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Abstract 22 
 23 
The interplay between drugs and cell metabolism is a key factor in determining both compound 24 
potency and toxicity. In particular, how and to what extent transmembrane transporters affect drug 25 
uptake and disposition is currently only partially understood. Most transporter proteins belong to 26 
two protein families: the ATP-Binding Cassette (ABC) transporter family, whose members are 27 
often involved in xenobiotic efflux and drug resistance, and the large and heterogeneous family of 28 
Solute carriers (SLCs). We recently argued that SLCs are collectively a rather neglected gene 29 
group, with most of its members still poorly characterized, and thus likely to include many yet-to-30 
be-discovered associations with drugs. We searched publicly available resources and literature to 31 
define the currently known set of drugs transported by ABCs or SLCs, which involved ~500 drugs 32 
and more than 100 transporters. In order to extend this set, we then mined the largest publicly 33 
available pharmacogenomics dataset, which involves approximately 1000 molecularly annotated 34 
cancer cell lines and their response to 265 chemical compounds, and used regularized linear 35 
regression models (Elastic Net, LASSO) to predict drug responses based on SLC and ABC data 36 
(expression levels, SNVs, CNVs). The most predictive models included both known and 37 
previously unidentified associations between drugs and transporters. To our knowledge, this 38 
represents the first application of regularized linear regression to this set of genes, providing an 39 
extensive prioritization of potentially pharmacologically interesting interactions. 40 
 41 
Keywords 42 
Solute carriers (SLCs), ABC transporters (ATP binding cassette), drug sensitivity and resistance, 43 
drug transport, regularized linear regression  44 
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Introduction 45 
 46 
The role of cellular metabolism in determining the potency and distribution of drugs is increasingly 47 
recognized (Zhao et al., 2013). Along with the enzymes involved in actual xenobiotic 48 
transformation, such as members of the cytochrome and transferases families, a critical role is 49 
played by transmembrane transporters, which directly affect both the uptake and the excretion of 50 
drugs and their metabolites (Zhou et al., 2017). Among transmembrane transporters, two large 51 
families have been described: the family of ABC (ATP-binding cassette) transporters and the 52 
family of Solute carriers (SLCs) (Hediger et al., 2013). ABC transporters are pumps powered by 53 
the hydrolysis of ATP and show a remarkable broad range of substrates, including lipids, 54 
secondary metabolites and xenobiotics. Members of this family, such as the ABCB/MDR and 55 
ABCC/MRP proteins, have been associated with resistance to a large number of structurally 56 
diverse compounds in cancer cells (Fletcher et al., 2010). Solute carriers (SLCs) are secondary 57 
transporters involved in uptake or efflux of metabolites and other chemical matter (Cesar-Razquin 58 
et al., 2015). At more than 400 members and counting, SLCs represent the second largest family 59 
of membrane proteins and comprise uniporters, symporters and antiporters, further grouped into 60 
subfamilies based on sequence similarity (Hoglund et al., 2011). Among the reported SLC 61 
substrates are all major building blocks of the cell, such as nucleic acids, sugars, lipids and 62 
aminoacids as well as vitamins, metals and other ions (Hediger et al., 2013). Despite the critical 63 
processes mediated by these proteins, a large portion of SLCs is still poorly characterized and, in 64 
several cases, lacks any associations with a substrate (Cesar-Razquin et al., 2015). Importantly, 65 
several members of the SLCO (also known as Organic Anion Transporter Proteins or OATPs) and 66 
SLC22 families (including the group of organic cation transporters or OCTs, organic 67 
zwitterion/cation transporters or OCTNs and organic anion transporters or OATs) have been found 68 
to play prominent roles in the uptake and excretion of drugs, especially in the liver and kidneys 69 
(Hagenbuch and Stieger, 2013). Several other cases of Solute carriers mediating the uptake of 70 
drugs have been reported, such as in the case of methotrexate and related anti-folate drugs with 71 
the folate transporter SLC19A1 (Zhao et al., 2011) or the anti-cancer drug YM155/sepantronium 72 
bromide and the orphan transporter SLC35F2 (Winter et al., 2014). Indeed, whether carrier-73 
mediated uptake is the rule or rather the exception is still a matter of discussion (Dobson and Kell, 74 
2008; Sugano et al., 2010). Due to the understudied nature of transporters and SLCs in particular, 75 
we can nonetheless expect that several other associations between drugs and transporters, 76 
involving direct transport or indirect effects, remain to be discovered and could provide novel 77 
insights into the pharmacokinetics of drugs and drug-like compounds.  78 
 79 
Analysis of basal gene expression and genomic features in combination with drug sensitivity data 80 
allows the identification of molecular markers that render cells both sensitive and resistant to 81 
specific drugs. Such a pharmacogenomic analysis represents a powerful method to prioritize in 82 
silico gene-compound associations. Different statistical and machine learning (ML) strategies have 83 
been used in the past to confirm known as well as to identify novel drug-gene associations, 84 
although generally in a genome-wide context (Iorio et al., 2016). For our study, we mined the 85 
“Genomics of Drug Sensitivity in Cancer” (GDSC) dataset  (Iorio et al., 2016) which contains 86 
drug sensitivity data to a set of 265 compounds over ~1000 molecularly annotated cancer cell lines, 87 
in order to explore drug relationships exclusively involving transporters (SLCs and ABCs). To 88 
such end, we used regularized linear regression (Elastic Net, LASSO) to generate predictive 89 
models from which to extract cooperative sensitivity and resistance drug-transporter relationships, 90 
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in what represents, to our knowledge, the first work applying this type of analysis to this group of 91 
genes.  92 
 93 
Materials and Methods 94 
 95 
Data 96 
 97 
SLC and ABC genes were considered as in (Cesar-Razquin et al., 2015). Known drug transport 98 
cases involving SLC and ABC proteins were obtained from four main repositories as of September 99 
2017: DrugBank (Law et al., 2014), The IUPHAR/BPS Guide to PHARMACOLOGY (Alexander 100 
et al., 2015), KEGG: Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto, 2000), and 101 
UCSF-FDA TransPortal (Morrissey et al., 2012). These data were complemented with various 102 
other cases found in the literature  (Sprowl and Sparreboom, 2014; Winter et al., 2014; Nigam, 103 
2015; Radic-Sarikas et al., 2017). Source files were parsed using custom python scripts, and all 104 
entries were manually curated, merged together and redundancies eliminated. The final compound 105 
list was searched against PubChem (Kim et al., 2016) in order to systematize names. ƒA list of 106 
FDA-approved drugs was obtained from the organization’s website. Network visualization was 107 
done using Cytoscape (Shannon et al., 2003).  108 
 109 
All data corresponding to the Genomics of Drug Sensitivity in Cancer (GDSC) dataset (drug 110 
sensitivity, expression, copy number variations, single nucleotide variants, compounds, cell lines) 111 
were obtained from the original website of the project http://www.cancerrxgene.org/downloads as 112 
of September 2016. Drug sensitivity and transcriptomics data were used as provided. Genomics 113 
data were transformed into a binary matrix of genomic alterations vs cell lines, where three 114 
different modifications for every gene were considered using the original source files: 115 
amplifications (ampSLCx), deletions (delSLCx) and variants (varSLCx). An amplification was 116 
annotated if there were more than two copies of at least one of the alleles for the gene of interest, 117 
and a deletion if at least one of the alleles was missing. Single nucleotide variants were filtered in 118 
order to exclude synonymous SNVs as well as nonsynonymous SNVs predicted not to be 119 
deleterious by either SIFT (Ng and Henikoff, 2001), Polyphen2  (Adzhubei et al., 2010) or 120 
FATHMM (Shihab et al., 2013). 121 
 122 
LASSO regression 123 
 124 
LASSO regression analysis was performed using the ‘glmnet’ R package (Friedman et al., 2010). 125 
Expression values for all genes in the dataset (17419 genes in total) were used as input features. 126 
For each compound, the analysis was iterated 50 times over 10-fold cross validation. At each cross 127 
validation, features were ranked based on their frequency of appearance (number of times a feature 128 
has non zero coefficient for 100 default lambda possibilities). We then averaged the ranking across 129 
the 500 runs (50 iterations x 10 CV) in order to obtain a final list of genes associated to each 130 
compound. In this context, the most predictive gene for a certain drug does not necessarily have 131 
an average rank of one, even though its final rank is first. 132 
 133 
Elastic Net regression 134 
 135 
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Elastic Net regression analysis was performed using the ‘glmnet’ R package (Friedman et al., 136 
2010). Genomic data (copy number variations and single nucleotide variants) and transcriptional 137 
profiles of SLC and ABC genes across the cell line panel were used as input variables, either alone 138 
or in combination. Drug AUC values were used as response. Elastic Net parameters were fixed as 139 
follows: i) alpha, the mixing parameter that defines the penalty, was set to 0.5 in order to apply an 140 
intermediate penalty between Ridge and LASSO, and ii) lambda, the tuning parameter that controls 141 
the overall strength of the penalty, was determined individually for every model (drug) by 142 
optimizing the mean squared cross-validated error.  143 
 144 
For each compound, 500 Elastic Net models were generated by a 100x 5-fold cross-validation 145 
procedure. In order to assess model performance, the Concordance Index (Harrell et al., 1996; 146 
Papillon-Cavanagh et al., 2013) between the predicted and observed AUC values was calculated 147 
for each run, and then averaged across all models. This index estimates the fraction of cell line 148 
pairs for which the model correctly predicts which of the two is the most and least sensitive; hence 149 
CI values of 0.5 and 1 would indicate random and perfect predictors, respectively. Feature weights 150 
were calculated by normalizing the fitted model coefficients to the absolute maximum at every 151 
cross-validation run. The final list of features associated with each compound was built by 152 
computing the frequency of appearance of each feature in all the 500 models as well as its average 153 
weight. Features with positive weights are associated with a resistance phenotype to the compound, 154 
and negative weights are indicative of sensitivity. 155 
 156 
Results 157 
 158 
SLC and ABCs as drug transporters.  159 
 160 
We collected data from public repositories as well as relevant publications to define the current 161 
knowledge on transport of chemical compounds by members of the SLC and ABC protein classes. 162 
A total of 493 compounds linked to 107 transporters were retrieved, which altogether formed a 163 
single large network with a few other smaller components (Fig.1, Table S1).  164 
 165 
Within the largest network and in agreement with previous reports  (Nigam, 2015), three families 166 
are significantly enriched (hypergeometric test, FDR £ 0.05): the SLCO/SLC21 family of organic 167 
anion transporters (9/12 members) (Hagenbuch and Stieger, 2013), the SLC22 family of organic 168 
anion, cation and zwitterion transporters (13/23) (Koepsell, 2013; Nigam, 2018), and the ABCC 169 
family of multidrug resistance transporters (8/13) (Vasiliou et al., 2009). Not surprisingly, ABCB1 170 
(P-glycoprotein; MDR1), the very well-studied efflux pump known for its broad substrate 171 
specificity and mediation of resistance to a large amount of drugs (Aller et al., 2009), is the most 172 
connected transporter in the network, linked to more than 200 compounds. In particular, 106 173 
compounds are connected exclusively with ABCB1 and 25 other are exclusively shared with 174 
ABCG2 (BCRP), another well-known transporter and the one with the second highest degree in 175 
the network (Robey et al., 2007) (Fig.1B). Other top-connected SLCs include members of the 176 
above mentioned SLCO and SLC22 families, which also show several common substrates (e.g. 177 
SLCO1B1 and SLCO1B3 share 36 compounds, and SLC22A8 and SLC22A6 share 20), as well 178 
as members of the SLC15 family (SLC15A1 and SLC15A2, which share 22 compounds), involved 179 
in the transport of beta-lactam antibiotics and peptide-mimetics (Smith et al., 2013). In contrast to 180 
these cases, other transporters appear related to one or only a few compounds. One such case is 181 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/381335doi: bioRxiv preprint 

https://doi.org/10.1101/381335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
   
 

6 
 

SLC35F2, whose only reported substrate to date is the anti-cancer drug YM155 (sepantronium 182 
bromide) (Winter et al., 2014). Finally, while most chemical compounds appear linked to one or 183 
two transporters, a few others show higher connectivities (Fig.1C). A well-known example, 184 
methotrexate is transported by more than 20 different SLC and ABCs, including some belonging 185 
to families not commonly involved in drug transport, such as the folate carriers SLC19A1 and 186 
SLC46A1.  187 
 188 
Transporter expression landscape in cancer cell lines 189 
 190 
The GDSC dataset contains expression data for 371 SLCs and 46 ABCs across a panel of ~1000 191 
cell lines of different tissue origin. Each of these cell lines effectively express between 167 and 192 
255 transporters, with a median value of 195 (Fig.2A). Although all together they cover almost 193 
the whole transporter repertoire (414/417), the distribution is clearly bimodal, with a common set 194 
of ~130 transporters expressed in at least 900 cell lines and a more specific set of ~140 expressed 195 
in less than 100 (Fig.2B). Among the most commonly expressed transporters, we find several 196 
members of the SLC25 (mitochondrial carriers) and SLC35 (nucleoside-sugars transporters) sub-197 
families, the two largest among SLCs, as well as several members of the SLC39 family of zinc 198 
transporters. On the other end, many members of the SLC22 family, a large and well known group 199 
of proteins involved in the transport of drugs, as well as the SLC6 family, a well-studied family of 200 
neurotransmitter transporters, show a more specific expression pattern. As for ABCs, it is worth 201 
highlighting that subfamilies A and C present half of their members in the set of transporters of 202 
specific expression, while subfamily B has members in both sets. 203 
 204 
When looking at actual expression values across the panel, some of the commonly expressed 205 
transporters coincide with those of highest expression (Fig.2C). The most extreme cases are 206 
SLC25A5, SLC25A3, SLC25A6 and SLC38A1, which present very similar maximum and median 207 
values across the cell line panel. On the contrary, other transporters such as SLC26A3, SLC17A3, 208 
or SLC38A11 present a much wider range of expression, being amongst the highest expressed in 209 
some cell lines but completely absent from others. 210 
 211 
Finally, substantial differences become apparent when considering transporter expression patterns 212 
according to the tissue of origin of the GDSC cancer cell lines (Fig.2D), Cell lines belonging to 213 
the hematopoietic (blood) lineage, which includes leukemias, lymphomas and myelomas, present 214 
the largest proportion of transporters with highest average expression values (28%), as indicated 215 
by Z-score, followed by cancer cell lines belonging to skin, kidney and the digestive system. This 216 
indicates a broad spectrum of transporters being present in cell lines of these tissue origins. 217 
Interestingly, kidney cell lines also present the largest number of transporters with low expression 218 
values, pointing to a very wide range of expression and high specificity in those cells. 219 
 220 
LASSO regression shows importance of SLC genes across whole genome 221 
 222 
We investigated the importance of SLC and ABC transporters for drug response by applying 223 
regularized linear regression on the GDSC dataset. To this end, we first built LASSO models of 224 
sensitivity to each compound based on genome-wide gene expression levels (17419 genes in total) 225 
(Tibshirani, 1996), and then looked for cases where a transporter ranked as the top (first) predictor 226 
(see Methods). The choice of the LASSO method is motivated by its ability to shrink a large 227 
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number of coefficients to zero, ideal for models that make use of thousands of predictors. 228 
Moreover, being a linear regression method, it can account for both positive and negative 229 
interactions (i.e. resistance and sensitivity, for example by export and import in the case of a 230 
transporter), thus increasing the interpretability of the results. The decision to focus exclusively on 231 
the top predictor is supported by a literature search. Indeed, the average number of PubMed 232 
publications containing both the drug and the gene name was over 40 in the case of top predictors, 233 
falling down to below 10 for the ones ranked second (Fig.S1). 234 
 235 
Consistent with their well-characterized role as drug-transporters, the multi-drug resistance pump 236 
ABCB1, as well as ABCG2, were the main predictors of resistance to a large number of drugs 237 
(Table 1A). More interestingly, several compounds had an SLC as their best predictor (Table 1B). 238 
Among them, and in concordance with previous expression-sensitivity data (Rees et al., 2016), we 239 
find the sensitive association of sepantronium bromide (YM155) and SLC35F2, its main known 240 
importer (Winter et al., 2014). Another sensitive association involving SLC35F2 links this 241 
transporter to NSC-207895, a MDMX inhibitor (Wang et al., 2011). DMOG 242 
(dimethyloxalylglycin), a synthetic analogue of a-ketoglutarate that inhibits HIF prolyl 243 
hydroxylase (Zhdanov et al., 2015), showed association to two SLCs: monocarboxylate transporter 244 
SLC16A7 (MCT2) was the main predictor for sensitivity to this compound, while creatine 245 
transporter SLC6A8 (CT1) was associated with resistance. However, due to the high IC50 values 246 
of DMOG (in the millimolar range), this association is unlikely to be clinically relevant. Finally, 247 
cystine-glutamate transporter SLC7A11 (Blomen et al., 2015) is associated to resistance to the 248 
ROS-inducing drugs Shikonin, (5Z)-7-Oxozeaenol and Piperlongumine. This is in agreement with 249 
previous studies that highlighted a positive correlation of the expression of this transporter and 250 
resistance to several drugs via import of the cystine necessary for glutathione balance maintenance 251 
(Huang et al., 2005). 252 
 253 
Elastic Net regression identifies transporter-drug relationships  254 
 255 
In order to further explore SLC and ABC involvement in drug response, we decided to build new 256 
predictive models based on transporter molecular data only. By removing the effect of other genes 257 
in the models, we can prioritize compounds that show a stronger dependency on transporters, as 258 
well as to analyze potential cooperative interactions among them. Given the smaller amount of 259 
predictors in this case, we used Elastic Net regression, a generalization of the LASSO that 260 
overcomes some of its limitations and that has already been applied in similar contexts (Zou, 2005; 261 
Barretina et al., 2012; Iorio et al., 2016). Assessment of model performance was done by cross-262 
validation using the Concordance Index (CI) (see Methods). 263 
 264 
We considered different predictors to build the models: genomics (Copy Number Variations and 265 
Single Nucleotide Variants), transcriptomics (gene expression) and a combination of both. Among 266 
these, gene expression resulted to be most predictive, in agreement with previous reports (Aydin 267 
et al., 2014)(Fig.3A). 139 (53%) of the 265 drugs included in the dataset had predictive models 268 
with a CI higher than 0.60, and 36 (14%) higher than 0.65 (Fig.3B). For those drugs, we then 269 
ranked genes based on their frequency of appearance in the cross-validated models (indicative of 270 
the robustness of the association) and their average weight (indicative of the strength of the 271 
association as well as its direction). In this context increased levels of transporter expression could 272 
therefore be associated with either sensitivity or resistance to the drug, for example through its 273 
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uptake or efflux, respectively (Fig.3C). Among the top ranked transporter-drug associations, we 274 
identified several known cases of drug transport. For instance, the strongest sensitivity association 275 
with sepantronium bromide (YM155) corresponded again to SLC35F2. Similarly, the strongest 276 
resistance association for this drug was ABCB1, which includes YM155 among its many 277 
substrates (Lamers et al., 2012; Voges et al., 2016; Radic-Sarikas et al., 2017).  Another example 278 
was methotrexate, for which the folate transporter SLC19A1, known to mediate its import (Zhao 279 
et al., 2011), ranked second for sensitivity association (Table S3).  280 
 281 
Two major patterns are apparent in the set of top-ranking associations: genes showing similar 282 
profiles of resistance or sensitivity across several different and unrelated compounds as well as 283 
groups of genes showing a similar profile in relation to a functionally related class of drugs (Fig. 284 
3C).  285 
 286 
A prototypical case of the first pattern is ABCB1, which is associated with resistance phenotypes 287 
to several compounds (Fig.3D). Together with the aforementioned YM155, resistance 288 
relationships were predicted for known substrates vinblastine and docetaxel (Fletcher et al., 2010), 289 
17-AAG/Tanespimycin  (Huang et al., 2007) and AT-7519 (Cihalova et al., 2015) as well as other 290 
not previously associated compounds such as ZG-10 (a JNK1 inhibitor), the CDK2/5/7 inhibitor 291 
PHA-793887 and the broad kinase inhibitor WZ3105. Similar to ABCB1, other transporters 292 
showed multiple resistance and sensitivity associations to different compounds, particularly 293 
kinases and chromatin-related enzymes. Two of these “hubs” were SLC12A4/KCC1, a potassium-294 
chloride cotransporter involved in cell volume homeostasis (Arroyo et al., 2013), and SLC35D2, 295 
an activated sugar transporter localized in the Golgi (Song, 2013).  296 
 297 
As an example of the second class of associations, some of the best models were achieved for 298 
compounds belonging to the MEK inhibitor drug class (Trametinib, Selumetinib, Refametinib, CI-299 
1040, PD-0325901, (5Z)-7-oxozeaenol), which showed very similar patterns, with sensitivity 300 
associated to SLC45A2, SLC27A1, SLC20A1, and SLC22A15 (Fig.3E). SLC45A2 has been 301 
related to melanin synthesis and it is highly expressed in melanomas (Park et al., 2017), a cancer 302 
type sensitive to MEK inhibitors. Interestingly, SLC20A1/PiT1, a sodium-dependent phosphate 303 
transporter (Olah et al., 1994), was previously shown to regulate the ERK1/2 pathway 304 
independently of phosphate transport in skeletal cells (Bon et al., 2018). SLC27A1, a long-chain 305 
fatty acid transporter, and SLC22A15, an orphan member of the well-known family of cationic 306 
transporters involved in the transport of different compounds, were not previously associated with 307 
this drug class.  308 
 309 
Finally, we also observed a strong sensitivity relationship between expression levels of the amino 310 
acid transporter SLC7A5/LAT1 and the Her2 and EGFR kinase inhibitors Afatinib, Gefitinib and 311 
Bosutinib (Fig. 2C), consistent with previously published data (Timpe et al., 2015). 312 
 313 
Discussion 314 
 315 
Transporters of the ABC and SLC superfamilies are increasingly recognized as key players in 316 
determining the distribution and metabolism of drugs and other xenobiotic compounds as they 317 
possess distinct and extremely variable expression patterns across cell lines and tissues (O'Hagan 318 
et al., 2018). Moreover, they have been implicated in the development of resistance to several 319 
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chemotherapeutic drugs (Fletcher et al., 2010). A survey of currently known drug transport 320 
relationships revealed that only a fifth of the more than 500 SLCs and ABCs have been described 321 
to be involved in the transport of drugs. These transporters appear to be very unevenly distributed, 322 
with some genes and families considerably more represented and better connected than others 323 
(Fig.1). This is the case for several members of the ABCB, ABCC, SLCO and SL22 sub-families. 324 
Similarly, while compounds such as methotrexate are linked to more than 20 transporters, most 325 
drugs are connected to only one. 326 
 327 
To further expand this network, we took advantage of the expression and drug sensitivity data 328 
available within the GDSC project. We started by characterizing the expression patterns of SLCs 329 
and ABCs in the GDSC panel of ~1000 cancer cell lines, covering thirteen different tissues of 330 
origin (Fig.2). Roughly 80% of SLCs and 90% of ABCs were included in the datasets and we 331 
observed a bimodal distribution of their expression, with similarly-sized sets of transporters either 332 
present in most cell lines or specific to a few. A large variability in the level of expression was 333 
also observed within the superfamilies, consistent with what recently reported by another recent 334 
study (O'Hagan et al., 2018). 335 
 336 
We then implemented a linear regression-based approach to identify the set of transporters 337 
associated with sensitivity to each compound across all cell lines. Previous reports undertook a 338 
similar approach to identify associations of the ABC (Szakacs et al., 2004) and SLCO/SLC22 339 
(Okabe et al., 2008) families with drug sensitivity within a limited set of about 60 cell lines. We 340 
now extended these results to a much more comprehensive set of cell lines while implementing 341 
regularized linear regression approaches (Elastic Net and LASSO regression). We identify a large 342 
set of drug-transporter associations roughly split between sensitivity and resistance relationships 343 
(Tables 1A and 1B, Fig.3). Known associations involving, for example, ABCB1 expression levels 344 
with increasing resistance to several unrelated compounds as well as known interactions such as 345 
the associations between antifolates and SLC19A1 or YM155 and SLC35F2 were clearly 346 
identified. Interestingly, we also observed cases were, similarly to ABCB1, a single gene was 347 
associated with several compounds, possibly as a result of an alteration of the general metabolic 348 
state of the cell. We also observed the opposite scenario, with several genes associated with a 349 
functionally related class of compounds as in the case of the MEK inhibitors and the genes 350 
SLC45A2, SLC27A1, SLC20A1, and SLC22A15. To our knowledge, no transporter has so far 351 
been identified for any member of this class of compounds, and while the association with the 352 
skin-specific SLC45A2 transporter is likely the result of the high sensitivity of melanoma cell lines 353 
to these drugs, other associations are more difficult to interpret.  354 
 355 
We propose the gene list reported here as a means of prioritizing transporters that could explain 356 
the transport and pharmacodynamics of the associated compounds. While in many cases these 357 
associations could be due to indirect effects, such as a change in the metabolic state of the cells 358 
that renders them more sensitive or resistant to a compound, some might correspond to actual 359 
import or export processes. Further validation, for example modulating the expression levels of 360 
the transporters or by transport assays, will be necessary in order to confirm and distinguish such 361 
different scenarios. Finally, the power of the analysis could also be increased by larger datasets, 362 
for instance including additional compounds, as well as by orthogonal or more accurate 363 
measurements. Availability of such pharmacogenomics datasets will be of critical importance for 364 
the further identification and characterization of transporter-drug associations. In conclusion, we 365 
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provide here an overview of the known ABC- and SLC-based drug transport relationships and 366 
expand this with an in silico-derived ranking of transporter-drug associations, identifying several 367 
novel and potential interesting interactions that could affect the pharmacodynamics and 368 
pharmacokinetics of a large set of clinically relevant compounds. 369 
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Figures 386 
 387 
Figure 1. A) Network visualization of known SLC/ABC-mediated drug transport cases. Circular 388 
nodes represent SLC and ABC transporters, and squares represent chemical compounds. Drugs 389 
approved by the FDA (Food and Drug Administration) are displayed with thicker gray borders. 390 
Edges connect transporters to compounds and their thickness indicates the number of sources 391 
supporting each connection (see Methods). Size indicates node degree (number of edges incident 392 
to the node). Relevant transporter families are color coded. B) Transporter degree distribution. The 393 
inlet barchart displays the transporters connected to at least 15 compounds. Bar colors correspond 394 
to transporter families in A. C) Same as B for drugs.  395 
 396 
Figure 2. A) Number of transporters (SLCs and ABCs) expressed across cell lines in GDSC 397 
dataset. A cut-off of 3.5 in RMA units is set to consider a gene as expressed (~73% genes 398 
expressed). The red line indicates the median number of transporters expressed per cell line. The 399 
inlet lists the 11 cell lines expressing the highest number of transporters, indicated between 400 
parentheses. B)  Number of cell lines expressing each of the transporters. The color bars and inlets 401 
indicate sets of transporters showing more common or specific expression across the panel. C) 402 
Median expression vs maximum expression for each transporter across the cell line panel. Color 403 
indicates the tissue of origin of the cell line presenting the maximum expression for the transporter. 404 
D)  Transporter Z-scores of the average expression values within each tissue. Tissue names with 405 
number of cell lines between parenthesis are indicated on the x-axis. Transporters are ordered 406 
alphabetically by family and name. 407 
 408 
Figure 3. A) Comparison of Elastic Net regression performance (Concordance Index) using 409 
different input data: gene expression, genomics (CNVs and SNVs) and a combination of both. B) 410 
CI value distribution using gene expression as input. Red bars indicate drugs with a median CI 411 
higher than 0.65, which were selected for subsequent analysis. C) Elastic Net results for drugs 412 
with the highest CI values. The top 5 associations are shown for each compound. Purple indicates 413 
associations linked to sensitivity (higher expression value confers sensitivity to the compound), 414 
and orange indicates resistance. E) Network representation of three transporters appearing as 415 
“hubs” (e.g. connected to several different compounds) in the results, including the well-known 416 
multidrug resistance protein ABCB1. D) Same as E for MEK inhibitors, which show a similar 417 
association pattern.   418 
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Supplemental Figure 1. PubMed search of drug gene associations. 419 
  420 
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Tables 421 
 422 
Table 1A. LASSO ABC-drug top associations.  423 
 424 

 425 
Table 1B. LASSO SLC-drug top associations. 426 
 427 

 428 

LASSO Top Hits, all 
17419 genes used 

Top sensitive associations 
(average rank) 

Top resistant associations 
(average rank) 

ABCB1 

 

YM155 (1) 
Paclitaxel (1.1) 
BI-2536 (6.0) 
A-443654 (32) 
Vinorelbine (1) 

Thapsigargin (20) 
AT-7519 (1.8) 
WZ3105 (1) 

PHA-793887 (2.2) 
GSK690693 (15)            
Vinblastine (1.1) 
Docetaxel (1.2) 
ZM447439 (77) 

ZG-10 (1.3) 
QL-VIII-58 (1) 
QL-XII-61 (9.7) 

ABCG2 
 

CUDC-101 (12) 
THZ-2-102-1 (1.8) 

ABCA10 
STF-62247 (20) 
FR-180204 (22)  

LASSO Top Hits, all 
17419 genes used 

Top sensitive associations 
(average rank) 

Top resistant associations 
(average rank) 

SLC16A7 DMOG (1)  
SLC6A8  DMOG (40) 
SLC30A2  CP724714 (28) 
SLC35F2 YM155 (2.24)  
SLC35F2 NSC-207895 (9.5)  
SLC7A11  Shikonin (2) 
SLC7A11  (5Z)-7-Oxozeaenol (12) 
SLC7A11  piperlongumine (12) 
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