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Abstract 

A longstanding question in evolutionary biology is the relative contribution of large and 

small effect mutations to the adaptive process. We have investigated this question in 

proteins by estimating the rate of adaptive evolution between all pairs of amino acids 

separated by one mutational step using a McDonald-Kreitman type approach and genome-

wide data from several Drosophila species. We find that the rate of adaptive evolution is 

higher amongst amino acids that are more similar. This is partly due to the fact that the 

proportion of mutations that are adaptive is higher amongst more similar amino acids. We 

also find that the rate of neutral evolution between amino acids is higher amongst similar 

amino acids. Overall our results suggest that both the adaptive and non-adaptive evolution 

of proteins is dominated by substitutions between amino acids that are more similar.  

 

Introduction 

Whether evolution proceeds by large or small steps is an old evolutionary problem that 

dates back, in its most extreme form, to the debate between saltationists and gradualists at 

the turn of the 20th century. It is a problem that is far from resolved despite extensive 

theoretical and experimental work (Barrett and Schluter, 2008, Bell, 2009, Rockman, 2012).  

 

There are in fact three related questions relating to the contribution of large and small 

mutations to the adaptive process: what is the distribution of effect sizes amongst new 

mutations, what is the distribution of those that spread to fixation, and is the process of 

adaptation largely a consequence of large or small mutations. An analogy might help to 
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illustrate the difference between the last two questions. Let us imagine that a builder is 

constructing a wall. The supply of bricks may be dominated by either large or small bricks 

and depending on her preferences for bricks three different walls may be built; one in which 

most of the bricks are small and the wall is largely constructed of small bricks, one in which 

most of the bricks are small but the wall is largely built of large bricks and one in which most 

of the bricks are large and the wall is largely composed of large bricks. 

 

Fisher (1930) originally suggested, based on his geometric model, that most advantageous 

mutations would be of small effect. While some experiments have been consistent with this 

expectation (Bataillon et al., 2011, Kassen and Bataillon, 2006, Sanjuan et al., 2004, Schenk 

et al., 2012) others have found a relatively uniform (Ferris et al., 2007, MacLean and 

Buckling, 2009) or normal distribution of effects (McDonald et al., 2011). The difference 

between these studies seems to be largely a consequence of two factors; a tendency to 

under-sample mutations with weak effects because they are difficult to detect and how far 

the population is from the optimum. The further the population is from the optimum the 

more large-effect mutations are found (MacLean and Buckling, 2009). 

 

The distribution of mutant effects is however not the distribution of mutations fixed during 

evolution because large effect mutations have a greater chance of spreading to fixation 

(Kimura 1983). Theoretical work has suggested that the distribution of effects amongst 

mutations that spread to fixation is likely to be dominated by mutations of small effect if 

adaptation comes from new mutations, the underlying distribution of mutant effects is of 

the Gumbel (e.g. a normal distribution) or Weibull (e.g. a distribution with a truncated right 

tail) type and the fitness optimum moves suddenly (Martin and Lenormand, 2008, Orr, 

1998, Orr, 2002) (though see critique by (Kopp and Hermisson, 2009)). However, if the 

optimum moves slowly, or most adaptation comes from standing genetic variation (Barrett 

and Schluter, 2008, Pritchard et al., 2010), then substitutions of intermediate effect are 

expected to dominate the adaptive process (Kopp and Hermisson, 2009, Matuszewski et al., 

2014, Matuszewski et al., 2015). The distribution of substitution effects may be dominated 

by large effect mutations if the underlying distribution of mutant effects is heavy tailed (i.e. 

in the Frechet domain) (Seetharaman and Jain, 2014). 
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Experiments that have tracked mutations that either fix or spread to high frequency under 

positive selection have found that the distribution can be dominated by mutations of small 

(Imhof and Schlotterer, 2001, Perfeito et al., 2007) or intermediate effect (Barrett et al., 

2006, Rokyta et al., 2005, Rozen et al., 2002, Schoustra et al., 2009). This again seems to 

depend on how far the population is from the optimum. If the population is far from the 

optimum, as in the experiment of Barrett et al. (Barrett et al., 2006), then the distribution of 

mutations that rise to appreciable frequency, or are fixed, is dominated by intermediate or 

large effect mutations, because the distribution of new mutations is dominated by larger 

effect mutations (see above) and such mutations have a greater chance of spreading 

through the population. A second factor also comes into play in experiments, which are 

usually conducted with asexual organisms – clonal interference. If there is clonal 

interference, then only mutations with intermediate or large effects can spread to high 

frequency or fixation (see (Perfeito et al., 2007)).  

 

It is unclear however what these experiments tell us about adaptation in the natural world. 

All experiments assume that adaptation comes from new genetic variation, but this process 

might be dominated by standing genetic variation (Barrett and Schluter, 2008, Pritchard et 

al., 2010). Furthermore, clonal interference occurs in many of the experiments and it is not 

clear how many organisms are sufficiently asexual for this process to play an important role 

in adaptation. Finally, we have no idea whether evolution is dominated by large jumps in 

the optimum, as might be caused by the introduction of an antibiotic or a pesticide into the 

environment, or more gradual changes. The only experiments that would seem to give us 

information about what happens in the natural world are QTL analyses of the differences 

between species. These seem to suggest that much adaptation is due the fixation of 

mutations of large effect (Bell, 2009), but as Rockman (Rockman, 2012) has argued, some 

caution must be exercised because a single QTL may involve many mutations of smaller 

effect. 

 

Here we investigate whether adaptive evolution in proteins is dominated by mutations and 

substitutions between amino acid that are more or less similar to each other in their 

physicochemical properties. We expect mutations between similar amino acids to be 

subject to weaker selection than those between different amino acids, a conjecture we test. 
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There is indeed some evidence for this. Grantham (Grantham, 1974) and Miyata et al. 

(Miyata et al., 1979) showed many years ago that the rate of amino acid substitution is 

negatively correlated to the difference in polarity, volume and chemical composition of the 

amino acids involved (see also (Zhang, 2000)). This could either be due to mutations 

between more different amino acids being more deleterious or less advantageous. In our 

analysis, we estimate the rate of adaptive substitution between all pairs of amino acids 

separated by one mutational step using polymorphism data from Drosophila melanogaster 

polarized using D. simulans and D. yakuba. We also investigate whether mutations of large 

or small effect are more common and whether small or large steps contribute most to the 

increase in fitness. 

 

Results 

To investigate whether adaptive evolution is dominated by large or small steps at the 

molecular level we estimated the rate of adaptive evolution between all 75 pairs of amino 

acids that are separated by a single mutational step. We estimated the rates of substitution 

between Drosophila melanogaster and the D. simulans/D. yakuba outgroup pair using the 

method of Schneider et al. (Schneider et al., 2011). This method is a variant of the 

McDonald-Kreitman (McDonald and Kreitman, 1991) approach in which the rate of adaptive 

evolution is estimated by comparing the divergence at selected non-synonymous and 

neutral synonymous sites, to levels of polymorphisms at those same sites. The method 

estimates the distribution of fitness effects (DFE) of the neutral and deleterious non-

synonymous mutations, the proportion of mutations that are advantageous (la) and the 

strength of selection acting upon them multiplied by the effective population size (Nesa), as 

well as the rate of adaptive evolution relative to the mutation rate (wa) (Gossmann et al., 

2010). We initially focus our analysis on two properties of amino acids, volume and polarity, 

since these are two properties that all amino acids share and that have been studied before 

(Grantham, 1974, Miyata et al., 1979, Zhang, 2000). However, we also consider other 

measures of physicochemical and evolutionary amino acid dissimilarity. We consider 

autosomal and X-linked loci separately since mutations on the X are hemizygous in males 

and there is some evidence that X-linked genes adapt faster (reviewed by Charlesworth et 

al. (Charlesworth et al., 2018)). 
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We find that the rate of adaptive evolution relative to the mutation rate, wa, is significantly 

negatively correlated to both the difference in volume (Δvol) and polarity (Δpol), on both the 

autosomes and X-chromosome (Table 1; Figure 1A, B for autosomes; Figure S1A, B for X-

chromosome) suggesting that the rate of adaptive evolution is higher between amino acids 

that are more physicochemically similar. The difference in volume and polarity are only 

weakly correlated (Spearman’s ρ = 0.13, p = 0.11) and the two factors are independently 

correlated to wa in a multiple regression (p<0.001 for both factors on the autosomes and X).  
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  Δvol Δpol pN2/pS2 DAFN2/DAFS2 

Au
to

so
m

e 

pN/pS -0.46*** -0.56*** 0.96*** 0.47*** 

DAFN/DAFS -0.38*** -0.41*** 0.66*** 0.69*** 

b 0.29* 0.32** -0.58*** -0.52*** 

Nesd -0.20 -0.04 -0.08 -0.15 

a 0.05 -0.03 -0.31** -0.25* 

wa -0.47*** -0.53*** 0.83*** 0.54*** 

wna -0.50*** -0.54*** 0.94*** 0.51*** 

la -0.35** -0.37*** 0.53*** 0.54*** 

Nesa 0.03 0.00 -0.04 -0.29* 

      

X-
ch

ro
m

os
om

e 

pN/pS -0.37** -0.50*** 0.86*** 0.44*** 

DAFN/DAFS -0.13 -0.20 0.40*** 0.34** 

b 0.30** 0.20 -0.56*** -0.26* 

Nesd 0.14 0.06 -0.28* -0.11 

a 0.27* 0.20 -0.56*** -0.25* 

wa -0.42*** -0.43*** 0.79*** 0.35** 

wna -0.43*** -0.49*** 0.88*** 0.41*** 

la -0.24* -0.30** 0.38*** 0.29* 

Nesa -0.04 -0.05 0.16 -0.06 

 

Table 1. Spearman rank correlation between estimates of rates of adaptive evolution, the 

DFE, and measures of amino acid dissimilarity. To remove statistical non-independence 

between pN/pS and DAFN/DAFS and other variables we sampled the SFS to generate two 

independent SFSs * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Figure 1.  The autosomal rate of adaptive evolution relative to the mutation rate (wa) 

plotted against the difference in A) volume, B) polarity, C) pN/pS and D) DAFN/DAFS. 

 

 

There are many ways in which to measure the dissimilarity between amino acids, and there 

are over 500 dissimilarity matrices (Kawashima et al., 2008). We find that wa is negatively 

correlated to the difference in amino acid properties in 〜90% (476/531) of these matrices 

and significantly so in 〜54% (286/531) matrices (Figure 2). wa is positively correlated to the 

difference in amino acid properties in 55 matrices but none of these correlations are 

significant. 
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Figure 2. The distribution of Spearman rank correlations between wa and 531 amino acid 

dissimilarity matrices. The correlations in the darker shaded area are significant at 5%. 

 

So far we have shown that the rate of adaptive evolution is higher between pairs of amino 

acids that are more similar in terms of volume and polarity. However, if dissimilar pairs of 

amino acids tend to be more common or have higher mutation rates, then the overall 

adaptive evolution might be dominated by substitutions of intermediate or large effect. As a 

consequence we calculated the total rate of adaptive substitution between each pair of 

amino acid as Wa(ij) = wa(ij) x (fi + fj) x µij where wa(ij) is the wa between a pair of amino acids i 

and j, fi is the frequency of amino acid i and µij is the mutation between them; we estimate 

the mutation rate from synonymous sites (e.g. if the amino acids are separated by a C<>T 

transition, we estimate the C<>T mutation rate from synonymous sites). If we plot the 

cumulative number of adaptive amino acids substitutions as a function of the difference in 

volume and polarity we find the relationship is concave suggesting that small substitutions 

dominate the adaptive process when we take into account the frequencies and mutation 

rates of the amino acids (Figure 3A for autosomes; Figure S2A for the X-chromosome). 
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Figure 3. The cumulative number of adaptive substitutions on the autosomes contributed by 

each pair of amino acids versus  A) the normalised difference in volume and polarity, and  B) 

the reverse rank of pN/pS and DAFN/DAFS. The normalised difference in volume and polarity 

was calculated by subtracting the minimum difference, and then dividing by the maximum 

difference minus the minimum difference.  

 

The fact that more similar amino acids have higher rates of adaptive evolution strongly 

suggests that the proportion of mutations that are adaptive is also higher amongst more 

similar amino acids, since more similar amino acids are likely to be subject to weaker 

selection and hence have lower fixation probabilities. We indeed observe this; la is 

significantly negatively correlated to the difference in volume and polarity on both the X and 

autosomes (Table 1). If we calculate the overall rate of advantageous mutation for each pair 

of amino acids taking into account the frequency of the amino acids and their mutation rate 

as La(ij) = la(ij) x (fi + fj) x µij and plot the cumulative, we again find that it is concave (Figure 

S3A, C). 

 

Polarity and volume only explain some of the variance in wa and la, particularly amongst 

amino acids that are similar in volume or polarity. This is not surprising; volume and polarity 

are just two measures of amino acid dissimilarity and there are many qualities that are 

difficult to measure – for example the ability to form disulphide bridges. Alternative 

measures of amino acid dissimilarity are evolutionary measures such as the ratio of non-

synonymous to synonymous polymorphisms (pN/pS) and the derived allele frequency of non-

synonymous relative to synonymous polymorphisms (DAFN/DAFS). Both of these statistics 
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are expected to be higher for amino acids that are more similar because they are expected 

to decline as the strength of selection against deleterious mutations increases. Consistent 

with this we find that pN/pS and DAFN/DAFS are negatively correlated to the difference in 

volume and polarity (Table 1; Figure 4).  

 
 

 
 

Figure 4. pN/pS and DAFN/DAFS plotted against the difference in volume and polarity for 75 

pairs of amino acids for the autosomal data. 

 

 

Our two evolutionary measures of amino acid dissimilarity, pN/pS and DAFN/DAFS are not 

statistically independent of our measures of adaptive evolution, since polymorphism data is 

used to estimate the rate of adaptive evolution; sampling error will therefore tend to induce 

correlations between wa, pN/pS and DAFN/DAFS. To overcome this, we resampled the SFS 

using a hypergeometric distribution to generate two SFSs, one of which was used to 

estimate pN/pS and DAFN/DAFS, and the other which was used to estimate the DFE and the 
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rate of adaptive evolution. This procedure removes the non-independence due to sampling 

error, although we note that pN1/pS1 and pN2/pS2, are very highly correlated to each other 

suggesting that there is relatively little sampling error relative to the systematic variance in 

pN/pS (autosome Spearman’s ρ = 0.96, p<0.001; X-chromosome Spearman’s ρ = 0.86, 

p<0.001); the correlation between DAFN1/DAFS1  and DAFN2/DAFS2 is also substantial on the 

autosomes (autosomes, Spearman’s ρ = 0.69, p<0.001; X-chromosome Spearman’s ρ = 

0.34, p = 0.003). We find that wa1 is significantly positively correlated to pN2/pS2 and 

DAFN2/DAFS2 (Table 1, Figure 1C, D). This is consistent with the pattern seen for volume and 

polarity; amino acids which are more similar in terms of the fitness effects, have high values 

of pN/pS and DAFN/DAFS, and higher rates of adaptive evolution. We also find that the 

proportion of mutations that are adaptive, la1, is positively correlated to pN2/pS2 and 

DAFN2/DAFS2 (Table 1), again consistent with the pattern seen for polarity and volume. If we 

calculate the overall rates of adaptive substitution, Wa(ij), and mutation, La(ij) and plot the 

cumulatives against the ranks of the pN2/pS2 and DAFN2/DAFS2 values in reverse order, we 

again observe concave functions (Figure 3B, S2B, S3B, D). Note that we plot the cumulatives 

against the rank because pN/pS and DAFN/DAFS do not directly relate to any meaningful 

measure (e.g. they are not simple linear functions of the strength of selection), and we plot 

them in reverse order because large values correspond to more similar amino acids. 

 

We have shown that both the rate of advantageous mutation and substitution is higher 

amongst amino acids that are more similar, where we have measured similarity both in 

terms of physicochemical and evolutionary differences. Finally, we would also like to know 

whether similar or dissimilar amino acids contribute more overall to adaptation. This 

question only makes sense phrased in terms of fitness. In principle, we can estimate the 

contribution of each amino acid pair to the change in fitness by multiplying the rate of 

adaptive evolution by the mean strength of selection acting on the advantageous 

substitutions. In principle it is possible to estimate the mean strength of selection from the 

site frequency spectrum, with or without considering the rate of substitution (Schneider et 

al., 2011, Tataru et al., 2017). In practice, very large amounts of data are required. We find 

that our estimate of the strength of selection acting on advantageous mutations is 

uncorrelated to either the difference in volume, polarity, pN/pS or DAFN/DAFS (Table 1), 
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which suggests that either the strength of selection acting on advantageous mutations is 

uncorrelated to the similarity of the amino acids, which seems unlikely, or that we cannot 

estimate the selection strength accurately enough. To assess the sampling error involved in 

estimating the strength of selection we bootstrapped the data 100 times for the 5 amino 

acid pairs for which we have the most non-synonymous polymorphisms. Despite having 

over 1500 non-synonymous polymorphisms in each case we find the confidence intervals 

span more than one order of magnitude (Figure S4). The reason for this uncertainty is 

evident upon a visual inspection of the SFSs (Figure S5). Under a model in which non-

synonymous mutations are neutral or deleterious the ratio of the non-synonymous and 

synonymous SFS is expected to be a declining function. However, if there are advantageous 

mutations the ratio of SFS can be U-shaped and the uptick in the ratio at high allele 

frequencies contains information about the rate of advantageous mutation and the strength 

of selection acting upon those mutations (Schneider et al., 2011, Tataru et al., 2017). This 

signature is subtle and that the ratio of the SFSs is too erratic to infer anything about the 

strength of selection acting on advantageous mutations (Figure S5). 

 

 

Discussion 

We have investigated whether the rate of advantageous mutation and substitution depends 

on the similarity of amino acids. We find that pairs of amino acids that are more similar have 

higher rates of advantageous mutation and substitution. The adaptive process therefore 

seems to be dominated by mutations and substitutions of small effect. This is true when we 

consider the amino acid pairs individually and when we take into account their frequency 

and mutation rates. However, we have been unable to ascertain whether the overall change 

in fitness is dominated by small or large mutations. Using the analogy from the introduction, 

we have established that the supply of bricks is dominated by small bricks and that our 

builder prefers small bricks for building her wall, so there are more small bricks in the wall. 

However, we have been unable to establish whether the wall is largely made of small or 

large bricks. 

 

Our work builds on the work of Grantham (Grantham, 1974) and Miyata et al. (Miyata et al., 

1979) who showed, more than 40 years ago, that the rate of evolution is faster between 
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amino acids that are more similar in their physicochemical properties. This might have been 

because more dissimilar amino acids have lower rates of adaptive evolution, lower rates of 

neutral evolution or both. We have shown that it is in part due to a lower rate of adaptive 

evolution (Table 1), but we can also test whether the rate of non-adaptive evolution wna = 

dN/dS - wa (where dN and dS are rates of non-synonymous and synonymous divergence, 

respectively) (Galtier, 2016) is correlated to amino acid dissimilarity. We find that wna is 

negatively correlated to the difference in volume or polarity, and positively correlated to 

pN/pS and DAFN/DAFS (Table 1). The fact that both the rate of adaptive and non-adaptive 

evolution decreases with increasing dissimilarity between amino acids suggests that the 

proportion of substitutions that are adaptive, a, might be relatively constant. We find, 

however, the proportion of substitutions that are adaptive, a, is significantly negatively 

correlated pN/pS and DAFN/DAFS and significantly positively correlated to the difference in 

polarity on the X-chromosome (Table 1); i.e. the proportion of substitutions that are 

adaptive is lower amongst amino acids that are more similar.  

 

Our results may explain the findings of Bazykin and Kondrashov (Bazykin and Kondrashov, 

2012) and Campos et al. (Campos et al., 2017). Bazykin and Kondrashov (Bazykin and 

Kondrashov, 2012) observed that the rate of adaptive amino acid substitution was higher in 

regions of the gene that were less conserved. Campos et al. (Campos et al., 2017) estimated 

that the rate of adaptive mutation was lower in more constrained genes, and surprisingly 

that the strength of selection acting upon those mutations was also weaker. Together these 

two inferences suggest that constrained genes would also undergo lower rates of adaptive 

substitution. Hence both analyses mirror at the gene and sub-gene level what we observe at 

the amino acid level. This begs the question whether genes and parts of genes adapt slowly 

because of the amino acids they contain, or whether certain amino acids have low rates of 

adaptive evolution because they tend to be found in genes and parts of genes that have low 

rates of adaptation. The fact that we observe strong correlations between rates of adaptive 

evolution at physicochemical properties suggests the former is at least partly true; genes 

and parts of genes that are constrained undergo low rates of adaptive evolution because 

they contain amino acids such as glycine which is small, leading to large volume differences, 

with amino acids that are one mutational step removed from it. 
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It is striking that much of the variance between amino acids in their rate of adaptive 

evolution can be explained in terms of pN/pS. Given that polymorphism data is expected to 

be dominated by neutral and slightly deleterious genetic variation, pN/pS is an estimate of 

the proportion of mutations that are effectively neutral and hence 1- pN/pS a measure of the 

proportion of mutations that are deleterious. In part the correlation between wa and pN/pS 

is not surprising; as amino acids become more different so we expect the proportion of 

mutations that are effectively neutral to decline, and this is also likely to lead to a reduction 

in the proportion of mutations that are advantageous, as we have shown (Table 1). 

However, we might have also expected advantageous mutations between dissimilar amino 

acids to be more strongly selected (though see (Campos et al., 2017)). We have been unable 

to ascertain whether this is the case (Nesa is not significantly correlated to any measure of 

dissimilarity). However, we can conclude that the strength of selection acting upon 

advantageous mutations either decreases as amino acid dissimilarity increases or stays 

constant, neither of which is very likely, or that it increases, but at a low rate, because the 

rate of adaptive substitution declines as amino acid similarity decreases; i.e. if the strength 

of selection acting upon advantageous mutations increased rapidly with increasing amino 

acid dissimilarity then the rate of adaptive evolution would be greater amongst more 

dissimilar amino acids, even though the proportion of mutations that are adaptive declines 

as amino acids become more dissimilar. 

 

A potential problem in any analysis that uses the McDonald-Kreitman (MK) approach to 

estimate the rate of adaptive evolution are differences between the current Ne and the Ne 

during the divergence phase of evolution, if there is a class of mutations that are slightly 

deleterious (Eyre-Walker, 2002, McDonald and Kreitman, 1991). If the current Ne, which is 

relevant to the polymorphism data, is greater than the Ne for the divergence data then MK 

approaches will tend to overestimate the rate of adaptive evolution; the bias can be such 

that a signal of adaptive evolution can be detected even when there is no adaptive 

evolution occurring (Eyre-Walker, 2002, McDonald and Kreitman, 1991). It is not possible for 

us to rule out this as an explanation for the patterns we observe; the correlation between 

the rate of adaptive evolution and amino acid similarity might simply be a consequence of 

increasing population size. 
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The method that we have used to estimate the rate of adaptive evolution assumes that 

synonymous mutations are neutral, whereas selection is known to act upon synonymous 

codon use in some Drosophila species (Akashi, 1995, Shields et al., 1988). However, such 

selection is unlikely to affect our results because the rate of adaptive evolution is estimated 

using synonymous data that is common to multiple amino acid pairs that are separated by a 

particular type of mutation (e.g. C<>T). Selection on synonymous codon use could 

potentially affect the absolute rate of adaptive evolution but it’s not expected to affect the 

pattern between pairs of amino acids. To investigate further we ran an analysis of 

covariance regressing wa against the difference in volume and polarity, with mutational type 

as a fixed effect (in effect fitting a series of parallel planes of wa against the difference in 

volume and polarity for each mutational type). We find that wa is significantly correlated to 

the difference in both volume (p<0.001) and polarity (p<0.001). It is also possible that biased 

gene conversion could affect our results so we repeated the ANCOVA restricting our analysis 

to GC-conservative mutational types and again find that wa is significantly correlated to the 

difference in polarity (p<0.001) and volume (p<0.001). 

 

Although we have shown that more similar amino acids undergo higher rates of 

advantageous mutation and substitution this does not directly address the underlying 

question of whether adaptive evolution is dominated by small or large effect mutations for 

two reasons. First, we have only considered amino acid mutations, but much adaptive 

evolution might proceed through regulatory changes (Andolfatto, 2005, King and Wilson, 

1975). Second, underlying each amino acid pair is a distribution of effects; so, although we 

have shown that the average rate of advantageous mutation and substitution is correlated 

to measures of amino acid similarity, this does not imply that the underlying distribution, 

the distribution obtained by combining the distributions from each pair of amino acids, has 

the same shape. Overall, the adaptive process might be dominated by mutations and 

substitutions of intermediate effect, but the mean for each of the amino acid distributions is 

such that they lie to the right of mode of the underlying distribution (Figure S6).  
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In conclusion, whether evolution proceeds by large or small steps is a long-standing 

question. We have shown that the adaptation of protein coding sequences is dominated by 

amino acid mutations that are of small effect.  
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Material and methods 

Data and filtering 

A population dataset of Zambian D. melanogaster sequences was taken from Lack et al. 

(Lack et al., 2015). In total, the dataset consists of 197 sequences for each autosome and 

196 sequences for the X chromosome. Sequences were annotated using the reference 

genome annotation of D. melanogaster} (r5.57 from http://www.flybase.org/) and 

subsequently masked for all non-coding regions to exclude genomic regions where coding 

and non-coding sequences overlap. Codon alignments were then extracted using a custom 

Python script. The alignment between the D. melanogaster, D. simulans and D. yakuba 

reference sequences was taken from Hu et al. (Hu et al., 2013). Coding sequences which 

contained premature stop codons in the D. melanogaster reference sequence were 

excluded from the analysis. 

 

Amino acid polarity scores and volumes were taken from the literature. Additionally, we 

analyzed other amino acid distance measures using data available in the AAindex1 database 

(Kawashima et al., 2008). Specifically, for each index in the database, we calculated the 

physicochemical distance for all amino acid pairs under consideration, as the absolute 

difference. Indices which contained missing values for any amino acid were excluded from 

the analysis. 

 

Parameter inference 

We used the method of Schneider et al. (Schneider et al., 2011) to infer the rate of adaptive 

evolution for all 75 pairs of amino acids separated by a single mutational step. The method 

requires the unfolded site frequency spectrum (SFS) from a class of sites subject to 

selection, here non-synonymous sites, and a class of sites in which mutations are neutral, 

here synonymous sites. Inference of the unfolded site frequency spectrum for each of the 

site classes was obtained by the method of Keightley et al. (Keightley et al., 2016), using D. 

simulans and D. yakuba as outgroups for polarization of D. melanogaster sites into ancestral 

and derived allelic states. Although the dataset contains 197 and 196 lines for the 

autosomal and X-linked loci, we down-sampled the data to 20 lines. The subsampling step 

was necessary due to the limited size of the transition matrix used by the program for 

estimating the demography parameters. Most amino acid pairs are separated by one of the 
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six different mutational types. To estimate the rate of adaptive substitution we compared 

the SFS for a particular amino acid pair, say proline and threonine, which are separated by a 

C<>A change with synonymous data from 4-fold degenerate codons separated only by C<>A 

mutations (SFS4F(C<>A)). For amino acids separated by more than one mutational type we 

calculated a weighted average SFS from the SFSs for the mutational types at 4-fold sites, 

weighting by the frequency of the respective codons. For example, leucine and valine are 

separated by C<>G and T<>G. The synonymous SFS used to estimate the rate of adaptive 

substitution was estimated as SFS4F(weighted) =( (fTTA + fGTA + fTTG + fGTG) x SFS4F(T<>G) + (fCTT + fGTT 

+ fCTC + fGTC…etc) x SFS4F(C<>G)) / (fTTA + fGTA + fTTG + fGTG + fCTT + fGTT + fCTC + fGTC…etc) . 

 

Six parameters were estimated for each of the 75 non-synonymous site classes: the 

proportion of adaptive substitutions a, the rate of adaptive evolution relative to the 

mutation rate, wa, the distribution of fitness effects for slightly deleterious mutations (DFE) 

modelled as a gamma distribution with the shape parameter b and the mean as the average 

selection strength against deleterious mutations sd, the average fitness effect of adaptive 

mutations, sa, as well as their proportion la. The demography parameters necessary as input 

into the DFE-alpha program were inferred from the synonymous SFSs, assuming a 3-epoch 

model, as implemented in DFE-alpha. The average segregating frequency of polymorphisms 

for each site class was calculated as DAF = (∑i iqi)/∑qi, where qi represents the number of 

sites segregating at frequency i in the sample of sequences; 1 ≤ i ≤ 19, as we construct the 

SFSs from 20 sequences. 

 

Acknowledgements 

JB was funded by the Austrian Science Fund (FWF, W1225-B20). 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 28, 2018. ; https://doi.org/10.1101/379073doi: bioRxiv preprint 

https://doi.org/10.1101/379073


 19 

Literature 

 

AKASHI, H. 1995. Inferring weak selection from patterns of polymorphism and divergence at 
"silent" sites in Drosophila DNA. Genetics, 139, 1067-1076. 

ANDOLFATTO, P. 2005. Adaptive evolution of non-coding DNA in Drosophila. Nature, 437, 
1149-1152. 

BARRETT, R. D., MACLEAN, R. C. & BELL, G. 2006. Mutations of intermediate effect are 
responsible for adaptation in evolving Pseudomonas fluorescens populations. Biol 
Lett, 2, 236-8. 

BARRETT, R. D. & SCHLUTER, D. 2008. Adaptation from standing genetic variation. Trends 
Ecol Evol, 23, 38-44. 

BATAILLON, T., ZHANG, T. & KASSEN, R. 2011. Cost of adaptation and fitness effects of 
beneficial mutations in Pseudomonas fluorescens. Genetics, 189, 939-49. 

BAZYKIN, G. A. & KONDRASHOV, A. S. 2012. Major role of positive selection in the evolution 
of conservative segments of Drosophila proteins. Proc Biol Sci, 279, 3409-17. 

BELL, G. 2009. The oligogenic view of adaptation. Cold Spring Harb Symp Quant Biol, 74, 
139-44. 

CAMPOS, J. L., ZHAO, L. & CHARLESWORTH, B. 2017. Estimating the parameters of 
background selection and selective sweeps in Drosophila in the presence of gene 
conversion. Proc Natl Acad Sci U S A, 114, E4762-E4771. 

CHARLESWORTH, B., CAMPOS, J. L. & JACKSON, B. C. 2018. Faster-X evolution: Theory and 
evidence from Drosophila. Mol Ecol. 

EYRE-WALKER, A. 2002. Changing effective population size and the McDonald-Kreitman test. 
Genetics, 162, 2017-2024. 

FERRIS, M. T., JOYCE, P. & BURCH, C. L. 2007. High frequency of mutations that expand the 
host range of an RNA virus. Genetics, 176, 1013-22. 

GALTIER, N. 2016. Adaptive Protein Evolution in Animals and the Effective Population Size 
Hypothesis. PLoS Genet, 12, e1005774. 

GOSSMANN, T., SONG, B.-H., WINDSOR, A. J., MITCHELL-OLDS, T., DIXON, C. J., KAPRALOV, 
M. V., FIALTOV, D. A. & EYRE-WALKER, A. 2010. Genome wide analyses reveal little 
evidence of adaptive evolution in many plant species. Mol. Biol. Evol., 27, 1822-1832. 

GRANTHAM, R. 1974. Amino acid difference formula to help explain protein evolution. 
Science, 185, 862-4. 

HU, T. T., EISEN, M. B., THORNTON, K. R. & ANDOLFATTO, P. 2013. A second-generation 
assembly of the Drosophila simulans genome provides new insights into patterns of 
lineage-specific divergence. Genome Research, 23, 89-98. 

IMHOF, M. & SCHLOTTERER, C. 2001. Fitness effects of advantageous mutations in evolving 
Escherichia coli populations. Proc. Natl. Acad. Sci. USA, 98, 1113-1117. 

KASSEN, R. & BATAILLON, T. 2006. Distribution of fitness effects among beneficial mutations 
before selection in experimental populations of bacteria. Nat Genet, 38, 484-488. 

KAWASHIMA, S., POKAROWSKI, P., POKAROWSKA, M., KOLINSKI, A., KATAYAMA, T. & 
KANEHISA, M. 2008. AAindex: amino acid index database, progress report 2008. 
Nucleic Acids Res, 36, D202-5. 

KEIGHTLEY, P. D., CAMPOS, J. L., BOOKER, T. R. & CHARLESWORTH, B. 2016. Inferring the 
Frequency Spectrum of Derived Variants to Quantify Adaptive Molecular Evolution in 
Protein-Coding Genes of Drosophila melanogaster. Genetics, 203, 975-+. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 28, 2018. ; https://doi.org/10.1101/379073doi: bioRxiv preprint 

https://doi.org/10.1101/379073


 20 

KING, M. C. & WILSON, A. C. 1975. Evolution at 2 Levels in Humans and Chimpanzees. 
Science, 188, 107-116. 

KOPP, M. & HERMISSON, J. 2009. The genetic basis of phenotypic adaptation II: the 
distribution of adaptive substitutions in the moving optimum model. Genetics, 183, 
1453-76. 

LACK, J. B., CARDENO, C. M., CREPEAU, M. W., TAYLOR, W., CORBETT-DETIG, R. B., STEVENS, 
K. A., LANGLEY, C. H. & POOL, J. E. 2015. The Drosophila Genome Nexus: A 
Population Genomic Resource of 623 Drosophila melanogaster Genomes, Including 
197 from a Single Ancestral Range Population. Genetics, 199, 1229-U553. 

MACLEAN, R. C. & BUCKLING, A. 2009. The distribution of fitness effects of beneficial 
mutations in Pseudomonas aeruginosa. PLoS Genet, 5, e1000406. 

MARTIN, G. & LENORMAND, T. 2008. The distribution of beneficial and fixed mutation 
fitness effects close to an optimum. Genetics, 179, 907-16. 

MATUSZEWSKI, S., HERMISSON, J. & KOPP, M. 2014. Fisher's geometric model with a 
moving optimum. Evolution, 68, 2571-88. 

MATUSZEWSKI, S., HERMISSON, J. & KOPP, M. 2015. Catch Me if You Can: Adaptation from 
Standing Genetic Variation to a Moving Phenotypic Optimum. Genetics, 200, 1255-
74. 

MCDONALD, J. H. & KREITMAN, M. 1991. Adaptive evolution at the Adh locus in Drosophila. 
Nature, 351, 652-654. 

MCDONALD, M. J., COOPER, T. F., BEAUMONT, H. J. & RAINEY, P. B. 2011. The distribution of 
fitness effects of new beneficial mutations in Pseudomonas fluorescens. Biol Lett, 7, 
98-100. 

MIYATA, T., MIYAZAWA, S. & YASUNAGA, T. 1979. Two types of amino acid substitutions in 
protein evolution. J Mol Evol, 12, 219-36. 

ORR, H. A. 1998. The Population Genetics of Adaptation: The Distribution of Factors Fixed 
during Adaptive Evolution. Evolution, 52, 935-949. 

ORR, H. A. 2002. The population genetics of adaptation: the adaptation of DNA sequences. 
Evolution, 56, 1317-30. 

PERFEITO, L., FERNANDES, L., MOTA, C. & GORDO, I. 2007. Adaptive mutations in bacteria: 
high rate and small effects. Science, 317, 813-5. 

PRITCHARD, J. K., PICKRELL, J. K. & COOP, G. 2010. The genetics of human adaptation: hard 
sweeps, soft sweeps, and polygenic adaptation. Curr Biol, 20, R208-15. 

ROCKMAN, M. V. 2012. The QTN program and the alleles that matter for evolution: all that's 
gold does not glitter. Evolution, 66, 1-17. 

ROKYTA, D. R., JOYCE, P., CAUDLE, S. B. & WICHMAN, H. A. 2005. An empirical test of the 
mutational landscape model of adaptation using a single-stranded DNA virus. Nat 
Genet, 37, 441-444. 

ROZEN, D. E., DE VISSER, J. A. & GERRISH, P. J. 2002. Fitness effects of fixed beneficial 
mutations in microbial populations. Curr Biol, 12, 1040-5. 

SANJUAN, R., MOYA, A. & ELENA, S. F. 2004. The distribution of fitness effects caused by 
single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci U S A, 101, 8396-
8401. 

SCHENK, M. F., SZENDRO, I. G., KRUG, J. & DE VISSER, J. A. 2012. Quantifying the adaptive 
potential of an antibiotic resistance enzyme. PLoS Genet, 8, e1002783. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 28, 2018. ; https://doi.org/10.1101/379073doi: bioRxiv preprint 

https://doi.org/10.1101/379073


 21 

SCHNEIDER, A., CHARLESWORTH, B., EYRE-WALKER, A. & KEIGHTLEY, P. D. 2011. A method 
for inferring the rate of occurrence and fitness effects of advantageous mutations. 
Genetics, 189, 1427-37. 

SCHOUSTRA, S. E., BATAILLON, T., GIFFORD, D. R. & KASSEN, R. 2009. The properties of 
adaptive walks in evolving populations of fungus. PLoS Biol, 7, e1000250. 

SEETHARAMAN, S. & JAIN, K. 2014. Adaptive walks and distribution of beneficial fitness 
effects. Evolution, 68, 965-75. 

SHIELDS, D. C., SHARP, P. M., HIGGINS, D. G. & WRIGHT, F. 1988. "Silent" sites in Drosophila 
are not neutral: evidence of selection among synonymous codons. Mol. Biol. Evol., 5, 
704-716. 

TATARU, P., MOLLION, M., GLEMIN, S. & BATAILLON, T. 2017. Inference of Distribution of 
Fitness Effects and Proportion of Adaptive Substitutions from Polymorphism Data. 
Genetics, 207, 1103-1119. 

ZHANG, J. 2000. Rates of conservative and radical nonsynonymous nucleotide substitutions 
in mammalian nuclear genes. J. Mol. Evol., 50, 56-68. 

 

 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 28, 2018. ; https://doi.org/10.1101/379073doi: bioRxiv preprint 

https://doi.org/10.1101/379073


 22 

Supplementary figures 

 

 

 
Figure S1.  The X chromosome rate of adaptive evolution relative to the mutation rate (wa) 
plotted against the difference in A) volume, B) polarity, C) pN/pS and D) DAFN/DAFS.  
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Figure S2. The cumulative number of adaptive substitutions on the X chromosome, Wa(ij), 

contributed by each pair of amino acids A) versus the normalised difference in volume and 

polarity, and B) versus the reverse rank of pN/pS and DAFN/DAFS. The normalised difference 

in volume and polarity was calculated by subtracting the minimum difference, and then 

dividing by the maximum difference minus the minimum difference.  
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Figure S3. The cumulative number of adaptive mutations, La, contributed by each pair of 

amino acids A) & C) versus the normalised difference in volume and polarity, and B) & D) 

versus the reverse rank of pN/pS and DAFN/DAFS, for the autosomal data A) & B) and the X-

chromosome C) & D). The normalised difference in volume and polarity was calculated by 

subtracting the minimum difference, and then dividing by the maximum difference minus 

the minimum difference.  
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Figure S4. Distributions of the selection strength Nesa for the five amino acid pairs with the 
most polymorphism data. Distributions were obtained by bootstrapping the SFSs of the 
amino acid pairs. 
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Figure S5. The ratios of the non-synonymous to the synonymous SFS (SFSN/SFSS) for the two 
amino acid pairs with the most polymorphism data.  
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Figure S6. The underlying distribution of fitness effects amongst substitutions. Panel A 

shows the possible underlying distribution of effects amongst substitutions (or mutations) 

and panel B shows how distribution 2a in panel A could be composed of individual 

distributions each of which has a mean above the mode of the overall distribution. This 

would yield a negative relationship between the rate of adaptive substitution and a 

measure of fitness (e.g. the difference in polarity), even though the underlying distribution 

is such that mutations of intermediate effect size are the ones most commonly fixed. 

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Fitness

D
en
si
ty

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fitness

D
en
si
ty

1

2a
2b 3

A)

B)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 28, 2018. ; https://doi.org/10.1101/379073doi: bioRxiv preprint 

https://doi.org/10.1101/379073


 28 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 28, 2018. ; https://doi.org/10.1101/379073doi: bioRxiv preprint 

https://doi.org/10.1101/379073

