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Abstract 

The efficacy of prospective cancer treatments is routinely estimated by in vitro cell-line 

proliferation screens. However, it is unclear whether tumor aggressiveness and patient survival are 

influenced more by the proliferative or the migratory properties of cancer cells. To address this 

question, we experimentally measured proliferation and migration phenotypes across more than 

40 breast cancer cell-lines.  Based on the latter, we built and validated individual predictors of 

breast cancer proliferation and migration levels from the cells’ transcriptomics. We then apply 

these predictors to estimate the proliferation and migration levels of more than 1000 TCGA breast 
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cancer tumors. Reassuringly, both estimates increase with tumor’s aggressiveness, as qualified by 

its stage, grade, and subtype. However, predicted tumor migration levels are significantly more 

strongly associated with patient survival than the proliferation levels. We confirm these finding by 

conducting siRNA knock-down experiments on the highly migratory MDA-MB-231 cell lines and 

deriving gene knock-down based proliferation and migration signatures. We show that cytoskeletal 

drugs might be more beneficial in patients with high predicted migration levels. Taken together, 

these results testify to the importance of migration levels in determining patient survival.  

 

Introduction 

Drug development risk is a major contributing factor for spiraling drug prices1. Only 1 out of 5000 

drugs from pre-clinical studies enter the market after successful clinical testing2. Cancer drugs 

show the highest proportion of failures on the road to clinics3. Currently, the prevailing 

experimental method to initially estimate the pre-clinical efficacy of cancer drug candidates is by 

measuring their effects on in vitro proliferation rates3–10. However, even after filtering these 

findings in animal models, only a fraction of emerging candidates has successfully translated into 

human trails11–13. Many factors contribute to the failure of drugs that are effective in pre-clinical 

systems. For starters, in vitro and in vivo systems are obviously only approximate models of 

patients that do not capture many aspects of human biology. However, another naturally arising 

possibility is that other cellular phenotypes, such as migration or invasion, may be better indices 

of tumor response in patients than cellular proliferation.  Addressing this question, we aimed here 

to quantify the relative weight of proliferation verses migration in determining cancer 

aggressiveness and patient survival.  

 

Ideally, one would have liked to directly measure proliferation and migration levels directly in 

tumors in vivo to study their association with patient survival and treatment response. However, 

regrettably, such measurements are yet infeasible. We therefore set out to build and validate 

predictors of proliferation and migration levels in breast cancer cell-lines based on gene expression 

information. Having such predictors in hand, we then apply them to TCGA breast cancer tumors 

to predict the levels of these phenotypes in these tumors from their gene expression. We tested and 

verified that the predicted levels of these phenotypes in the tumors are indeed strongly associated 

with patient survival in the direction expected, and that they are associated with cancer 
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aggressiveness as expected. We find that migration is more strongly associated with breast cancer 

aggressiveness and more importantly, patient survival, than proliferation.  

 

Results 

Overview 

We built predictors of cell proliferation and migration as follows: First, we experimentally 

measured migration and proliferation values in 43 and 46 breast cancer cell lines respectively 

(Table S1a, Methods). Second, we constructed gene-expression based predictors of migration and 

proliferation, termed CellToPhenotype predictors, using least absolute shrinkage and selection 

operator (LASSO) based regression14. The predictors were tested on the cell-line data using a 

standard cross-validation procedure (Methods, Table S1b). Third, we used the predictors built to 

estimate the migration and proliferation levels of 1043 breast cancer patients in TCGA data (Table 

S1c). Finally, we explored their importance in predicting tumor stage, grade, subtypes, and 

patients’ survival (see Figure 1 for an overview).   
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Figure 1: Overview of the method. (a) CellToPhenotype predictors of migration and proliferation 

from gene expression are constructed from experimentally determined migration and proliferation 

measurements across 43 and 46 breast cancer cell lines respectively. The predictors are built using 

cross-validation, and the correlations obtained between predicted levels and actual experimentally 

measured values are depicted as scatter plots. (b) The CellToPhenotype predictors are used to 

analyze the gene expression values of breast cancer patients to predict migration and proliferation 

levels of 1043 TCGA breast cancer tumors. Subsequently, the association of tumors predicted 

migration and proliferation levels with different tumor phenotypes and patients’ survival is 

examined.  

 

Experimental measurements of migration and proliferation 

Doubling times for 46 breast cancer cell lines were estimated by plating a known number of cells 

and measuring the total number of cells once the culture reached an estimated 80% confluency. 

Proliferation rates were then calculated using the doubling time measurements (Methods). Cell 
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line migration was estimated in 43 breast cancer cell lines using a live cell migration assay. The 

mean speed of cell migration was then quantified as the final migration estimate (Methods).  

 

CellToPhenotype predictor construction and validation 

We measured migration and proliferation values in a collection of breast cancer cell lines available 

to us, for which we also had the transcriptomics data of each cell-line (Table S1a, Methods). Based 

on this data, we constructed predictors of migration and proliferation, termed CellToPhenotype 

predictors, which given the expression of a given cell-line, predict its migration and proliferation 

levels. These predictors were constucted using least absolute shrinkage and selection operator 

(LASSO) based regression14, considering as features the genes whose expression is significantly 

associated with survival in the METABRIC breast cancer collection (Methods). The 

CellToPhenotype predictors accurately estimate cell-line migration (Spearman ρ=0.59, P<4.39e-

5) and proliferation values (Spearman ρ=0.59, P<1.79e-5) using a standard cross validation 

procedure (Figure 1a). The genes selected as the features used by the CellToPhenotype 

proliferation and migration predictors are shown in Table S3(a-d). These features sets are enriched 

for RAC1 signaling pathway (RAC1 is associated with cell motility15), immune response and cell 

apoptosis (Table S3(e,f)) in the migration predictor. The gene features of the proliferation predictor 

are enriched in cell differentiation, promoter transcriptional regulation and tissue development 

(Table S3(g,h)). A KEGG pathway analysis of these genes shows an enrichment in cancer related 

pathways known to be involved in migration and proliferation. These include HIF-1 signaling and 

ECM receptor interaction for migration and ErbB signaling and transcriptional misregulation for 

proliferation (Table S3i, Methods). 

 

Next, we compared CellToPhenotype predictions with expression of three reported gene markers 

of migration and proliferation. First, the expression of Ki-67, a known marker of cell proliferation 

and patient survival16–18. Its expression is correlated with the experimental cell line proliferation 

measurements is significant but weaker (Spearman ρ = 0.32, P<0.03) than that obtained by the 

CellToPhenotype predictor.  Second, as a control, MIB-1 expression, a marker of tumor cell 

proliferation and determinant of patient survival in prostate cancer19, shows no correlation with 

experimental measured proliferation in breast cancer cell lines (Spearman ρ = 0.05, P<0.76). 

Finally, TPX2 expression, a known correlate of migration in breast cancer20, is significantly 
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correlated (Spearman ρ = 0.4, P< 0.008) with the experimental measurements of migration in 

breast cancer cell lines. Again, this correlation is smaller compared to correlation via the 

CellToPhenotype migration predictor.  Overall, these results show that the latter provide a better 

estimate of in vitro proliferation and migration than known marker genes.  

 

Predicted migration and proliferation levels are significantly higher in tumor samples than 

in normal samples 

We then applied the CellToPhenotype proliferation and migration predictors to analyze breast 

cancer TCGA tumor data. Given an input tumor sample, each predictor (migration or proliferation) 

receives as input the levels of expression of its feature genes in that sample, and outputs the 

predicted migration or proliferation levels.  We first tested if the CellToPhenotype predicted 

proliferation and migration levels are higher in the TCGA breast tumors than matched adjacent 

tissues (analyzing 110 TCGA breast cancer patients for which such matched data exists). 

Reassuringly, the predicted migration and proliferation levels are significantly higher in the tumors 

than in the matched noncancerous tissues (paired Wilcoxon rank-sum test21, P<5.5e-20 and 

P<4.4e-20 respectively, Figure 2a). Random linear combinations of survival-significant genes 

used as control predictors do not show any such differences either for migration or proliferation 

(paired Wilcoxon rank-sum test, P<0.6 and P<0.47 respectively, Supplementary note).  

 

Advanced stages of breast cancer have higher predicted migration and proliferation levels 

than early stages 

We next tested if CellToPhenotype predicted migration and proliferation levels would be higher 

in advanced stage patients, as expected. 937 breast cancer patients have cancer stage information 

available in TCGA (Table S2a). Indeed, the predicted migration levels increased significantly from 

stage I to stage II (Wilcoxon rank sum test, P<9.3e-4); and from stage II to stage III-IV (P<8.7e-

3). Predicted proliferation levels also increase from stage I to stage II (P<8.3e-4) and from stage I 

to stage III-IV (P<5.8e-4) (Figure 2b, Methods). As a control, random linear combinations of 

survival-significant genes do not exhibit any significant increase in their levels with higher tumor 

stages (Supplementary note).  
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Predicted migration and proliferation levels increase with cancer grade  

We next tested if the predicted migration and proliferation increase with cancer grade. Tumor 

grade information was available for 1706 breast cancer patients in METABRIC (Grade 

information is absent in TCGA breast cancer patients; Methods, Table S2a). Predicted migration 

levels were indeed significantly higher in grade 3 patients when compared to grade 2 (Wilcoxon 

rank-sum P<1.8e-13) and grade 1 patients (P<8.7e-06). Similarly, the predicted proliferation levels 

increase significantly from grade 1 to grade 2 (P<1.7e-4), and from grade 2 to grade 3 patients 

(P<9.9e-48) (Figure 2c). Random linear combinations of survival-significant genes do not exhibit 

any such association with tumor grade (Supplementary note).  

 

 

 

Figure 2: (a) Predicted migration (M) and proliferation (P) levels of breast cancer tumors and their 

association with various clinical phenotypes. (a) M, P levels of 110 breast cancer patients for their 

tumor (cancer) and matched non-cancerous breast samples (normal). (b) Predicted M, P levels for 

937 breast cancer TCGA tumors for which cancer stage information is available. (c) Predicted M, 

P levels for 1706 METABRIC breast cancer patients for which cancer grade information is 

available. (d) Predicted M, P levels for 497 breast TCGA tumors dataset having subtype 
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information: Basal or Triple-Negative (91 patients), Her2 (55 patients), Luminal A (LumA, 224 

patients), Luminal B (LumB, 127 patients), and noncancerous samples (110 patients). The 

properties of these subtypes are shown in a table. Significant differences (when comparing tumors 

to non-cancerous samples) are marked via ‘*’. (e) Predicted M, P levels of 5 samples of circulating 

tumor cells (CTC) from GSE45965 data, compared with the 110 noncancerous samples and 1043 

breast cancer TCGA samples.   

 

Predicted migration and proliferation levels match known attributes of breast cancer 

subtypes.  

Different breast cancer subtypes have been associated with different migration and proliferation 

phenotypes. We therefore asked whether the predicted levels using CellToPhenotype predictors 

recapitulate these attributes. We find that all four subtypes of breast cancer (Table S2a; basal or 

triple negative breast cancer (TNBC), Her2, Luminal A and B) have significantly higher migration 

and proliferation levels than that of non-cancerous samples (n=110) (Figure 2d, Methods). 

Consistent with the observation that TNBC tumors are highly metastatic22, we find that TNBC 

patients (n=91) exhibit the highest predicted migration and proliferation levels amongst subtypes. 

Luminal A patients (n=224) exhibit the lowest predicted proliferation and migration levels 

amongst subtypes, consistent with the observation that they have low metastasis levels and respond 

relatively well to treatment. Luminal B (n=127) patients have higher predicted proliferation levels 

than Luminal A patients, consistent with the observation that Luminal B has larger tumor size and 

higher cellular proliferation index22, and higher rates of lymph node involvement than Luminal 

A23 (Figure 2d).   

 

Circulating tumor cells have high migration levels 

We applied the CellToPhenotype predictors to predict the migration and proliferation levels in 5 

samples of circulating breast tumor cells (CTCs) in GSE45965 data24. We find that CTC samples 

have significantly higher migration levels than both the TCGA cancer samples (P<3.81e-4) and 

the healthy adjacent samples (Wilcoxon rank sum, P<8.34e-5). The CTC samples have 

significantly higher proliferation levels than the non-cancerous samples (P<9.47e-4), but not 

significantly higher than the cancer samples (P<0.71, Figure 2e).  
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Predicted migration levels are more strongly associated with patient survival than predicted 

proliferation levels 

We studied the association of predicted migration and proliferation levels with patients’ survival 

in the TCGA breast cancer dataset (1043 patients). For this analysis, we first built new predictors 

of migration and proliferation by analyzing the 40 breast cancer cell lines for which we have both 

migration and proliferation measurements to enable a head-to-head comparison of the effects of 

migration and proliferation on survival, when built from exactly the same cell-lines (the 

construction itself followed the same predictor generation procedure described above). Given these 

CellToPhenotype predictors we estimated the migration and proliferation levels of the 1043 TCGA 

breast tumors from their expression data, as before. We then employed a Cox regression to 

examine the association between these predicted values and the patients’ survival, controlling for 

various confounders including age, race, and genomic instability (Methods). We find a stronger 

association of predicted migration levels with patient survival (risk factor = 0.45, P<2.06e-5) than 

the association between proliferation and survival (risk factor = 0.36, P<8.25e-4) (Figure 3a, 

Methods). In both cases, the higher the predicted migration/proliferation levels are, the lower is 

patients’ survival. A similar trend is revealed using a Kaplan Meier (KM) analysis (Kaplan and 

Meier, 1958) comparing tumors with high vs low predicted migration and proliferation levels 

(Figure 3b). A multivariate Cox-regression (Methods, Figure 3c) again shows that migration is 

more strongly associated with patient survival (relative risk factor = 0.35, P<2.82e-3) than 

proliferation (relative risk factor = 0.20, P<0.102). Random linear combinations of survival-

significant genes do not exhibit any significant associations with patient survival (risk factor = 

0.067, P<0.24 for migration; risk factor = -0.0021, P<0.24, for proliferation; Supplementary note). 

 

To estimate significance of difference of predictability, we additionally performed a likelihood 

ratio test comparing the survival predictive power of combined migration and proliferation 

compared to only proliferation or only migration. We see that the migration + proliferation model 

is significantly better than a proliferation only model (Chi-square statistic=9.24, P<2.37e-3) but 

not significantly better from a migration only model (Chi-square statistic=2.72, P<0.099). Thus, 

adding migration to a proliferation-only model improve the survival prediction, however adding 

proliferation does not add significant predictive power to a migration-only model., A migration 

only model is significantly better than a proliferation only model (Chi-square statistic=6.40, 
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P<2.2e-16) in predicting patient survival (Methods, Figure 3d). Finally, we observed that survival 

prediction accuracy was considerably reduced if we use a smaller number of cell lines for building 

the CellToPhenotype predictors (Supplementary note), thus showing the importance of studying a 

large number of cell lines.  

 

 

 

Figure 3: Survival analysis for 1043 breast cancer patients in TCGA data using predicted 

migration (M) and proliferation (P). Box plots of 10 iterations are shown and median p-value of 

each coefficient is given above the box plots. A positive coefficient (risk factor) for M (or P) 

indicates that the higher value of M (or P), the lower the patient survival. (a) Coefficients of M, P 

when used to predict survival individually using Cox regression after controlling for age, race, and 

genomic instability. (b) A Kaplan Meyer (KM) survival analysis of tumors’ predicted migration 

and proliferation levels. (c) Relative coefficients of M, P when used to predict survival when they 

are controlled by each other (multivariate Cox-regression). (d) Likelihood ratio test comparing 

how significantly different are two Cox regression models with each other (Chi-square test 

statistics with p-values are provided): (i) Migration and Proliferation vs Proliferation only 

(M+P/P); (ii) Migration and Proliferation vs Migration only (M+P/M); (iii) Migration only vs 

Proliferation only (M/P). The difference between log-likelihood (∆LL) between the two models is 

also shown.       
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A siRNA-based analysis further supports that migration is more strongly associated with 

survival than proliferation   

We next turned to study our basic research question by building an additional set of predictors of 

migration and proliferation levels.  These predictors are based on siRNA knockdown (KD) 

experiments that we have conducted in a highly migratory breast cancer cell line, MDA-MB-231. 

We knocked down 248 protein kinases whose gene expression levels are significantly negatively 

correlated with experimentally determined migration values in the 40 breast cancer cell lines that 

we studied above. We experimentally measured the effect of each knockdown on cell migration 

using a 2D migration assay (Methods). We termed the genes whose knockdown significantly 

enhances cellular migration migration-suppressive genes (Methods). Similarly, we also carried out 

siRNA KD experiments on 227 protein kinases whose gene expression levels are significantly 

positively correlated with experimentally determined migration values in these 40 breast cancer 

cell lines, and determined the effect of each knockdown on cell migration.  Among these, we 

identified all genes whose knockdown significantly decreased cellular migration in MDA-MB-231 

cell line and termed them as migration-enhancer genes (Methods).  Migration suppressive genes 

(using the siRNA-based analysis, Table S3j) show enrichment in gene sets involved in metastasis 

and breast cancer and cell migration (Table S3k). Migration-enhancer genes (Table S3j) show 

enrichment in actin cytoskeleton, focal adhesion and cell-cell junctions (Table S3(i,m)).  

 

The number of migration-suppressive genes that were downregulated in a given breast cancer cell-

line (S-count) was highly correlated with its CellToPhenotype predicted migration levels 

(Spearman ρ = 0.81, P<3.43e-10) and also with its experimentally measured migration values 

(Spearman ρ = 0.79, P<1.83e-9). This suggests that the S-count could be considered as an 

approximation of cellular migration. Similarly, the number of migration-enhancer genes that were 

upregulated in a given breast cancer cell-line denotes their migration-enhancer scores (E-count). 

The E-score is also highly correlated with the predicted migration levels (Spearman ρ = 0.827, 

P<8.62e-11) and the experimentally measured migration values (Spearman ρ = 0.77, P<1.03e-8), 

suggesting that E-count also provide approximate estimates of cellular migration. The mean of S-

count and E-counts, termed the KD-migration-score (Methods), has a slightly higher correlation 

with the predicted migration levels (Spearman ρ = 0.83, P<4.36e-11, Supplementary Figure S1a) 
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and experimentally measured ones (Spearman ρ = 0.79, P<1.9e-9, Supplementary Figure S1b) 

across the cell-lines.  

 

Similarly, in an analogous manner, we computed a KD-proliferation-score, using published 

shRNA/siRNA knockdown data done in MDA-MB-231 cell line25 (Methods). The KD-

proliferation-scores are highly correlated with both the predicted proliferation levels (Spearman ρ 

= 0.75, P<3.07e-8, Supplementary Figure S1c) and the experimentally measured proliferation 

values (Spearman ρ = 0.82, P<2.57e-10, Supplementary Figure S1d). Reassuringly, we find that 

the cross-correlations between KD-migration-score and experimentally-measured proliferation 

levels (and vice-versa) are much lower (Supplementary note). Gene Set Enrichment Analysis 

(GSEA) analysis on proliferation-enhancer/suppressive genes, showed enrichment on interesting 

gene sets, including, cell proliferation, regulation of developmental processes, genes associated 

with breast cancer (Table S3(n,o)). 

 

Having these scores in hand, we next computed KD-migration-scores and KD-proliferation-scores 

for every TCGA breast cancer tumor. Reassuringly, these scores are significantly correlated with 

the CellToPhenotype predictions of migration (Spearman ρ = 0.4, P<5.95-42) and proliferation 

levels of these tumors (Spearman ρ = 0.69, P<2.77-150). We then examined the association of the 

KD-migration and KD-proliferation scores of the TCGA breast cancer tumors and patient survival, 

after controlling for age, race, and genomic instability via Cox regression. The results reinforce 

the trend observed previously with the CellToPhenotype analysis, as we find a significant 

association of KD-migration-scores with patient survival (risk factor = 0.3, P<2.98e-3) but a lower 

association between KD-proliferation-scores and survival (risk factor = 0.24, P<0.0396) (Figure 

4a, Methods). A multivariate cox-regression using both the KD-migration-scores and KD-

proliferation-scores as co-variates while controlling for age, race, and genomic instability shows 

a similar trend (relative risk factor = 0.29, P<0.037 for migration and relative risk factor = 0.044, 

P<0.76 for proliferation, Figure 4b, Methods). Thus, ruling out model-based biases of 

CellToPhenotype predictors, the analysis further corroborates our findings that migration is better 

predictor patient survival than proliferation. As it is knock-down based, it suggests that the stronger 

association of migration with survival may have a causal basis. 
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CellToPhenotype estimates of migration and proliferation levels are associated with patient 

drug response  

We next asked if predicted migration or proliferation levels determine patient response to 

cytoskeletal vs cytotoxic drugs. Although migration and proliferation occur via partially 

overlapping cellular processes, as a first approximation cytotoxic drugs mainly target proliferation 

by inhibiting nucleotide synthesis or inducing DNA break while cytoskeletal drugs are known to 

affect cell migration by targeting microtubules (though they also target proliferation)26,27. 

Accordingly, our working hypothesis has been that tumors with high migratory estimates may 

respond better to cytoskeletal drugs and conversely, tumors with high proliferation estimates will 

respond better to cytotoxic drugs.  

 

To test this hypothesis, we analyzed data of TCGA breast cancer patients, out of which 389 patients 

were given at least one of the 7 cytoskeletal drugs and 331 patients were given at least one of 31 

cytotoxic drugs (Table S2b). In the patients treated with cytoskeletal drugs, migration levels 

(estimated from CellToPhenotype predictors) are significantly higher than the levels in the rest of 

TCGA breast cancer patients (P<6.73e-5, Figure 4c), and higher than the levels of the patients 

treated only with cytotoxic drugs (P<4.9e-5, Supplementary Figure S2). Importantly, among the 

patients with high predicted migration levels, the patients treated with cytoskeletal drugs have 

better survival than those that were not treated with these drugs (KM ΔAUC= -0.47, log rank 

P<4.38e-4, Figure 4d, Methods).  Thus, cytoskeletal drugs are more likely administered to patients 

with high (predicted) migration, and such administration seems to preferentially benefit such 

patients. This suggests that the predicted migration levels may serve as a biomarker for cytoskeletal 

drugs. As controls, patients with high predicted proliferation levels do not have a significant 

survival benefit from taking cytoskeletal drugs (KM ΔAUC= -0.2, log rank P<7.06e-2, Figure 4e). 

Finally, and interestingly, neither migration nor proliferation are good predictors of cytotoxic 

efficacy, as predicted migratory and proliferation levels are not associated with the survival of 

patients who have taken only cytotoxic drugs: (KM ΔAUC= -0.29, log rank P<1.08e-1, Figure 4f) 

for patients with high predicted migratory levels and (KM ΔAUC= -0.16, log rank P<1.38e-1, 

Figure 4g) for patients with high proliferation levels.  
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Figure 4. (a) Cox regression of KD-migration-scores and KD-proliferation-scores with patients’ 

survival, after controlling for age, race, and genomic instability for 1043 breast cancer patients in 

TCGA data. (b) Relative association of KD-migration-scores and KD-proliferation-scores with 

survival. (c) Migration levels (estimated from CellToPhenotype predictors) for breast cancer 

patients who have taken cytoskeletal drugs versus the rest. (d) Among the breast cancer patients 

who have high migration levels (greater than 75 percentile), a KM analysis was done between 

those who have taken cytoskeletal drugs versus the rest of the patients. (e) Similarly, among the 

patients that have high proliferation levels, a KM analysis was done between those who have taken 

cytoskeletal drugs versus the rest of the patients. (f) A KM analysis of patients who have high 

migration levels and who have taken only cytotoxic drugs versus the rest. (g) A KM analysis of 

patients who have high proliferation levels and have taken only cytotoxic drugs versus the rest.  

 

 

Discussion 

We experimentally measured migration and proliferation values in breast cancer cell lines and 

built and cross-validated CellToPhenotype predictors of these phenotypes. Applying these 

predictors to breast cancer tumor gene expression data we predicted the migration and proliferation 
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levels of every tumor and studied their association with cancer stage, grade, subtype, and most 

importantly, with patient survival. We find a stronger association of predicted migration vs 

proliferation levels with the patients’ survival. We also find that patients with high predicted 

migration levels respond better to cytoskeletal drugs than patients with low predicted levels. 

siRNA-based predictors of migration and proliferation that we additionally built further testify that 

migration is indeed a better predictor of survival and the association may even have a causal basis. 

To the best of our knowledge, this is the first study which aims to quantify migration and 

proliferation levels in cancer patients by collecting and analyzing pertaining in vitro data. Such an 

investigation is particularly relevant since the majority of cancer drugs are developed by measuring 

their effect on in vitro proliferation rates10. 

 

Many of the genes identified as migratory signatures by CellToPhenotype predictors are known to 

be play role in cell migration. For instance, the LAMA2 gene produces an extracellular protein, 

Laminin, is thought to play a role in migration and organization of cells in tissues during embryonic 

development28. CX3CR1 is known to play a role in adhesion and migration of leukocytes29. 

CX3CR1 is also amongst the top hits in our siRNA-based. RNT4 is another gene that is associated 

with cell migration30,31. Our migration and proliferation signatures (either CellToPhenotype or 

siRNA-based analysis) identified many additional genes (Table S3p) that may be important in 

migration/proliferation, and their investigation may provide future leads for enhancing our 

understanding of these cellular phenotypes.  

 

In summary, our analysis highlights the importance of tumor migration in determining its 

aggressiveness and patients’ survival. It puts forward the need to put more effort on in vitro assays 

of cell migration (and possibly, invasion) in the early stages of cancer drug development screens, 

which are yet mainly focused on essentiality and proliferation screens.  

 

Methods 

Quantification of cell migration and proliferation of a panel of breast cancer cell lines  

Doubling times: 

Breast cancer cell line population doublings were estimated by plating a known number of cells at 

day 0 and measuring the total number of cells once the culture reached an estimated 80% 
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confluency (usually 4-5 days). Cell numbers were calculated using a hemocytometer and 

population doublings (PDL) were determined using the following formula: PDL= 3.32 (log(total 

cells at harvest/total cells plated at day 0)). The doubling time was calculated by dividing the 

number of days or hours between harvest and seeding by the PDL. Example: Number of cells 

plated at day 0 = 5x106, Number of cells at harvest = 20x106, days in culture = 4 days, then the 

doubling time would be 2 days or 48 hours (4 days/2 PDL). The proliferation rate for each cell 

lines was computed using the equation 70/(doubling time). We did this for 46 breast cancer cell 

lines. 

 

Live Cell migration assay32  

Cells were seeded on 96-well glass bottom plates (Greiner Bio-one, Monroe, NC, USA) coated 

with 10 µg/ml collagen type I (isolated from rat tails) in PBS for 1 hour at 37ºC. Before imaging, 

the cells were pre-exposed for 30-45 min to 0.1 µg/ml Hoechst 33342 (Fisher Scientific, Hampton, 

NH, USA) to visualize the nuclei. The plates were placed on a Nikon Eclipse TE2000-E 

microscope fitted with a 37ºC incubation chamber and 5% CO2 supplier, a 20x objective (0.75 

NA, 1.00 WD), an automated stage and perfect focus system. Up to four positions per well were 

automatically defined and nuclei (stained with live Hoechst) were imaged overnight every 10 to 

20 minutes using NIS controlling software (Nikon) and a CCD camera (Pixel size: 0.78 or 0.32 

µm). The .nd2 files acquired from NIS were exported to .tiff files as mono image for each channel 

and then converted to .avi files and analyzed using custom made ImagePro Plus macros as 

previously described33. The mean speed of cell migration was quantified per time-lapse by tracking 

each nucleus separately over time. This was done for 43 breast cancer cell lines.  

 

 

siRNA-image based migration assay using the MDA-MB-231 cell line34  

Transient siRNA-mediated gene knockdown 

Human siRNA of 475 protein kinases (whose gene expressions are significantly correlated with 

experimentally determined migration values in 40 breast cancer cell lines studied above, Table 

S2c) were purchased in siGENOME format from Dharmacon (Dharmacon, Lafayette, CO, USA). 

Transient siRNA knockdown was achieved by reverse transfection of 50 nM single or 

SMARTpool siRNA in 2,500-5,000 cells/well in a 96-well plate format (PKT assay) using the 
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transfection reagent INTERFERin (Polyplus, Illkirch, France) according to the manufacturer’s 

guidelines. The medium was refreshed after 20 h and transfected cells were used for various assays 

between 65 to 72 h after transfection.  

 

Phagokinetic track (PKT) assay 

PKT assays were performed as described before35. Briefly, black 96-well µClear plates (Greiner 

Bio-One, Frickenhausen, Germany) were coated with 10 µg/ml fibronectin (Sigma-Aldrich, 

Zwijndrecht, The Netherlands) for 1 h at 37°C. Plates were washed twice with PBS, using a 

HydroFlex platewasher (Tecan, Männedorf, Switzerland). Subsequently, the plates were coated 

with white carboxylate modified latex beads (400 nm, 3.25·109 particles per well; Life 

Technologies, Carlsbad, CA, USA) for 1 h at 37°C, after which the plate was washed 7 times with 

PBS. 65 h after siRNA transfection, transfected cells were washed twice with PBS-EDTA and 

trypsinized. Cells were resuspended into single cell suspensions, then diluted, and finally seeded 

at low density (~100 cells/well) in the beads-coated plate. Cells were allowed to migrate for 7 h, 

after which the cells were fixed for 10 min with 4% formaldehyde and washed twice with PBS. 

For each transfection, duplicate bead plates were generated (technical replicates); transfection of 

each siRNA library was also performed in duplicate (independent biological replicate). Procedures 

for transfection, medium refreshment and PKT assay were optimized for laboratory automation by 

a liquid-handling robot (BioMek FX, Beckman Coulter). 

 

PKT imaging and analysis 

Migratory tracks were visualized by acquiring whole well montages (6x6 images) on a BD 

Pathway 855 BioImager (BD Biosciences, Franklin Lakes, NJ, USA) using transmitted light and 

a 10x objective (0.40 NA). A Twister II robotic microplate handler (Caliper Life Sciences, 

Hopkinton, MA, USA) was used for automated imaging of multiple plates. Montages were 

analyzed using WIS PhagoTracker20. Migratory tracks without cells or with more than 1 cell were 

excluded during image analysis. The quantitative output of PhagoTracker was further analyzed 

using KNIME. Wells with <10 accepted tracks were excluded. Next, data was normalized to mock 

to obtain a robust Z-score for each treatment and each parameter. After normalization, an average 

Z-score of the 4 replicates was calculated. Knockdowns with <3 images were removed, as well as 
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knockdowns with <150 accepted tracks. Major Axis score (Z-score) as a measure of cell speed 

was further used and computed in the modeling. 

 

CellToPhenotype predictors 

 

CellToPhenotype predictors consists of two expressions based supervised predictors – one for 

predicting cell proliferation and other for cell migration. The gene expression data was obtained 

from the Cancer Cell Line Encyclopedia project36. Each predictor was trained on in vitro cell 

migration or proliferation as the dependent variable and gene expression of cell lines as the 

independent variables in the regression. CellToPhenotype adopts two level feature selection to 

reduce testing error. First genes that are significantly associated with patient survival (in an 

independent dataset – METABRIC) were selected to be included in the subsequent regression 

model. Secondly, CellToPhenotype uses LASSO shrinkage to regularize the predictor that enables 

a data-driven feature selection using a cross-validation. Both above feature selection was 

conducted in dataset independent of the testing set on which performance of CellToPhenotye was 

evaluated. This ensures an unbiased evaluation of predictive power of CellToPhenotype.    

 

To achieve the robust final estimate of migration and proliferation, CellToPhenotype uses 

bootstrapping. CellToPhenotype predictors were conducted on the training data and then 

phenotypes were predicted for test samples. The process is repeated for 50 bootstraps. Median of 

each bootstrap are taken as the final estimates of migration and proliferation levels (details are 

provided in the supplementary note).  

 

 

CellToPhenotype predictive performance using cross-validation 

Leave one out cross validation was conducted to assess the CellToPhenotype predictive power as 

follows. The migration and proliferation models were trained on all in vitro data leaving one 

sample. Migration and proliferation was estimated for the left-out sample. Spearman ρ between 

the predicted and actual phenotypes was computed.  
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Association of cellular phenotypes with cancer stages.  

Using CellToPhenotype predictors, migration and proliferation levels were predicted for 937 

breast cancer patients in TCGA (Table S2a). Out of this, 83 and 9 individuals are stage IA and 

stage IB respectively (grouped as stage I); 348 and 238 individuals are stages IIA and IIB 

respectively (grouped as stage II); 148, 29, 62, and 19 individuals in stages IIIA, IIIB, IIIC, and 

IV respectively (grouped as stage III-IV).  Patients with stage III and IV were grouped because 

there is only 19 sample from stage IV. These predicted levels were used to check how they vary 

with stages. 

 

Association of cellular phenotypes with cancer grade.  

Using CellToPhenotype predictors, migration and proliferation levels were predicted for 1706 

breast cancer patients whose cancer grade information was available in the METABRIC dataset 

(146 grade 1 patients, 673 grade 2 patients, 887 grade 3 patients, Table S2a). These predicted levels 

were then used to check how they vary with grade.   

 

Association of cellular phenotypes with breast cancer subtypes.  

Migration and Proliferation levels are predicted for the 497 breast cancer patients (Table S2a) in 

TCGA dataset for whom we have the four different breast cancer subtypes information available, 

and of the 110 normal non-cancerous breast samples. A one-sided Wilcoxon rank-sum test was 

used to compare migration and proliferation levels of each of the subtypes with that of the normal 

samples.  

  

Circulating tumor cells analysis 

We applied CellToPhenotype predictors to estimate the migration and proliferation levels in 5 

breast cancer samples of circulating tumor cells (CTCs) in GSE45965 data24, and compared it with 

the 110 normal breast samples and 1043 cancerous samples from breast cancer TCGA data. While 

predicting migration and proliferation levels in GSE45965 data, we overlapped the survival 

associated genes in METABRIC dataset with the genes in the GSE45965 data, for building models 

using CellToPhenotype predictors.  
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Association of cellular phenotypes with patient survival 

Migration and proliferation models were built by training on 40 breast cancer cell lines that have 

experimentally measured migration and proliferation. Migration and proliferation levels of 1043 

TCGA breast cancer patients were estimated using CellToPhenotype predictors. To check the 

association of the predicted migration with patients’ survival we fit following Cox regression:  

Survival~migration + strata(race) + age + GII.      (1) 

Patient survival is known to be confounded by age, race, and genomic instability (GII). 

Accordingly, the above model systematically controls for these confounders. Strata (race) in the 

above model implies Cox regression was conducted in each patient stratification based on race 

separately and likelihood were combined. We repeated the procedure for 10 iterations, and median 

coefficients (risk factor) of migration were computed. The association of survival with 

proliferation was estimated similarly. Each Kaplan Myer (KM) analysis was done by comparing 

the migration/proliferation levels of on the top 25 percentile of patients with bottom 25 percentile 

patients. 

 

To estimate the relative contribution of migration and proliferation to predict patient survival we 

fit following Cox regression, which also controls for age, race, and genomic instability:  

Survival~migration + proliferation + strata(race) + age + GII          (2) 

 

siRNA-based KD-migration-score of a sample  

Out of around ~4600 kinases, we selected 475 protein kinases whose expression was significantly 

correlated with migration across 9 cell lines (Spearman ρ, P < 0.01). Out of this, 248 protein 

kinases are negatively correlated and 227 protein kinases are positively correlated. We conducted 

siRNA knockdown of 475 genes described above in MDA-MB-231 breast cancer cell line. MDA-

MB-231 was chosen because it is highly migratory breast cancer cell line37. Following the siRNA, 

we experimental measured change cell migration by measuring factors including Major Axis score 

(Z-score). Migration-suppressive genes (n=26) were identified by selecting genes whose 

knockdown led to high migration (above 90 percentile) in MDA-MB-231 cell line and whose gene 

expression was significantly negatively correlated with experimentally determined migration 

values in 40 cell lines. Migration-enhancer genes (n=24) are those whose knockdown significantly 

decreased cellular migration (below 10 percentile) and whose gene expression was significantly 
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positively correlated with experimentally determined migration values in 40 cell lines. We count 

the number of downregulated migration-suppressive genes and upregulated migration-enhancer 

genes; and assign the count as KD-migration-score of each sample (cell line or patient). For this 

analysis, we use the median expression of all genes as the threshold for upregulation or 

downregulation. 

 

siRNA/shRNA-based KD-proliferation-score of a sample  

siRNA/shRNA-based KD-proliferation-score of a sample is determined in an analogous manner 

described for migration. Briefly, we used proliferation measurement post ~15400 genes shRNA 

knockout in MDA-MB-231 cell lines from Marcotte et al.25. Among these genes, we select 1248 

genes whose expressions are significantly correlated with experimentally determined proliferation 

values in 40 BC cell lines (606 genes positively correlated and 642 genes negatively correlated). 

Proliferation-suppressive genes were identified by selecting genes whose knockdown led to high 

proliferation (above 90 percentile) in MDA-MB-231 cell line and whose gene expression was 

significantly negatively correlated with experimentally determined proliferation values in 40 cell 

lines. Proliferation-enhancer genes are those whose knockdown significantly decreased cellular 

proliferation (below 10 percentile) and whose gene expression was significantly positively 

correlated with experimentally determined proliferation values in 40 cell lines. Count of down-

regulated proliferation suppressive and upregulated proliferation-enhancer in a sample was 

assigned as KD-proliferation-score of the sample. 

 

Drug response analysis 

Drug response information is available for 720 TCGA breast cancer patients in TCGA: 389 

patients administering at least one of the 7 cytoskeletal drugs, and 331 patients administering at 

least one of the 31 drugs targeting only proliferation (i.e., cytotoxic drugs, Table S2b). Among the 

1043 breast cancer patients who have high migration levels (top 25 percentile), we do a KM 

analysis among patients administering cytoskeletal drugs and the rest (Figure 4d).  compares top 

25 percentile patient with high migration levels with the rest of the 1043 patients.  Similar KM 

analysis was conducted on patient administering cytotoxic drugs. 
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Pathway and GSEA enrichment analysis 

We also carried out GSEA analysis38,39 on the genes selected by the LASSO regression in the 

CellToPhenotype predictors. The annotated gene sets from the Molecular Signature Database was 

used for this analysis40. GSEA analysis was done separately on these sets of genes. Enriched gene 

sets with FDR q-value < 0.05 is shown (Table S3).  Similarly, we carried out GSEA analysis on 

migration-enhancer/suppressive and proliferation-enhancer/suppressive genes. 

 

For each iteration of the LASSO regression in the CellToPhenotype predictors, we did KEGG 

pathway analysis. We also did KEGG pathway analysis on genes selected from siRNA-based 

analysis. 

 

Association with immune-infiltrating cell types 

We predicted migration and proliferation levels in breast cancer TCGA data and compared them 

with the estimated tumor-infiltrating immune cell types41. For this, patients were divided into two 

groups (top 25 or bottom 25 percentile) based on their estimated TAM abundance levels or B cell 

abundance levels. Wilcoxon rank-sum test was done to see if migration/proliferation levels 

difference between the two groups.  

 

References 

1. Kaitlin, K. I. The Landscape for Pharmaceutical Innovation: Drivers of Cost-Effective 

Clinical Research. Pharm Outsourcing 1–6 (2010). doi:3605 [pii] 

2. Torjesen, I. Drug development: the journey of a medicine from lab to shelf. 

Pharmaceutical Journal (2015). 

3. Arrowsmith, J. Trial watch: Phase III and submission failures: 2007–2010. Nat. Rev. Drug 

Discov. 10, 87–87 (2011). 

4. Weinstein, J. N. et al. An Information-Intensive Approach to the Molecular Pharmacology 

of Cancer. Science (80-. ). 275, 343–349 (1997). 

5. Staunton, J. E. et al. Chemosensitivity prediction by transcriptional profiling. Proc. Natl. 

Acad. Sci. 98, 10787–10792 (2001). 

6. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival 

oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 29, 2018. ; https://doi.org/10.1101/379123doi: bioRxiv preprint 

https://doi.org/10.1101/379123


7. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 

358–362 (2006). 

8. Dry, J. R. et al. Transcriptional pathway signatures predict MEK addiction and response 

to selumetinib (AZD6244). Cancer Res. 70, 2264–2273 (2010). 

9. Greshock, J. et al. Molecular target class is predictive of in vitro response profile. Cancer 

Res. 70, 3677–3686 (2010). 

10. Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–

754 (2016). 

11. Hackam, D. G. & Redelmeier, D. A. Translation of Research Evidence From Animals to 

Humans. Jama 296, 1727–1732 (2006). 

12. FDA & Food and Drug Administration. Innovation or Stagnation: Challenge and 

Opportunity on the Critical Path to New Medical Products. Review Literature And Arts Of 

The Americas (2004). 

13. Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials 

in cancer treatment. Am. J. Transl. Res. 6, 114–8 (2014). 

14. Tibshirani, R. Regression Selection and Shrinkage via the Lasso. Journal of the Royal 

Statistical Society B (1996). doi:10.2307/2346178 

15. Parri, M. & Chiarugi, P. Rac and Rho GTPases in cancer cell motility control. Cell 

Communication and Signaling 8, (2010). 

16. Li, L. T., Jiang, G., Chen, Q. & Zheng, J. N. Ki67 is a promising molecular target in the 

diagnosis of cancer (Review). Molecular Medicine Reports 11, 1566–1572 (2015). 

17. Hoos, A. et al. High Ki-67 proliferative index predicts disease specific survival in patients 

with high-risk soft tissue sarcomas. Cancer 92, 869–874 (2001). 

18. Scholzen, T. & Gerdes, J. The Ki-67 protein: From the known and the unknown. Journal 

of Cellular Physiology 182, 311–322 (2000). 

19. Borre, M., Bentzen, S. M., Nerstrom, B. & Overgaard, J. Tumor cell proliferation and 

survival in patients with prostate cancer followed expectantly. J. Urol. 159, 1609–1614 

(1998). 

20. Yang, Y. et al. TPX2 promotes migration and invasion of human breast cancer cells. 

Asian Pac. J. Trop. Med. 8, 1064–70 (2015). 

21. Mann, H. B. & Whitney, D. R. On a Test of Whether one of Two Random Variables is 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 29, 2018. ; https://doi.org/10.1101/379123doi: bioRxiv preprint 

https://doi.org/10.1101/379123


Stochastically Larger than the Other. Ann. Math. Stat. 18, 50–60 (1947). 

22. Chikarmane, S. A., Tirumani, S. H., Howard, S. A., Jagannathan, J. P. & Dipiro, P. J. 

Metastatic patterns of breast cancer subtypes: What radiologists should know in the era of 

personalized cancer medicine. Clinical Radiology 70, 1–10 (2015). 

23. Inic, Z. et al. Difference between Luminal A and Luminal B subtypes according to Ki-67, 

tumor size, and progesterone receptor negativity providing prognostic information. Clin. 

Med. Insights Oncol. 8, 107–111 (2014). 

24. Lang, J. E. et al. Expression profiling of circulating tumor cells in metastatic breast 

cancer. Breast Cancer Res. Treat. 149, 121–131 (2015). 

25. Marcotte, R. et al. Functional Genomic Landscape of Human Breast Cancer Drivers, 

Vulnerabilities, and Resistance. Cell 164, 293–309 (2016). 

26. Small, J. V., Geiger, B., Kaverina, I. & Bershadsky, A. How do microtubules guide 

migrating cells? Nat. Rev. Mol. Cell Biol. 3, 957–64 (2002). 

27. Yang, H., Ganguly, A. & Cabral, F. Inhibition of cell migration and cell division 

correlates with distinct effects of microtubule inhibiting drugs. J. Biol. Chem. 285, 32242–

32250 (2010). 

28. Moran, T., Gat, Y. & Fass, D. Laminin L4 domain structure resembles adhesion modules 

in ephrin receptor and other transmembrane glycoproteins. FEBS J. 282, 2746–2757 

(2015). 

29. Imai, T. et al. Identification and molecular characterization of fractalkine receptor 

CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521–530 

(1997). 

30. Acevedo, L. et al. A new role for Nogo as a regulator of vascular remodeling. Nat. Med. 

10, 382–388 (2004). 

31. Hui, L. et al. RNT4 3’-UTR insertion/deletion polymorphisms are not associated with 

atrial septal defect in Chinese Han population: a brief communication. DNA and cell 

biology 31, 1121–1124 (2012). 

32. Rogkoti, V. M. et al. An integrated systems microscopy and transcriptomics analysis 

identifies gene signatures of breast cancer cell migratory and invasive behavior. submitted. 

33. Van Roosmalen, W., Le Dévédec, S. E., Zovko, S., De Bont, H. & Van De Water, B. 

Functional screening with a live cell imaging-based random cell migration assay. Methods 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 29, 2018. ; https://doi.org/10.1101/379123doi: bioRxiv preprint 

https://doi.org/10.1101/379123


Mol. Biol. 769, 435–448 (2011). 

34. Fokkelman, M. et al. Uncovering the signaling landscape controlling breast cancer cell 

migration identifies splicing factor PRPF4B as a metastasis driver. submitted. 

35. Van Roosmalen, W. et al. Tumor cell migration screen identifies SRPK1 as breast cancer 

metastasis determinant. J. Clin. Invest. 125, 1648–1664 (2015). 

36. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of 

anticancer drug sensitivity. Nature 483, 603–7 (2012). 

37. Struckhoff, A. P. et al. PDZ-RhoGEF is essential for CXCR4-driven breast tumor cell 

motility through spatial regulation of RhoA. J. Cell Sci. 126, 4514–26 (2013). 

38. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are 

coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003). 

39. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for 

interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550 

(2005). 

40. Liberzon, A. et al. The Molecular Signatures Database Hallmark Gene Set Collection. 

Cell Syst. 1, 417–425 (2015). 

41. Li, B. et al. Comprehensive analyses of tumor immunity: implications for cancer 

immunotherapy. Genome Biol. 17, 174 (2016). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 29, 2018. ; https://doi.org/10.1101/379123doi: bioRxiv preprint 

https://doi.org/10.1101/379123

	Abstract
	Introduction
	Results
	Overview
	CellToPhenotype predictor construction and validation
	We measured migration and proliferation values in a collection of breast cancer cell lines available to us, for which we also had the transcriptomics data of each cell-line (Table S1a, Methods). Based on this data, we constructed predictors of migrati...
	Predicted migration and proliferation levels increase with cancer grade
	Circulating tumor cells have high migration levels
	Discussion
	Methods
	CellToPhenotype predictors
	CellToPhenotype predictive performance using cross-validation
	Association of cellular phenotypes with cancer stages.
	Association of cellular phenotypes with breast cancer subtypes.
	Circulating tumor cells analysis
	Association of cellular phenotypes with patient survival
	Drug response analysis
	Pathway and GSEA enrichment analysis

