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Abstract 
Gamma range activity in human visual cortex is believed to play a major role in cognitive functions, 

such as selective attention. Although recent studies have revealed substantial variability in gamma 

activity, its origins are still unclear.  

We investigated whether variability in stimulus-induced gamma activity is related to the spontaneous 

dynamics of resting-state networks using Hidden Markov Modelling.  The magnetoencephalogram 

(MEG) of 15 healthy participants was recorded at rest and while they were performing a task 

involving a visual stimulus inducing strong, narrow-band gamma activity. Brain states were inferred 

from the task’s baseline periods and from resting-state recordings, respectively.  

Our results show how network states are related to the amplitude of stimulus-induced gamma 

responses.  Across trials, we found an association between the amplitude of gamma responses and 

the brain state occurring immediately prior to stimulus presentation. Strong gamma responses 

followed a state characterized by prominent delta/theta oscillations in parieto-occipital regions and 

comparably weak alpha activity. Across subjects, the overall probability of visiting this state in the 

baseline period, i.e. the individual preference for this state, correlated positively with the amplitude 

of the trial-averaged gamma response.  Remarkably, this relationship persisted when states were 

inferred from resting-state recordings rather than the task’s baseline. 

In summary, both within- and across-subject variability in stimulus-induced gamma activity can in 

part be explained by the ongoing dynamics of whole-brain network states. Fast, pre-stimulus 

modulations of brain states account for differences between trials while stable, individual state 

preferences account for differences between subjects. 
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Introduction 
Narrow-band gamma activity has been observed in numerous species and brain areas with various 

recording techniques (1), including M/EEG recordings in humans (2). It has been proposed to play a 

role in a variety of cognitive processes, including attention (3, 4), feature binding (5, 6) , memory 

encoding (7, 8), memory retrieval (9, 10), decision-making (11, 12), and reward processing (13, 14).  

Like any physiological response, stimulus-induced gamma activity varies within and between 

subjects. Within-subject variability of stimulus-induced gamma responses is substantial. Invasive 

recordings in monkeys (15) and humans (16) revealed that gamma responses vary markedly from 

trial to trial. Overall, single-trial gamma responses have been described as transient events of varying 

amplitude, duration and frequency, suggesting that the trial average, which resembles a continuous 

oscillation, does not capture the actual physiological processes engaged in single trials (17, 18). 

Although potentially misleading about the nature of gamma responses, averaging across trials results 

in a remarkably reproducible pattern within individuals, as shown by MEG studies measuring trial-

average gamma responses in human visual cortex repeatedly in the same subjects (19, 20).  Between 

subjects, in contrast, the trial-average response differs markedly with respect to amplitude, 

frequency and bandwidth (20) and this between-subject variability has been shown to have a 

relatively strong genetic basis (21). 

The most common approach to studying gamma-band activity in humans is to compare trial- or 

subject-averages across experimental conditions (e.g. 22, 23). In this framework, within- and 

between-subject variability is usually not a parameter of interest. The present study, in contrast, 

focuses on the variability of gamma responses and how it may be related to ongoing network activity 

immediately prior to stimulus onset and in the resting-state (before/after task performance). We 

aimed at answering two major research questions. The first question, relating to variability across 

trials, is whether the strength of the gamma response depends on the network state immediately 

preceding stimulus onset. In other words, could gamma responses differ across trials because the 

pre-stimulus brain state varies from trial to trial? Previous M/EEG studies have already revealed an 

influence of pre-stimulus oscillations (typically, ≤ 1s before stimulus onset) on behavioural 

performance in perception tasks  (24–26), suggesting that a similar influence might be exerted on 

stimulus-induced brain responses. The second question, relating to variability across subjects, is 

whether the amplitude of the trial-average gamma response is related to individual phenotypes of 

network dynamics. In other words, do individuals differ in their gamma response because some 

subjects spend more time in certain network states than others? Unlike the first question, the latter 

does not address the immediate, pre-stimulus period, but temporally stable features of whole-brain 

network activity. Similar stable features of network activity have been found to predict stimulus-

induced brain responses in functional magnetic resonance (fMRI) studies (27, 28).Here, we sought to 

find neurophysiological correlates at higher temporal resolution using MEG imaging.   

In contrast to previous M/EEG studies, we did not restrict our analysis to a specific brain area or 

frequency band; instead, we studied network activity in a wide frequency range (1-35 Hz) with 

Hidden Markov Models (HMMs). HMMs are probabilistic sequence models that specialise in finding 

recurring patterns in multivariate data (29). Unlike sliding-window approaches, they can reveal fast 

state changes present in multichannel, electrophysiological recordings (30–33). HMMs describe the 

dynamics of brain activity as a sequence of transient events, each of which corresponds to a visit to a 

particular brain state. For each state, the HMM infers a time-course that describes the probability of 
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that state being active. Furthermore, each state is characterized by a unique spatio-spectral profile. 

In summary, HMM brain states can be considered a compact description of multi-faceted, recurring 

patterns in dynamic network activity. HMMs have been widely used in a variety of applications, such 

as the decoding of speech (34), the comparison of nucleotide sequences (35) or the detection of 

pathological brain signals (36).  

The paradigm and rationale of the present study are illustrated in Fig. 1. In short, MEG data were 

acquired from 15 healthy participants while they performed a reaction time task. Subjects were 

presented with an inward-moving, circular sine wave grating, known to induce strong gamma activity 

in visual cortex  (19). They were instructed to press a button as soon as they detected an increase in 

grating speed. In addition, two resting-state MEG measurements were obtained: one before and one 

after the task. Whole-brain network states were derived from 1-35 Hz ongoing activity in 1) the pre-

stimulus task baseline and 2) the resting-state recordings. The restriction to spontaneous sub-gamma 

activity was made to prevent the detection of trivial relationships between pre- and post-stimulus 

gamma activity (see Materials and Methods). 

 

 

Fig. 1: Experimental paradigm and rationale of the study. Upper row: Timeline of a single trial, locked 

to grating onset. Following a baseline period of 2 to 4 s with a central fixation cross, an inward-

moving grating appeared which accelerated at an unpredictable moment 3 to 5 s following grating 

onset (illustrated here with red arrows). Subjects indicated they detected the acceleration via button 

press. Lower left: Hidden Markov Modelling yielded at each time sample the probability of the brain 

being in any of four states (color-coded). State inference was limited to epochs without stimulation, 

i.e. to the pre-stimulus baseline, as shown here, or to the resting-state (not shown). Each state is 

characterized by a unique spatio-spectral profile within the frequency ranges slower than gamma (1-

35 Hz), including the topography of delta power shown here for states 2 (left) and 4 (right). Lower 

right: The inward-moving grating induced strong gamma activity in occipital areas. We investigated 

whether the strength of this stimulus-induced gamma response is related to spontaneously occurring 

whole-brain states.  
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Results 

State properties 

We assessed the spectral and temporal profile of four states derived from the baseline periods of the 

task. Whereas it is possible to describe the data using more states, four were adequate for our 

purposes (justified in Materials and Methods). Fig. 2A shows the power and coherence spectra 

associated with each state. Although all state spectra were dominated by parieto-occipital alpha 

peaks, baseline states differed with respect to multiple spectral features.   

We investigated the temporal properties of these baseline states. The smallest number of visits for 

any state-subject combination was 338, i.e. all subjects visited all states repeatedly in the baseline 

period. On average, a state visit lasted 106 ms. This average lifetime defined the pre-stimulus time 

window of interest (-106 to 0 ms), which was designed to capture the state last visited before the 

appearance of the moving grating. Fig. S1 describes additional, time-average state properties. 

We next investigated how the state probabilities estimated by the HMM evolved in the baseline 

period of the task. To this end, we averaged the state probabilities, time-locked to the beginning of 

the baseline period (fixation-cross onset), across trials. The resulting average, referred to as 

fractional occupancy (FO), quantifies how often a given state occurred at each point in the baseline 

period (30). Although HMM inference was performed without providing explicit information about 

the timing of the experiment, FO changed systematically as stimulus presentation approached, 

suggesting an effect of stimulus anticipation (Fig. 2B). State 1 was found to be predominant early in 

the baseline, but its FO decreased over time (mean slope = -0.065, p < 0.001; t-test). State 2’s FO 

increased over time (mean slope = 0.086, p < 0.001; t-test). The FO of state 3 showed a weak 

negative dependency on time (mean slope = -0.020, p = 0.02; t-test) and state 4’s FO did not change 

significantly (mean slope = -0.001, p = 0.87; t-test).  We verified that FO was independent of 

heartbeat and eye blinks (Fig. S2).   

Gamma responses and pre-stimulus network state  

Next, we investigated whether the spontaneous occurrence of whole-brain network states 

immediately before grating onset can account for within-subject, trial-to-trial variability of induced 

gamma responses. As depicted in Fig.1, the HMM provided a probability for each state at each time 

point in the baseline period. We averaged these probabilities across the pre-stimulus time window of 

interest (-106 to 0 ms) and used the average probabilities as weights for the computation of state-

specific, weighted trial-averages. This procedure can be considered a soft-assigned, within-subject 

grouping of trials by pre-stimulus state. Subsequently, we tested whether the resulting state-specific 

trial averages differed with respect to post-stimulus gamma amplitude. Note that such differences 

may only occur if there is quantitative relationship between pre-stimulus state and post-stimulus 

gamma amplitude, since trials were grouped by the former. 

As depicted in Fig. 2C, the amplitude of stimulus-induced gamma activity differed across pre-stimulus 

states (p = 0.013; Friedman test). Post-hoc comparisons revealed that baseline state 2 was associated 

with stronger stimulus-induced gamma activity than baseline state 4 (p = 0.004; Wilcoxon rank-sum 

test). This pattern was seen in most individual subjects (Fig. S3) and was not biased by the trial-

weighting procedure (Supplementary Material). These results demonstrate that state switching in 
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the baseline period can explain part of the within-subject variability in stimulus-induced gamma 

responses. 

 

 

Fig. 2:  Relationship between gamma responses and pre-stimulus network state.  A) Power (upper 

row) and coherence spectra (lower row) for each of the four baseline states, averaged over all, 

occipital, parietal, central, frontal and temporal brain regions, respectively. B) Fractional occupancy 

in the baseline period (1-4 s before grating onset), averaged over subjects and time-locked to the 

onset of the fixation cross. Shaded areas indicate the standard deviation over subjects. The first 

second of each trial was discarded to reduce the effect of movement-related processing occurring 

after the button press. C) Left: Weighted average time-frequency representations of gamma 

responses, time-locked to the appearance of the moving grating. 0 Hz marks individual gamma-peak 

frequency (between 42 and 74 Hz). Power was baseline-corrected (-0.5 to -0.2 s from grating onset). 

Right: Power averaged over frequency (individual gamma peak frequency ±10 Hz) and time (0.6 to 

2s). 

Gamma responses and individual state preferences  

To investigate the contribution of baseline states to inter-subject variability, we correlated the power 

of the trial-averaged, stimulus-induced gamma response with the mean state probability in the entire 

baseline period of the trial (from 1 to max. 3 s relative to fixation-cross onset; Fig 1).  We found that 

the probability of being in baseline state 2 (the state that elicited strong oscillatory responses within 

subjects) was positively correlated with trial-averaged gamma power (r = 0.690, p = 0.004), i.e. 

subjects spending more time in baseline state 2 tended to exhibit stronger stimulus-induced gamma 

activity on average. The other states showed a weaker, negative correlation (state 1: r = -0.57, state 

3: r = -0.32, state 4: r = -0.41). These results demonstrate that state preferences in the baseline 

period can explain between-subject variability in stimulus-induced gamma activity. 

To investigate the link between the amplitude of stimulus-induced gamma activity and resting-state 

activity, we re-ran the HMM inference on the resting-state recordings preceding and following the 
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task, respectively. The three recordings (rest-pre, task, and rest-post) were recorded in direct 

succession in most subjects (see Materials and Methods). For both resting-state recordings, we 

identified a state reminiscent of baseline state 2, characterized by strong power between 1 and 5 Hz 

and the lack of an alpha peak in the region-average power spectrum (Fig. 3A). Topographically, the 1-

5 Hz peak mapped to bilateral parietal and sensorimotor cortices (Fig. 3B). Similar to the baseline 

periods (r = 0.690), the probability of being in the high delta/low alpha state at rest was positively 

correlated with trial-averaged, stimulus-induced gamma power (rest-pre: r = 0.700, p = 0.005; rest-

post: r = 0.538, p = 0.046), i.e. subjects spending more time in this state at rest tended to show 

stronger gamma activity in the task (Fig. 3C). This persisting correlation demonstrates that time-

average state probabilities reflect individual state preferences which are stable across several hours 

and across experimental conditions (cf. Fig. S4).  

 

 

 

Fig. 3: Relationship between gamma responses and individual state preferences. A: Power spectra 

averaged over parcels for all four states in the resting-state recording preceding the task (top), the 

task’s baseline periods (middle), and in the resting-state recording following the task (bottom). A 

state characterized by strong delta/theta oscillations and comparatively weak alpha oscillations was 

observed in all recordings (marked in green). B: Spatial distribution of power between 1 and 5 Hz, 

relative to the mean over all rest-pre, baseline, and rest-post states. C: Across-subject correlation 

between the amplitude of stimulus-induced gamma activity and time-average state probability. Each 

state is represented by one plot within each row. Within each row, states are sorted by correlation 

coefficient from left to right in descending order. Note that, with the exception of the first column, 

states are not matched across rows (recordings), i.e. states within a column might differ with respect 

to power and coherence. 

The gamma-enhancing network state 

Our observations suggest the existence of a whole-brain state with an enhancing effect on gamma 

responses occurring both at rest and in the baseline period of a task. To further characterize this 

state, we maximized the amount of available information by concatenating the data and the state 

probabilities from the baseline periods and the two resting state recordings, and we computed the 

topography of power and coherence in this state (Fig. 4). The gamma-enhancing network state 
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exhibited strong delta/theta power in central parieto-occipital regions and sensorimotor cortex, as 

well as weak alpha power in all areas posterior to the central sulcus and in the temporal lobes. The 

spatial distribution of power was remarkably symmetric with respect to the interhemispheric fissure. 

The topography of coherence was similar to the topography of power in the alpha and beta band, 

but deviated at lower frequencies. Delta coherence, in particular, was high in left primary 

somatosensory cortex. 

 

Fig. 4: Characterization of the gamma-enhancing network state. Columns from left to right: delta (1-4 

Hz), theta (5-7 Hz), alpha (8-12 Hz) and beta (13-35 Hz). A) Power relative to the mean across states. 

B) Coherence relative to the mean across states. Colours indicate the average coherence of each 

parcel with all other parcels, relative to the mean across states. 

Low posterior alpha power does not explain strong gamma responses 

We considered the possibility that the gamma-enhancing network state owes its gamma-enhancing 

properties solely to low pre-stimulus alpha power in parieto-occipital cortex. To explore this 

possibility, we split the trials into two groups based on alpha power observed in the cuneus over the 

last 106 ms before stimulus onset (lower 50% vs. higher 50%). Stimulus-induced gamma power did 

not differ between these groups within subjects (p = 0.43; Friedman test) and pre-stimulus alpha 

power did not correlate with stimulus-induced gamma power across subjects (r = 0.008, p = 0.974). 

Similar results were obtained when comparing three levels of alpha power and when considering all 

parieto-occipital brain areas instead of only the cuneus (data not shown). These results suggest that 

low parieto-occipital alpha power does not fully explain the enhancement the gamma response, 

highlighting the relevance of spontaneous network dynamics provided by the HMM. 

Discussion 
We have demonstrated that spontaneously occurring network states account for within- and 

between-subject variability in stimulus-induced gamma activity. In particular, we have provided 

evidence for a network state favouring strong gamma responses of visual cortex to an inward-moving 

grating. Stimulus-induced gamma activity was stronger when this state preceded stimulus onset on a 
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given trial. Further, stimulus-induced gamma activity was stronger in subjects visiting this state 

frequently during the baseline periods of the task or during rest.  

The effect of pre-stimulus oscillations on induced gamma activity 

An important insight from this study is that stimulus-induced gamma activity is related to pre-

stimulus states derived from activity between 1 and 35 Hz, suggesting that the gamma response 

depends on slower, pre-stimulus oscillations. These results are in agreement with a recent MEG 

study demonstrating that post-stimulus gamma lateralization in response to a spatial cue is 

correlated with pre-stimulus alpha lateralization (37). The authors further showed that the phase of 

alpha oscillations modulates the amplitude of gamma activity in the pre-stimulus period and that 

alpha activity in visual cortex is driven by the frontal eye field. Their results support a general 

framework for inter-area communication, in which gamma activity mediates bottom-up 

communication and alpha/beta oscillations are markers of top-down influences (38–40). Such 

frequency-specific communication is believed to enable fundamental aspects of human perception, 

such as spatial attention, and indeed, both alpha and gamma activity are strongly modulated by 

attention (41–44). Although our findings argue against alpha as an exclusive mediator of pre-stimulus 

effects in this paradigm (see below), it is conceivable that brain state dynamics in the baseline period 

reflect dynamic modulation of attention, mediated by concerted oscillations below 35 Hz. 

Network vs. local activity 

A crucial feature of our approach is that it allows for relating network activity, rather than local 

activity, to visual processing. This is achieved by the use of Hidden Markov Modelling, which models 

the activity of all sources simultaneously and can fully leverage the high temporal resolution of 

electrophysiological data. Recent MEG studies using HMMs revealed a rich repertoire of fast-

changing network states characterized by distinct topographies of spectral power and coupling, many 

of which were reminiscent of the resting-state networks originally obtained with fMRI (30–33). 

HMMs and other whole-brain models have also been applied to describe dynamic connectivity in 

fMRI data (45, 46). 

The ability to investigate network activity allowed a more complete description of spontaneous 

activity in relation to stimulus processing. Given the highly-interconnected structure of the brain, it is 

unlikely for the local processes serving the gating of sensory information (such as the modulation of 

posterior alpha power) to work in isolation. In line with this assumption, we have shown that low 

posterior alpha power is a major feature of the gamma-enhancing network state, but is in itself not 

sufficient to explain the predisposition for strong gamma responses.  

Spontaneous activity is correlated with stimulus-induced activity 

We found an association between stimulus-induced gamma activity and network states occurring in 

the absence of a stimulus, implying that spontaneous activity could predict individual stimulus-

induced responses. This is in agreement with a number of fMRI studies demonstrating interactions 

between resting-state and task-related activity (47). Resting-state and task-related networks were 

found to be highly similar across a wide variety of tasks (48, 49). Furthermore,  stimulus-induced 

patterns of activation could be predicted from resting-state activity (27, 28). These studies suggest 

that task-related activity arises by relatively minor modulations of the basic functional connectome, 

which was demonstrated to be a robust, individual trait, allowing for accurate identification of 

individual subjects (50). Neurophysiological activity has seldom been investigated in this context; we 
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only know of one electrocorticography study in non-human primates reporting high similarity 

between resting-state and stimulus-induced neuronal activity in visual cortex (51).  

While fMRI studies on spontaneous activity have mostly, but not exclusively  (48, 49), addressed the 

resting-state, electrophysiological studies in humans have related brain activity occurring 

immediately before stimulus onset (≤ 1s) to perception. Pre-stimulus alpha and beta oscillatory 

activity, for example, were found to bias the perception of briefly presented or difficult-to-distinguish 

visual (24, 54, 55) and tactile stimuli (56–59). Unlike resting-state networks, which are usually 

obtained by collapsing activity over time and thus emphasize stable configurations of brain activity, 

pre-stimulus activity is believed to reflect processes that vary on a trial-by-trial basis, such as 

attention and/or stimulus anticipation (43). 

In this study, we have assessed the relationship of both pre-stimulus and resting-state activity with 

stimulus-induced gamma activity. Pre-stimulus brain states were found to affect the amplitude of 

gamma responses within subjects, suggesting that the dynamics of pre-stimulus brain states reflect 

fast-changing internal processes distinguishing between trials, such as the level of anticipation. An 

anticipatory effect is further supported by the fact that state probabilities underwent systematic 

modulations as stimulus onset approached (Fig. 2).  

When considering state probabilities averaged over the entire baseline period rather than the 

immediate, pre-stimulus interval, we found that the overall fraction of time spent in the state 

preceding strong gamma responses correlated positively with the amplitude of the individual, trial-

average gamma response. Thus, the same brain state, referred to as the gamma-enhancing network 

state, predicted strong responses within and across subjects. Note that such correspondence 

between trial- and subject-level is not unexpected, since spending a lot of time in a gamma-

enhancing network state increases the probability of responding strongly to stimulus onset in any 

given trial, thus favoring a strong average response. It is, however, a good indicator that the reported 

subject-level correlations are not driven by outliers. While it is possible that any brain state is 

overrepresented in strong responders by chance, it is very unlikely that the same state enhances 

gamma responses within these subjects (trial-level). Conversely, differences arising by chance within 

subjects are not expected to translate into a relationship across subjects. 

A state very similar to the gamma-enhancing network state observed at baseline was found in the 

resting-state recordings. Again, the individual preference for this state correlated with the individual 

gamma response. These observations suggest that the general preference for the gamma-enhancing 

network state is an individual characteristic that can be estimated from any recording containing 

spontaneous activity, irrespective of context and time. Provided that future studies confirm its 

robustness and predictive power in other settings, the probability of visiting the gamma-enhancing 

network state might turn out to be a highly informative and compact feature of the individual 

functional connectome, summarizing key aspects in a single number. 

Limitations 

While this work demonstrates a correlation between resting-state activity and brain responses, it 

does not attempt to predict brain responses form resting-state activity, as performed in previous 

fMRI studies (27, 28). Making detailed predictions about multiple response parameters, including 

frequency band and spatial distribution, in a wide variety of tasks will be an important challenge for 

future studies. 
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Another limitation of this study is that it does not relate brain states to behaviour. While the 

paradigm did involve the measurement of reaction time, we found the variability of reaction times to 

be unusually large, most likely because subjects occasionally missed the acceleration of the moving 

spiral and simply pressed the button after a waiting period. An investigation of this matter would 

require a different paradigm with a more reliable assessment of behaviour. 

Furthermore, due to the use of Principal Component Analysis for dimensionality reduction,  the 

method applied here biases the state decomposition towards slow, high-amplitude oscillations (33). 

Hence, faster rhythms such as beta oscillations are possibly underrepresented, whereas delta and 

theta oscillations dominate state inference. Future work will be necessary to find similar effects in 

higher bands.  

Conclusions  

We have shown that within- and across-subject variability in stimulus-induced gamma activity can in 

part be explained by brain state dynamics. Spontaneously occurring brain states reflect both fast-

changing factors distinguishing between trials and temporally stable factors distinguishing between 

subjects.  

Material and Methods  

Participants 

15 healthy participants were recruited for this study (21-45 years; 5 female). The study was approved 

by the Montreal Neurological Institute’s ethics committee (NEU 011-036) and was in accordance with 

the Declaration of Helsinki. All participants gave written informed consent and were compensated 

for their participation. 

Paradigm  

Subjects were presented with a modified version of the visual stimulation paradigm by Hoogenboom 

et al. (19): An inward-moving, circular sine wave grating with a diameter of 5° accelerated from 1.6 

deg/s to 2.2 deg/s at an unpredictable moment between 3-5 seconds after stimulus onset. Subjects 

indicated that they detected the velocity change by pressing a button with the index finger of the 

dominant hand. The button press ended the trial and the stimulus was turned off. During the inter-

trial interval (baseline period), subjects were presented with a central fixation cross. Inter-trial 

intervals varied between 2 and 4s. A few trials with longer interval (17 - 19 s) were randomly 

interspersed in the trial sequence for all subjects but P1 (6 - 16 per subject; mean: 13). This was done 

to facilitate an analysis of the influence of baseline duration, but is not relevant for the analyses 

reported here. 

Experimental Procedure  

Each session started with a 5 min resting-state recording with eyes open, which was immediately 

followed by task practice and recording. Before the start of the reaction time task, participants 

completed 10 practice trials. The task was divided into 2 - 5 blocks, containing 35 - 78 trials each 

(mean: 62.85). After each block, participants received a feedback on the accuracy of their responses 

and had the possibility to take a break. Following the reaction time task, a further 5 min resting-state 

recording was acquired.  
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In two subjects (P3 and S006R), additional task data were acquired 6 days and 1 day after the first 

recording session, respectively. Subject P1 was not recorded in resting state.   

Data acquisition 

Participants were measured in a seated position with a 275-channel VSM/CTF MEG system at a 

sampling rate of 2400 Hz (no high-pass filter, 660 Hz anti-aliasing online low-pass filter). 

Electrocardiography (ECG) and vertical electrooculography (EOG) were recorded simultaneously 

using MEG-compatible electrodes. Magnetic shielding was provided by a magnetically-shielded room 

with full 3-layer passive shielding. Participant preparation consisted of affixing 3 head-positioning 

coils to the nasion and both pre-auricular points. The position of the coils relative to the participant’s 

head was measured using a 3-D digitizer system (Polhemus Isotrack, Colchester, USA).  

 

A T1-weighted MRI of the brain (1.5 T, 240 x 240 mm field of view, 1 mm isotropic, sagittal 

orientation) was obtained from each participant either at least one month before or immediately 

after the session. In case the MRI was obtained before the MEG, a waiting period of 1 month was 

adhered to in order to prevent potential magnetic contamination.  

Preprocessing 

Data were preprocessed and analysed using the HMM-MAR (27, 28)* and Fieldtrip (60)† toolboxes for 

Matlab (The Mathworks). All data were screened visually. Noisy channels and noisy epochs were 

excluded from analysis.  Data were down-sampled to 250 Hz. A 60 Hz discrete Fourier transform filter 

was applied to remove line noise. Cardiac and eye movement artefacts were isolated by FASTICA (61) 

and removed in non-automatic component selection. 

Source reconstruction 

Individual T1-weighted MR scans were aligned to the MEG’s coordinate system, segmented and used 

for the construction of a single-shell, realistic head model (62). To define a set of source coordinates, 

the “colin27” template MRI (63) was inflated using FreeSurfer (64) and a cortical mesh consisting of 

2052 sources was constructed using MNE (65). The corresponding coordinates in individual head 

space were obtained by applying the inverse of the normalizing transform matching the individual to 

the template MR scan. The lead field (forward model) was computed based on the source 

coordinates and the head model. Subsequently, a Linearly Constrained Minimum Variance (LCMV) 

spatial filter (66) was computed based on the lead field and the sensor covariance matrix, and data 

were projected through this filter trial-by-trial. Note that the sign of the beamformer output is 

arbitrary. Because our analysis requires sign consistency across subjects, we applied a sign flipping 

procedure to maximize sign consistency; see  (31) and (33) for details. 

To reduce dimensionality, we grouped sources into parcels, defined by the Talairach Tournoux atlas 

(52), and carried out all subsequent analyses on the parcel level. First, each source was either 

assigned to one of 25 bilateral brain areas of interest or discarded from further analysis if it was more 

than 5 mm away from an area of interest (325 of 2052 sources). The areas of interest consisted of all 

cortical areas contained in the atlas, with the exception of seven areas at the base of the brain or 

deep within the interhemispheric fissure, which were assumed to have poor MEG signal quality 

                                                           
*
 https://github.com/OHBA-analysis/HMM-MAR 

†
 http://www.fieldtriptoolbox.org 
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(rectal gyrus, parahippocampal gyrus, subcallosal gyrus, transverse temporal gyrus, orbital gyrus, and 

uncus). The 25 bilateral brain areas of interest were further sub-divided into a left- and a right-

hemispheric parcel, resulting in 50 cortical parcels of interest (Tab. 1 of the Supplementary Material). 

The first principle component was extracted from each parcel of interest and magnetic field spread 

between parcels was reduced by symmetric, multivariate orthogonalization (68).   

Stimulus-induced gamma activity 

We quantified post-stimulus gamma responses in order to relate them to brain states inferred from 

slower activity (≤35 Hz) occurring in the pre-stimulus baseline period or the resting-state recordings. 

Post-stimulus gamma responses were computed by multitaper spectral estimation using 2 Slepian 

tapers (69).  Power was estimated for frequencies between 40 Hz and 100 Hz in a 300 ms sliding 

window which was moved in steps of 50 ms. We screened post-stimulus parcel activity and identified 

a frequency band, a time window and a location of interest. Because individual gamma peak 

frequencies varied markedly across subjects (between 42 and 74 Hz), frequency selection was 

subject-specific, i.e. we defined an individual gamma band for each subject (individual gamma peak 

frequency ±10 Hz). The time window of interest was set to 0.6 to 2 s relative to stimulus onset 

because all subjects were found to exhibit stable gamma activity in this window. The bilateral cunei 

were chosen as the locations of interest because this was generally the area with the strongest 

gamma response.  For the analyses described in the following, gamma power within ±10 Hz of 

individual gamma peak frequency was normalized frequency-by-frequency by computing the percent 

change relative to mean power in the response baseline (-0.5 to -0.2 ms from grating onset) and 

averaged over frequency, time and locations of interest. 

State inference 

We selected either the baseline periods of the task, the rest recording preceding the task, or the rest 

recording following the task for state inference. In case the baseline period was selected, the first 

second of each trial was removed because it was assumed to contain activity related to the button 

press of the previous trial. Next, we z-scored and concatenated the data from all subjects in time, 

resulting in a total of 71.44 min of pre-task rest data (per subject mean: 5.10 min, STD: 1.40 min), 

164.85 min of baseline data (per subject mean: 10.99 min, STD: 2.19 min) and 63.47 min of post-task 

rest data (per subject mean: 4.53 min, STD: 0.69 min). Importantly, we applied a spectral filter with a 

pass-band of 1 to 35 Hz to ensure that brain states were not based on gamma activity, which might 

lead to trivial relationships between brain states and gamma responses. For example, without such 

filtering, a baseline state might be characterized by strong gamma activity. Stimulus-induced, relative 

increases of gamma amplitude following this state might be low because the gamma amplitude 

cannot increase much further (ceiling effect).  

State inference was performed by applying a Hidden Markov Model (HMM, 25), which was fitted to 

the data using stochastic variational inference (32). The HMM assigns one set of state probabilities 

(one probability for each state) to each sample of the multi-channel recording, while simultaneously 

estimating the parameters of each state from the data. Here, we used a variety of the HMM designed 

to capture transient patterns of power and phase-coupling, referred to as Time-delay Embedded 

HMM (TDE-HMM; 33). In this model, each state is characterized by the cross-correlations within a 

certain window of interest, implicitly containing spectrally-defined patterns of power and phase-

coupling. Following (33), the length of the window was chosen to be 15 samples (60ms). As the 
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resulting embedded space is very high-dimensional, Principal Component Analysis was used to 

reduce dimensionality to 100, i.e. twice the number of parcels. 

Similar to the frequency resolution in spectral analysis, the number of states K in a HMM determines 

the level of detail of the solution. As this study distributed trials across states (see below), we set K=4 

to guarantee a reasonable amount of trials per state. Similar results were obtained for K=3. 

State properties 

Following state inference, we computed the power and coherence associated with each state as 

detailed in (31). In short, source activity was weighted by state probability before spectral estimation 

was performed using a multitaper approach, resulting in Fourier coefficients for each parcel and 

state. These coefficients were used for the computation of power and coherence. For topographic 

illustrations, power and coherence were interpolated on a 3D-reconstruction of the template brain 

after computing the relative difference with respect to the mean over states. In case of coherence, 

we display the average coupling with all other parcels. 

For analyses involving fractional occupancy, we first determined the current state for each point in 

time by selecting the state with maximum posterior probability (posterior decoding). Subsequently, 

we computed the fraction of time spent in each state. Linear trends in fractional occupancy were 

revealed for each subject by linear regression analysis and regression coefficients were tested for 

consistent deviations from 0 using a one-sample t-test.  

Analysis of within-subject variability 

We hypothesized that the strength of stimulus-induced gamma activity depends on the network 

state immediately before stimulus presentation (Fig. 1). To test this, we first computed for each state 

the average state probability in the pre-stimulus time window of interest (-106 to 0 ms), which 

served as state-specific trial weight. Subsequently, we computed a weighted trial average for each 

state using these weights. This procedure can therefore be considered a weighted (soft-assigned), 

within-subject grouping of trials by pre-stimulus state. Next, we tested whether the resulting trial 

groups consistently differed in post-stimulus gamma amplitude across subjects. This was achieved by 

running a Friedman test, followed by post-hoc Wilcoxon rank sum tests. Note that trials were 

grouped by pre-stimulus state, not post-stimulus gamma amplitude, i.e. any consistent difference in 

gamma amplitude must be due to a relationship between pre-stimulus state and post-stimulus 

gamma amplitude. 

Analysis of between-subject variability 

We also assessed whether the amplitude of trial-averaged, stimulus-induced gamma responses is 

related to state preferences in the baseline periods of the task and/or the rest recordings preceding 

and following the task. State probabilities were averaged across the entire baseline/rest recording 

and tested for a linear correlation with the amplitude of the trial-averaged gamma response using a 

significance test for Pearson’s correlation coefficient (Matlab function corrcoef). Note that a strong 

correlation with any of the states will induce a correlation of opposite sign with the remaining states, 

given that the states are mutually exclusive. 
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