number of GAP1                
CNV containing lineages by correcting the number of barcodes identified by the estimated false positive               
rate of CNV isolation by FACS. High confidence GAP1 CNV lineages are defined as those that are found                  
at two or more timepoints. 
 
Table S11 . List of primers used to generate PCR products for strain construction and to confirm insertion                 
of PCR products after transformation.  
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