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ABSTRACT 
 
Root systems are branched networks that develop from simple growth properties of their 
individual roots. Yet a mature maize root system has many thousands of roots that each interact 
with soil structures, water and nutrient patches, and microbial ecologies in the micro-
environments surrounding each root tip. Although the plasticity of root growth to these and other 
environmental factors is well known, how the many local processes contribute over time to 
global features of root system architecture is hardly understood. We employ an automated 3D 
root imaging pipeline to capture the growth of maize roots every four hours throughout seven 
days of seedling development. We model the contrasting architectures of two maize inbred 
genotypes and their hybrid to derive key parameters that distinguish complex growth patterns as 
a function of time. The statistical characteristics of local root growth defined the global system 
properties despite a large range of trait values. “Computational dissection” of a single root from 
each root system identified differences in the size of the root branching zone and lateral 
branching densities, but not radial patterns, that drove the contrasting root architectures from 
seedling to maturity. X-ray imaging of mature field-grown root crowns showed that seedling 
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growth trajectories persisted throughout development and could predict eventual architectures, 
suggesting a strong genetic basis. The work connects individual and systemwide scales of root 
growth dynamics, providing the means for a function-valued approach to understanding the 
genetic and genetic x environment conditioning of root growth that will enable breeding for 
enhanced root traits. 
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root architecture, growth modelling, multiscale, maize, genetics 
 
SIGNIFICANCE STATEMENT 
 
When and where roots grow determines their ability to capture short-lived and patchy water and 
nutrient resources to support the aboveground organs of the plant. Roots have no known long-
distance external sensing mechanisms, but form branched networks that blindly explore the soil 
and respond to encountered local stimuli. How global architectures form from the many 
thousands of these local responses, and how they are controlled genetically are major open 
questions. Here we quantify differences in local root growth patterns of two inbred genotypes of 
maize that control contrasting systemwide properties. Measurements at the seedling stage were 
highly correlated with the complex architectures of mature root systems, paving the way for the 
development of crops with greater resource uptake capacity. 
 
INTRODUCTION 
 
Root system architecture (RSA) is the foundation of plant growth and productivity (1). It affects 
water and nutrient acquisition efficiency (2, 3), and can change in response to different 
environments (4, 5). Understanding the genes and mechanisms that govern root system 
architecture would be a major new lever for crop improvement work (6–8). However, while 
genetic studies of shoot growth have benefited from automated and dynamic quantification (9, 
10), the spatial and temporal aspects of root system architecture, and their genetic basis, remain 
obscure. 
 
Root systems begin with a single primary root. In many monocots, and especially the annual 
grasses such as maize, additional seminal roots can subsequently emerge from the seed (11). 
Later, nodal roots emerge in whorls from shoot derived tissue. All of these root types grow 
exponentially in size and complexity from three simple processes local to the root tip: 
elongation, curvature, and lateral branching. A 3D network forms that in maize can ultimately 
consist of tens of thousands of roots occupying over 200 cubic feet of soil (11). These global 
architectural properties of the root system determine the ability of the plant to capture edaphic 
resources in the heterogeneous and dynamic environments characteristic of soil. 
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Intensive research has yielded detailed molecular and cellular mechanisms of how single roots 
grow at the local scale (reviewed in: (12, 13)) on one hand, and the identification of global 
architectures, or ideotypes, that are best suited for resource capture in natural or agricultural 
environments (14–17) on the other, but rarely have the two been experimentally connected. 
Structural-functional models can simulate a range of root architectures based on equations 
programmed to reproduce local growth and environmental interactions (18–20), and have been 
used to predict empirical data (21, 22). However realistic parameterization and constraint of 
these models is thus far piecemeal, lacking adequate empirical data sets that incorporate time 
dynamics and genetically encoded differences in root development and genetic x environment 
interactions. A phenotyping system that bridged both local and global root growth dynamics 
would capture the process of how root architecture complexity builds through many iterative and 
partially stochastic local patterns. 
 
Image-based phenotyping technologies that enable non-destructive measurement of root traits 
have been developing at a rapid pace in recent years (23, 24). Minirhizotron tubes have been 
used to measure roots in the field at multiple time intervals (25), but have the limitation of only 
examining the roots growing along the transparent tube. GROWSCREEN-Rhizo uses soil-filled 
rhizotrons to image visible roots though transparent 2D plates (26). Time-lapse 2D imaging 
allow the dynamics of root growth and environmental responses to be studied (27–35), but these 
studies are dimensionally constrained. To analyze whole root systems in 3D, platforms where 
roots grow in gel cylinders have been developed (36–39). X-ray computed tomography (40, 41) 
and magnetic resonance imaging (42–44) also provide 3D quantification of roots in soil. 
Manually repeating 3D acquisitions at different time points enables the study of unconstrained 
root growth (36, 38, 45–47), but at long time intervals and with only global quantifications of 
root architecture. Although at least one 3D imaging approach has been used to identify SNPs that 
corresponded to yield increases in field experiments (48), it has been pointed out that few genes 
identified by lab-based reverse genetics have been corroborated in the field (49), causing some to 
call into question the usefulness of non-field-based root work for applied purposes (50). 
 
In this paper, we have developed an optical imaging system that allows frequent 3D monitoring 
of root growth. Using automatic time lapse imaging, growing root systems of B73, Mo17, and 
their hybrid were monitored over one week of development until day 11 after germination 
(DAG). Using computer vision, we computed the time function for each root and analyzed the 
growth patterns. Mathematical modelling of the time series revealed the key parameters that 
drive genotype-specific differences in root architecture, including timing of a sharp inflection 
point in relative growth rate. 3D analysis of field grown-roots showed these patterns persist to 
maturity and are thus more influenced by genetics than the environment. Our high-resolution 
spatiotemporal imaging and analysis approach will facilitate the study of growth responses to 
resource patches, other roots, soil particles, or other heterogeneously distributed soil parameters 
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at both the local and global level. This work will enhance the development of empirically-driven,
probability-based growth models that can accurately predict root growth and root-environment
interactions as a function of genotype. 
 
RESULTS 
 
Plant roots have typically been studied either individually (locally) in great detail, or globally as 
entire systems, but rarely both, especially as freely-growing 3D structures. In order to understand 
how local root growth patterns contribute to global architectures along both a real-time and a 
developmental time axis, we established a 4D analysis pipeline (Figure 1). We automated a 3D 
gel-based optical imaging system (39, 45) for time lapse, and paired it with DynamicRoots 
software (46), and custom R code (available on Github: https://github.com/Topp-Roots-
Lab/timeseries_analysis) to get the dynamic traits of individual branches based on the time series 
of 3D shapes. Two historically agronomically important maize inbred genotypes with contrasting 
root architectures, B73 (a stiff-stalk) and Mo17 (a non-stiff-stalk), and their hybrid were imaged 
every 4 hours across 8 days of development (164 hours total), from day 4 to day 11 after 
germination. The plants typically had only a primary root and one or two seminal roots at the 
beginning of the experiments, but over one hundred root branches by the end, including nodal 
roots (Movie S1), providing a wide spectrum of architectural complexity. 
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Figure. 1 Workflow for 4D analysis of maize roots. Rotational image sequences from our automatic 3D time lapse 
imaging system were imported and processed to reconstruct 3D models using the RSA-GiA pipeline. The 
reconstructed time series of 3D models were processed using DynamicRoots software. The phenotypic features were 
extracted and analyzed using custom R code. 

 
 
Quantifying seedling global root traits at fine temporal scales reveals fundamental 
differences in growth patterns between two maize inbred genotypes and their hybrid that 
persist through maturity 
 
Phenotypic analysis of root architecture in a panel of diverse maize inbred lines has shown 
complex genotype-specific patterns that change during early development (39), but their 
expression over time and the underlying cause is not yet understood. Using the automated 
imaging system, we were able to observe global-scale growth patterns on a highly resolved 
temporal scale. To provide information about the size and shape of the root systems, we 
compared total root volumes, lengths, and numbers, which all increase over time (Figure 2). 
Despite a highly controlled and homogeneous environment, the dynamic range of growth varied 
extensively among individual plant as evidenced by the large spread of data. Yet phenotypic 
separation of the two genotypes could be identified very early in the experiment along the values 
of the mean curve (Figure 2a-c; t-tests for each time point in Table S1-S3). The hybrid values 
had the greatest intragenic variation, but the average values were largely intermediate, providing 
no evidence for heterosis in seedling root growth, similar to previous findings (51). While the 
total root volume and number of roots in B73 samples were consistently greater than Mo17 at all 
time points, initial differences in total root length disappeared by day 11 (Figure 2, Table S2). 
Since dry root weights from day 11 also showed that B73, Mo17 and their hybrid all had similar 
root biomass (Figure S1), we conclude that Mo17 and B73 fundamentally differ in how they 
allocate carbon resources for root foraging. B73 invests in relatively more, shorter, and 
“cheaper” roots (i.e. less biomass per unit of surface area), and Mo17 invests relatively more in 
the continued growth of extant roots, with their hybrid as intermediary. 
 
To capture the underlying dynamics of these temporal relationships, we computed the rates of 
change (or velocities, the first derivative) and accelerations (changes in velocity, the second 
derivative) for the three global traits (Figure 2d-f). A sharp demarcation occurs in both inbred 
genotypes that separates increasing and decreasing growth rates for root volume and length.  
However the inflection point is delayed in Mo17 relative to B73 (Figure 2d,e), and slightly 
earlier in the hybrid. This transition is coupled to the rate of new roots in B73 and the hybrid, but 
not in Mo17 (Figure 2f), supporting evidence for a fundamentally different process for patterning 
root architecture between the two genotypes that appears semi-dominant in the hybrid. 
 
Despite the clear trend over the 1-week time interval, accelerations or decelerations between any 
two 4-hour time intervals were generally smooth - no significant differences were found for rates 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/381046doi: bioRxiv preprint 

https://doi.org/10.1101/381046
http://creativecommons.org/licenses/by-nc/4.0/


 

 

of change in total root number for any genotype at this temporal resolution, and in only a single 
interval each in B73 and the hybrid for root volume. Rates of change for total root length were 
more variable in all genotypes, but not in a consistent pattern (Figures 2d-f; Table S4). Diurnal 
patterns of growth in plant leaves and shoots (52) are well established, but evidence in grasses 
suggests that their roots do not change elongation patterns along day/ night cycles (27, 28). We 
compared the growth rates during the 4 hours before dark to the growth rate during the next 4 
hours in the dark for each genotype. All three genotypes had differences (p < 0.05) in day/ night 
growth rates at some time points, but not others (Table S4), providing no strong evidence of 
diurnal regulation, which reinforces previous studies. We found that growth rates were 
predominantly driven by developmental time, rather than diurnal real-time. 
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Figure 2. Global root trait dynamics reveal fundamental differences in growth patterns. Timecourse values of 
total root volume (a), total root length (b), and total root number (c). Each point represents an individual seedling, 
and the solid lines indicate mean values. Timecourse of growth rates and accelerations of the total root volume (d), 
total root length (e), and total root number (f). Points represent the mean value of growth rates. Vertical error bars 
represent the standard errors. Barplots show the accelerations. The gray bars represent night time. 
 
We investigated the duration and environmental conditioning of these apparent genotype-specific
properties by extracting identical 3D features from X-ray scanned root crown samples (53)
excavated from a field at anthesis (Figure 3). The phenotypic trends of the inbreds are
remarkably consistent, with nearly every significant difference between B73 and Mo17 in the
gel-grown seedlings also reflected in the field-grown mature root systems (Figure S2), including
total root volumes, lengths, and numbers. In multivariate space, these high-resolution 3D
phenotypes clearly delineated the two inbred genotypes along similar eigenvector distributions,
with the first two principal components (PCs) explaining ~80% of the total phenotypic variation
in each data set (Figure 3c, d; Table S5). As expected, the aboveground biomass of field-grown
hybrids was much larger than either parent (Figure S1), but the expression of heterosis was
detected to a lesser extent in the 3D root data, with extreme values for only total root volume and
convex hull area. Nonetheless, the first two PCs separated the hybrid from either parent in the
field data (Figure 3d). Contrary to conventional wisdom, we find a strong correspondence
between maize seedling and mature root traits. Our results suggest that, given sufficiently high-
quality data, a strong and persistent genetic influence on root growth patterns can be identified
across time and environment. 
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Figure 3. Differences in seedling root systems persisted in mature root systems. 3D reconstructions of seedling 
root systems at 11DAG (a), and mature root crowns at anthesis (b). Score and loading plots for the first two 
principal components (PC) of seedling root traits (c), and mature root crown traits (d). Each dot represents one plant. 
 

 
Modelling global growth patterns allows a direct comparison of key parameters that 
control more complex patterns 
 
Non-linear models such as logistic growth functions can provide “function-valued” traits that 
integrate both real and developmental time to describe complex patterns of growth or 
architectural change (54–57). After testing various nonlinear models for several fitting criteria 
(Table S6), we chose a 3-parameter logistic growth function to model the global trait dynamics 
(Figure 4; Methods). Parameter α1 describes the “carrying capacity” of the function, which 
reports the maximum values of the modelled growth curve. B73 had significantly higher α1 
values for total root volume and total number of root branches, reflecting that B73 has a larger 
final volume and more branches than Mo17 (Figure 4). However, the α1 values for total root 
length were not different, despite significantly larger values for B73 at each time point until hour 
144. This result highlights the importance of capturing and integrating the time dimension 
through an appropriate model, rather than ad hoc analysis of individual time points, which may 
be misleading. Parameter α2 represents the maximum rate of change and is a direct measure of 
the trends seen in Figures 2 d-f. It provides an explicit quantification of the different times at 
which the inflection points between increasing and decreasing growth trends were reached for a 
given trait. B73 and the hybrid begin slowing the rate at which root length and volume are added 
more than 24 hours prior to Mo17 (Figure 4a,b), whereas differences in the time at which 
additions of new lateral roots slowed were much less pronounced (Figure 4c). Parameter α3 
captures the slope of the growth curve, and except for total root volume, the values between B73 
and Mo17 were significantly different, reflecting that the total number of branches and to a lesser 
extent total root length increased more sharply for B73. The overall growth trends for the hybrid 
were most similar to B73, although we note that range of values was typically larger than either 
parent (reflected in the long axes of the violin plots, Figure 4), suggesting the hybrid is less 
constrained in its developmental program. 
 
Modelling of dense (4-hour intervals) time-series data provided important insights into the 
growth dynamics underlying genotypic differences in root architecture, but from a practical 
standpoint, we wished to know if similar answers could be derived from fewer data points. We 
conducted two types of sensitivity tests for each trait by progressively removing data from the 
analysis to generate pseudo time intervals and either: 1. Comparing the differences in modelled 
trait values for a single genotype (B73, Figure S3-5), or 2. Comparing the differences in 
statistical test results among B73, Mo17, and the hybrid (Figure S6-8). Our estimates of the B73 
total root volume modelling parameters would not have changed significantly if we would have 
imaged at any interval of 20 hours or less, whereas 4 versus 24-hour intervals gave statistically 
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different results. Model estimates of total branch number hardly varied at pseudo time interval 
from 4 to 24 hours with a few sporadic exceptions. However, total root length estimates were 
extremely labile, resulting in significant differences in the values between 4 hours and nearly 
every other interval (Figure S3-5). Despite this intra-genotypic variability, the computed 
statistical differences among B73, Mo17, and the hybrid were remarkably consistent at any time 
interval from 4 to 24 hours for all three traits (Figure S6-8). The results of this analysis suggest 
that much of the same information about root growth dynamics could be attained through less 
frequent phenotyping, which could translate to increases in sample throughput, and more power 
to resolve subtle environmental or genetic differences. 
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Figure 4. Comparison of global growth patterns by modelling. Parameters (α1, α2, α3) of the logistic growth 
models estimated for total root volume (a), total root length (b), and total root number (c). Violin plots and box plots 
were generated using ggplot2 package with default settings for statistics in R. The significance levels of pairwise t 
tests were added. (ns: p>0.05, *: p<=0.05, **: p<=0.01, ***: p<=0.001, ****: p<=0.0001) 

 
 
Analysis of the time function reveals local growth patterns driving genotypic differences in 
root architecture 
 
Root architecture is a global property determined by the cumulative elongation, branching, and 
curving of each root. Yet much is unknown as to how these local parameters emerge as global 
root system properties, especially in the context of three-dimensional complexity. A key feature 
of our phenotyping pipeline is automated derivation of the time function and quantification of 
local growth (Methods). We analyzed all of the individual branches as aggregate trait 
distributions during the timecourse, from which fundamental differences in growth patterns 
between genotypes were discerned (Figure 5). Analysis of root length distributions showed that 
while B73 had a higher proportion of longer branches than Mo17 at the earliest time points, the 
proportion of shorter branches increased rapidly for B73 during the 5-7 DAG (Figure 5a). This 
trend reflects the rapid proliferation of lateral roots captured in the global architecture and 
growth modelling analyses (Figure 2,c,f and 3c). However the burst of new roots quickly tapered 
by 8DAG as B73 increasingly elongated existing roots, rather than forming new ones. This 
fundamental shift in resource allocation is clearly seen by the steadily decreasing proportion of 
relatively shorter roots throughout the rest of the experiment (Figure 5a). In comparison, the 
architecture of Mo17 was initially defined by shorter roots, but then consistently balanced 
existing root elongation and new root production throughout the timecourse, reflected in the 
steady root length distributions seen from 8DAG. Growth patterns of the hybrid were the most 
consistent, but there was a greater emphasis on new root production relative to Mo17.  
 
To study root curving, we computed the soil angle distribution, which captures root geometry 
relative to an extrinsic reference (the soil horizon), and branching angle distribution, which 
measures the intrinsic angle between a child and parent branch regardless of orientation to the 
soil horizon. As shown in Figure 5b, B73 had relatively larger soil angles relative to Mo17 at the 
early time points, indicating that B73 root systems begin growing at a steeper angle. However 
the proportion of shallow-angled branches quickly increased with the emergence of new 
branches (Figure 2c), peaking at 7DAG for B73 and the hybrid, but Mo17 was quite consistent 
during the experiment. Since most roots eventually orient to the vertical gravity vector over time, 
the production of new lateral roots and their angles relative to the parent branch (which is older 
and thus more likely to be vertically-oriented) largely dictate the extent of horizontal soil 
exploration. In the earliest stages of maize root development, several embryonic (seminal) roots 
emerge from the seed, which is reflected in all three genotypes by the dominance of shallow root 
branching angles at the earliest time points. As the root system architecture became more 
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complex over time, branching angle distribution patterns were consistent, but the magnitudes
depended on genotype (Figure 5c). The relatively greater angles for B73 demonstrate that lateral
roots grew further away from the parent branch than for Mo17 and the hybrid, highlighting
fundamental differences in local growth patterns that have strong implications for root
architecture and resource capture (58). 
 

Figure 5. Local growth patterns revealing genotypic differences. (a) Timecourse of root length distribution. Root 
length for each individual branch was normalized by the longest branch in the whole root system and recorded in 10 
bins. (b) Timecourse of soil angle distribution. The soil angle was the angle formed by the root branch and the 
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horizontal level. (c) Timecourse of branching angle distribution. The branching angle was the angle formed by the 
child branch and its parent branch. 

 
 

 
High-resolution analysis along a single root reveals developmental processes driving 
genotypic differences in root architecture 
 
Genetic variation for intrinsic developmental processes results in an astonishing diversity of 
plant morphology. Single roots have been used extensively to study plant development, in part 
because the position of lateral roots are arranged longitudinally across time, with the youngest 
organ always nearest to the growing tip at the beginning of the maturation zone (59). To 
understand how genotypic differences in root development contribute to the emergence of 
complex architectures, we computed the branch hierarchies for entire root systems, enabling us 
to know the precise topological relationships of all the roots in each 3D model (Methods). For 
the final, most architecturally complex time point, we defined the primary root as the branch 
connected to the seed which had the most child branches, and analyzed the patterns along this 
developmental axis. The positions of each lateral root were computed using the distance between 
the branching fork and the base of the primary root, divided by the primary root length (Figure 
6a). B73 had more total lateral branches along the primary root than Mo17, but they also 
emerged much closer to the root tip. On average, B73 lateral roots were found along the upper 
80% of the primary root, whereas Mo17 lateral roots were found along only the upper 60%. 
Since there was no significant difference in the primary root length between the two genotypes, 
B73 had both a higher lateral root branching density and a longer zone of branching. These data 
are parsimonious with the local and global root length and branching traits we measured 
previously (Figures 2 and 5). Thus, the basis for the architectural tradeoff of investment in new 
branches versus growth of existing branches is apparently controlled by genetic differences in 
local developmental processes. 
 
The radial position of new lateral roots is another developmental attribute that could influence 
3D root system properties (Topp and Benfey 2011). Lateral roots develop from pericycle cells 
adjacent to vascular tissue. The well-studied 2D branching plane of Arabidopsis thaliana results 
from a simple diarch symmetry of vascular strands, but the polyarch symmetry of maize and 
other monocots promotes the radial emergence of lateral roots (60). To quantify if genotype-
specific radial emergence patterns contributed to differences in global architecture, we leveraged 
our 3D data to compute radial angles for lateral branching around the primary root. Each lateral 
was compared to the adjacent branch along the longitudinal axis, and the relative angle between 
them was recorded in 10 bins, 36 degrees apart. The mean distributions of the radial angle had a 
near constant probability, suggesting that lateral roots overall emerged in all directions equally 
for B73, Mo17, and their hybrid (Figure 6b; mean values). However, the significant intra-plant 
variation across the experiment points to substantial heterogeneity along any given primary root, 
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suggesting that radial angle is either stochastic or that micro-environmental conditioning may
play a strong role. 

Figure 6. Developmental analysis along primary root revealing genotypic difference. (a) Distribution of the 
first-order lateral root number on the primary root. The percent distance refers to the distance between the branching 
fork to the primary root base, divided by the primary root length. (b) Distribution of the radial angles for lateral 
branching around the primary root. The radial angle is the angle formed by the root branch and the adjacent branch 
along the longitudinal axis. For each genotype, each column represents an individual seedling. 
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DISCUSSION 
 
Here we quantified high-resolution spatiotemporal dynamics of maize seedling root systems in 
three dimensions as they rapidly grew in complexity. Mathematical modelling allowed us to 
evaluate the contributions of genotype by simple function-values that integrated growth trends 
along both real and developmental timescales. We demonstrate how differences in aggregate 
local growth dynamics and developmental characteristics of a single root can condition emergent 
global architectures, resulting in a highly branched, dense root system for B73 and a more open 
and extensive system for Mo17. Corresponding 3D X-ray-based analysis of field-excavated 
mature root crowns suggested these architectural properties were developmentally hardwired and 
environmentally stable. 
 
When considered in the context of rhizoeconomic foraging strategy (61), the maize inbreds 
contrast for their carbon investments in new root production relative to maintenance of existing 
root growth - these differences have significant implications for resource acquisition. Previous 
studies have posited that the ideotype of fewer but longer lateral roots (Mo17) acquires mobile 
resources like nitrogen more efficiently, but the ideotype of finer but denser lateral roots (B73) 
acquires immobile resources like phosphorous more efficiently (15). Our findings extend the 
known P efficiency of B73 and inefficiency of Mo17 (62, 63) to include a basis in root growth 
dynamics. Work is underway to understand N relations. Through computational dissection of 
highly resolved spatiotemporal data, we have shown how genetic differences in complex 
developmental and local growth patterns measurable at the seedling level can be diagnostic of 
root architecture at maturity. Similar tradeoffs for thoroughness versus extent of soil exploration 
have been previously identified in rice seedling root systems, including genetic tradeoffs (64). 
Time-resolved phenotyping applied to mapping populations or association panels would resolve 
the genetic basis of complex root architecture dynamics, as it has for simpler root traits (33, 65). 
Such function-valued approaches are fundamentally superior than simple summary statistics to 
quantify growth and environmental interactions (66). Our model sensitivity analysis provides 
guidance on the imaging frequency that these studies could be effectively conducted. 
 
With the information of local traits, the contribution of individual branches to the whole root 
system architecture can be studied. Despite a wide range of phenotypic variation within the root 
system of a single plant or among genetically identical plants, the overall patterns were strongly 
correlated with genotype. Considering the homogenous conditions of the gel growth system, we 
interpret this to mean that a significant amount of probabilistic behavior is inherent to root 
foraging, but these distributions may be genetically conditioned. Our multiscale approach can be 
extended to a wide variety of other research questions where local interactions, such as patchy 
nutrients or competing roots, can be studied in the context of their effects on global architecture. 
3D imaging and computational analysis of root growth allows measurement of traits (e.g. radial 
angle) that are not measurable via 2D phenotyping approaches, especially with very complex 
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root systems. It also allowed us to compare the 3D architectures of seedling and mature root 
crowns using the same algorithms. Our methods transfer to any 3D data, including the growing 
body of X-ray tomography (XRT) and magnetic resonance imaging (MRI) root studies (8, 47, 
67, 68). Such high quality inputs should be especially useful to parameterize and constrain 
multiscale models that incorporate genotypic differences as probability distributions that reflect 
the inherent stochasticity in plant growth (19–22, 35, 57, 69–71). The continued improvement of 
simulation models that can account for and accurately predict root growth and root-environment 
interactions as a function of genotype will be critical for a realistic understanding of integrated 
plant biology and the enormous potential of root systems for the improvement of agriculture. 
 
 
METHODS 
 
Plant materials and growth conditions 
 
Two maize inbred genotypes, B73 and Mo17, and their hybrid were used in this study. The 
growth medium was made following a modified Hoaglands solution (39). The seeds were 
sterilized with 35% hydrogen peroxide for 20 minutes and rinsed four times with RO water. 
After soaking in RO water for 8 hours at 29 ºC in the dark, the seeds were sterilized again with 
35% hydrogen peroxide for 10 minutes and rinsed four times with sterile water. The seeds were 
placed at 29 ºC in the dark for incubation. After 2 days, seedlings were planted into glass growth 
cylinders sealed with saran-wrap. The cylinders were put on a dark shelf at ambient conditions 
overnight for acclimation before moving them into a growth chamber. The light intensity at the 
top of each jar was 700 µmol/m²/s.  Humidity in the chamber was maintained at 50%, although 
the jars were sealed with saran wrap. Temperatures were set to 28 ºC during the day and 24 ºC at 
night, with a 16/8h day/night cycle. 
      
Imaging system 
 
The imaging system was set up in the growth chamber. It consists of a digital camera (Stingray 
F-504C, Allied Vision Technologies), a turntable (LT360, LinearX), a near infrared LED light 
(SOBL, Smart Vision Lights), an optical correction tank, and a personal computer. The 
schematic details of a nearly identical imaging system can be seen in (38). The near infrared 
LED was used with a longpass camera filter to provide a high contrast silhouette during the day 
and to avoid affecting plant growth during night. It was turned on 10 seconds before each 
imaging course, and was turned off immediately after the rotational sequence was taken. For 
each imaging course, 180 images were taken at 2º increments. A custom program written in 
LabVIEW was used to control the image acquisition and set up time lapse imaging, which 
enabled the imaging system to take rotational image sequences at regular time points 
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automatically. In this study, all the plants were imaged every 4 hours for a week, until day 11 
after germination. For each plant, 41 or 42 image sets were captured. 
 
Inbred vs Hybrid Field Experiment 
 
The same maize inbreds and hybrids that were used in the gel were included in a field 
experiment at the University of Missouri Genetics Farm in Columbia, MO planted on May 16, 
2017. Six plants each were sampled from two rows after flowering (72), and washed root crowns 
were scanned on a North Star Imaging X5000 X-ray Computed Tomography system at the 
Danforth Plant Science Center. All the scans were performed at 70kV and 1700μA, collecting 
1800 projections over 360 degrees of rotation. Scanning resolution was 111μm. The total scan 
time for each sample was 3 minutes. Projections were reconstructed into single 3D volumes 
using NSI efX-ct software, and each volume was exported as a 2D image stack for analysis. For 
the root segmentation, 2D image slices were thresholded using band thresholding to remove any 
soil that remained in the images. The two threshold values were determined by triangle algorithm 
and Otsu algorithm, respectively. Cleaned 3D root models were input into the RSA-GiA pipeline 
to calculate root trait values. 
 
Quantification of RSA traits 
 
We used the RSA-GiA pipeline to generate the 3D reconstructions from 2D rotational images. 
The pipeline included three main steps: (1) cropping, to remove the above gel parts from the 
images; (2) thresholding, to convert the images to binary images, which roots are the foreground; 
(3) reconstruction, to build the 3D models based on visual hull algorithm (45). To analyze a 
time-series of 3D reconstructions, we used DynamicRoots. DynamicRoots is a software tool 
which is capable of computing structural and dynamic traits for growing roots (46). It aligns all 
the models in a time-series, decomposes the 3D root system into individual branches, and records 
the growth process. The primary output of DynamicRoots is a txt file that includes columns for 
different root traits at every observation time, and rows for data from every branch. To analyze 
root growth patterns, we developed R functions for computing global root traits, root growth 
rate, root growth direction, and root distribution from DynamicRoots-generated files 
(https://github.com/Topp-Roots-Lab/timeseries_analysis). Using the traits for each branch, the 
total volume, total length, and total number of branches were obtained for every time point. In 
order to avoid noise, branches shorter than 5 voxels at the last observation time were removed. 
The total root volume was the sum of the root volume of all individual roots. The total root 
length was the sum of the root length of all individual roots. The total number of branches was 
the sum of the numbers of individual roots. The growth rate was the difference of root traits 
between two subsequent time points. We defined the angle between branch and soil level as soil 
angle, and the angle between branch and its parent branch as branching angle.  
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Data analysis 
 
To compare the shape of root growth for different genotypes, we modeled the dynamic of global 
root traits. Linear, exponential, power law, monomolecular, three-parameter logistic, four-
parameter logistic, and Gompertz models were tested. The basic functional forms for these 
models can be seen in Paine et al., 2012 (55). We parameterized the three-parameter logistic 
model in the following way to facilitate descriptions of growth curves: 

 � � �
 1

1 �  � 3� � 2�
 

where y represents the global traits, i.e. total root volume, total root length, and total root 
number, t is the time after the start of the imaging course, α1 is the maximum growth capacity, α2 

is the inflection time point, and α3 is the steepness. 
The parameters for all models were estimated using linear (“lm” function) or non-linear least 
squares regression (“nls” function) in R. To select the best model, R squared (R2), root mean 
squared error (RMSE), standard error (S), and Akaike Information Criterion (AIC) of the 
regression were computed. t- test was used to compare the parameters among different 
genotypes. 
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