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Abstract
The recent availability of comprehensive, brain-wide gene expression atlases such as the Allen Human Brain Atlas
(AHBA) has opened new opportunities for understanding how spatial variations on the molecular scale relate to the
macroscopic neuroimaging phenotypes. A rapidly growing body of literature is demonstrating relationships between
gene expression and diverse properties of brain structure and function, but approaches for combining expression atlas
data with neuroimaging are highly inconsistent, with substantial variations in how the expression data are processed.
The degree to which these methodological variations affect findings is unclear. Here, we outline a seven-step analysis
pipeline for relating brain-wide transcriptomic and neuroimaging data and compare how different processing choices
influence the resulting data. We suggest that studies using AHBA should work towards a unified data processing
pipeline to ensure consistent and reproducible results in this burgeoning field.
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Introduction
Over the past two decades, human imaging genetics has emerged as a powerful strategy for understanding the molecular
basis of macroscopic neural phenotypes measured across the entire brain (Meyer-Lindenberg and Weinberger, 2006,
Muñoz et al., 2009, Arslan, 2015, Hashimoto et al., 2015). Traditionally, this work has involved correlating allelic
variation at one or more genetic loci with variation in one or more imaging-derived phenotypes (IDPs), initially
through candidate gene studies and more recently at a genome-wide level. The latter has been facilitated by the
formation of large consortia, such as ENIGMA (Thompson et al., 2014). A common assumption in this work is that
variants associated with an IDP (or nearby variants tagged by the associated variant) influence gene expression or
protein abundance, which in turn alters cellular function and ultimately affects the studied IDP. However, multiple
environmental and other factors can impact gene activity (Fraser et al., 2005, Choi and Kim, 2007, Cole, 2009) and the
functional roles of many IDP-linked variants, which are usually identified through large-scale statistical analyses, are
often unknown. As a result, the mechanisms through which a given variant may influence phenotypic variation can be
unclear. Moreover, the expression levels of many genes vary substantially across brain regions (Hawrylycz et al., 2015),
and these spatial variations cannot be inferred from DNA sequence alone.

Assays of gene expression provide a more direct measure of gene function. Expression assays are invasive, requiring
direct access to neural tissue, and technical limitations have historically constrained analyses of gene expression in
the brain to small sets of areas studied in isolation. Recent advances in the development of high-throughput tissue
processing and bioinformatics pipelines have overcome these limitations, resulting in datasets of gene expression across
a large fraction of the genome in a large number of brain regions, and through various stages of development [see
Keil et al. (2018) for a detailed overview]. While some of the human atlases span multiple brain areas, only the Allen
Human Brain Atlas (AHBA) offers high resolution coverage of nearly the entire brain, comprising expression measures
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for more than 20,000 genes taken from 3702 spatially distinct tissue samples. Critically, the samples have been mapped
to the stereotaxic space, allowing researchers to directly relate spatial variations in gene expression to spatial variations
in IDPs (for more details on the AHBA see supplementary material S1).

This unprecedented capacity to link molecular function to macroscale brain organization has given rise to the
nascent field of imaging transcriptomics, which has begun to yield new insights into how regional variations in gene
expression relate to functional connectivity within: canonical resting-state networks (Richiardi et al., 2015, Forest
et al., 2017); fiber tract connectivity between brain regions (Goel et al., 2014); temporal and topological properties
of large-scale brain functional networks (Cioli et al., 2014, Vértes et al., 2016); the specialization of cortical and
subcrotical areas (Krienen et al., 2016, Parkes et al., 2017, Anderson et al., 2018); regional maturation during embryonic
and adolescent brain development (Kirsch and Chechik, 2016, Whitaker et al., 2016); and pathological changes in brain
disorders (Rittman et al., 2016, Romme et al., 2017, McColgan et al., 2018, Romero-Garcia et al., 2018a). Software
toolboxes to facilitate the integration of brain-wide transcriptomic and imaging data have also been developed (French
and Paus, 2015, Gorgolewski et al., 2015, Rizzo et al., 2016, Rittman et al., 2017).

Analyses in imaging transcriptomics are often highly multivariate, involving expression measures of around 20,000
genes in each of around 102–103 brain regions, being related to one or more distinct IDPs quantified in each region
requiring quite extensive data processing. The impact of data processing choices on the results of neuroimaging
analyses is well documented, with strategies for the correction of motion-related and global signal fluctuations in
functional MRI being a prime example (Power et al., 2015, 2017, Ciric et al., 2017, Parkes et al., 2018). Comparable
scrutiny has not yet been applied to the many processing choices that can affect the analysis of transcriptomic atlases
and their relation to IDPs. At the time of writing, more than 30 studies have linked the AHBA gene expression measures
to human neuroimaging data. The lack of a standard processing pipeline for gene expression data means that the degree
to which the results of this work are robust to different methodological choices remains unclear.

As the field develops, it is important to establish methodological guidelines to ensure consistent and reproducible
results, and to support valid interpretation. In this paper, we offer a practical guide to some of the key steps in processing
the AHBA gene expression data and examine the potential impact of methodological choices available at each step.
We focus on the AHBA, as it is the most spatially comprehensive and widely used gene expression atlas in the field
(Hawrylycz et al., 2012).

The paper is organised as follows. We begin by summarizing some basic aspects of how gene expression is
quantified, and general characteristics of the AHBA. We then outline several key steps in a basic workflow for relating
gene expression measures to imaging data and examine the impact of methodological choices at each step. In the final
section we make some recommendations for best practice, and provide directions for further research.

Measuring gene expression
Gene expression is a process through which genetic information encoded by sequences of DNA is read and used
to synthesize a particular gene product, such as a protein or RNA molecule (Szymański and Barciszewski, 2002).
The order of amino acids within each gene determines the structure and function of the resulting product, which
in turn affects cellular function and drives phenotypic variability. While the DNA of each cell in the organism is
identical, different cells and anatomical structures express different phenotypes (e.g., neurons versus lymphocytes) due
to differences in gene expression. The process through which a sequence of DNA is expressed is complex, but (for
present purposes) can be divided into two main stages: (1) transcription, which occurs when an unwound segment of
DNA is read to produce messenger RNA (mRNA); and (2) translation, which occurs when mRNA is used to synthesize
proteins (Krebs et al., 2014). Gene expression is commonly approximated by measuring mRNA levels of a particular
gene and is thus an index of gene transcriptional activity. Gene transcription is an indirect proxy for protein abundance,
which is ultimately determined by gene translation. This distinction is important as several studies have shown that
mRNA and protein levels within a tissue can vary significantly (Futcher et al., 1999, Gygi et al., 1999, Greenbaum
et al., 2003) and gene expression (transcriptional activity) and protein abundance (translational activity) are not always
positively correlated (Margineantu et al., 2007, Schwanhäusser et al., 2013).

In the AHBA, transcriptional activity has been measured using microarray, which quantifies the expression levels
of thousands of genes at once by measuring the hybridization of cRNA (Cy3-labeled RNA) in a tissue sample to a
particular spot on the microarray chip. Each of these spots, called probes, maps to a unique location of the DNA and
contains single-stranded nucleic acid profiles that are ready to anneal to their complementary targets in the process of
hybridization. Relative levels of gene expression in a tissue sample are then quantified by measuring the fluorescence at
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each sequence-specific location, which is proportional to the amount of complementary mRNA in a sample (Tarca et al.,
2006). This method provides a cost-effective way to measure gene expression in high-throughput manner. However,
it is limited to known gene sequences, is prone to background noise due to indirect assessment of expression values,
and spatial biases can result from variability in lateral diffusion of target molecules on the chip (Steger et al., 2011).
Expression measures can also be affected by cross-hybridization artefacts arising when cRNA anneals to an imperfectly
matched probe.

Microarray is typically performed on bulk tissue samples, and the cellular composition of a sample can strongly
influence its gene expression profile. As a result, two samples with varying densities of different cell types may show
transcriptional differences simply because of their different cellular composition. This is an important consideration
when comparing data acquired from samples taken from different parts of the brain, since variations in the density of
distinct cell types may drive differences in regional gene expression. In addition, variations in the way tissue samples
are acquired, handled and processed, age at death (Glass et al., 2013), sex (Berchtold et al., 2008, Trabzuni et al., 2013),
ethnicity (Spielman et al., 2007), brain pH (Mexal et al., 2006), post-mortem interval (Zhu et al., 2017), and RNA
degradation (Jaksik et al., 2015), can all affect expression measures. Another potential influence arises from batch
effects, caused by samples being processed at different times, by different staff, or in different labs; even changing
atmospheric ozone levels can impact the final measures (Fare et al., 2003) [see Scherer (2009) for an overview]. The
Allen Institute has implemented a series of steps to mitigate this variability as much as possible, as outlined in Allen
Human Brain Atlas technical white paper (Allen Human Brain Atlas, 2013).

One final consideration is that any individual gene expression assay provides a static snapshot of a dynamic process.
Gene expression changes through development, and as a function of experience, environmental exposures and other
factors (Fraser et al., 2005, Choi and Kim, 2007, Berchtold et al., 2008, Cole, 2009, Birdsill et al., 2011, Naumova
et al., 2012, Kumar et al., 2013). The further advancement of developmental atlases of gene expression (Johnson et al.,
2009, Colantuoni et al., 2011, Kang et al., 2011, Fertuzinhos et al., 2014, Bakken et al., 2016) will help to shed light on
these dynamic processes.

A general workflow for processing brain-wide transcriptomic data
The AHBA consists of microarray data in 3702 spatially distinct samples taken from six neurotypical adult brains. The
samples are distributed across cortical, subcortical, brainstem and cerebellar regions in each brain, and quantify the
expression levels of more than 20,000 genes (for more details see supplementary material S1). Different brain regions
were sampled across each of the six AHBA donors to maximize spatial coverage. Figure 1 shows the variability of
coverage across individual brains.

Each tissue sample is associated with a numeric structure ID, name and structure label (cortex, cerebellum, or
brainstem) in addition to the MRI voxel coordinates in native image space and MNI stereotaxic coordinates, which can
be used to match samples to other imaging data (Figure 1). The AHBA also provides: (1) a binary indicator of when
the level of a given transcript exceeds background levels, which can be used for quality control purposes; (2) RNA-seq
data for a subset of tissue samples in two donor brains (120 samples each), which can be used for cross-validating
expression measures (as we show below); and (3) magnetic resonance images, including T1-weighted, T2-weighted,
T2-weighted gradient echo and FLAIR scans for all six brains, and diffusion-weighted images for two brains. These
scans were collected prior to the dissection for anatomical visualization.

The AHBA samples were processed over approximately three years, which raises concerns about possible batch
effects. Expression data were subjected to normalization procedures within a single brain, as well as between brains,
to minimize the effect of non-biological biases such as array-specific differences, dissection method, and RNA
quality differences among others, while maintaining biologically-relevant variance. Detailed information about the
normalization procedures is provided in the technical white paper (Allen Human Brain Atlas, 2013). Despite these
procedures, we show below that large inter-individual differences in gene expression remain, such that samples from
the same brain tend to have more similar gene expression compared to the samples from other brains. These differences
must be taken into account when combining data across all six brains.

Beyond the processing steps applied by the Allen Institute, a number of other steps are required to link expression
measures and neuroimaging data. Here we outline seven major steps, which represent the core features of a typical
workflow. The data processing steps, summarized in Figure 2, are: (i) verifying probe-to-gene annotations; (ii) filtering
of probes that do not exceed background noise; (iii) probe selection, where representative probes (or a summary
measure) are selected to index expression for a gene; (iv) sample assignment, where tissue samples from the AHBA
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Fig 1. A schematic representation of gene expression data for the CLRN1 gene (selected for visualization
purposes). Discrete tissue samples in each brain are represented as colored areas on a grey brain surface. The color
corresponds to the relative gene expression level across all six brains (z-score): red (high), blue (low). The size of the
patch is not representative of the size of the actual tissue sample used to quantify gene expression which, in reality, was
much smaller. The patch has been padded out by the AHBA online platform as a visual aid. The number of samples in
each anatomical division: cortex and subcortex (C&SC), brainstem (BS) and cerebellum (CB) for every donor brain is
listed. Middle: A schematic representation of available data for each sample which includes expression values for
∼20,000 genes, a binary indication of whether the expression levels exceed background noise, and sample native voxel
and MNI coordinates for each sample. Brain representation produced using Brain Explorer 2 (2006-2015 Allen
Institute for Brain Science. Brain Explorer 2. Available from:
http://human.brain-map.org/static/brainexplorer).

are mapped to specific brain regions in an imaging dataset; (v) normalization of expression measures to account for
inter-individual differences and outlying values; (vi) gene-set filtering, to remove genes that are inconsistently expressed
across six brains and/or to select genes in a hypothesis-driven way based on the research question. (vii) accounting for
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the spatial patterns in gene expression. The first six processing steps produce the region × gene matrix that can be used
for the regional analyses. The final step of accounting for the autocorrelation in the gene expression measures depends
on the particular research question. The potential need to account for spatial effects arises because gene expression is
more strongly correlated between samples that are separated by short distances compared to those that are far apart, a
pattern that has been described in humans (Richiardi et al., 2015, Krienen et al., 2016, Vértes et al., 2016, Pantazatos
and Li, 2017), mouse (Fulcher and Fornito, 2016) and C.elegans (Arnatkevic̆iūtė et al., 2018). Although this spatial
autocorrelation is, in itself, an important neurobiological feature of the brain transcriptome (Gryglewski et al., 2018), it
is critical for any analysis claiming a specific association between spatial variations in gene expression and a given IDP
to show that the association exceeds what would be predicted by lower-order spatial gradients of gene expression. In the
following sections, we outline some of the choices that can be made at each of these steps and consider their impact on
analysis with some recommendations summarized in the conclusions section. Code and data used for data processing
and the following analyses are available at github https://github.com/BMHLab/AHBAprocessing and
figshare https://figshare.com/s/441295fe494375aa0c13 respectively.

Fig 2. Schematic of a general workflow for processing AHBA to be used in combination with neuroimaging
data. The basic workflow involves: (i) confirming and updating probe-to-gene annotations using the latest available
data; (ii) background filtering, where expression values that do not exceed background are removed; (iii) probe
selection, which, for genes indexed by multiple probes, involves selecting a single representative measure to represent
the expression of that gene; (iv) sample assignment, where tissue samples from the AHBA are mapped to specific brain
regions in an imaging dataset; (v) normalization of expression measures to account for inter-individual differences and
outlying values; (vi) gene-set filtering, to remove genes that are inconsistently expressed across six brains and/or to
select genes in a hypothesis-driven way (here we show a gene with consistent expression across three individual brains
in the top row and a gene with low consistency in the bottom row, where consistency is measured using a metric called
differential stability, or DS (Hawrylycz et al., 2015)). The application of these six steps results in a region × gene
expression data matrix that can be further used for the analysis. An important consideration for analyses involving
transcriptional data is step (vii) accounting for spatial autocorrelation.

Step 1. Probe-to-gene re-annotation
In microarray experiments, probe sequences correspond to a unique portion of DNA and are assigned to genes based
on available genome sequencing databases (O’Leary et al., 2016). While the AHBA (and other platforms) provide
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annotation tables where probes are mapped to genes, this information gets outdated with each update of the sequencing
databases. For example, at the time of the AHBA release in 2013, 18% of probes were not annotated to any gene. Using
updated sequencing information we can find corresponding genes for more than 2000 probes that previously were not
matched to any gene while some probes are being matched to different genes than before. At the same time some
probes can not be unambiguously mapped to any gene using updated sequencing data and therefore should be excluded
from further analyses. An accurate probe-to-gene mapping is essential for obtaining biologically meaningful findings.
It is therefore necessary to re-assign probes to genes using the most current information available. This re-annotation
can be done using several methods and toolboxes, some of which are summarized in Table 1. To our knowledge, only
three studies using the AHBA have performed probe-to-gene re-annotation (Richiardi et al., 2015, Eising et al., 2016,
Romero-Garcia et al., 2018b).

Table 1. Tools that can be used to update probe-to-gene assignment.
Software Description

Re-annotator

Command-line based re-annotation pipeline which uses probe sequence and mRNA reference database information
to identify genes that match specific microarray probe sequences. Can work with any type of probe sequence
dataa but requires additional software tools (PERL, BWA, SAMtools, Annovar) and external data sources such as
a reference genome sequence and gene locations.

BioMart
Web-based data mining tool that provides an easy way to employ the latest available information contained
in the Ensembl genome database - a comprehensive source of stable automatic annotation of the human genome
sequence. Limited to standard microarray platforms and cannot annotate custom probes in AHBA.

AnnotationDbi
R-based software package in ‘Bioconductor’ providing a user interface and database connection code for
annotation data package. Limited to standard microarray platforms and cannot annotate custom probes in AHBA.

a The probe sequence information that is needed to perform annotation using the Re-annotator pipeline can be accessed using the Allen
Institute’s website application programming interface (API) (see supplementary material S6) and is available at https://figshare.
com/s/441295fe494375aa0c13. Agilent probe sequences can also be downloaded through the manufacturer’s website (https:
//earray.chem.agilent.com/earray/)

To investigate how probe-to-gene annotations change over time, we supplied a list of all available 60 bp length
AHBA probe sequences (n = 58,692) to the Re-annotator toolkit (Arloth et al., 2015) (Table 1). We found that
45,821 probes (78%) were uniquely annotated to a gene and could be related to an entrez ID - a stable identifier
for a gene generated by the Entrez Gene database at the National Center for Biotechnology Information (NCBI). A
total of 19% of probes were not mapped to a gene, and just under 3% were mapped to multiple genes and could
not be unambiguously annotated. Of the probes that were unambiguously annotated to a gene, 3438 (7.5%) of the
annotations differed from those provided by the AHBA: 1287 probes were re-annotated to new genes and 2151 probes
that were not previously assigned to any gene in the AHBA could now be annotated. Additionally, 6211 (∼ 10%)
probes in the initial AHBA dataset had an inconsistent gene symbol, ID or gene name information according to the
NCBI database (https://www.ncbi.nlm.nih.gov/), as of 5th March 2018. Because of these differences, we
recommend obtaining probe-to-gene annotations and retrieving the gene symbol ID and name from the latest version
of NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/). Hereafter, we present
all analyses using this newly re-annotated set of 45,821 probes, corresponding to 20,232 unique genes.

Step 2. Data filtering
Microarray experiments are prone to background noise due to non-specific hybridization, so appropriate controls
must be employed to discriminate expression signal from noise. Variability in measured intensity values is greater
for lower hybridization intensities, where signal levels approach background (Quackenbush, 2002). This problem
is often addressed by removing a fixed percentage of probes with lowest intensity or using only array elements that
show statistically significant expression differences (increase) from the background (Quackenbush, 2002). Each probe
in each sample of the AHBA has been assigned a binary indicator for whether it measures an expression signal that
exceeds background levels (see Figure 1). This assignment is done on the basis of two criteria: 1) a t-test comparing
the mean signal of a probe to the background (p < 0.01) indicating that the mean signal of the probe’s expression
is significantly different from the background; and 2) the difference between the background and the background
subtracted signal is significant (> 2.6 × background standard deviation).

Filtering genes based on the AHBA binary indicator [intensity based filtering (IBF)] can have a marked effect on
the final set of genes included for analysis, however only a few published studies using the AHBA data have reported
using the IBF (Hawrylycz et al., 2012, Richiardi et al., 2015, Burt et al., 2017). For example, if we exclude probes that
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did not exceed the background in at least 50% of all cortical and subcortical samples across all subjects, we exclude
30% of probes (13,844 out of 45,821), assaying 4486 out of 20,232 genes (Figure 3A). In other words, if no filtering is
performed, > 22% of genes will have expression levels consistent with background noise in at least half of the tissue
samples.

To further investigate the impact of IBF, we examined how filtering affects the average correlation between
expression values quantified by multiple probes for the same gene. Given that expression measures of different probes
are expected to be comparable, IBF should increase the inter-probe agreement. Figure 3B shows the distribution of the
average between-probe correlation, estimated before and after IBF. Starting with an initial set of 17,769 genes with
multiple probes, applying IBF to exclude probes that do not exceed background in at least 50% of regions removes
6579 genes. It is evident that the distribution of between-probe correlations is pushed towards higher values.

We next compared the mean between-probe correlations obtained before and after IBF, focusing on the 11,190
genes with multiple probes that were retained after filtering. For 10,111 of these genes, the average correlation was
identical, while for the remaining 1097 genes (∼ 10%), the mean correlation was significantly greater following IBF
(Spearman’s rank correlation (denoted as ρ through the text): ρ = 0.47 vs ρ = 0.30; p = 7× 10−54, Wilkoxson rank
sum test; Figure 3C). Gene score resampling (GSR) analysis (Gillis et al., 2010) revealed that IBF excluded genes
that are involved in generic cellular, immunological and metabolic processes that are not specific to the brain (see
supplementary file enrichmentExpression.csv for results and supplementary material S2 for more details). While the
exact threshold for the IBF still remains to be chosen by the researchers, these results indicate that IBF is effective in
mitigating noise in the microarray gene expression measures.

Fig 3. The influence of the intensity based filtering. A) The number of probes and genes as a function of filtering
threshold: x axis – the minimum proportion of samples with expression values exceeding the background; y axis – the
number of probes and genes retained. Dotted lines correspond to the number of probes and genes retained after 50%
filtering threshold was applied. B) Average correlation between expression values measured using all available probes
for the same gene: light orange — original set of 17,769 genes with more than 1 probe; dark orange – 11,190 gene set
after intensity-based filtering with more than one probe, where probes for which 50% of samples do not survive IBF
are removed. C) Distributions of average correlations between expression values measured using all available probes
for the same gene that demonstrated any change after IBF (1097 genes, or ∼ 10% genes with multiple probes).

Step 3. Probe selection
Multiple probes can be used to measure the expression level of a single gene at different exons (segments of RNA
molecules that code for a protein or peptide sequence), which can increase the reliability of the measurement. After
performing re-annotation and IBF, 71% genes in the AHBA were measured with at least two probes (compared to 93%
in the original data). One might expect that probes measuring the expression of the same gene should show consistent
expression patterns, but this is not always the case. For example, even after IBF, the correlation between probes
measuring the expression levels of the same gene for more than 20% of genes is ρ < 0.3 (Spearman rank correlation)
(Figure 3B). Investigators have used different strategies to derive a representative measure of gene expression. Some of
the strategies used in published work are summarized in Table 2.

To evaluate how the gene expression measures vary under different probe selection methods, we estimated, a single
summary measure of expression for each gene indexed by multiple probes, according to one of the methods listed in
Table 2. We also evaluated a few other methods beyond ones used in the previous literature, such as selecting a probe
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Table 2. Methods used for deriving an estimate of gene expression in cases where multiple probes are available for the
same gene.

Method Description

Mean
Calculate the mean of all available probes for a gene.
Tan et al. (2013), French and Paus (2015), Eising et al. (2016), Krienen et al. (2016)
Vértes et al. (2016), Whitaker et al. (2016), Negi and Guda (2017), McColgan et al. (2018)

Max intensity Select probe with the highest expression level. Romero-Garcia et al. (2018b)
Variance Select the probe with the highest variance across brain regions. Negi and Guda (2017)
PC Select the probe with the highest loading onto the first principal component of probes. Parkes et al. (2017)

DS
Select the probe with most consistent pattern of regional variationscross the six donor
brains, as quantified using a measure called Differential Stability (DS).
Hawrylycz et al. (2015), Kirsch and Chechik (2016)

Connectivity variance/intensity

Select the probe with the highest average correlation to other probesa for >2 probes;
select the probe with maximum variance (connectivity variance) or maximum intensity
(connectivity intensity) when only 2 probes available. Hawrylycz et al. (2012, 2015), Myers et al. (2015)
Burt et al. (2017), Forest et al. (2017), Anderson et al. (2018)

Sequence mismatches
Select the probe with fewest sequence mismatches, or the probe with highest standard deviation
if >1 probe have the same number of mismatchesb. Richiardi et al. (2015)

a This measure is implemented in the R function ‘collapseRows’ from WGCNA package (Miller et al., 2011). Here we used a custom
implementation of this function that was applied for samples within each brain separately in order to account for potential inter-individual
differences in gene expression (discussed in step 5).
b Sequence mismatch is defined by Re-annotator software as the difference between probe sequence and the reference genome sequencing data.
Considering that ∼ 93% probes were re-annotated without any mismatches, the overwhelming majority of probes will be chosen applying
the highest standard deviation criteria and resemble maximum variance selection approach. Therefore, this probe selection criteria was not
implemented separately and is not presented in the probe selection comparison plots.

with maximum coefficient of variation across samples (CV), or the probe with the highest proportion of samples with
expression levels exceeding background noise (signal proportion). In addition, we included random probe selection
(averaged over 100 repeats) for comparison. We then took the expression vector of each gene across tissue samples
and computed the Spearman rank correlation coefficients between these vectors estimated for each possible pair of
methods.

Figure 4A shows the average correlation between expression measures selected using different criteria, averaged
across 17,769 genes - all genes with multiple probes available for the same gene. Since most studies using the AHBA
do not report using IBF, we show results for unfiltered data (similar results have been obtained using data after IBF,
see Figure S2). The average correlation coefficients between probe selection methods range between 0.5 < ρ̄ < 0.98,
indicating that the probe selection method can have a major impact on expression estimates. The method of summarising
the expression measures for a gene as the mean across all available probes is the most highly correlated, on average, to
all the other methods. Variance-related methods [coefficient of variation, maximum variance, connectivity-variance and
highest loading on first PC of non-normalized data (Parkes et al., 2017)] are similar to each other, but different to other
methods. Consistency (DS) and intensity (max intensity, signal proportion and connectivity-intensity) related methods,
on the other hand, are more correlated with each other. Notably, the correlations between gene expression measures
selected based on the highest CV compared to the consistency/intensity-related criteria are much lower than resulting
from the random probe selection strategy, indicating that these methods favour dissimilar properties of expression
measures for probe selection. A more detailed discussion of these results is presented in supplementary material S3.

The lack of a gold standard makes it difficult to choose between different probe selection options. One strategy
is to use RNA-seq data as an external reference (Miller et al., 2014b). RNA-seq allows precise quantification of the
amount of RNA in the sample without reliance on existing knowledge about genome sequences [for an overview,
see Wang et al. (2009), Kukurba and Montgomery (2015)]. It is also free of the background noise artefacts that are
known to contaminate hybridisation-based gene expression measures and therefore provides a more reliable estimate
of gene expression. Samples from two AHBA brains previously analyzed using microarray were reprocessed using
RNA-seq to provide expression data for more than 20,000 genes, in 120 samples in each brain (Hawrylycz et al., 2012).
Comparing expression values for matching structures in each of the two brains allows us to select probes that correlate
most strongly with RNA-seq, providing an additional quality control measure to cross-validate probe selection.

Considering that 17,609 of the 20,232 genes in the microarray data have RNA-seq measures, we first aimed to
evaluate whether excluding the∼ 13% of genes that do not overlap between the datasets would eliminate brain-relevant
genes. We verified this using over-representation analysis ORA: the genes removed are not enriched in brain-specific
functionality but rather are related to septin assembly and organization, as well as the negative regulation of RNA
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Fig 4. Probe selection method can have a large effect on resulting gene expression estimates. A) Mean
Spearman correlation coefficient of expression levels across 17,769 genes with multiple probe annotations, using a
range of different probe selection methods: CV, variance, PC, signal proportion, DS, correlation variance, correlation
intensity, mean (see Table 2) or selecting a representative probe at random (correlation values averaged over 100 runs).
The average correlation is computed over 17,769 genes with multiple probe annotations. B) The distribution Spearman
correlation values between microarray and RNA-seq expression data for genes that are present in both datasets. When
multiple probes for a gene are available, the maximum correlation value between probes was selected. C) Average
correlation between probes selected using RNA-seq (i.e., by selecting the probe that is most correlated with the
RNA-seq data) and other methods (ordered by decreasing values, based on 10,221 genes that: (i)had more than one
probe available; (ii) were present in both microarray and RNA-seq datasets; (iii) were correlated to RNA-seq (ρ > 0.2,
Spearman’s rank correlation) to ensure that RNA-seq based probe selection provides a meaningful estimate).

splicing (see supplementary file enrichmentExpression.csv for results and supplementary material S2 for more details).
We then examined the correlations between microarray and RNA-seq expression measures in the 17,609 genes

that overlap between both RNA-seq and microarray datasets across 112 brain regions, as shown in Figure 4B. Most
correlations are low, with 52% of genes exhibiting a correlation ρ < 0.3 and only 23% genes exhibiting a correlation
ρ > 0.5. This divergence between RNA-seq and microarray is likely to be caused by inaccuracies in the microarray
measurements. Using GSR analysis (Gillis et al., 2010) we find that genes with higher correlations between microarray
and RNA-seq are related to neuronal connectivity and communication related processes with categories such as
‘transmission of nerve impulse’, ’ensheathment of neurons’, ‘myelination’ and ‘glial cell development’ demonstrating
the strongest enrichment (see supplementary file enrichmentExpression.csv for results and supplementary material S2
text for more details). This analysis demonstrates that RNA-seq data can be used as a reference to select brain-relevant
and reliably measured genes.

Figure 4C shows that, compared to other probe selection methods, RNA-seq demonstrates the highest similarity
to intensity/consistency-based approaches (ρ > 0.8, Spearman’s rank correlation), with DS showing the highest
correlation. In contrast, variance-based methods are no more similar to the RNA-seq measures than random probe
selection (ρ < 0.75, Spearman’s rank correlation). Given that RNA-seq data is only available for a limited number of
samples (with only 87% of genes being represented), and the data come from only two of the six brains donor brains
in the AHBA, Figure 4C indicates that DS may be a reasonable alternative method for probe selection that can be
generalized to the full AHBA.

Step 4. Assigning samples to brain regions
The AHBA provides gene expression data for multiple spatially localized tissue samples (Figure 1). When relating such
data to macroscopic IDPs, it is necessary to generate some mapping between the spatial location of each tissue sample
and the particular spatial unit of analysis (e.g., voxel, brain region) used to construct the IDP. This mapping is facilitated
by the AHBA including an MNI coordinate (and voxel coordinate) for each tissue sample, and MRI data acquired for
each individual brain contained in the AHBA. Each tissue sample is also associated with an anatomical structure ID,
which can be related to corresponding higher order structures using the Allen Institute anatomical ontology, allowing
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brain structures to be identified at different resolution scales.
Existing studies have used several approaches to map tissue samples to regions-of-interest (ROIs) in imaging

data. One strategy has been to match samples to structures based on the name of a given anatomical sample. The
simplest approach is to use the anatomical structure names provided by the AHBA [see Allen Human Brain Atlas
(2013), Tan et al. (2013), Myers et al. (2015), Chen et al. (2016), Kirsch and Chechik (2016), Hecker et al. (2017), Lee
et al. (2017), Negi and Guda (2017)], but these regions do not directly correspond to brain parcellations typically used
in imaging analyses, so precise alignment with imaging data can be difficult. An alternative approach is to use the
MNI (or voxel) coordinates of each sample (Goyal et al., 2014, Cioli et al., 2014, French and Paus, 2015, Richiardi
et al., 2015, Komorowski et al., 2016, Krienen et al., 2016, Rizzo et al., 2016, Burt et al., 2017, Parkes et al., 2017,
Romme et al., 2017, Shin et al., 2017, Anderson et al., 2018, Romero-Garcia et al., 2018b). It is possible to either
assign samples to brain regions in a single parcellation defined in MNI space (Krienen et al., 2016, Keo et al., 2017,
Parkes et al., 2017, Romme et al., 2017), or to assign samples to regions based on parcellations of each individual
AHBA brain (Romero-Garcia et al., 2018a). The former approach is simpler, but a characteristic of the AHBA is that
the MNI coordinates provided for each tissue sample are based on spatial normalizations that were tailored to each
individual brain. Specifically, two of the AHBA brains were scanned in cranio and normalized to MNI space via a
linear transformation, whereas the other four were acquired ex cranio and normalized using an affine followed by a
non-linear transformation [for details see (Allen Human Brain Atlas, 2013)] with the deformation fields also being
smoothed to facilitate matching the images to Nissl stains. These differences across brains will influence the accuracy
of the normalization across the six brains, which is compounded by differences in tissue distortion that occurred during
sample handling and processing.

To overcome these issues, a parcellation scheme can be applied to each individual donor brain. This method can
more accurately account for individual differences in donor brain anatomy but is contingent on being able to generate
appropriate transformations between native and MNI space for an accurate parcellation. For cortex, the accuracy of
the parcellation can be greatly enhanced by parcellating and normalizing the surface; parcellation of non-cortical
areas requires volumetric normalization. In our own work, we have been able to segment the cortical surfaces of the
six AHBA brains with reasonable accuracy (assessed by visual inspection), and we supply four different volumetric
parcellations mapped at different resolutions to each brain: the Desikan-Killany (Desikan et al., 2006), comprising 34
nodes per hemisphere, the group-level HCPMMP1 (Glasser et al., 2016) comprising 180 nodes per hemisphere, and
two random parcellations comprising 100 and 250 nodes per hemisphere, respectively.

Once a particular parcellation has been generated, tissue samples should be assigned to the nearest region of the
parcellation. In this assignment, a threshold can also be applied, to avoid assigning samples beyond a certain distance
threshold. The distance between sample and region is commonly estimated as the Euclidean distance in 3D space. This
sample-region distance has been computed in different ways, including representing a region in space by its centroid
coordinate (Vértes et al., 2016, Whitaker et al., 2016, McColgan et al., 2018), or taking the minimum distance between
the sample and any voxel in the region (French and Paus, 2015, Parkes et al., 2017, Romme et al., 2017). The latter
approach is more accurate, given that regions in any given parcellation vary in size and folded geometry (e.g., Figure
5A).

In this process of assigning samples to regions, errors can occur if the mapping is not done separately for (i) broad
anatomical division (cortex, subcortex, cerebellum and so on); and (ii) left and right hemispheres. That is, cortical
samples listed as coming from the left hemisphere in the AHBA ontology should only be mapped to left cortical voxels
(as samples were taken from annatomically known positions in the brain), right subcortical or cerebellar samples to right
subcortical/cerebellar voxels and so on. In our own experience, we have observed that subcortical samples (as indicated
by AHBA ontology) can be mapped to cortical regions of the parcellation as cortical voxel may be closer (or visa
versa). Similarly, if no separation between hemispheres is performed, 58 out of 2748 cortical and subcortical samples
are assigned to an incorrect side of the brain when using the Desikan-Killany (Desikan et al., 2006) parcellation (Figure
5B). While the majority of those samples are very close to the midline, several are clearly incorrectly mapped to the
stereotaxic space, such as two samples in the frontal pole, which are assigned to the left side of the brain according to
the AHBA annotations but have a positive MNI x-coordinate. The same is true for some samples from the mammillary
body and cingulate gyrus, which are labelled as coming from the right hemisphere but have negative MNI x-coordinates
(Figure 5B). To avoid potential mistakes, samples with mismatching assignment should be excluded.

A second consideration is to set a distance threshold for assigning samples to regions, to ensure that samples further
than a given threshold away from the parcellation will not be assigned. As shown in Figure 5B, only around 50%
of samples are directly mapped to a parcellation when using the Desikan-Killany (Desikan et al., 2006) parcellation
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Fig 5. Methods for assigning localized tissue samples to matching regions in a brain parcellation are sensitive
to the metric used to define sample–region distances, the distance threshold used, and the use of anatomical
annotations on individual samples. A) Schematic representation of sample assignment when a sample is assigned to
the closest ROI centroid. A given sample belongs to region R2 but is closer to the centroid (C1) of region R1 than the
centroid (C2) of R2, resulting in an erroneous assignment. B) Schematic representation of samples that were assigned
to a hemisphere that differed from the annotations provided with their MNI coordinates. C) Sample assignment using
distance thresholds: the number of samples across all six brains within a given distance from a parcellation region.
Insert shows the proportion of assigned samples as a function of distance threshold. At 2 mm distance threshold, ∼90%
of tissue samples can be matched to a region in the parcellation.

(i.e., their coordinates correspond to a voxel inside the parcellation). Increasing the distance threshold will allow
some tolerance for small errors in spatial normalization. Figure 5C shows that assigning samples that are up to 2 mm
away from any voxel in the parcellation increases the proportion of assigned samples to almost 90%, with additional
increases in the distance threshold yielding only minor gains in the number of assigned samples, therefore, we use a 2
mm distance threshold in our analyses.

Step 5. Six brains, one atlas: accounting for individual variability
In cases where a given brain region is assigned multiple samples, we must generate some aggregate measure of
expression for that region. Most commonly this is done by taking a mean across the samples assigned to a given
region. A complication of the AHBA is that the samples come from different brains. As we shown in the next section,
each brain shows a distinct transcriptomic profile, which must be addressed before data from different brains can be
aggregated.

The AHBA is often used to represent a general transcriptomic profile of the adult human brain. However, it is
comprised of data taken from people aged 24 to 57 years, of different ethnicities, sexes, medical histories, causes of
death, and post-mortem intervals (Table 3). Many of these factors can impact gene expression (Fraser et al., 2005,
Berchtold et al., 2008, Kumar et al., 2013, Trabzuni et al., 2013). One way to address this brain-specific variance is
to conduct analyses separately in each brain. However, spatial coverage of different brain areas in the AHBA varies
from person to person, therefore, collapsing samples from all brains allow to derive a single atlas with maximum
spatial coverage across the brain. In this case, an appropriate correction for donor-specific transcriptomic differences is
required.

Considering that Allen Institute applied a range of data normalization procedures to remove batch effects and
artefactual inter-individual differences, most studies using AHBA have not taken into account the additional inter-
individual differences that might be important when aggregating data across six donor brains. Here we investigated
whether intrinsic inter-individual differences in expression play a major role by projecting all tissue samples from six
donor brains into a two-dimensional transcriptional principal components space. Figure 6A plots loadings of each
cortical tissue sample on the first two principal components of gene expression for all six donors (for the whole brain
see Figure S3). This unsupervised projection of samples into gene expression space captures the latent dimensions
of variance between all samples and broadly separates the six donors (regardless of where a tissue is located in the
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Table 3. Additional information about the six adult donors in AHBA.
Donor Age Sex Ethnicity Medical conditions Post-mortem intervala

H0351 2001b 24 Male
African

American History of asthma 23 hours

H0351 2002b 39 Male
African

American
Possible small pituitary adenoma;
single neurofibrillary tangle in entorhinal cortex 10 hours

H0351 1009 57 Male Caucasian History of atherosclerotic cardiovascular disease 25.5 hours

H0351 1012 31 Male Caucasian
Sudden cardiac arrest; benign spindle cell
proliferation and dystrophic calcification
in temporal horn of lateral ventricle

17.5 hours

H0351 1015 49 Female Hispanic

Splenectomy, hypothyroidism treated with Levothroid;
modest numbers of hemosiderin laden macrophages
noted in Virchow-Robin spaces in parietal and occipital
lobes, mild arteriosclerosis

30 hours

H0351 1016 55 Male Caucasian
Coronary artery atherosclerosis, prescriptions
for clotting and high cholesterol 18 hours

a Post-mortem interval is defined as the time period from the time of death to the time the tissue is frozen.
b These donors have tissue samples collected across both left and right hemispheres while all the other donors have samples only from within
the left hemisphere.

brain), indicating that each donor has a distinctive gene expression profile. In other words, while the data normalization
procedures applied by the Allen Institute prior to data release removed batch effects and artefactual inter-individual
differences, a considerable degree of intrinsic donor-specific variance remains and must be accounted for in order to
perform valid data aggregation.

One approach for addressing donor-specific effects is to perform a leave-one-out analysis, where the analysis is
repeated six times, excluding one of the brains at each iteration (Parkes et al., 2017, McColgan et al., 2018). This
approach can ensure that the results are not driven by single brain. A more direct way of eliminating the inter-individual
differences in expression measures is to normalize the gene expression data separately for each subject (Rizzo et al.,
2016, Liu et al., 2017, Negi and Guda, 2017, Romme et al., 2017, Romero-Garcia et al., 2018a). With this approach,
each gene’s expression values are normalized across regions separately for each donor in order to reflect the relative
expression of each gene across regions, within a given brain (Figure 6B-D). A desirable normalization procedure
should offer robustness to outlying values and quantify expression on the same scale across donors to enable direct
comparison. Most studies using AHBA have generally used z-score normalization (Rizzo et al., 2016, Negi and Guda,
2017, Romero-Garcia et al., 2018a),

xnorm =
xi − x
σ

, (1)

where x represents the mean, σ represents the standard deviation and xi — the expression value of a gene in a single
sample. The estimates of x and σ are appropriate for symmetric distributions, whereas gene expression distributions
across brain samples are often non-symmetric, and can contain outliers, which can bias these summary statistics.
Figure 6E demonstrates the sensitivity of z-score normalization to the outlying values. A variety of outlier-robust
normalizations exist such as Hampel hyperbolic tangent transformation, however here we focus on a variant of a
normalization method used by Fulcher and Fornito (2016), the scaled robust sigmoid (SRS) normalization (Fulcher
et al., 2013). This approach normalizes gene expression values based on an outlier-robust sigmoid function,

xy =
1

1 + exp(− (xi−〈x〉)
σ )

, (2)

where 〈x〉 represents the median and σ represents the standard deviation, before rescaling normalized values to a unit
interval,

xnorm =
xy −min(x)

max(x)−min(x)
. (3)

This normalization is robust to outliers and ensures equivalent scaling of expression values for each person. Figures
6C and E show the effectiveness of SRS in dealing with outliers and scaling. Other strategies for removing donor-
specific effects involve using linear models applied to cross-donor combined data. For example, donor-specific effects
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Fig 6. Without applying individual-specific normalization, inter-subject differences dominate cortical gene
transcription profiles. A) Non-normalized gene expression data in principal component space. Data from different
donors are represented in different colours. Samples from different subjects occupy different parts of the
low-dimensional gene expression space. Panels B,C represent gene expression data in principal component space
normalized separately for each subject using z-scores (B) or the scaled robust sigmoid (SRS) transform (C). Panel D
shows gene expression data in principal component space after applying limma batch effect removal on cross-subject
aggregated data, followed by SRS normalization. After normalization (B,C,D), samples no longer segregate by donor.
E) Correlations between normalized expression values (z-score vs SRS) for the ZZZ3 gene (chosen for visualization
purposes). Each dot represents a normalized expression value for ZZZ3 gene across samples, and different colours
correspond to different subjects. The z-score normalization results in extreme values being assigned to outliers,
therefore producing different scales for subjects and complicating direct comparison of values. SRS normalization is
not affected by the outliers and produces normalized values on the same scale for each subject. This example
demonstrates how outliers in the data can affect the scaling for different subjects: using z-score normalization results in
different scales for different subjects with normalized values ranging from approximately –5 to 5 for five out of six
subjects, whereas subjects H0351 1012 (orange) and H0351 2001 (dark blue) have a much wider range. In
comparison, SRS produces normalized expression values on the same scale for each subject without being affected by
outliers. Representations in principal component space are based on 10,028 genes, with representative probes chosen
based on correlation to RNA-seq data.

can be treated as an additional batch effect and removed via linear modelling using the R/Bioconductor software
package limma (Ritchie et al., 2015). While this approach removes inter-individual differences in gene expression, the
linear model is sensitive to outliers. This correction in turn can be followed by SRS normalization to minimize the
influence of outliers (Figure 6D).

To account for potential between-sample differences in gene expression, Burt et al. (2017) introduced within-sample
normalization across genes before subject-specific normalization across samples (see Figure S4). Indeed, some samples
can show a markedly different expression profile (extremely low or high values across all genes) from other samples in
close spatial proximity that may be caused by measurement artefacts. The influence of these artefacts can be minimized
by applying within-sample cross-gene normalization to quantify relative expression levels within a given sample,
before normalizing across samples. To quantify the effect of the initial within-sample normalization, we calculated the
correlations between expression values across genes and samples in two cases: i) when only cross-sample normalization
for each gene was applied; ii) when both cross-gene normalization within sample as well as cross-sample normalization
for each gene were applied. While the correlation values were relatively high (mediansample(r) = 0.969, IQR = 0.04;
mediangene(r) = 0.856, IQR = 0.1), the initial within sample normalization was beneficial in reducing potential
measurement artefacts in the data.

One additional consideration is that the spatial distribution of tissue samples across individual brains in the AHBA
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is not uniform. As such, different brains can contribute a different number of samples to any given brain region (Figure
1 and Figure 7). In light of this variability, we have two choices: we can either average all samples falling within a
region, meaning that the average may be driven by a subset of individuals who have more samples localized to that
region, or we can average at the level of each individual donor brain before aggregating across people (Figure 7). The
latter approach ensures that each donor makes an equal contribution to the mean, provided that all genes are normalized
to the same scale, however, the choice between those two options can be made depending on the researchers preference.

Fig 7. Two alternative ways of averaging expression values within the region of interest. Each region of interest
might contain a different number of samples from each subject. For example, the presented region has 6 samples from
subject I, 5 samples from subjects II and III, 3 samples from subject IV and only 2 and 1 samples from subjects V and
VI respectively. One way of calculating the mean is to take the average of all samples, such that each sample makes an
equal contribution to the overall expression value (Meansample). An alternative is to average the samples from each
donor first, and then take a second-order average across donors (Meansubject). The latter ensures that each subject
makes an equal contribution to the summary expression value. The former might be influenced by donors with more
samples in a given region.

Step 6. Gene filtering
The AHBA consists of more than 20,000 unique genes, of which only a fraction is expected to show consistent
regional variations in expression across the brain. Many analyses interested in transcriptomic signatures of IDPs will be
primarily interested in these brain-specific genes. Various methods for pre-selecting genes of interest have been adopted,
including selecting: (i) disease-specific genes (Rittman et al., 2016, Romme et al., 2017, Yokoyama et al., 2017), (ii)
genes related to a priori hypotheses (Goyal et al., 2014, Komorowski et al., 2016, Krienen et al., 2016, Acevedo-Triana
et al., 2017), or (iii) genes that are expressed consistently across all six AHBA brains, as quantified using the DS
measure (Hawrylycz et al., 2015). Genes with high DS values demonstrate consistent patterns of regional variation in
expression across the six AHBA subjects, and have been shown to be enriched for brain-related biological function
(Hawrylycz et al., 2015). Filtering based on DS thus offers a more targeted approach for investigating relationships
between IDPs and gene expression compared to the whole-genome analysis. The selection of disease-specific genes is
traditionally based on previous GWAS studies (Satake et al., 2009, Simón-Sánchez et al., 2009, Höglinger et al., 2011,
Ferrari et al., 2014, Ripke et al., 2014, Kouri et al., 2015), while gene selection based on an a priori hypothesis can
depend on other factors such as a specific involvement in clinical disorders (Komorowski et al., 2016, Acevedo-Triana
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et al., 2017). One particular set of 19 genes demonstrating a selective enrichment in the upper layers of the human cortex
compared to mouse [Human Supragranular Enriched (HSE) genes] has been extensively investigated and was found
to be implicated in both the functional (Krienen et al., 2016) and topological organisation of the brain (Vértes et al.,
2016, Romero-Garcia et al., 2018b). While selecting an appropriate gene filtering strategy rather than implementing
the analyses on the whole-genome data is a highly research question-specific choice, investigating the relationships
between IDPs and the patterns of gene expression using AHBA may benefit from the initial DS-based filtering.

Step 7. Accounting for spatial effects
The application of steps 1 to 6 results in a processed region × gene matrix of transcription level values, which can be
used for further analyses. Typically, the data are linked to IDPs at either the regional level, or at the level of pairs of
regions (i.e., patterns of correlated gene expression, or CGE, between pairs of brain regions are related to pair-wise
measures of structural or functional connectivity between those regions). In both cases, we seek to understand how
spatial variations in gene expression or CGE relate to spatial variations in the IDP. One complicating factor is that
cortical regions that are located in close proximity are more likely to share similar gene expression patterns (Richiardi
et al., 2015, Krienen et al., 2016, Vértes et al., 2016, Pantazatos and Li, 2017, Richiardi et al., 2017). A similar spatial
autocorrelation of gene expression has been reported in the mouse brain (Fulcher and Fornito, 2016) and in the head
of the nematode C. elegans (Arnatkevic̆iūtė et al., 2018). In some respects, this is an interesting and physiologically
meaningful trend that warrants further investigation. However, if an IDP varies across the brain in a manner that
reproduces a spatial gradient in gene expression, any apparent association between the IDP and gene expression
measures may be driven by low-order spatial effects. Depending on the research question, especially when a direct
relationship between an IDP and gene expression is evaluated, it is important to confirm that the identified association
is stronger than what would be expected based on the spatial autocorrelation properties of gene expression (if such an
effect is claimed).

A critical first step in understanding spatial biases in gene expression is to define distances between brain regions.
These distances can be estimated by (i) calculating the Euclidean distance between regions; (ii) estimating the shortest
distance within the grey matter volume; or (iii) estimating the shortest distance on the cortical surface (Figure 8),
see supplementary material S4 for more details. The Euclidean distance is the simplest method, but it approximates
distances as straight lines that do not respect cortical geometry. Calculating distances within the grey matter volume
or on the cortical surface present a more biologically reliable approach, as distances are quantified considering the
cortical geometry. A comparison of these methods, shown in Figure 8D, demonstrates that evaluating the Euclidean
distance results in shorter distances, on average, compared to other methods, while anatomically constrained volume
and surface-based approaches yield similar distance estimates in cortex. Note that only the Euclidean approach can be
generalized for measuring distances to subcortex.

Spatial effects are most easily examined in the context of analyses of correlated gene expression (CGE). Such
analyses focus on patterns of pair-wise or multivariate transcriptional coupling between regions, where transcriptional
coupling is estimated as a correlation between regional expression profiles. Such measures of CGE can then be related
to some inter-regional IDP, such as a measure of functional or structural connectivity (Richiardi et al., 2015, Fulcher and
Fornito, 2016, Arnatkevic̆iūtė et al., 2018). Figure 9A shows that CGE decays sharply as a function of increasing spatial
distance (on the pial surface) between regions in the cortex; relationships for other distance measures are qualitatively
similar (see Figure S5). In line with previous findings in different species (Fulcher and Fornito, 2016, Arnatkevic̆iūtė
et al., 2018), the dependence of CGE on distance can be approximated as an exponential (Figure 9A) and therefore the
residuals of the exponential fit could be further used in the analyses (Figure 9B). Extending this relationship to the
whole-brain including samples from both cortex and subcortex is complicated by a strong anti-correlation between
cortical and subcortical gene expression (Hawrylycz et al., 2015). Thus, separate normalization procedures for cortical
and subcortical regions and corrections for different types of region pairs can be applied (see supplementary material
S5 and Figure S6 for more details). Note also that the dependence of CGE on distance can vary as a function of the
gene set and parcellation (see Figure S7).

Characterizing and removing distance dependence can be relatively straightforward in analyses of CGE. Addressing
spatial relationships in analyses of regional gene expression can be more challenging since distance is defined between
pairs of regions, whereas a regional expression value is a property of a single region. Some promising strategies to deal
with this issue involve comparing observed findings relative to an appropriate null model. One class of methods uses
spatially constrained permutation of the original data. Arbitrarily-defined regions are not independent form one another,
so some spatial constraints are required to account for these dependencies during permutation. As an example, a block
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Fig 8. Distances between samples can be evaluated using different methods. Schematic representation of
different approaches to calculate the distances between samples. A) Euclidean distance, defined as the shortest distance
between two points. B) Distance within grey matter defined as the shortest distance within the grey matter volume.
This measure is implemented by representing each voxel in the cortex as a node and creating a three-dimensional
network where the shortest distances between brain regions are found using Dijkstra’s algorithm (Dijkstra, 1959). The
resulting distances will approximate the distances between regions within the cortical volume. C) Distance on a
mesh-based representation of the cortical surface, where gene expression samples are assigned to vertices in the mesh
and the shortest distance is calculated as a shortest path between them. Both Euclidean and grey matter distances can
be calculated using volumetric parcellation schemes, while estimating the distance on the cortical surface requires
generating a surface-based cortical parcellation. D) Distributions for pairwise sample distances calculated using the
three approaches. Euclidean distance estimates are lower compared to both distances estimated within grey matter
volume and on the surface.

permutation algorithm implemented by Vértes et al. (2016) accounted for spatial relationships between regions by
aggregating areas into spatially contiguous subsets (blocks) according to the Desikan-Killiany atlas, and then permuting
the resulting blocks rather than individual regions. Váša et al. (2018) introduced a spatial permutation test based on
the rotation of regional coordinates in the spherical projection such that the relative spatial relationships between
regions are preserved. Matching between original and rotated coordinates, therefore, allows the regional measure to be
permuted while controlling for spatial contiguity and hemispheric symmetry. Burt et al. (2017) used a spatial lagged
autocorrelation model to characterise the spatial dependency between observed gene expression values. While these
approaches provide some valid options, thorough evaluation of these null models is an important avenue of future work.
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Fig 9. Spatial effect in correlated gene expression. Relationship between correlated gene expression (CGE) and
separation distance for the cortical regions in the left hemisphere. A) CGE as a function of separation distance. The red
line represents an exponential fit CGE(d) = 1.498e−0.01434d − 0.3576. B) CGE residuals after removing the
exponential trend; CGE between pairs of regions are represented in grey dots and red dots represent the mean value in
25 equiprobable distance bins after the correction. CGE calculated using all 10,028 genes (after intensity-based
filtering and probe selection based on correlation to RNA-seq data).
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Conclusions
Imaging transcriptomics provides an unprecedented opportunity to uncover the molecular basis of large-scale brain
organization. Given the rapid development of this field and its heavy reliance on publicly available data, there is a
pressing need for standardized data processing pipelines that will facilitate the comparison of findings across studies.
Our analysis delineates seven core steps of a basic workflow and demonstrates how choices at each step may affect the
final expression measures. We summarize some preliminary recommendations for best practice in Table 4.

Considerable further work is required, particularly in the development of methods for addressing spatial correlations
in the data. The development of standardized workflows will be essential to ensure reproducibility, particularly as
gene expression atlases become more widely available and increase in their sophistication (Lein et al., 2007, Harris
et al., 2010, Miller et al., 2014a). We have focused here on the processing of expression measures and removal of
inherent biases in the data. Another area requiring further work is the development of appropriate statistical methods
for relating IDPs to transcriptomic measures. For example, there is considerable variability in the software packages
used for enrichment analyses, each of which makes different assumptions and uses different annotations of genes to
gene ontology and other categories (Rhee et al., 2008). It will be important to understand how the available choices for
analyzing these data affect reproducibility.

Table 4. Recommendations and practical considerations for each data processing step.
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Arnatkevic̆iūtė, A., Fulcher, B.D., Pocock, R., Fornito, A., 2018. Hub connectivity, neuronal diversity, and gene
expression in the Caenorhabditis elegans connectome. PLoS Comput. Biol. 14, e1005989. doi:10.1371/journal.
pcbi.1005989.

Arslan, A., 2015. Genes, brains, and behavior: imaging genetics for neuropsychiatric disorders. J. Neuropsychiatry
Clin. Neurosci. 27, 81–92. doi:10.1176/appi.neuropsych.13080185.

Bakken, T.E., Miller, J.A., Ding, S.L., Sunkin, S.M., Smith, K.A., et al., 2016. A comprehensive transcriptional map of
primate brain development. Nature 535, 367–375. doi:10.1038/nature18637.

Berchtold, N.C., Cribbs, D.H., Coleman, P.D., Rogers, J., Head, E., Kim, R., Beach, T., Miller, C., Troncoso, J.,
Trojanowski, J.Q., Zielke, H.R., Cotman, C.W., 2008. Gene expression changes in the course of normal brain aging
are sexually dimorphic. Proc. Natl. Acad. Sci. U. S. A. 105, 15605–10. doi:10.1073/pnas.0806883105.

Birdsill, A.C., Walker, D.G., Lue, L., Sue, L.I., Beach, T.G., 2011. Postmortem interval effect on RNA and gene
expression in human brain tissue. Cell Tissue Bank. 12, 311–318. doi:10.1007/s10561-010-9210-8.

Burt, J.B., Demirtas, M., Eckner, W.J., Navejar, N.M., Ji, J.L., Martin, W.J., Bernacchia, A., Anticevic, A., Murray,
J.D., 2017. Hierarchy of transcriptomic specialization across human cortex captured by myelin map topography.
bioRxiv , 199703 doi:10.1101/199703.

Chen, L., Chu, C., Zhang, Y.H., Zhu, C., Kong, X., Huang, T., Cai, Y.D., 2016. Analysis of gene expression profiles in
the human brain stem, cerebellum and cerebral cortex. PLoS One 11, e0159395. doi:10.1371/journal.pone.
0159395.

Choi, J.K., Kim, S.C., 2007. Environmental effects on gene expression phenotype have regional biases in the human
genome. Genetics 175, 1607–13. doi:10.1534/genetics.106.069047.

Cioli, C., Abdi, H., Beaton, D., Burnod, Y., Mesmoudi, S., 2014. Differences in human cortical gene expression
match the temporal properties of large-scale functional networks. PLoS One 9, e115913. doi:10.1371/journal.
pone.0115913.

Ciric, R., Wolf, D.H., Power, J.D., Roalf, D.R., Baum, G.L., Ruparel, K., Shinohara, R.T., Elliott, M.A., Eickhoff, S.B.,
Davatzikos, C., Gur, R.C., Gur, R.E., Bassett, D.S., Satterthwaite, T.D., 2017. Benchmarking of participant-level
confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage
154, 174–187. doi:10.1016/J.NEUROIMAGE.2017.03.020.

Colantuoni, C., Lipska, B.K., Ye, T., Hyde, T.M., Tao, R., Leek, J.T., Colantuoni, E.A., Elkahloun, A.G., Herman,
M.M., Weinberger, D.R., Kleinman, J.E., 2011. Temporal dynamics and genetic control of transcription in the human
prefrontal cortex. Nature 478, 519–23. doi:10.1038/nature10524.

Cole, S.W., 2009. Social regulation of human gene expression. Curr. Dir. Psychol. Sci. 18, 132–137. doi:10.1111/
j.1467-8721.2009.01623.x.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/380089doi: bioRxiv preprint 

http://dx.doi.org/10.1155/2017/7138926
http://help.brain-map.org/display/humanbrain/Documentation
http://help.brain-map.org/display/humanbrain/Documentation
http://dx.doi.org/10.1038/s41467-018-03811-x
http://dx.doi.org/10.1371/journal.pone.0139516
http://dx.doi.org/10.1371/journal.pcbi.1005989
http://dx.doi.org/10.1371/journal.pcbi.1005989
http://dx.doi.org/10.1176/appi.neuropsych.13080185
http://dx.doi.org/10.1038/nature18637
http://dx.doi.org/10.1073/pnas.0806883105
http://dx.doi.org/10.1007/s10561-010-9210-8
http://dx.doi.org/10.1101/199703
http://dx.doi.org/10.1371/journal.pone.0159395
http://dx.doi.org/10.1371/journal.pone.0159395
http://dx.doi.org/10.1534/genetics.106.069047
http://dx.doi.org/10.1371/journal.pone.0115913
http://dx.doi.org/10.1371/journal.pone.0115913
http://dx.doi.org/10.1016/J.NEUROIMAGE.2017.03.020
http://dx.doi.org/10.1038/nature10524
http://dx.doi.org/10.1111/j.1467-8721.2009.01623.x
http://dx.doi.org/10.1111/j.1467-8721.2009.01623.x
https://doi.org/10.1101/380089
http://creativecommons.org/licenses/by-nc/4.0/


Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire,
R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980. doi:10.1016/j.
neuroimage.2006.01.021.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271. doi:10.1007/
BF01386390.

Eising, E., Huisman, S.M., Mahfouz, A., Vijfhuizen, L.S., Anttila, V., et al., 2016. Gene co-expression analysis
identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen
Human Brain Atlas. Hum. Genet. 135, 425–439. doi:10.1007/s00439-016-1638-x.

Fare, T.L., Coffey, E.M., Dai, H., He, Y.D., Kessler, D.A., Kilian, K.A., Koch, J.E., LeProust, E., Marton, M.J., Meyer,
M.R., Stoughton, R.B., Tokiwa, G.Y., Wang, Y., 2003. Effects of atmospheric ozone on microarray data quality.
Anal. Chem. 75, 4672–5. URL: http://www.ncbi.nlm.nih.gov/pubmed/14632079.

Ferrari, R., Hernandez, D.G., Nalls, M.A., Rohrer, J.D., Ramasamy, A., et al., 2014. Frontotemporal dementia and
its subtypes: a genome-wide association study. Lancet Neurol. 13, 686–699. doi:10.1016/S1474-4422(14)
70065-1.

Fertuzinhos, S., Li, M., Kawasawa, Y., Ivic, V., Franjic, D., Singh, D., Crair, M., Šestan, N., 2014. Laminar and
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Supporting Information
supplementary material S1

Details on AHBA
The AHBA microarray gene expression data consists of 3702 samples from six neurotypical adult brains. Several
hundred samples (mean ± standard deviation: 617 ± 241) were collected from cortical, subcortical, brainstem and
cerebellar regions in each brain and profiled for genome-wide gene expression using custom Agilent 8× 60K cDNA
chip which consists of a standard Whole Human Genome Microarray Kit, 4× 44K (Design ID: 014850) and more than
18,000 custom-generated probes created specifically for AHBA in order to increase the genetic coverage. Originally,
48,171 of all 58,692 probes were annotated to a gene, resulting in a set of 20,787 unique genes with expression
measures. In addition to gene expression data, the AHBA provides a binary indicator when the level of a given
transcript exceeds background. This assignment is done on the basis of two criteria: 1) a two-sided t-statistic comparing
the mean signal of a probe to the background (p < 0.01); and 2) retaining only background-subtracted signals that are
2.6 × above the standard deviation of the background.

Each probe in the AHBA is associated with a numerical ID and a platform-specific label or name. If a probe is
assigned to represent a unique gene it is also characterized with a range of gene-specific labels such as gene symbol
and an entrez gene ID – a stable identifier for a gene generated by the Entrez Gene database at the National Center
for Biotechnology Information (NCBI). If required, probe sequences can be accessed using the Allen Institute’s
website application programming interface (see supplementary material S6) while Agilent probe sequences can also be
downloaded through the manufacturer’s website (https://earray.chem.agilent.com/earray/). Probe
sequences can also be found in the figshare repository https://figshare.com/s/441295fe494375aa0c13.
Note that the expression levels of a single gene can be measured using multiple probes that correspond to a different
part of the gene sequence. In the AHBA, 93% of all genes are annotated to more than one probe.

Probe-level data are available for each of 3702 tissue samples taken throughout the brain. Different brain regions
were sampled across each of the six AHBA donors to maximize spatial coverage. Each tissue sample is associated
with a numeric structure ID, name and structure label (’cortex’, ’cerebellum’, or ’brainstem’) in addition to the MRI
voxel coordinates in native image space and MNI coordinates in standard space that can be used for matching samples
to the stereotaxic space. The AHBA also provides RNA-seq data for a subset of tissue samples in two donor brains
(n = 120 each). It consists of expression values for more than 22,000 genes presented in fragment count (number of
reads matching a given gene) and TMP (Transcripts Per Kilobase Million - normalized read count with regards to read
and transcript length) formats. RNA-seq method quantifies the transcription by directly sequencing each molecule in
high-throughput manner, therefore providing a more precise measurement of levels of transcripts without the prior
knowledge of the DNA sequence of interest (Wang et al., 2009).

Magnetic resonance images—T1-weighted, T2-weighted, T2-weighted gradient echo and FLAIR—were collected
prior to dissection of each brain for anatomic visualization. Diffusion tensor images were collected for two brains
(H0351 2001 and H0351 2002). Detailed information about image acquisition sequences is presented in the technical
white paper (Allen Human Brain Atlas, 2013).

supplementary material S2

Enrichment analysis
Software: version 3.1.2 version of ErmineJ software (Gillis et al., 2010);
Biological process GO annotations: obtained from GEMMA (Zoubarev et al., 2012) as
Generic human ncbiIds noParents.an.txt downloaded on May 16, 2018.
Gene Ontology terms and definitions: obtained from archive.geneontology.org/latest-termdb/go_
daily-termdb.rdf-xml.gz on May 16 2018.
The analyses were performed only on the biological process annotations.

Intensity-based filtering
To test if intensity-based filtering (where probes are filtered based on the binary indication of expression levels exceeding
the background) targets any specific functional gene groups, we performed the gene score resampling (GSR) analysis.
Avoiding the potential bias of overestimating the influence of genes that are represented with multiple probes scores for
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the GRS analysis were determined at gene (rather than probe) level by: (i) calculating the proportion of samples with
expression values exceeding the background using binary indicator provided by AHBA for each probe; (ii) if more
than one probe was available for a gene, a probe with the highest proportion of samples exceeding the background was
selected to represent that gene. As a result, each of the 20,232 genes was assigned a score indicating the proportion of
samples with expression levels exceeding the background. The analysis was performed focusing on genes with low
scores in order to determine what functional gene groups are affected by the intensity-based filtering. The mean score
in a GO group was selected to summarize it, using full resampling with 106 iterations. FDR-corrected p-values (across
around 7000 GO categories) were used to summarize the effect. The significant GO categories (at p < 0.05) include
non brain-specific processes such as sensory perception, chemotaxis, cell killing, and immune response among others
(a list of TOP 100 GO categories is presented in supplementary file enrichmentExpression.csv).

RNA-seq – microarray non-overlap
The usage of RNA-seq expression measures for probe selection in microarray data is limited to genes that are present
in both datasets. Given that out of 20,232 genes in the microarray data ∼ 13% (n =2623) genes are not present in
the RNA-seq dataset, we aimed to test if any brain-specific functional groups of genes are over-represented in this
set as these genes would be excluded from the further analysis. If this is the case, then probe selection based on the
correlation to RNA-seq data would not be an optimal solution due to the loss of relevant information. On the other
hand, if the excluded set of genes does not correspond to brain-specific genes, then the exclusion of those genes may
not be a critical issue. Overrepresentation analysis (ORA) was performed for each biological process GO category with
5 to 100 genes available taking the mean score in a GO group to summarize it. FDR-corrected p-values (across around
7000 GO categories) were used to summarize the effect. The significant GO categories (at p < 0.05) include general
processes such as septin assembly and organization as well as the negative regulation of RNA splicing among oth-
ers (presented in supplementary file enrichmentExpression.csv) and are not related to brain-specific biological processes.

Microarray and RNA-seq correlation
In order for RNA-seq gene expression measures to provide a valid reference when selecting a probe, microarray and
RNA-seq measures should be at least weakly correlated. Given that for a number of genes the maximum correlation
between microarray and RNA-seq expression measures is very low, the probe selection based on such low correlations
will be invalid. Therefore, we first exclude probes exhibiting a low correlation (ρ < 0.2) to RNA-seq data resulting
in the exclusion of 6725 genes. To evaluate the functional groups of genes that were removed, we performed an
overrepresentation analysis (ORA). Avoiding the potential bias of overestimating the influence of genes that are
represented with multiple probes, scores for the ORA analysis were determined at gene (rather than probe) level by: (i)
calculating correlation between microarray and RNA-seq expression for each probe in two subjects; (ii) estimating the
mean correlation for each probe across two subjects; (iii) if the maximum correlation value was lower than 0.2, a gene
was excluded and assigned an arbitrary value of 0 to serve as a binary indicator of exclusion; otherwise a value of 1
was assigned to represent a gene. As a result, each of 17,609 genes were assigned a score indicating whether it was
excluded due to low correlation to RNA-seq data. ORA was performed for each biological process GO category with 5
to 100 genes available taking the mean score in a GO group to summarize it. FDR-corrected p-values (across around
7000 GO categories) were used to summarize the effect. The significant (at p < 0.05) GO categories include general
processes such as immune response, DNA modification and regulation of transposition among others (in Supplementary
File enrichmentExpression.csv).

To further verify that genes with higher correlations between microarray and RNA-seq were related to neuronal
connectivity and communication related processes we performed gene score resampling analysis (GSR). Avoiding
the potential bias of overestimating the influence of genes that are represented with multiple probes scores for the
GSR analysis were determined at gene (rather than probe) level by: (i) calculating correlation between microarray
and RNA-seq expression for each probe in two subjects; (ii) estimating the mean correlation for each probe across
two subjects; (iii) if more than one probe was available for a gene, the maximum correlation value was selected to
represent that gene. As a result, each of the 17,609 genes that are present in both microarray and RNA-seq datasets
was assigned a score indicating the maximum correlation between microarray and RNA-seq expression values across
matching structures.

Focusing on genes with high scores in order to determine which functional gene groups are more likely to be
correlated with RNA-seq expression values, we treated larger scores as indicative of the signal. Gene score resampling
was performed for each biological process GO category with 5 to 100 genes available taking the mean score in a GO
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group to summarize it, using full resampling with 106 iterations. FDR-corrected p-values (across around 7000 GO
categories) were used to summarize the effect. The significant (at p < 0.05) GO categories include brain-specific
processed such as ensheathment of neurons, oligodendrocyte development, transmission of nerve impulse, glial cell
development, central nervous system myelination, synaptic vesicle transport and action potential among others. Of the
TOP 100 significant GO categories, around 50% are related to brain-specific processes (presented in Supplementary
File enrichmentExpression.csv; brain-related processes are colored in green).

supplementary material S3

Comments on differences between probe selection methods
Two of the variance-based methods—those based on choosing probes with high coefficient of variation or maximum
variance—aim to select probes that vary most across the brain. This approach is based on the logic that investigators are
often interested in genes that show variation in expression across brain regions. However, probes with higher variance
tend to have lower mean intensity because a lower hybridization leads higher signal variability (Quackenbush, 2002).
Indeed, we find a negative relationship between expression variance and mean intensity across probes with expression
values exceeding the background (average probe intensity > 3; ρ = −0.44, p < 0.001, Spearman’s rank correlation,
see Figure S1).

Choosing a probe based on the highest loading on the first PC aims to select the probe with the most repre-
sentative expression pattern based on the probe-to-probe variance-covariance matrix. If the probes are not cor-
related, the first PC will not be representative. Correlations between probes selected using variance-based and
consistency/intensity-based approaches are lower than those obtained through random selection. This suggests that
variance and intensity/consistency-based approaches favour probes with more different expression measures, meaning
that probes with the highest variance would tend on average to be less consistent than randomly selected probes and
vice versa (Figure 4A, for the comparison between probe selection methods after QC filtering is applied see Figure S2).

The most popular approach is to summarize gene expression as a mean of all available probes (see Table 2). This
method shows high similarity to all other methods. Given that probes can measure different parts of the same gene
with different sensitivity, expression measures quantified using different probes are likely not to be equivalent. In
this case summarising expression of the gene by calculating the mean of all available probes is likely to reduce this
variability. Consistency-based probe selection selects probes with the most consistent regional expression patterns
across the six brains in the AHBA, using a measure called differential stability (DS), first introduced in Hawrylycz et al.
(2015). The first analysis of the AHBA data indicated that regional variation in expression levels across anatomical
structures was strongly correlated between different brains, thus between-region variation in expression should dominate
between-subject variance. Choosing a probe with consistent regional variation assumes that this variation is real, and
that any between-subject variance is noise. Such an approach is justifiable in analyses where investigation of regional
variations in gene expression are the goal.

supplementary material S4

Evaluating distances between samples
All distances between samples were calculated on a set of samples that were mapped onto individual parcellations
applying a 2 mm distance threshold as described in Step 4. Voxel coordinates provided by the AHBA that were used to
map samples to subject-specific parcellations are derived from images in subject space and could not be combined to
estimate distances between samples from different subjects. Therefore, for both Euclidean distances and distances
within cortical surfaces we used MNI coordinates provided by the AHBA for each sample to estimate the pairwise
distances between them given that MNI coordinates are derived in the same space for all subjects.

Euclidean distances were calculated using the function pdist2 in MATLAB 2016b1. Distances between pairs
of regions were estimated as an average of distances between samples within them.

Distances within cortical volume were calculated using an HCPMMP1 (Glasser et al., 2016) parcellation in the
MNI space (downloaded from https://neurovault.org/collections/1549/, file MMP in MNI corr.nii)
by: i) changing the strides of the image from [−13−2] to [−123] in order to change the image orientation; ii) rendering
the brain parcellation in MNI space as a 3D matrix; ii) converting the original MNI sample coordinates to voxel-based
coordinates that correspond to the parcellation loaded in a 3D matrix format; iv) finding the closest coordinate in the

1MATLAB is a product of Mathworks
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parcellation for each sample and mapping a sample to that location; v) rendering the parcellation as a graph with each
voxel representing a node; vi) implementing Dijkstra’s algorithm (Dijkstra, 1959) to calculate the closest distances
between samples within the GM volume using shortestpath function in MATLAB. Distances between pairs of
regions were calculated as an average of distances between samples within them.

Distance on the cortical surface were calculated by: i) making a separate file for samples of each subject in
volumetric space using their MRI voxel coordinates; ii) transforming volumetric files to surface files; iii) creating
a separate file for each sample in surface space; iv) mapping samples from the native subject-specific space to
fsaverage space; v) choosing a single vertex for each sample by selecting a vertex with maximum value when multiple
were available; vi) calculating the distances between samples (mapped to vertices) on the cortical surface using the
toolbox fast marching toolbox in MATLAB. Distances between pairs of regions were calculated as an average
of distances between samples within them.

supplementary material S5

Spatial relationship between CGE and distance
Figure S6B shows the relationship between CGE and separation distance for three different types of regional pairs:
(i) intra-cortical region pairs, which show relatively high CGE at all distances (blue); (ii) intra-subcortical region
pairs, which show a linearly decreasing relationship at short distances (red); and (iii) cortical-subcortical region pairs,
which demonstrate mostly negative CGE at all distances (yellow). This variability precludes simple removal of a
global trend as in (Fulcher and Fornito, 2016) and suggests a separate correction should be applied for each class of
connection. Figure S6C shows the result of removing the mean CGE at each equiprobable distance bin separately
for each connection class. Even after this correction, intracortical CGE values appear to be underestimated while
cortico-subcortical are overestimated. Another method for addressing the inherent differences between cortical and
subcortical gene expression profiles is to normalize the expression data separately for these two anatomical divisions
[e.g., Anderson et al. (2018)]. With this approach, expression values are scaled relative to other values within just the
cortex, or within just the subcortex. Division-specific normalization allows a gene to score highly if its expression
in the subcortex is high relative to other subcortical regions, even if its expression relative to the cortex may be low
(and vice-versa), at the expense of distorting the magnitude relationships between cortical and subcortical values. With
this approach, the negative correlation between cortical and subcortical regions is reduced with some region pairs
demonstrating relatively similar gene expression profiles (Figure S6D). As presented in Figure S6E, the relationship
between CGE and separation distance is now more qualitatively similar for all three groups and can be corrected using
simple mean subtraction across distance bins (Figure S6F).

supplementary material S6

API: probe sequences for the first 10,000 rows.
http://api.brain-map.org/api/v2/data/query.xml?criteria=model::Probe,rma::criteria,
products[id$eq2],rma::include,gene,predicted_sequence,rma::options[only$eq%27probes.
name,probes.type,probes.ncbi_accession_number,probes.gi,genes.entrez_id,genes.acronym,
sequences.sequence_length,sequences.sequence_data%27],[num_rows$eq10000][start_
row$eq0]
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Fig S1. The relationship between average probe intensity, variance and coefficient of variation. The
relationship between average probe intensity and A) variance, and B) coefficient of variation in 500 and 250
equiprobable intensity bins respectively, shown as a circle (bin centers) and a horizontal line (bin extent). The
relationship between probe intensity and variance is positive for low intensity probes (intensity< 3); for higher
intensity probes increasing intensity results in decreasing variance. The same trend is evident for the relationship
between coefficient of variation and intensity.

Fig S2. Average correlation between summary expression scores for genes annotated to multiple probes,
where a single representative probe is chosen based on different criteria after intensity-based filtering. A)
Average correlation between summary expression scores for genes annotated to multiple probes, where a single
representative probe is chosen based on different criteria: CV, variance, PC, signal proportion, DS, correlation variance,
correlation intensity, mean (see Table 2) or selecting a representative probe at random (correlation values averaged over
100 runs). The average correlation is computed over 11,190 genes with multiple probe annotations after
intensity-based filtering. B) Average correlation between probes selected using RNA-seq expression (by selecting the
probe that is correlated to the RNA-seq data the most) and other methods (ordered by decreasing values, based on 7950
genes that (i) were present in both microarray and RNA-seq datasets; (ii) were correlated to RNA-seq (ρ > 0.2,
Spearman rank correlation) to ensure that RNA-seq based probe selection provides a meaningful estimate; (iii) had
more than one probe available after intensity-based filtering).
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Fig S3. Inter-individual differences in gene expression and the effect of normalization in the whole brain. A)
Original gene expression data for cortical and subcortical samples in principal component space. Data from different
donors are represented in different colours. Samples from different subjects occupy different parts of the
low-dimensional gene expression space. Cortical samples (right in A) are slightly separated from subcortical samples
(left in A). Panel B represent gene expression data in principal component space normalized using scaled robust
sigmoid (SRS) demonstrating much more clear separation between cortical and subcortical samples. After
normalization samples no longer segregate by donor.
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Fig S4. Gene expression normalization. The schematic representation of cross-gene and cross-sample normalization.
Within-sample cross-gene normalization estimates the relative expression level of all available genes within a given
sample (grey row). Within-gene cross sample normalization estimates the relative expression of a particular gene
across all available samples (red column).
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Fig S5. The relationship between CGE and inter-regional distance estimated within grey matter volume and
as Euclidean distance. Top: the relationship between CGE and distance when the distance between regions calculated
within grey matter volume. Bottom: the relationship between CGE and distance when the distance between regions
calculated as Euclidean distance. A,C) CGE as a function of separation distance where CGE between pairs of regions
are represented in grey dots and red dots represent the mean value in 25 equiprobable distance bins; The red line
represents an exponential fit. A) CGE(d) = 1.455e−0.01278d − 0.4526; C) CGE(d) = 1.75e−0.01739d − 0.5397.
B,D) Residuals after removing the exponential trend in each case; CGE calculated using all 10,028 genes (after
intensity-based filtering and probe selection based on correlation to RNA-seq data).
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Fig S6. The relationship between CGE and inter-regional distance for cortical and subcortical regions. Top
row: A) Matrix of CGE values for the left hemisphere, including both cortical and subcortical regions, in which
expression values have been normalized for both cortical and subcortical regions together; B) CGE as a function of
separation distance where CGE between different subsets of regions are represented in different colours: within cortex
— light blue, within subcortex — red, between cortex and subcortex — yellow; C) CGE residuals after removing the
spatial effect for each subset of regions separately by subtracting the average of each bin, where different colours
represent subsets of connections as above. D) Matrix of CGE values for the left hemisphere, including both cortical
and subcortical regions, in which expression values have been normalized separately for cortical and subcortical
regions; E) CGE as a function of separation distance, where normalization has been performed on cortical and
subcortical regions separately. Different colours represent subsets of connections as above; F) CGE residuals after
removing the spatial effect for each subset of regions separately (when normalization performed on cortical and
subcortical regions separately) by subtracting the average of each bin where different colours represent subsets of
connections as above. Distances between cortical regions were evaluated on the cortical surface while distances
between subcortical regions as well as between cortical and subcortical regions estimated as Euclidean.
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Fig S7. The relationship between CGE and inter-regional distance for high and low resolution parcellations
using a full set of genes and a set of only highest DS genes. The relationship between CGE and inter-regional
distance for different resolution cortical parcellations and different sets of genes. Top row: low resolution
Desikan-Killany parcellation (Desikan et al., 2006) (34 regions). Bottom row: high resolution HCPMMP1 (Glasser
et al., 2016) parcellation (180 regions). First column: CGE calculated using only 10% of highest DS genes that are
most consistently expressed across subjects and regions. Second column: CGE calculated using all 10,028 genes. The
relationship between CGE and inter-regional distance also depends on the subset of genes chosen for the calculation,
such that high DS genes show a stronger association with inter-regional distance. This effect is more pronounced in the
higher resolution parcellation.
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