
Spontaneous network activity <35 Hz accounts for variability in  

stimulus-induced gamma responses 

 

Gamma activity is thought to serve several cognitive processes, including attention and memory. 

Even for the simplest stimulus, the occurrence of gamma activity is highly variable, both within and 

between individuals. The sources of this variability are largely unknown. They are, however, critical 

to deepen our understanding of the relation between gamma activity and behavior.  

In this paper, we address one possible cause of this variability: the cross-frequency influence of 

spontaneous, whole-brain network activity on visual stimulus processing. By applying Hidden Markov 

modelling to MEG data, we reveal that the trial-averaged gamma response to a moving grating 

depends on the individual network profile, inferred from slower brain activity (<35 Hz) in the absence 

of stimulation (resting-state and task baseline). In addition, we demonstrate that dynamic 

modulations of this network activity in task baseline bias the gamma response on the level of trials.  

In summary, our results reveal a cross-frequency and cross-session association between gamma 

responses induced by visual stimulation and spontaneous network activity. 

Introduction 
Narrow-band gamma activity can be observed in numerous species and brain areas with various 

recording techniques (Bosman et al., 2014), including M/EEG recordings in humans (Jensen et al., 

2007). It has been proposed to play a role in a variety of cognitive processes, including attention 

(Bosman et al., 2012; Grothe et al., 2012), feature binding (Engel et al., 1991; Singer and Gray, 1995) , 

memory encoding (Sederberg et al., 2003; Jutras et al., 2009), memory retrieval (Osipova et al., 2006; 

Montgomery and Buzsaki, 2007), decision-making (van Wingerden et al., 2010, 2014), and reward 

processing (Berke, 2009; Kalenscher et al., 2010).  

Importantly, gamma responses to visual stimuli vary substantially within and between subjects. 

Invasive recordings in monkeys (Lundqvist et al., 2016) and humans (Kucewicz et al., 2014) revealed 

that gamma responses of the same individual vary markedly from trial to trial. In fact, single-trial 

gamma responses have been described as transient events of varying amplitude, duration and 

frequency. These findings suggest that the oscillation-like appearance of the trial-averaged gamma 

response might be a misleading consequence of averaging, not reflecting the actual physiological 

processes engaged in single trials (Jones, 2016; van Ede et al., 2018). Still, averaging across trials 

results in a remarkably reproducible pattern, as shown by MEG studies measuring trial-average 

gamma responses in human visual cortex repeatedly in the same subjects (Hoogenboom et al., 2006; 

Muthukumaraswamy et al., 2010).  Between subjects, in contrast, the trial-average response differs 

markedly with respect to amplitude, frequency and bandwidth (Muthukumaraswamy et al., 2010) 

and this between-subject variability has been shown to have a relatively strong genetic basis (van 

Pelt et al., 2012). 

To date, the cause of within- and between-subject variability in gamma activity is not completely 

understood. Here, we propose that gamma responses might differ between subjects because 

subjects differ in their basic network profile underlying all brain activity. According to our hypothesis, 
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these inter-individual differences become apparent even in the absence of gamma-inducing stimuli, 

implying that resting-state activity can predict gamma responses. This idea is based on functional 

magnetic resonance imaging (fMRI) (Smith et al., 2009; Cole et al., 2014, 2016; Tavor et al., 2016) and 

one recent MEG study (Becker et al., 2018), which demonstrated that resting-state network activity 

predicts inter-individual differences in task-related brain activity. Rest-task cross-frequency 

relationships affecting gamma oscillations, however, have not been investigated so far. 

Notwithstanding the existence of robust network profiles, the brain is able to adapt flexibly to 

changes in the environment. Hence, we propose that network profiles are dynamic in nature and not 

only reflect the individual brain architecture, but also, possibly to a lesser extent (Gratton et al., 

2018), the current situation. With respect to gamma activity, this assumption implies that induced 

responses might differ between trials because the individual network profile is modulated 

dynamically within a task.  

To test these hypotheses, we derived an estimate of the individual network profile and its dynamics 

by applying Hidden Markov Modelling (HMM) to whole-brain MEG data, describing re-occurring 

patterns of network activity as repeated visits to a finite set of brain states (Fig. 1). Using the HMM, 

we investigated whether gamma responses differ between subjects because some subjects spend 

more time in certain brain states than others (between-subject effect). In addition, we tested 

whether the amplitude of the gamma response differs between trials because the pre-stimulus brain 

state differs between trials (within-subject effect). And finally, we compared the predictive potential 

of task-baseline vs. resting-state activity with respect to gamma amplitude.  

 

 

 

Fig. 1: Experimental paradigm and rationale of the study. Upper row: Timeline of a single trial, locked 

to grating onset. Following a baseline period of 2 to 4 s with a central fixation cross, an inward-

moving grating appeared which accelerated at an unpredictable moment 3 to 5 s following grating 

onset (illustrated here with red arrows). Subjects indicated they detected the acceleration via button 

press. Lower left: Hidden Markov Modelling yielded at each time sample the probability of the brain 

being in any of four states (color-coded). State inference was limited to epochs without stimulation, 

i.e. to the pre-stimulus baseline, as shown here, or to the resting-state (not shown). Each state is 
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characterized by a unique spatio-spectral profile within the frequency ranges slower than gamma (1-

35 Hz), including the topography of delta power shown here for states 2 (left) and 4 (right). Lower 

right: The inward-moving grating induced strong gamma activity in occipital areas. We investigated 

whether the strength of this stimulus-induced gamma response is related to spontaneously occurring 

whole-brain states. 

Methods 

Experimental Design 

Participants 

15 healthy participants were recruited for this study (21-45 years; 5 female). The study was approved 

by the Montreal Neurological Institute’s ethics committee (NEU 011-036) and was in accordance with 

the Declaration of Helsinki. All participants gave written informed consent and were compensated 

for their participation. 

Paradigm  

Subjects were presented with a modified version of the visual stimulation paradigm by Hoogenboom 

et al. (Hoogenboom et al., 2006): An inward-moving, circular sine wave grating with a diameter of 5° 

accelerated from 1.6 deg/s to 2.2 deg/s at an unpredictable moment between 3-5 seconds after 

stimulus onset. Subjects indicated that they had detected the velocity change by pressing a button 

with the index finger of the dominant hand. The button press ended the trial and the stimulus was 

turned off. During the inter-trial interval (baseline period), subjects were presented with a central 

fixation cross. Inter-trial intervals varied between 2 and 4s. A few trials with longer interval (17 - 19 s) 

were randomly interspersed in the trial sequence for all subjects but P1 (6 - 16 per subject; mean: 

13). This was done to facilitate an analysis of the influence of baseline duration, but is not relevant 

for the analyses reported here. 

Experimental Procedure  

Each session started with a 5 min resting-state recording with eyes open, which was immediately 

followed by task practice and task recording. Before the start of the reaction time task, participants 

completed 10 practice trials. The task was divided into 2 - 5 blocks, containing 35 - 78 trials each 

(mean: 62.85). After each block, participants received a feedback on the accuracy of their responses 

and had the possibility to take a break. Following the reaction time task, a further 5 min resting-state 

recording was acquired.  

In two subjects (P3 and S006R), additional task data were acquired 6 days and 1 day after the first 

recording session, respectively. Subject P1 was not recorded in resting state.   

Data acquisition 

Participants were measured in a seated position with a 275-channel VSM/CTF MEG system at a 

sampling rate of 2400 Hz (no high-pass filter, 660 Hz anti-aliasing low-pass filter). Electrocardiography 

(ECG) and vertical electrooculography (EOG) were recorded simultaneously using MEG-compatible 

electrodes. Magnetic shielding was provided by a magnetically-shielded room with full 3-layer 

passive shielding. Participant preparation consisted of affixing 3 head-positioning coils to the nasion 

and both pre-auricular points. The position of the coils relative to the participant’s head was 

measured using a 3-D digitizer system (Polhemus Isotrack, Colchester, USA).  
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A T1-weighted MRI of the brain (1.5 T, 240 x 240 mm field of view, 1 mm isotropic, sagittal 

orientation) was obtained from each participant either at least one month before or immediately 

after the session.  

Preprocessing 

Data were preprocessed and analysed using the HMM-MAR (Vidaurre et al., 2016) and Fieldtrip 

(Oostenveld et al., 2011) toolboxes for Matlab (The Mathworks). All data were screened visually. 

Noisy channels and noisy epochs were excluded from analysis.  Data were down-sampled to 250 Hz. 

A 60 Hz discrete Fourier transform filter was applied to remove line noise. Cardiac and eye 

movement artefacts were isolated by FASTICA (Hyvarinen, 1999) and removed in non-automatic 

component selection. 

Source reconstruction 

Individual T1-weighted MR scans were aligned to the MEG’s coordinate system, segmented and used 

for the construction of a single-shell, realistic head model (Nolte, 2003). To define a set of source 

coordinates, the “colin27” template MRI (Holmes et al., 1998) was inflated using FreeSurfer (Fischl et 

al., 1999) and a cortical mesh consisting of 2052 sources was constructed using MNE (Gramfort et al., 

2014). The corresponding coordinates in individual head space were obtained by applying the inverse 

of the normalizing transform matching the individual to the template MR scan. The lead field 

(forward model) was computed based on the source coordinates and the head model. Subsequently, 

a Linearly Constrained Minimum Variance (LCMV) spatial filter (Van Veen and Buckley, 1988) was 

computed based on the lead field and the sensor covariance matrix, and data were projected 

through this filter trial-by-trial. Note that the sign of the beamformer output is arbitrary. Because our 

analysis requires sign consistency across subjects, we applied a sign flipping procedure to maximize 

sign consistency; see (Vidaurre et al., 2016) and (Vidaurre et al., 2018b) for details. 

To reduce dimensionality, we grouped sources into parcels, defined by the Talairach Tournoux atlas 

(52), and carried out all subsequent analyses on the parcel level. First, each source was either 

assigned to one of 25 bilateral brain areas of interest or discarded from further analysis if it was more 

than 5 mm away from an area of interest (325 of 2052 sources). The areas of interest consisted of all 

cortical areas contained in the atlas, with the exception of seven areas at the base of the brain or 

deep within the interhemispheric fissure, which were assumed to have poor MEG signal quality 

(rectal gyrus, parahippocampal gyrus, subcallosal gyrus, transverse temporal gyrus, orbital gyrus, and 

uncus). The 25 bilateral brain areas of interest were further sub-divided into a left- and a right-

hemispheric parcel, resulting in 50 cortical parcels of interest (Tab. 1 of the Supplementary Material). 

The first principle component was extracted from each parcel of interest and magnetic field spread 

between parcels was reduced by symmetric, multivariate orthogonalization (Colclough et al., 2015).   

Stimulus-induced gamma activity 

We quantified post-stimulus gamma responses in order to relate them to brain states inferred from 

slower activity (≤35 Hz) occurring in the pre-stimulus baseline period or the resting-state recordings. 

Post-stimulus gamma responses were computed by multitaper spectral estimation using 2 Slepian 

tapers (Thomson, 1982).  Power was estimated for frequencies between 40 Hz and 100 Hz in a 

300 ms sliding window which was moved in steps of 50 ms. We screened post-stimulus parcel activity 

and identified a frequency band, a time window and a location of interest. Because individual gamma 

peak frequencies varied markedly across subjects (between 42 and 74 Hz), frequency selection was 
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subject-specific, i.e. we defined an individual gamma band for each subject (individual gamma peak 

frequency ±10 Hz). The time window of interest was set to 0.6 to 2 s relative to stimulus onset 

because all subjects were found to exhibit stable gamma activity in this window. The bilateral cunei 

were chosen as the locations of interest because this was generally the area with the strongest 

gamma response.  For the analyses described in the following, gamma power within ±10 Hz of 

individual gamma peak frequency was normalized frequency-by-frequency by computing the percent 

change relative to mean power in the response baseline (-0.5 to -0.2 ms from grating onset) and 

averaged over frequency, time and locations of interest. 

Hidden Markov Models 

HMMs are probabilistic sequence models that find recurring patterns in time series data (Rabiner 

and Juang, 1986). Unlike sliding-window approaches, they can reveal fast state changes present in 

multichannel, electrophysiological recordings (Baker et al., 2014; Vidaurre et al., 2016, 2018a, 

2018b). HMMs describe the dynamics of brain activity as a sequence of transient events, each of 

which corresponds to a visit to a particular brain state. For each state, the HMM infers a time-course 

that describes the probability of that state being active. Furthermore, each state is characterized by a 

unique spatio-spectral profile. In summary, HMM brain states can be considered a compact 

description of multi-faceted, recurring patterns in dynamic network activity. HMMs have been widely 

used in a variety of applications, such as the decoding of speech (Varga and Moore, 1990), the 

comparison of nucleotide sequences (Eddy, 1998) or the detection of pathological brain signals 

(Hirschmann et al., 2017; Kottaram et al., 2019).  

State inference 

States were inferred separately from the baseline periods of the task, the rest recording preceding 

the task, and the rest recording following the task. For the baseline period, the first second of each 

trial was removed because it was assumed to contain activity related to the button press of the 

previous trial. Next, we z-scored and concatenated the data from all subjects in time, resulting in a 

total of 71.44 min of pre-task rest data (per subject mean: 5.10 min, STD: 1.40 min), 164.85 min of 

baseline data (per subject mean: 10.99 min, STD: 2.19 min) and 63.47 min of post-task rest data (per 

subject mean: 4.53 min, STD: 0.69 min). Importantly, we applied a spectral filter with a pass-band of 

1 to 35 Hz to ensure that brain states were not based on gamma activity. This was done to 

demonstrate the universality of rest-task/baseline-task interactions, which we hypothesized to occur 

across frequency bands.  

State inference was performed by applying a variety of the HMM designed to capture transient 

patterns of power and phase-coupling, referred to as Time-delay Embedded HMM (TDE-HMM; 

(Vidaurre et al., 2018b). In this model, each state is characterized by certain patterns of cross-

correlation, which contain spectrally-defined patterns of power and phase-coupling.  The TDE-HMM 

parameters were chosen as in (Vidaurre et al., 2018b). 

Similar to the frequency resolution in spectral analysis, the number of states K in a HMM determines 

the level of detail of the solution. Here, we set K=4 to guarantee a reasonable amount of trials per 

state, and to provide enough level of detail to investigate the question at hand. Similar results were 

obtained for K=3. 
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State properties 

Following state inference, we computed the power and coherence associated with each state as 

detailed in (Vidaurre et al., 2016). In short, we used a Fourier-based multitaper approach to find the 

spectral properties of each state, restricting the estimation to the time points when a state was 

active. As a result, we obtained a multi-region pattern of power and coherence per state. For 

topographic illustrations, power and coherence were interpolated on a 3D-reconstruction of the 

template brain after computing the relative difference with respect to the mean over states. In case 

of coherence, we display the average coupling with all other parcels. 

State dynamics can be summarized by statistics such as fractional occupancy (FO), lifetime and 

interval time (See Baker et al., 2014 for formal definitions). FO quantifies the fraction of samples 

assigned to a given state. Lifetime quantifies the duration of a state visit.  Interval time quantifies the 

time in between subsequent visits of the same state.  

Statistical Analyses 

Analysis of between-subject variability 

We assessed whether the amplitude of trial-averaged, stimulus-induced gamma responses is related 

to state preferences in the baseline periods of the task and/or the rest recordings preceding and 

following the task. State probabilities were averaged across the entire baseline/rest recording and 

tested for a linear correlation with the amplitude of the trial-averaged gamma response using a 

significance test for Pearson’s correlation coefficient. Note that a strong correlation with any of the 

states will induce a correlation of opposite sign with the remaining states given the mutual exclusivity 

of states. 

Analysis of within-subject variability 

We hypothesized that the strength of stimulus-induced gamma activity depends on the brain state 

immediately before stimulus presentation (Fig. 1). To test this, we first computed, for each state, the 

average state probability in the pre-stimulus time window of interest, which served as state-specific 

trial weight. The pre-stimulus time window of interest was defined as -106 to 0 ms because 106 ms 

was the average state lifetime in task baseline (Supplementary Material). Subsequently, we 

computed a weighted trial average for each state using the obtained weights. This procedure can be 

considered a weighted (soft-assigned), within-subject grouping of trials by pre-stimulus state. Next, 

we tested whether the resulting trial groups consistently differed in post-stimulus gamma amplitude 

across subjects. This was achieved by running a Friedman test, followed by post-hoc Wilcoxon rank 

sum tests. Note that trials were grouped by pre-stimulus state, not post-stimulus gamma amplitude, 

i.e. any consistent difference in gamma amplitude must be due to a relationship between pre-

stimulus state and post-stimulus gamma amplitude.  

Comparison of effect size 

We compared the between-subject and the within-subject effects of network activity on gamma 

responses by correlating FO with the amplitude of the gamma response.  To separate between-

subject from within-subject effects for both FO and gamma activation, we regressed out the average 

value for each subject from the single trial time courses. Pearson correlation between the subject- 

specific averages yielded the between-subject effects, and the correlation between the residual, trial-

specific values yielded the within-subject effect. Note that trial-specific values could only be obtained 

for baseline, not for resting-state recordings. FO was originally represented as a 2-dimensional matrix 
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(number of trials x number of states). To obtain a single value per trial, we applied Principal 

Component Analysis and kept only the first principal component.  

In order to assess the variability of the different effects, we generated 1000 bootstrapped samples 

for each effect, using random sampling with replacement on the level of subjects to produce an 

empirical distribution of correlations (Rindskopf, 1997). p-values were obtained by computing the 

fraction of random samples with correlation 1 > correlation 2.  

Results 

Between-subject effect of brain states 

In this study, we described 1-35 Hz spontaneous network activity by applying an HMM to resting-

state MEG recordings and to the baseline periods of a task, respectively. An HMM estimates, for each 

sample of multivariate data, the probability of belonging to each of K possible brain states.  

Using this approach, we derived four brains states from the resting-state recording acquired before 

the task (rest-pre), the baseline periods within the task (BL), and the resting-state recording acquired 

after the task (rest-post), respectively. Whereas it is possible to describe the data using more states, 

four were adequate for our purposes (see Materials and Methods).  

We analysed the spectral properties of these brain states for each recording separately. Fig. 2A 

shows the spatial distribution of state power in the delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), and 

the beta band (13-30 Hz) for the rest-pre recording. Fig. 2B depicts the state-specific power spectra, 

averaged over brain areas. Fig. 2C shows the correlations between state probability and the 

amplitude of the trial-averaged, stimulus-induced gamma response. Fig. 3 and Fig. 4 provide the 

corresponding information for task baseline and rest-post, respectively. Figures on state coherence 

are provided in the Supplementary Material (Fig. S1-S3). 
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Fig. 2: Brain states in the resting-state recording preceding the task. A: Topography of power for each 

state and frequency band. Relative difference to the mean over states is color-coded. B: Power 

averaged over parcels, normalized as in A. C: Correlation between state probability and the gamma 

response to visual stimulation. r = Pearson correlation. p = p-value. 
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Fig. 3: Brain states in the baseline periods of the task. A: Topography of power for each state and 

frequency band. Relative difference to the mean over states is color-coded. B: Power averaged over 

parcels, normalized as in A. C: Correlation between state probability and the gamma response to 

visual stimulation. r = Pearson correlation. p = p-value. 
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Fig. 4: Brain states in the resting-state recording following the task. A: Topography of power for each 

state and frequency band. Relative difference to the mean over states is color-coded. B: Power 

averaged over parcels, normalized as in A. C: Correlation between state probability and the gamma 

response to visual stimulation. r = Pearson correlation. p = p-value.  
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We next focused on the brain state that was most strongly correlated with trial-average gamma 

amplitude (state 3 in rest-pre, state 2 in BL, state 3 in rest-post). The estimate of the individual 

preference for this state, defined as the fraction of time spent in this state, was similar for all 

recordings (Fig. S6 of the Supplementary Material). In all cases, this state showed a positive linear 

relationship with the gamma response, inducing a negative correlation with the remaining states due 

to the mutual exclusivity of states.  The power spectrum of the positively correlated brain state was 

characterized by a peak in the delta/theta frequency range and a minimum in the alpha band (see 

Fig. 5A for a direct comparison of recordings). Delta power was concentrated in bilateral parietal and 

motor areas (Fig. 5B).  

These findings demonstrate that (i) the HMM could identify a recurring pattern characterized by high 

delta and low alpha power in all of the recordings and (ii) that subjects showing this particular 

pattern frequently in the absence of a stimulus or task have a comparably strong gamma response.  

 

 

Fig. 5: A common pattern found in all recordings. A: Normalized power spectra averaged over all 

parcels for rest-pre state 3 (left), baseline state 2 (middle) and rest-post state 3 (right). B: Spatial 

distribution of power between 1 and 5 Hz for the same states as in A. The relative difference to the 

mean over all rest-pre, baseline, and rest-post states is color-coded. 

Within-subject effect of brain states 

We tested whether the BL state occurring immediately before stimulus onset affects the amplitude 

of the gamma response within subjects. As illustrated in Fig. 6, gamma responses were strongest 

when BL state 2, i.e. the state positively correlated with the trial-average gamma response between 

subjects (see above), preceded grating onset. This pattern was observed in most individual subjects 

and was not an artefact of the trial-weighting procedure used in the analysis (Supplementary 

Material). In another control analysis, we verified that incompletely removed pre-stimulus eye blinks, 

which might impact the subsequent gamma response, were not the cause of pre-stimulus state 

changes (Fig. S4 of the Supplementary Material).  
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Due to the association with a strong gamma response both within and between subjects, we refer to 

BL state 2, which corresponds to rest-pre state 3 and rest-post state 3, as the “gamma-enhancing 

brain state” in the following.  

We investigated whether the gamma-enhancing brain state was upregulated as the baseline period 

progressed, in anticipation of the stimulus. To this end, we averaged the state probabilities, time-

locked to the beginning of the baseline period (fixation-cross onset), over trials. The resulting 

average, referred to as fractional occupancy (FO), quantifies how often a given state occurred at each 

time point in the baseline period (Baker et al., 2014). Indeed, BL state 2 appeared more frequently 

towards the end of the baseline period (Fig. 6; mean slope = 0.086, p < 0.001; t-test). BL state 1 was 

found to be predominant early in the baseline, but its FO decreased over time (mean slope = -0.065, 

p < 0.001; t-test). The FO of BL state 3 showed a weak negative dependency on time (mean slope = -

0.020, p = 0.02; t-test) and BL state 4’s FO did not change significantly (mean slope = -0.001, p = 0.87; 

t-test).   

 

 

Fig. 6:  Relationship between gamma responses and pre-stimulus brain state.  A) Fractional 

occupancy in the baseline period (1-4 s before grating onset), averaged over subjects and time-

locked to the onset of the fixation cross. Shaded areas indicate the standard deviation over subjects. 

The first second of each trial was discarded to reduce the effect of movement-related processing 

occurring after the button press. B) Left: Weighted average time-frequency representations of 

gamma responses, time-locked to the appearance of the moving grating. 0 Hz marks individual 

gamma-peak frequency (between 42 and 74 Hz). Power was baseline-corrected (-0.5 to -0.2 s from 

grating onset). Right: Power averaged over frequency (individual gamma peak frequency ±10 Hz) and 

time (0.6 to 2s). 

 

Finally, we considered the possibility that BL state 2 owes its gamma-enhancing properties solely to 

low pre-stimulus alpha power in parieto-occipital cortex. To explore this possibility, we split the trials 

in two groups based on alpha power observed in the cuneus over the last 100 ms before stimulus 

onset (lower 50% vs. higher 50%). Stimulus-induced gamma power did not differ between these 

groups (p = 0.43; Friedman test). Similar results were obtained when comparing three levels of alpha 

power and when considering all parieto-occipital brain areas instead of only the cuneus (data not 

shown). These results suggest that low parieto-occipital alpha power does not fully explain the 
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within-subject effect detected here, highlighting the relevance of whole-brain spontaneous network 

dynamics. 

Comparison of effect size 

So far, we have revealed four different effects of spontaneously occurring brain states on stimulus-

induced gamma responses: an across-subject correlation for rest-pre, an across-subject correlation 

for task baseline, an across-subject correlation for rest-post, and a within-subject effect for task 

baseline. We now compare the strength of these different effects, finding a dominance of between-

subject over within-subject effects. A quantitative comparison of effect size is displayed in Fig. 7. The 

within-subject effect was much weaker than any of the between-subject effects. Qualitatively, the 

between-subject effect was stronger for task baseline than for rest-pre and for rest-post, 

respectively. These differences, however, were not significant (BL vs. rest-pre: p = 0.25, BL vs. rest-

post: p = 0.17).  

 

Fig. 7:  Comparison of effect size. Resampling subjects with replacement yielded empirical 

distributions of the absolute Pearson correlation coefficient. The distribution medians are 

represented by red lines and the 0.25 – 0.75 interquartile range (IR) is indicated by black whiskers. 

Outliers (median ± 2.5 IR) are represented by plus signs. rest-pre (subj): between-subject correlation 

for resting-state recording acquired before the task; BL (subj): between-subject correlation for 

baseline periods of the task; rest-post (subj): between-subject correlation for resting-state recording 

acquired after the task. BL (trial): within-subject correlation for baseline periods of the task. 

 

Discussion 
In this paper, we have demonstrated that inter-individual differences in gamma responses to visual 

stimulation are reflected by inter-individual differences in spontaneous network activity <35 Hz. 

Furthermore, we have revealed a similar, albeit weaker, influence of brain states on trial-specific 

gamma responses. Our results imply that it is possible to predict a subject’s gamma response from 

their resting-state activity profile. 
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Hidden Markov Modelling of brain activity  

The HMM has several useful properties for network-level analysis of electrophysiological data. Unlike 

sliding-window approaches, it processes the data sample by sample, facilitating the characterization 

of electrophysiological networks at very high temporal resolution.  In addition, the HMM is a 

multivariate approach that considers all signals simultaneously. Rather than defining a region of 

interest, one can process all brain areas at once. Subsequent statistical tests do not need to be 

corrected for multiple comparisons, improving statistical efficiency. Importantly, the HMM is not a 

biophysical model explaining how brain activity arises, but a data-driven approach providing a 

compact representation of multi-channel/multi-area data. 

Recent MEG studies made use of these properties to reveal a rich repertoire of fast-changing 

network states characterized by distinct topographies of spectral power and coupling, many of which 

were reminiscent of the resting-state networks originally obtained with fMRI (Baker et al., 2014; 

Vidaurre et al., 2016, 2018a, 2018b). HMMs and other whole-brain models have also been applied to 

describe dynamic connectivity in fMRI data (Cabral et al., 2017; Vidaurre et al., 2017b). Here, we 

have used this approach to assess the relationship between spontaneous network activity (resting-

state and task baseline) and stimulus-induced gamma responses.  

Interactions between spontaneous and task-related brain activity 

A number of fMRI studies have previously demonstrated interactions between resting-state and task-

related activity (Northoff et al., 2010). Resting-state and task-related networks were found to be 

highly similar across a wide variety of tasks (Smith et al., 2009; Cole et al., 2014). Furthermore, 

stimulus-induced patterns of activation could be predicted from resting-state activity (Cole et al., 

2016; Tavor et al., 2016). These findings suggest that task-related brain activity arises by relatively 

minor modulations of a basic network profile, which can be considered a neural signature or 

fingerprint, allowing for accurate identification of individual subjects (Finn et al., 2015). 

The current MEG study is one the first to show that the above concept might be transferable from 

fMRI to neurophysiology. The fact that the individual preference for a particular brain state 

correlated with the individual gamma response implies that spontaneous brain activity measured in 

the absence of stimulation (rest or task baseline) is predictive of brain activity induced by a visual 

stimulus. This observation supports the concept of a robust, individual network profile. 

So far, there is only one comparable piece of work from Becker et al, who likewise combined MEG 

and HMMs to predict electrophysiological responses to visual stimuli and own movements from 

resting-state activity (Becker et al., 2018). The current study differs from this paper in several ways. 

First, it investigates induced rather than evoked responses. Second, it assesses within-subject 

variability in addition to between-subject variability. Third, it predicts gamma band responses from 

low-frequency activity (cross-frequency analysis). And finally, it compares the predictive potential of 

resting-state and task baseline activity.  

A unique insight resulting from this study is that rest-task relationships exist across frequency bands, 

as evidenced by an influence of spontaneous 1-35 Hz activity on stimulus-induced responses in the 

gamma band (>35 Hz). A possible explanation might be that fundamental brain functions like 

attention, which do impact brain responses and might be reflected by brain states, involve 

predominantly theta and alpha oscillations. This possibility is discussed in more detail below (see 

Brain States and Attention).  
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In addition, our study shows for the first time that induced gamma responses in human visual cortex 

are biased by pre-stimulus, spontaneous brain activity below 35 Hz. While this finding aligns with 

similar observations made for spiking (Tsodyks et al., 1999), evoked responses in local field potentials 

(Arieli et al., 1996; Kisley and Gerstein, 1999) and the BOLD signal (Fox et al., 2006), as well as 

perception (e.g. van Dijk et al., 2008; Busch et al., 2009; Baumgarten et al., 2015), it highlights one of 

the major advantages of our approach. The combination of MEG and HMM provides network activity 

resolved on a millisecond time scale, thus providing insights on the level of subjects and trials. On the 

one hand, the approach allows for estimating a subject’s average gamma response based on the 

brain states generally preferred by this subject. On the other hand, the same model allows for 

estimating the gamma response in the current trial based on the brain state last visited before 

stimulus onset. Interestingly, we found the subject-level estimates to be much more precise than the 

trial-level estimates, indicating that the brain states described here are more representative of the 

current individual than of the current trial.  

Finally, we investigated whether task baseline activity is more predictive of brain responses than 

resting-state activity. The first thing to note is that both kinds of recordings contained the same basic 

pattern related to gamma responses (“the gamma-enhancing brain state”), indicating that prediction 

depends on how well the individual preference for this pattern can be estimated from a given 

recording. While a recent fMRI study suggests that task recordings might allow for a better 

discrimination between individual network profiles than resting-state recordings (Greene et al., 

2018), we observed only qualitative differences when predicting gamma responses. This speaks for a 

limited influence of context on individual network profiles (compare Gratton et al., 2018).  

Brain states and attention 

The current study did not attempt to quantify attention, and thus it cannot establish a direct link 

between attention and brain states. Nevertheless, there are several observations indicating that 

spontaneous switching between brain states in part reflects the dynamic modulation of attention. 

First, attention can enhance gamma responses in visual cortex, similar to the gamma-enhancing brain 

state observed here (Tallon-Baudry et al., 2005). Second, the gamma-enhancing brain state became 

more common towards the end of the baseline period, which might reflect an anticipatory 

upregulation of attention as stimulus presentation approached. Third, the gamma-enhancing brain 

state is characterized by low posterior alpha power, which is believed to reflect the current level of 

attention. This view is grounded in M/EEG studies showing that briefly presented visual stimuli are 

more likely to be perceived if posterior alpha oscillations are desynchronized (Hanslmayr et al., 2007; 

Dijk et al., 2008; Lange et al., 2013). When subjects are instructed to pay attention to one visual 

hemifield, alpha power increases in the ipsilateral hemisphere, probably to reduce the influence of 

distractors in the irrelevant hemifield (Mazaheri and Jensen, 2008; Treder et al., 2011; Horschig et al., 

2015).  Similar observations have been reported for other sensory modalities (Haegens et al., 2011; 

Mazaheri, 2014; Baumgarten et al., 2016), suggesting that alpha power might serve as a general 

mechanism for controlling whether or not a stimulus is noticed by the subject.  Finally, recent MEG 

studies demonstrated a relationship between pre-stimulus alpha and post-stimulus gamma 

oscillations in visual (Popov et al., 2017) and somatosensory areas (Wittenberg et al., 2018).  

Importantly, however, the gamma-enhancing brain state described here cannot be equated with low 

posterior alpha power. Differences in alpha power did not entirely account for the effects of brain 

states in this study, and high delta rather than low alpha power was the common feature shared 
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across states correlating positively with the gamma response. Thus, low alpha power in occipital and 

parietal areas might be just one aspect of sensory gating.  

Assuming that brain states indeed reflect the level of attention, it is possible to give a rather 

parsimonious interpretation of our findings. First, the correlation between rest-based brain states 

and the trial-average gamma response indicates that it is possible to identify subjects capable of 

maintaining a high level of attention based on resting-state activity. This identification works equally 

well or even better when basing the identification on task baseline activity. Similarly, the analysis of 

pre-stimulus brain states allows for identifying trials in which stimulus presentation coincides with a 

high level of attention.  

Limitations 

While this work demonstrates a correlation between resting-state activity and brain responses, it is 

limited to the amplitude of induced gamma responses in the visual system. Other features such as 

frequency or latency were not assessed. And, unlike previous fMRI studies (Cole et al., 2016; Tavor et 

al., 2016) and the MEG study by Becker et al. (Becker et al., 2018), it did not probe the predictive 

power of resting-state activity by generating out-of-sample predictions.  

Conclusions  

We have shown that brains states describing spontaneous network activity < 35 Hz are correlated 

with the amplitude of stimulus-induced gamma responses. Our findings suggest that each subject is 

characterized by an individual network profile predictive of brain responses. 
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