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Summary 

Gaze direction is closely coupled with body movement in insects and other animals. If 

movement patterns interfere with the acquisition of visual information, insects can actively 

adjust them to seek relevant cues. Alternatively, where multiple visual cues are available, an 

insect’s movements may influence how it perceives a scene. We show that the way a foraging 

bumblebee approaches a floral pattern could determine what it learns about the pattern. When 

trained to vertical bicoloured patterns, bumblebees consistently approached from below 

centre in order to land in the centre of the target where the reward was located. In subsequent 

tests, the bees preferred the colour of the lower half of the pattern that they predominantly 

faced during the approach and landing sequence.  A predicted change of learning outcomes 

occurred when the contrast line was moved up or down off-centre: learned preferences again 

reflected relative frontal exposure to each colour during the approach, independent of the 

overall ratio of colours. This mechanism may underpin learning strategies in both simple and 

complex visual discriminations, highlighting that morphology and action patterns determines 

how animals solve sensory learning tasks. The deterministic effect of movement on visual 

learning may have substantially influenced the evolution of floral signals, particularly where 

plants depend on fine-scaled movements of pollinators on flowers. 
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1. Introduction 

Eyes and associated neural architectures have evolved in diverse ways to provide animals 

with adaptive views of the world. Viewing conditions are also shaped by gross morphology, 

since the structure of the head and body will dictate the extent of coupling between vision and 

movement (Land, 1999). Where the eyes and/or head are highly mobile, as in many terrestrial 

vertebrates, viewing direction and thus acquisition of visual information can be uncoupled 

from body movement - the animal can look all around while, for example, moving forward. 

In contrast, other animals cannot shift their gaze independently from the body due to 

morphological constraints, meaning that the direction of gaze is more closely tied with their 

actions. This coupling is particularly pronounced in many insects which are capable of very 

limited head movements and lack the ability to move their eyes and lenses within the head. 

Although flying insects, like bees and flies, display fast and minute head movements during 

flight to stabilize gaze (Boeddeker et al., 2010; Boeddeker and Hemmi, 2010; Boeddeker et 

al., 2015; Hateren and Schilstra, 1999; Riabinina et al., 2014; Schilstra and van Hateren, 

1998), to vary their viewing direction and field of view to detect image features they must 

change the orientation and position of the entire body. Thus, the gross movement of the insect 

dominates its experience of the visual environment. Insects can actively alter movement 

patterns to change viewpoints and actively acquire visual information (e.g. Egelhaaf et al., 

2012; Land and Collett, 1997; Lehrer and Srinivasan, 1994), but this has consequences for 

the behavioural task at hand, and could therefore incur costs to an extent that will determine 

when and how active vision strategies are employed. Here we address a hitherto unexplored 

scenario where the efficient execution of action sequences takes a high priority in a 

behavioural task, asking whether that it will significantly influence an insect’s perception of 

readily visible objects. 
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Motor performance can be costly, even though it may often appear to the human observer that 

animals move effortlessly. For instance, air is a very viscous medium for flying insects and 

they have to obey the laws of aerodynamics, hence insect flight and landing manoeuvres are 

complicated and require a number of well-coordinated actions (Dickinson et al., 2000; Fry et 

al., 2005; Vance et al., 2014). For example, bees landing on a horizontal or vertical surface 

exhibit a sequence of highly stereotyped visually-controlled movements in order to alight 

successfully (Baird et al., 2013; Reber et al., 2016; Srinivasan et al., 2000). We argue that, 

when visual cues are not limiting, efficient motor patterns define the viewing conditions and 

incidentally determine what visual information is acquired for solving various behavioural 

tasks, such as learning the colours and patterns of a food source, a task of particular 

importance for bees foraging on flowers. 

Colour and pattern perception in bees has been widely investigated, and it has been often 

assumed, implicitly and sometimes explicitly, that bees will adopt movement patterns that 

optimally support solving the perceptual learning tasks, e.g. approach a target in the most 

convenient way to view all available visual features (e.g. Avarguès-Weber et al., 2012; Dyer 

et al., 2005; Dyer et al., 2008; Giurfa et al., 1999a; Lehrer, 1998; Lehrer, 1999; Menzel and 

Lieke, 1983; Thivierge et al., 2002; Wehner, 1972; Wu et al., 2013; Zhang et al., 2004). 

However, the viewing conditions of individual bees will be wholly dependent upon their 

flight behaviour during approach and landing on the stimulus (Giurfa et al., 1999b; Hertz, 

1935; Wehner and Flatt, 1977). Previous evidence suggests that bees might generally prefer 

to approach vertically-presented stimuli from below (Anderson, 1977; Giger, 1996), which 

could significantly affect perception and learning processes. This question is highly relevant 

for understanding the bee’s natural foraging behaviour as many flowers are tilted or vertically 

oriented. We show that the outcome of a learning task with flower-like colour patterns is 

indeed determined by the bees’ approach directions during training.  
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2. Material and Methods 

 

(a) Setup and training 

Experiments took place indoors between October 2011 and March 2013, using bumblebees 

(Bombus terrestris Linnaeus 1758) from six colonies supplied by Koppert UK Ltd.  Bees 

were housed in a system of Plexiglas boxes and tunnels, one of which (the ‘flight tunnel’) led 

to the experimental flight cage (mesh netting on a Dexion frame: 100x75x75cm).  The flight 

cage was predominantly lit by natural daylight from a large window wall, but in addition the 

lab’s high-frequency lighting and three 36W diffused strip lights above the flight cage were 

switched on. A video camera (Photron SA-3 or Panasonic SDR-H90) was positioned 

perpendicular to the vertical stand with the target to record a bee’s approach from the side 

over the last 10 cm during training and test trials. In some of the test trials (when the test 

pattern’s contrast line was rotated by 90°) the bee’ choice behaviour was recorded by a 

second video camera from above.  

Target stimuli, coloured discs (8cm diameter), and the grey background were printed on a 

single sheet, centred and glued to the front of a 20 x 20cm grey plastic stand. A transparent 

pipette nib (4mm diameter) inserted in the centre of the stimulus was backfilled with 50% 

sucrose solution. Eight different training patterns were used: a plain disc (Yellow or Blue) or 

bicolour patterns, either with the horizontal contrast line in the centre (Blue/Yellow and 

Yellow/Blue) or with the contrast line below or above the centre. The position of the line was 

at a quarter of the disc’s diameter above the bottom or below the top of the disc (3:1 diameter 

ratio). When the line was near the bottom of the disc the pattern was mainly blue with a small 

yellow section (3B:1Y), or vice versa it was mainly yellow (3Y:1B). Equally, when the 

contrast line was positioned in the upper half of the disc, the resulting pattern was mainly 
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blue (1Y:3B) or yellow (1B:3Y). Blue and yellow were chosen because they are easily learnt 

and discriminated by bees, as confirmed by our spectral measurements (see Hempel de Ibarra 

et al., 2014 for details). The colours differed from each other and from the grey background 

in terms of both brightness and chromatic contrast for the bee eye under the illumination 

conditions of the flight cage.  

We recorded the bees when they were close to the target, and the visual angle subtended by 

the target varied from 40° to above 150° as the bees approached for landing. The bees’ speed 

decreased linearly with decreasing distance to the target. Whilst the bees tend to pitch the 

abdomen much more frequently, the head’s pitch appears to be kept very steady relative to 

the horizontal flight direction towards the target (K. Langridge and N. Hempel de Ibarra, 

personal observations from high-speed video footage). Only in the very last moments of the 

landing manoeuvres when the bees tilt their body to position the legs at the target, the head is 

pitched upwards in synchrony with the rest of the body. We therefore excluded any data 

points closer than 0.5cm from the analysis. 

All bees were marked and pre-trained individually over a few trials to fly to a uniform grey 

target positioned 60cm from the flight tunnel entrance, before switching to a new one 

displaying the coloured pattern on a grey background. Individuals were given two further 

practice flights before filming began. 

Each bee was only trained with one type of training stimulus of 8 coloured targets described 

above. During ten rewarded consecutive trials each bee was filmed flying towards, and 

landing on, the training stimulus. In most cases, bees explored the upper half of the flight 

cage during this training, rather than immediately initiating the approach flight from the 

tunnel exit. All bees however would descend voluntarily at a larger distances from the target 

and approach it directly (Figure 1). Only one bee was ever present in the flight cage at any 
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one time. Bees from several colonies participated in all colour treatments. All paper stimuli 

were replaced frequently (every few trials) to preclude the build-up of olfactory cues. 

(b) Colour learning tests 

On completing training, each individual was subject to unrewarded tests in order to examine 

how the colour targets were learned. In a test the bee was presented with one of the test 

patterns: a single disc partitioned by either a horizontal or a vertical central boundary into two 

equally-sized segments, one blue and one yellow. Bees trained to single-colour stimuli had 

two tests with such bicolour patterns where the coloured segments were separated by a 

horizontal contrast line (Blue/Yellow and Yellow/Blue). Bees trained to patterns with a 

horizontal central contrast line were given three separate tests with bicolour test patterns that 

resembled the training pattern but were rotated by 180°, 90°, and 270°. Bees trained to 

patterns with an off-centre contrast line had two tests with bicolour test patterns with a 

horizontal contrast line (Blue/Yellow, Yellow/Blue) and one test with a vertical contrast line 

(Blue on the right, Yellow on the left). Test trials were separated by 1-3 refreshment trials 

with the rewarded training target, and the test sequence was varied across individuals. Test 

duration was three minutes from the moment of release into the flight cage. Tests with 

patterns where the central contrast line was horizontally oriented were filmed from the side, 

while test patterns with a vertical contrast line were filmed from above, such that the bees’ 

choices behaviour between the two coloured segments could be compared. All bees 

completed all training and test trials, with the exception of two individuals, which completed 

two tests each.  

(c) Data analysis 

The approach height of the bee relative to the dorso-ventral arrangement of the colour 

patterns was extracted from video footage (25 fps) using a Matlab routine (see Hempel de 
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Ibarra et al., 2009 for details), recording the position of the top line of the bee head (guided 

by the bee’s antennae base) in relation to the centre of the target (Figure 1).  

Approach angles are defined as the angle between the head position of the bee and the 

contrast line within bicolour patterns, or the central horizontal line of the target for single-

coloured targets, relative to the horizontal direction of approach (see inset in Figure 1a), and 

were analysed using Mardia-Watson-Wheeler multiple comparisons tests (with an adjusted 

alpha) in a circular statistics programme (Oriana V.3).  

Three-minute learning tests were analysed using the behavioural data-logging freeware 

JWatcher (http://www.jwatcher.ucla.edu/), which calculated the total search time of the bees 

on the blue or yellow sector.  Search time was defined as the time the bee spent flying in front 

of the test stimulus and visually exploring it, within 5cm distance, facing towards the pattern, 

during a three-minute test. Searching of the top versus the bottom colour-half was determined 

by the position of the top of the bees’ head relative to the contrast line. Statistical analysis of 

linear data was carried out using SPSS. Data met the assumptions of parametric tests unless 

otherwise stated.   
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3. Results 

(a) Experiment 1: single-colour and bicolour patterns with a central contrast line. 

Figures 1 and 2 show the approaches and test responses of bees trained to one of the single-

colour and bicolour patterns where the horizontal contrast line crossed the centre of the 

target.  

(i) Approach flight 

Bees trained to collect sucrose from the centre of a vertically-presented coloured disc 

preferentially directed their approach towards the lower half of the pattern prior to landing 

(Figure 1; see also supplementary Figure S1a, b for the mean flight trajectory for each target). 

The flight trajectory heat maps in Figure 1 illustrate the remarkable consistency of this 

behaviour in bees that were not experimentally restrained in their direction of approach and 

landing, in response to both single-coloured discs (a, b) and bicolour patterns (c, d). The 

Figures strongly suggest that the approach from below-centre was inherently preferred by 

bees and most convenient for a successful landing.  

In addition to this general trend, Figure 1 illustrates how flight paths were more streamlined 

and directional towards bicolour stimuli than to single-colour stimuli, presumably aided by 

the central contrast line. It is known that contrast lines and edges are salient visual features 

for bees, used to steer flight behaviour (Lehrer et al., 1990; Lehrer et al., 1985). Bees 

approached the lower edges of the single colour discs very closely before ascending steeply 

towards the centre, whereas those trained to bicolour discs began to ascend slightly earlier, 

generally before 2cm horizontal distance from the target, and cluster more around the target 

centre (Figure 1). This difference was reflected in the approach angles of the bees (Figure 1), 

with a significantly greater spread of steeper negative angles in response to the single-colour 

as compared with the bicolour targets (Blue vs. Blue/Yellow: W = 79.6, p < 0.0001; Yellow 
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vs. Blue/Yellow: W = 35.4, p < 0.0001). There was no significant difference between 

bicolour pattern treatments (Blue/Yellow vs. Yellow/Blue, adjusted α = 0.0125: W = 8.7, p = 

0.013).  

The approach flights differed to some extent between the single-coloured blue and yellow 

discs (Blue vs. Yellow: W = 8.8, p = 0.012): bees exhibited a peak approach angle in 

response to the blue target, which was steeper than the peak angle evoked by bicolour targets 

(between -20° and -30°) and suggests that they approached from lower down and likely 

attended to the lower circle edge.  

(ii) Colour learning tests 

After ten training trials, we asked the bees what they had learned about the colour patterns by 

recording their search behaviour on unrewarded bicoloured discs, presenting several rotations 

to control for a spatial bias. Bees trained with single colours showed a significant preference 

for their training colour versus a novel colour (Figure 2, left; see also supplementary table 

S1).  

Bees trained with a bicolour pattern did not search equally on both colours during tests 

(Figure 2, right), even though their training patterns presented equal amounts of both yellow 

and blue. Instead, both groups of bees showed a significant preference for the colour of the 

lower half of their respective training pattern: bees trained with Blue/Yellow spent 

significantly more time searching the yellow sectors of the test patterns for the reward, 

regardless of spatial position, and vice versa bees trained with the Yellow/Blue pattern 

searched more at the blue sectors (Figure 2). Colour preferences were not quite as strong as 

for bees trained with single-colour stimuli (F1,39 = 8.69, p = 0.005), suggesting that bees 

might also have perceived the top colour of the training pattern during approach flights. 

Importantly, there was a positive correlation between the amount of time individuals spent 
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flying below the centre of the bicolour patterns over ten training flights, and the strength of 

their preference for the colour of the lower half (rs = 0.407, n = 23, p = 0.027).  

 

(b) Experiment 2: manipulation of the position of the contrast line in bicolour patterns 

To investigate the causal relationship between approach flight and visual learning, we trained 

bees to one of four bicolour patterns with an unequal ratio of the two colours, where the 

contrast line was shifted into either the upper or lower half of the disc (Figures 3 and 4). We 

predicted that, if bees continued to approach these patterns from below centre during training, 

they would subsequently prefer either one or both colours presented in the lower half of the 

training pattern, irrespective of the overall colour distribution.  

(i) Approach flight 

The heat-maps in Figure 3 (a,b) show that bees approaching the mostly-yellow patterns spent 

considerable time viewing the whole lower half of the patterns, from the centre to beneath the 

lower edge (see also supplementary Figure S1c,d). When the blue segment was in the top half 

of the yellow pattern (1B:3Y) bees did not fly higher to view it frontally which explains the 

significant yellow preference shown in the subsequent tests (Figure 4). When the blue 

segment was present in the lower half of the pattern (3Y:1B) it was viewed equally with the 

yellow area below the centre of the target enabling the bees to associate both colours with the 

reward.  

In contrast, bees trained to both mostly-blue patterns flew significantly higher, closer to the 

height of the target centre which contained the reward (F1, 36 = 8.6, p = 0.006; supplementary 

Figure S1d). This was particularly evident with the 3B:1Y pattern, where bees never flew 

below the contrast line within the last 4cm distance of the target (Figure 3c). When the 

contrast line was in the upper half of the pattern (1Y:3B), bees largely approached from 
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below centre and did not fly directly in front of the yellow segment (Figure 3d), although 

they appeared to be more oriented towards the centre of the disc than those trained with the 

reversed colour arrangement in the pattern (Figure 3b). 

 (ii) Colour learning tests 

Training to mostly-yellow colour patterns resulted in the predicted colour preferences (Figure 

4 left; see also supplementary table S1). When the contrast line was in the lower half of the 

training pattern with the smaller bottom blue (3Y:1B), bees showed no significant preference 

for yellow in subsequent tests with bicoloured/rotated stimuli, even though yellow was the 

majority colour in the training pattern.  Conversely, when the contrast line was in the upper 

half of the training pattern (1B:3Y), bees showed a significant preference for yellow in 

subsequent tests.   

Bees trained to mostly-blue colour patterns deviated from the predicted pattern of colour 

preferences (Figure 4, right, supplementary table S1).  In two out of three tests individuals 

had a significant preference for blue regardless of contrast line position during training, 

suggesting that they had learnt to associate blue more strongly with the reward.  But the test 

pattern where colour positions were reversed, creating an ‘inconsistent’ spatial arrangement, 

elicited equal colour preferences. This result implies that for the mostly-blue patterns, bees 

predominantly viewed the blue area in front of them, but they also learnt the spatial 

distribution of the two colours around the contrast line. Indeed, variation in approach flight 

behaviour can explain this difference in learning performance when training bees to either 

mostly-blue or mostly-yellow patterns (Figure 4). 

Flight patterns can explain the preference for blue in two out of the three tests for bees trained 

with mostly-blue patterns. However, the same bees showed equal preferences for both 

colours when tested with ‘inconsistent’ spatial arrangement of colours around the contrast 
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line (Figure 4). It appears that the bees’ search behaviour in these tests was influenced not 

only by colour, but also by the spatial cues in the trained pattern. This is consistent with the 

our finding that during training to mostly-blue patterns the bees approached the contrast line 

differently than when trained to mostly-yellow patterns.  

The approach angles differed significantly. For the mostly-blue pattern with the contrast line 

in the lower half (3B:1Y) there was less variation in approach angles than in the 

corresponding colour reversal (Figure 4a,c) (3B:1Y versus 3Y:1B: W = 151.8, p < 0.0001). 

Bees seem to have utilised the contrast line to guide their approach towards the central 

reward by positioning themselves above it, and therefore learned the spatial distribution of 

the colours. However, they did not fly directly in front of the small yellow segment, and 

therefore did not associate it as strongly with the reward as the blue colour. Furthermore, 

when the contrast line was in the top half of the pattern (Figure 3b,d) bees trained with the 

mostly-blue pattern (3B:1Y) did not fly as low and approach as steeply as those trained with 

the colour-reversal (1Y:3B versus 1B:3Y: W = 38.5, p < 0.0001), suggesting that they may 

also have attended the contrast line to guide the approach from below.  

In addition to the contrast line, the outer lines of the target seem to have influenced the bees’ 

approach and landing manouvres. When measured with a spectrophotometer and modelled 

for the bee eye (see Methods), yellow was found to have a higher L-receptor (brightness) 

contrast for bees than blue against the grey background. The mostly-yellow patterns provided 

salient edge cues that differed from the small but conspicuous yellow segment in the mostly-

blue patterns that were positioned either above or below the reward location. Interestingly, in 

the previous experiment we observed a difference in spread of approach angles between the 

blue and yellow single-coloured discs (Figure 1a, b) that are likely to be a consequence of the 

outer coloured edges against the grey background. 
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We conclude that the observed variations in learning performance between colour treatments 

are a consequence of variations in flight behaviour prior to landing. Bees modified their 

approach height in response to the distribution of salient pattern cues (contrast line and and 

salient outer edges)  edges), within narrow limits dictated by their preferred landing position, 

and learned the colours they were incidentally exposed to as a result of this trajectory. 

4. Discussion 

We addressed novel aspects of the interaction between movement and visual perception in 

bees, finding that flight manoeuvres during approach and landing on a vertical target 

influences what they learn whilst performing a foraging task at a fully visible pattern. It has 

been extensively studied how walking and flying insects perform visually-guided flight 

control and navigation tasks. Visual information is used to avoid collisions, negotiate narrow 

gaps, land on a surface, or locate invisible nest or foraging sites (reviewed by Egelhaaf et al., 

2012; Srinivasan and Zhang, 2004). In navigation, routes will be determined by the 

availability of suitable visual cues (Collett, 2010; Collett et al., 1992; Collett et al., 2006; 

Collett and Zeil, 1998; Harris et al., 2005; Srinivasan, 2011; Wystrach and Graham, 2012). 

Central-place foragers (bees and wasps) can facilitate the acquisition of visual landmark and 

optic flow cues required for large-scale navigation by adopting specific motor patterns 

(reviewed by Collett and Zeil, 1998; Land and Collett, 1997; Wystrach and Graham, 2012), 

and to a lesser extent, can flexibly adjust their flight behaviour for solving spatial orientation 

tasks (Lehrer, 1996; Lehrer and Srinivasan, 1994). Thus for active vision, for the necessary 

acquisition or use of specific visual cues, bees in some instances can modify the motor 

output, whereas the mechanism we describe here demonstrates how a necessary or efficient 

motor action can incidentally determine visual input. This deterministic effect of movement, 
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particularly when bees learn about features of a rewarding target, provides a simple 

mechanism for explaining performance. 

An intriguing example is the well-documented bias in bees to perform visual tasks better if 

stimuli are presented in the lower versus the upper part of the frontal visual field. This ‘dorso-

ventral asymmetry’ (Giurfa et al., 1999a; Lehrer, 1999; Menzel and Lieke, 1983; Wehner, 

1972) has been attributed to adaptations in central neural mechanisms for flower detection 

and recognition in the lower half of the bee eye, as there are no peripheral visual 

specialisations that could explain it. This hypothesis assumes implicitly that the dorsal and 

ventral visual fields of the bee are always aligned with the upper and lower halves of a target 

offering reward in its centre.  However, the viewing conditions of individual bees will be 

wholly dependent upon their flight behaviour during approach and landing on the stimulus, 

and previous evidence suggested that bees might generally approach vertical stimuli from 

below (Anderson, 1977; Giger, 1996). Although the bee eye has a large field of view, which 

is useful for guiding movement in three dimensions, the frontal part of their compound eye 

has the highest visual acuity, which is best-suited for important visual tasks (Giger and 

Srinivasan, 1997; Graham and Collett, 2002; Land, 1997; Luu et al., 2011; Meyer-Rochow, 

1981; Robert et al., 2018; Seidl and Kaiser, 1981). Thus, the part of a stimulus projecting 

onto the frontal areas of the bee eye would primarily determine what the bee learns from their 

views of visual scenes, patterns or objects, and this would differ if the bee approached from 

different angles. Our findings indicate that this simpler, alternative explanation for dorso-

ventral asymmetries in pattern learning should not be easily discarded.  

The remarkable consistency of below-centre approach paths suggests that this flight 

trajectory is economical and convenient for landing. The bee has to land on its legs, which are 

positioned ventrally, such that the head is aligned with the target centre where the bee 

consumes the reward. Just prior to that, the flying bee must pitch the body without losing 
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balance, from the more horizontal angle sustained during forward flight to nearly vertical 

(Evangelista et al., 2010), while continuously reducing speed (Baird et al., 2013; Ibbotson et 

al., 2017; Srinivasan et al., 2000). An ascending bee coming from below centre can start 

doing this from some distance (in our experiments from about 2cm), and can easily accelerate 

and ascend if the landing has to be aborted. A descending bee coming from above centre 

would have to keep its body axis as horizontal as possible to reduce height and speed (Baird 

et al., 2013), leaving little time and space to swing the abdomen into the vertical pitch, thus 

risking loss of balance and failure to land. Flying straight towards the centre, pitching the 

body vertically whilst maintaining a straight trajectory from further away, could be more 

difficult, as slow flight speed and vertical posture could increase the aerodynamic drag 

downwards (Luu et al., 2011; Taylor et al., 2013). Bees that showed more central approaches 

in our experiments, for example in response to the mostly-blue patterns with a low contrast 

line, and even the few above-centre trajectories (see Figures 4c and 1a), generally dipped 

down just prior to landing, in order to position the legs and head correctly. It therefore seems 

that the optimal way to achieve the landing position is to approach from below guided by 

salient pattern cues, as we find here. It is noteworthy that even when the highly-salient small 

yellow segment was in the upper half of the colour pattern (1Y:3B pattern, see Figure 4d), the 

bees still did not approach above centre and specifically look at these cues. Instead, they flew 

slightly higher than those bees trained with the colour-reversal, sufficient to attend the 

contrast line and guide the approach towards the reward location. Thus although the bees 

adjusted their flight behaviour, this occurred within narrow limits, supporting the hypothesis 

that landing from below is easier than from above, and bees are constrained by the mechanics 

of this manoeuvre. 

We conclude that viewing conditions are critical in determining what bees learn about visual 

stimuli, suggesting a simpler, alternative explanation to proposed cognitive mechanisms, such 
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as position-weighting factors (Thivierge et al., 2002; Wehner, 1972), localised feature-

extraction and expansion of the visual field (Giurfa et al., 1999a), or attentional focus 

(Morawetz and Spaethe, 2012). Detailed analyses of spatial behaviour may reveal that this 

mechanism underlies or influences performance in more complex tasks, such as recognising 

human faces, discriminating forest scenes, or using aesthetic sense to choose between Monet 

and Picasso (Dyer et al., 2005; Dyer et al., 2008; Morawetz and Spaethe, 2012; Wu et al., 

2013). Morawetz and Spaethe (2012) admitted that they could not fully rule out simpler 

explanations, and suggested that flight behaviour might have played a role to shape the bees’ 

responses. A subsequent analysis of the data confirmed that bees varied the height in some of 

the tasks (Morawetz et al. 2014), which in line with our conclusions, could suggest that in 

those experiments bees reverted to simpler solutions for solving the learning task at hand.   

There is evidence to suggest that the efficiency of the bees’ flight trajectories may be relevant 

for viewing and learning in more natural settings. For example, field observations commonly 

describe the strong directionality of bumblebees foraging on vertical inflorescences, starting 

at the bottom and moving upwards (Galen and Plowright, 1985; Haynes and Mesler, 1984; 

Pyke, 1978; Waddington and Heinrich, 1979). Flower orientation varies, and vertically-

presented flowers on slopes tend to adaptively face down-slope, receiving more visitation as 

they offer convenient petal orientation for landing of bees moving preferentially upwards 

(Ushimaru et al., 2006). Observations on flowers also reveal that flower orientation 

influences the landing behaviour of pollinators (Ushimaru and Hyodo, 2005). It is beneficial 

for flowers to guide pollinator movement in a way that enhances pollen transfer (Ushimaru et 

al., 2009; Ushimaru et al., 2007), and the fine-scale nectar guides are generally thought to 

function once a bee lands (Dafni and Giurfa, 1999; Daumer, 1958; Free, 1970; Manning, 

1956). Here we show that flowers may be able to exploit the tight connection between vision 

and movement throughout the different phases of the approach flight and landing sequence, 
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where bees make foraging decisions. This mechanism may be decisive in how bees learn 

about and handle flowers, and thus develop flower-constant behaviour. 

Insect vision is inherently unintuitive; the understanding of the constraints imposed on 

perceptual learning, as a direct result of the animals own morphology and action patterns, 

could provide fundamental, practical, and useful insights in a field that more recently 

emphasises ‘human-like’ cognitive processes. This principle is equally applicable to more 

familiar vertebrate groups, where species-specific viewing conditions determined by 

movement could provide a simple but overlooked mechanism to explain performance in 

perceptual learning tasks where the experimenter makes the implicit assumption that the 

animal views and therefore processes a given stimulus or scene in its entirety. However, 

viewing may differ across tasks. Birds have limited eye movements but a highly flexible 

neck, and so investigate objects in a very different way from mammals, by substantially 

moving the head to look with different parts of both eyes (Martin, 2007; Martin and Shaw, 

2010; Stamp Dawkins, 2002). Head movement recruitment to shift gaze in mammals such as 

cats and primates is task-specific and can be blocked if energetically costly (Fuller, 1992; 

Oommen et al., 2004). In primates body posture and movement systematically contribute to 

large gaze shifts (McCluskey and Cullen, 2007). Furthermore, not all mammals have highly 

mobile eyes:  mice, rabbit and guinea pig do not dissociate eye and head movement much 

(Oommen et al., 2004). Rats are widely used in studies of visual learning, despite their 

relatively poor visual acuity, and often display a spatial bias for learning the lower hemifield 

of visual stimuli, potentially as a result of their movement along the ground and subsequent 

bias toward viewing the lower part of a vertical stimulus (Lashley, 1938; Minini and Jeffery, 

2006). Indeed, both rats and pigeons perform significantly better in visual discrimination 

tasks when the targets are presented horizontally or on the floor (Delius, 1992; Furtak et al., 

2009). It is likely that the movement of the animal within an experimental apparatus or 
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structured environment will have a significant effect on the outcome of learning tasks, and 

experiments should be designed with ethological and morphological considerations in mind. 
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Figure Legends 

Figure 1. Approach flights of bumblebees trained to collect sucrose from the centre of a 

vertically-presented coloured disc. Training patterns were single-colour (a) Yellow or (b) 

Blue discs, or bicolour (c) Blue/Yellow or (d) Yellow/Blue patterns with a central contrast 

line, presented on a grey background. Heat-map plots depict the video capture area (filmed 

from the side) divided into 0.04 cm2 pixels denoting the frequency of positions of bees during 

the last training flight prior to tests (see colour scale next to Figure 1a) (n=10 bees for (a) and 

(b); (c) n=11 bees and (d) n=12 bees). X-axis depicts horizontal distance and Y-axis vertical 

distance to the target plane. Approach angles are shown on the right (see inset). Negative 

angles indicate a position below the contrast-line, and positive angles above the contrast line.  

Figure 2. Colour preferences of trained bees in each of either two or three unrewarded tests 

after training to single-colour discs or bicolour patterns, respectively. Bars represent the mean 

proportion of time spent searching on the test pattern segment that was of either the colour of 

the trained single-coloured disc or the colour of the lower half of the bicolour training pattern 

(also depicted by bar colour), relative to the search on the other segment of the test pattern. 
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For sample sizes see Figure 1. During each test only one of the test patterns was presented. 

Error bars represent ±1 standard deviation. Asterisks above bars denote a significant 

deviation from equal choice at α = 0.05 (Paired t-tests; see also supplementary table S1). 

Figure 3. Colour preferences of bees trained with bicolour patterns with unequal segments 

(3:1 diameter ratio) in subsequent unrewarded tests. Bars represent the mean proportion of 

time spent searching on the test pattern segment that displayed the same colour as the larger 

segment of the training stimulus (also depicted by bar colour) relative to the search on the 

other segment, in each of the three tests. For sample sizes see Figure 4. Error bars represent 

±1 standard deviation. Asterisks above bars denote a significant deviation from equal choice 

at α = 0.05 (Paired t-tests; see supplementary table S1). 

Figure 4. Approach flights of bees trained to collect sucrose from the centre of bicoloured 

patterns with an off-centre contrast line. Training patterns were (a) 3Y:1B (mostly-yellow) 

pattern with the contrast line and a blue segment in the bottom half or (b) 1B:3Y in the top 

half of the target, or (c) 3B:1Y (mostly-blue) pattern with the contrast line and yellow 

segment in the bottom half or (d) 1Y:3B in the top half of the target. As in Figure 1, the heat 

maps depict the position of the bees during the last training flight before tests (see colour 

scale next to Figure 1a) (n = 10 bees for all groups). White dotted lines indicate the position 

of the contrast line. X-axis depicts horizontal distance and Y-axis vertical distance to the 

target plane. Approach angle plots show the angle between the head position of the bee and 

the contrast line.  
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